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Abstract In this paper, we propose a Markov chain for sampling a random variable distributed according to a discretized
Dirichlet distribution. We show that our Markov chain is rapidly mixing, that is, the mixing time of our chain is (1/2)n(n —
1) In((A — n)e') where n is the dimension (the number of parameters), 1/A is the grid size for discretization, and & is the error
bound. We estimate the mixing time by using the path coupling method. When the parameters are large, the log-concavity of
the density function implies the rapidity straightforwardly. In the case that parameters are small, the density function is convex
and so we need a different approach to use the path coupling method. We also show the rate of convergence of our chain
experimentally.

1 Introduction For example, Nil et al. propose a Bayesian haplotype
inference method [5], that is, deciding phased (pater-
nal and maternal) individual genotypes probabilistically.
This method is based on Gibbs sampler. In their method,
the Dirichlet distribution is used to update population
haplotype frequencies, i.e., parameters of the multino-
mial distribution, for each iteration. That is to say, for
each iteration starting from a Dirichlet distribution with
some appropriate parameters, parameters of the multi-
nomial distribution is updated from the posterior distri-
bution which is a Dirichlet distribution with updated pa-
rameters conditional on the “imputed” events, .

Statistical methods are widely studied in bioinformatics
since they are powerful tools to discover genes causing
a (common) disease from a number of observed data.
These methods often use EM algorithm, Markov chain
Monte Carlo method, Gibbs sampler, and so on. The
Dirichlet distribution, a distribution over vectors of pos-
itive numbers in which sum is equal to 1, often appears
as prior and posterior distribution for the multinomial
distribution in these methods since this is the conjugate
prior of parameters of the multinomial distribution.
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Another example is a population structure inferring
algorithm by Pritchard et al. [6]. This algorithm is based
on MCMC algorithm. For each step of MCMC, the
Dirichlet distribution with two distinct sets of parame-
ters are used to sample allele frequencies in each pop-
ulation and admixture proportions for each individual.
Similar to the first example, these two sets of parame-
ters are updated at each iteration.

In these examples, the Dirichlet distribution appears
with various dimensions and various parameters. Thus
we need an efficient algorithm for sampling from the
Dirichlet distribution with arbitrary dimensions and ar-
bitrary parameters. One approach of sampling from
the Dirichlet distribution is by rejection (see [3] for
example). In this way, we have to sample from the
gamma distribution as many as the size of dimension
of a Dirichlet distribution. Though we can sample from
the gamma distribution by using rejection sampling, the
ratio of rejection becomes higher as the parameter is
smaller. Thus, it does not seems effective way for small
parameters.

We employ another approach, the Metropolis algo-
rithm using a Markov chain. In this case, it is important
to estimate a mixing rate of Markov chain. Otherwise,
the samples may not be distributed according to a de-
sired distribution.

In this paper, we propose a simple Markov chain for
sampling a random variable distributed according to a
discretized Dirichlet distribution. We show that our
Markov chain is rapidly mixing, that is, the mixing rate
of our chain is quadratic of the number of the dimen-
sion of a Dirichlet distribution and logarithmic of dis-
cretizing grid size and the inverse of variation distance.
We note that this mixing rate does not depend on the
magnitude of parameters. We also show experimentally
that the recuired number of steps of our Markov chain
is much smaller than our theoretical upper bound of the
mixing rate.

2 Markov chain for Approximate
Sampler

Dirichlet random vector P = (P, P>, ..., P,) with pos-
itive parameters uy, ..., u, is a vector of random vari-
ables that admits the probability density function

(XL w) ui-1
M, Cap L1

defined on the set {(p1,p2,...,pn) € R" | X1, pi =
1, p1,p2,---,pn > 0} where I'(#) is the gamma func-
tion. Throughout this paper, we assume that n > 2.

For any integer A > n, we discretize Q with grid size
1/A and obtain a discrete set of integer vectors Q defined

by

def. - RN
Q% {(pl,pz,...,pn)ez | pi > 0 (i), Zp,:A}.

i=1

The discretized Dirichlet random vector with posi-
tive parameters uj,...,u, is a random vector X =
(X1, ...,X,) € Q with the distribution

PHX = (x1,..., %)] = g0) € Ca | (/A
i=1

where Cp is the partition function (normarizing con-
stant) defined by (Ca)™! o Yxea [T (xi/ AL,
For any integer b > 2, we introduce a set of 2-

dimensional integer vectors Q(b) aef- {((Y1,Y2) € 72 |
Y1,Y, > 0, Y1 + Y, = b} and a distribution function
Y, Yo | u,uj) - Q(b) — [0, 1] with positive parame-
ters u;, u; defined by

def. o
Fol1, V2 L)) =" Cluguj, Y'Y

where (C(u;, uj, b)) %t R AT Yl""le;Fl is the
partition function.

We describe our Markov chain M with state space Q.
At each time ¢t € {0, 1,2, ...}, transitions take place as
follows.

Step 1: Pick a mutually distinct pair of indices {i, j} C
{1,2,...,n} uniformly at random.

Step 2: Putb = X! +X}. Pick (Y1, Y>) € Q(b) according
to the distribution function f;(Y1, Y2 | u;, u;).

no(k=1,
Step 3: Put X' =Y, (k= ),
X, (otherwise).

Clearly, this chain is irereducible and aperiodic. Since
the detailed balance equations hold, the stationary dis-
tribution of the above Markov chain M is g(x).

The following theorem is a main result of this paper,
which shows the mixing time of our chain.

Theorem 1. The mixing time 1(g) of Markov chain M
satisfies

() < (1/2)n(n — 1) In((A — n)e™b).

In the rest of this paper, we prove the above by using the
path coupling method.

Before showing the above lemma, we briefly review
the definition of the mixing time and path coupling
method. For any probability distribution function 7" on
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Q, define the rotal variation distance between the sta-
tionary distribution function g of M and n’ to be

PR EDIELC))

XeQ XeQ

def.
Drv(g, ") = max
QcQ

1
=5 D, 8@ ~ (o).

XeQ

If the initial state of the chain M is x € Q, we denote the
distribution of the chain at time ¢ by X.;c :Q — [0,1],
ie.,

Poy) EPrX' =y|X°=x] (VyeQ).

The rate of convergence to stationary from the initial
state x may be measured by

Tx(&) def. min{z | Dyv(g, P;) <eg forall ¢ >t}

where the error bound ¢ is a given positive constant. The
mixing time 1(g) of M is defined by

def.
7(e) = maxTtx(e
(&) max x(&),

which is independent of the initial state.

Next, we define a special Markov process with re-
spect to M called joint process. A joint process of M
is a Markov chain (X', Y") defined on Q x Q satisfying
that each of (X"), (Y*), considered marginally, is a faith-
ful copy of the original Markov chain M. More pre-
cisely, we require that

Pr{X"*! = X'|(X', Y") = (x, p)] =P pm(x, x"),
Pr{Y™*! = y'I(X, Y') = (6, )] =Py, ¥)),

for all x,y,x’,y’ € Q where Pp(x,x") and Pp(y,y")
denotes the transition probability from x to x” and from
y to y’ of the original Markov chain M, respectively.

Lemma 1 (Path coupling lemma[1]). Let G be a di-
rected graph with vertex set Q and arc set A C Q X Q.
Let € : A — Z,, be a positive length function defined
on the arc set. We assume that G is strongly connected.
For any ordered pair of vertices (x,x") of G, the dis-
tance from x to x’, denoted by d(x,x"), is the length of
the shortest path from x to x’, where the length of a path
is the sum of the lengths of arcs in the path. Suppose
that there exists a joint process (X,Y) — (X', Y") with
respect to M satisfying that

1>38>0, V(X,Y) € A, E[dX,Y)] < Bd(X, V).

Then the mixing time 1(g) of the original Markov chain
M satisfies () < (1-B)"" In(D/g) where D denotes the
diameter of G, i.e., the distance of a farthest (ordered)
pair of vertices.

3 Analysis of Mixing Time

In this section, we define the joint process and analyze
the mixing time by using path coupling method. First,
we introduce a directed garph G = (Q, A) whose vertex
set is equivalent to the state space Q. There exists a
directed arc from state (vertex) x to y if and only if ||x —

il % (o1 = y1] 4+ -+ + [ = yul) = 2. Thus the set A of
arcs of G is defined by

def.
AZ{(x,y) [ x,y e Qllx—yli =2}

Clearly, G is strongly connected

Now we define the joint process with state space
Q x Q. For any adjacent pair of states (x,y) € A, the
joint process does the following. Without loss of gener-
ality, we can assume that x; = y; + 1,xp =y, — 1, x3 =
¥3,..-,%, = y,. The transition of the joint process
(x,y) — (X', Y") is defined as follows.

Step 1: Pick a pair of mutually distinct indicies {i, j} €
{1,2,...,n} uniformly at random.

Step 2: For any index i’ € {1,2,...,n}\ {i, j}, set X, =
xr, Y, =yr. Pick ((Xi’,X;.), (Y, Yj’.)) from the set
Q(x; + x;) X Q(y; +y;) according to the following
transition rule.

(Case 1) The case that the pair of indices {7, j} picked at
Step 1 satisfies {1,2} N {i, j} = 0.

It is easy to see that the equality x; +x; = y;+y; holds.
At Step 2, we pick (X] ,X;.) according to the distribu-
tion function f(X,.Hj)(Xi’,X;. | wi,u;) and put (¥}, YJ’.) =
0.6 ,X;.). Here we note that the pair of states satisfies
(X', Y") € A.

(Case 2) The case that the pair of indices {i, j} picked at
Step 1 satisfies {1, 2} = {i, j}.

At Step 2, we pick (X', Y”) in the same way with Case
1. In this case, the pair of states satisfies X’ = Y.

(Case 3) The case that the pair of indices {i, j} picked at
Step 1 satisfies {1,2} N {i, j} = {2}.

Without loss of generality, we can assume that i = 2.
Set b = x; + x;j. Clearly, the equality y; +y; = b+ 1
holds. We introduce the distribution function defined on
the set Q(b) x Q(b + 1) which is used at Step 2 in this
case. We define the set Q' of states which may have
positive probability by

Q' oo {((1,b=1),(1,b)),....,(b-=1,1),(b-1,2))}
U{((1,b-1),2,b=1)),...,((b—=1,1),(b,1))}.
We set Pr{((X}, X)), (Y. Y}) = (£}, X)), GLAD)] = O,

V((xlf,x;.), (yl’.,y;.)) € Q) x Qb + 1)\ Q. For each
element in Q’, the corresponding probability is defined
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by

Pr{((X;, X)), (Y], Y))) = (k,b = k), (k + 1,b = k)]
k k

=C, Z PY(h — % = Cyyy Z 1Y — 1+ 1)

=1 =1

Pr{((X;, X)), (Y], Y)) = (k,b = k), (k, b -k + 1))]
k k=1
= Cpa Y PN — 1+ 1) = Y T - !
=1 =1
wherek € {1,2,...,b-1}and C, = C(uj,u;,b), Cpi1 =
C(uj,uj, b + 1). (Here we note that for any sequence of
real numbers {k;}, we define Z,ZL k = 0,if L > U.)
Each pair of states (x,y) € )’ satisfies that (x",y") € A.
To complete the description of Case 3, we need to
show that the above probability is non-negative and the
sum total is equal to 1. It is easy to see that the sum
total is equal to 1. The following lemma shows the non-
negativity.

Lemma 2. If the parameters u; and u; are non-negative,
the inequalties

Pr{((X;, X)), (Y], YD) = ((k,b = k), (k + 1,b - k))] >0,

(1
Pr{((X, X7), (Y], Y7)) = ((k, b = k), (k,b — k + 1))] 20,
2)

hold for each k € {1,2,...,b—1}.

The proof of the above lemma is complicated and de-
scribed in Appendix. Here we note that when u;, u; > 1,
the correspoding functions has log-concavity, and so we
can show the non-negativity in an ordinary way. How-
ever, at least one of parameters is less than 1, the func-
tion is neither log-concave nor concave. If both parame-
ters are less that 1, the corresponding function is convex
and so we cannot apply the ordinary method to show
the non-negativity of the transition probability of joint
process. See Appendix for detail.

Next, we show that marginal distributions of the joint
process is a faithful copy of the original Markov chain
M. Marginal distributions of X, Y satisfy that

Pr[(X{, X)) = (k,b— k) and (Y], Y}) € Qb + 1)]

=Pr{ (X}, X)), (¥}, Y})
= (kb= k), (k+ 1,b - )]
+ Pr((X[. X)), (Y], Y})

= ((k,b = k), (k. b=k + 1)]
:Cbku;—l(b _ k)uj_l,

Pr[(X{, X)) € Q(b) and (Y], Y}) = (k.b =k + 1)]

=Pr{((X], X)), (Y], Y}))

=((k=1,b—k+1),(,b—k+1)]
+ Pr| (X, X)), (Y], Y})
= ((k,b = k), (kb =k + 1)
=Cp k™ (b =k + 1)

Lastly, we note that the pair of picked states satisfies that
(X",Y") e A.

(Case 4) The case that the pair of indices {i, j} picked at
Step 1 satisfies {1,2} N {i, j} = {1}.

We choose (X', Y") € Q(b+1)xQ(b) where b = y;+y;
in a similar way as Case 3. The procedure is obtained
by substituting the indices 1 and 2, and states x and y
simultaneously in Case 3. In this case, the picked pair
of states also satisfies that (X', Y") € A.

Now we completed the description of the transition
procedure of joint process. In the rest of this section, we
show a proof of the theorem.

Proof of Theorem 1. For any pair of states (x,y) € A
adjacent on the graph G define above, we put the length
of the edge is equal to 1. Then the distance from a state
x' € Qtoy € Q, denoted by d(x’,y’), is equal to the
length of the shortest path on G from x’ to y’ where
the length of the path is equal to the number of edges
contained in the path. For any state x € Q, we define
d(x,x) = 0. It is clear that the diameter of the graph G,
the distance between a farthest pair of vertices, is equal
to A —n.

Next, we estimate the expectation of the distance
from X’ to Y’ obtained by applying the transition pro-
cedure of the joint process to an adjacent pair of states
(x,y) € A. Without loss of generality, we can as-
sume that the pair (x,y) satisfies that x; = y; + 1,x, =
y2—Lx3=y3,...,% =y

In (Case 1),(Case 3) and (Case 4), the distance from
X’ to Y’ is equal to 1. When O Case 2) occured, the
distance from X’ to Y’ decreases to 0. Since the prob-
ability of the event that (Case 2) is selected is equal to
2/(n(n — 1)), the expectation of the distance E[d(X’, Y")]
becomes to 1 —2/(n(n — 1)).

Path coupling theorem [1, 2] shows that the mixing
time 7(¢) satisfies 7(¢) < (1/2)n(n—1)In((A-n)e™). O

4 Experimental study

In this section, we show some simulation results. The
overview of the simulations is that we run the Markov
chain a number of times and compare the proportion of
occurrence with the stational distribution for each vector
at each transition step of Markov chain.
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(uy, up, u3, uyg) maximum difference of statistic 0 53 00
[EALPi] - E[Pi]] 0 0 0
(1,1,1,1) [Vars[Pi] — Var[ /]| 0.015  0.003  0.0015
|Cova[Pi, P/ = Cov[P,, P)]| 0.005  0.001  0.0005
max (EA[Pi] - E[Pi]) 0.051  0.0092  0.0046
4,3,2,1) max (|Vara[P;] - Var[P])) 0.0036  0.00049  0.00023
max (|Cova[P;. Pj] = Cov[P;, Py]]) | 0.0080  0.0074  0.0073
[EA[Pi] - E[Pi]] 0 0 0
(0.1,0.1,0.1,0.1) | [Vara[P;] - Var[P;] 0.11 0071 0.6l
|Cova[Pi, Pj] = Cov[P, P)]| 0035 0024  0.020
max ([Ea[P;] - E[Pi]) 0.13 0.10  0.092
(0.4,03,0.2,0.1) | max ([Vars[P;] — Var[P;]]) 0.090 0055 0045
max (|Cova[P;, Pj] = Cov[Pi, Pilf) | 0051  0.042  0.040
max ([Ea[P;] - E[Pi]) 0079 0029 0019
(2.1.5,1,0.5) | max(|Vara[P;] - Var[P;]]) 0.014  0.0032  0.0019
max (|Cova[P;, ;1= Cov[P:, Pjl)) | 0015 0013 0013

Table 1: the difference of statistics

We note that the stational distribution of Markov
chain is quite different from the original Dirichlet dis-
tribution because of discretizing. For example, we show
some differences of statistics in Table 1. The statistics
of Dirichlet distribution with parameters (uy,...,u,) is
given as follows. Let up = >; u;. For each i, the expec-
tation of p;, E[p;], is u;/up and the variance Var[p;] is
f‘;((‘:{ool“l’)) For each i, j, the covariance between p; and p;,
Cov[p;i, pjl, is given by M%;::i’l). On the other hands,
we can calculate the statistics, Ea[p;], Vara[pi], and
Covalpi, pjl, of the discretized Dirichlet distribution by
a brute force.

Here, we describe the settings of our simulations.
Since the behavior of Markov chain depends on ran-
dom numbers, it is important to choose a good pseudo-
random generator. Through all simulations, we use
Mersenne Twister[4] as a pseudo-random generator. We
run these simulations on the PC Linux machine with fol-
lowing specifications.

Machine: Dell Precision 450
CPU: Intel Xeon 2.8GHz (FSB 533MHz) x 2
OS: RedHat Linux 8.0 (Kernel 2.4.18-14smp)

Memory: Dual channel PC2100 DDR SDRAM

2GByte
Compiler: Intel C++ Compiler 7.0

For each simulation, we ran 10° processes of our
Markov chain with deterministically chosen random
seed from the unique vector where each element is ap-
proximately 1/n. For each Markov chain process, we
executed 50 steps. The running time of 10° processes,
i.e., 5 x 10' steps, is between 10 hours and 30 hours.

rrrrrrrrrrrrrrr u=(4,3,2,1)
—————————— u=(0.1,0.1,0.1,0.1)
————— u=(0.4,0.3,0.2,0.1)
—————— u=(1,1,1,1)
—-—-- — u=(2,15,1,05)
theoretical result

total variation distance

0 10 20 30 40 50
# of transitions

Figure 1: changing parameters of the Dirichlet

First, we show results on the relation between param-
eters and mixing rate. We fixed the dimension n to 4
and the discretizing grid size A to 100. We selected
parameters from (1,1,1,1), (4,3,2,1), (2,1.5,1,0.5),
(0.1,0.1,0.1,0.1), and (0.4,0.3,0.2,0.1). We note that
the first one means the uniform distribution over Q. In
Figure 1, along the vertical axis we give the total varia-
tion distance &, and the horizontal axis means the num-
ber of transition of chains from the unique initial state.
As Figure 1 shows, the decrease of total variation dis-
tance are saturated at about 1072, though it must descend
constantly. This is caused by the limitation of number
of processes of Markov chains, that is, the difference of
probability has lower bound for each vector. Thus, the
larger number of executions we run, the smaller the dif-
ference will be. Aside from this saturation, we can see
that if the value of a parameter is greater than or equal
to 1, the mixing rate is less than the case that all values
of a parameter are less than 1.
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Figure 2: relation between A and the mixing rate

Next, we confirm how the discretizing value A con-
tribute to the mixing rate. We fixed the dimension n to
4 again, the parameter to (1, 1,1, 1). We chose A from
10, 20, 50, 100, and 200. In Figure 2, we plotted the
total variation distance ¢ for each discretizing grid size
A. This figure shows that A will have little contribution
to the mixing rate. More specifically, until the decrease
of & is saturated, the ratios of decreasing have little dif-
ference for each A. In theoretical result, log(A — n) is
caused by the diameter of the G = (Q, A), which is ar-
tificially introduced to estimate the upper bound of the
mixing rate. These experimental results, however, sug-
gest us that the diameter does not depend on A. This
suggestion is substantiated by the fact that the diameter
of our chain is bounded by #.

Finally, we checked the relation between the dimen-
sion and the mixing rate. Because of restriction of mem-
ory, we fixed the discretizing grid size A to 20 and chose
the dimension n between 3 and 7. We also fixed each
parameter to 1. We show all results in Figure 3(a).
Since our purpose is compare the mixing rate and di-
mension, we picked up the first step of transition that
the total variation distance € exceed 0.1, 0.5, 0.05, and
0.01. These picked points are marked in Figure 3(a).
In Figure 3(b), we show the results for each €. Though
accurate consideration cannot be made because of the
insufficient range of dimension, our results indicate that
the mixing rate is ®(n) rather than ®(n?) .

5 Conclusion

In this paper, we proposed a Markov chain whose sta-
tionary distribution is a discretized Dirichlet distribution
function. We showed that our Markov chain is rapidly
mixing by using path coupling method. Our simula-
tions indicates that the mixing time of the chain is much
smaller than our theoretical upper bound.
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Appendix

Proof of Lemma 2. The inequalities (1) and (2) are sym-
metric in terms of u; and u;, we only need to show one
of the inequalities. In the following, we discuss the in-
eaulity

Pr [((X}, X)), (Y], YD) = (k. b = k), (k, b =k + 1))] 2 0.
From the definition of the transition probability of the
joint process, we have

Pr[((X]. X)), (Y], Y}) = (k,b = K), (k,b — k + 1))]

k

=Cpi1 Z 1Y — [+ 1w
=1
k-1

—C Y b -

=1
b
P CEE 1)“f1]

I=k+1

b-1
- [1 -G Z 1 L(p - l)“fl]
1=k
b ui—1
_ - \" C'b+1
_ ui—1 _ ui—1 _ _
_ZC;,I (b-1+1) ((1 1) Cb].

I=k+1

= [1 = Cpi1
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total variation distance
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(a) # of transitions v.s. total variation distance
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(b) dimension v.s. mixing rate

Figure 3: relation between dimension and mixing rate

Thus we can show that

Pr [((X]. X)), (V] ¥}) = (kb = K. (k. b=k + 1)

k k-1
=Cpt Y PN -1+ 1) =G Y 1 - !
=1 =1
k
>Cpo ) 1B =1+ 1!
=2

k
—C Y (=D -1+ 1y
=2

k ui—1
C 1\
=ZCbl“f’1(b s [ﬂ - (1 - —) ]
=2 Co !

,b} = R de-

we can show that

By introducing the function £ : {2,3,...
u,-—l v
fined by h(l) = (1 - %) _ G

Cp

Pr{ (X}, X)), (Y, 7)) = (kb = k), (kb =k + 1)]

b
= Z Col“ Y (b — 1+ D)% (1) (3)
I1=k+1

k
> — Z Col“ V(b — 1+ D h(D). (4)
=2

(a) The case that u; > 1.

Since u; — 1 > 0, the function /() is monotone non-
decreasing. When h(k) > 0 holds, we have 0 < h(k) <
h(k + 1) < --- < h(b), and so (3) implies the non-

negativity

Pr[((X}, X)), (Y], Y}) = ((k, b = k), (k, b — k + 1))]

b
= Z Col“" (b = 1+ D h(l) > 0.
I1=k+1

If h(k) < O, then inequalities ~(2) < h(3) < --- < h(k) <

0 hold, and so (4) implies that

Pr[((X]. X)), (Y], Y}) = (k,b— K), (k,b — k + 1))]

k
> — Z Col“™Y(b — [+ 1) h(]) > 0.
=2

(b) The case that 0 < u; < 1.

Since u; — 1 < 0, the function A(l) is monotone non-
increasing. If the inequality 2(b) > 0 hold, we have
h(2) > h(3) > --- > h(b) > 0 and inequality (3) implies
the non-negativity

Pr [((X}, X)), (Y], Y) = (kb = k), (k, b = k + 1)]

irtj

b
= Z Col“ L(b — [+ 1) 1h(]) > 0.
I=k+1

In the rest of this section, we show that h(b) =
- i— Cn
(Bt =2 > 0.

We define a function Hy (b, a;, &) by
Ho(b, @i, @) = (b= 1)"C,}; = b7C,".

It is clear that if the condition [-1 < Va; < 0, —1 <
Yaj;, Vb € {2,3,4,..), Ho(b,ai,a;) > 0] holds,
we obatin the required result that 4(b) > O for each
b e {2,3,4,...}. Now we transform the function
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Hy(b, @i, ) and obtain another expression as follows;

Ho(b, ai, @)

b b-1
=(b—nmzakmw—k+4yv—bME:H%b—mW

b-1

= [@—IV%Wb k+n%( ﬂ
& 1

; ; 1\ k
+(b— D)%k + )7(b k)(b_J
—www—mﬂ

b-1

3 (—1)”‘k”'(b k)% 1 \" B
- (1+52) @0
1\"
+(1+;) k

b \*
—(m) (b—l)}.

Then it is enough to show that the function

def. 1 nj
Hi(b,aj,aj,k) = 1+m b—-k)

1\ b \"
+(1+%) k—(m) b-1)

is nonnegative for any k € {1,2,...,
1/(b—k)>1and ; > —10 we have

Hl(bv @i, @j, k) 2 Hl(b’ @i, _17k)

b—k)? 1)\ b \"
=ﬁ+(“z) "‘(m) ®-D.

We differentiate the function H; by «a;, we obtain the

following

0
_Hl(ba @, _17 k)

oa;
=(1 + %)aiklog(l + %)
_(%)m (b - l)log(b b l)
=(1 + %)m log(l + %)k

1 @; 1 (b-1)
—|1+—] log|l+-—— .

Since k, b is a pair of positive integers satisfying 1 < k <
b — 1, the non-positivity of @; implies 0 < (1 + 1/k)% <
(1+1/(b—=1))%and 0 < log(1 + 1/k)F < log(1 +1/(b—

k — 1}. Since 1 +

1))”‘1. Thus the function H(b, a;, —1, k) is monotone
non-decreasing with respest to @; < 0. Thus we have

Hl(baaia_lak)
ZHl(b,O,—l,k)
(b - k)? 1\° b \°
== 1+ k—|—) -1
b—k+1 | "% p—1) &~
1
= >0.
b-k+1 "~ 0
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