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Abstract

The recent epidemic growth of diseases related to metabolically abnormal conditions
has raised questions about how correct is our understanding of the nature of those diseases,
and to what extent can they be explained exclusively in terms of genotypical causes.
Additionally, the use of high-throughput methods has produced a significantly larger
amount of metabolic data yet to be thoroughly analyzed. In particular, the development
of computational methods to understand the metabolic similarities among different species
has gained an increased interest as a way to help close the genotype-phenotype gap, i.e.,
how differences at the genotypical level can produce the greatly diverse phenotypes we
observe in nature.

Metabolic pathway alignment is a promising approach to understand the structural
similarities of metabolism in various organisms, based on the idea of establishing a corre-
spondance between metabolic reactions in a similar way to how sequence alignment finds
a correspondance between nucleotides or amino acids.

In this thesis, we present a new method for metabolic pathway alignment based on the
similarity of metabolites, enzymes and reactions present in the pathways. The alignment
is constructed by maximizing a similarity score that takes into account both shared and
non-shared reactions between the pathways. We also present several applications of our
method to problems of biological interest: phylogenetic reconstruction from metabolic
similarity, election of model organisms metabolically similar to humans for specific dis-
eases, detection of conserved reactions among a set of organisms and their link to funda-
mental processes, and identification of possible misannotations of reactions in a metabolic
data repository. A web server implementing the phylogenetic reconstruction functionality
is also described, together with a standalone distribution of the code.

Our approach has several advantages over previous methods: it relies exclusively on
metabolic data, it can assess the relative importance of enzymes and metabolites in the
global measure of metabolic similarity, and it is computationally faster. Results presented
in this thesis show that our method outperforms previous approaches for phylogenetic
reconstruction based on comparison of metabolism. Furthermore, we show how filtering
of noisy data, use of complete metabolic information and fuzzy clustering can produce
robust, highly accurate phylogenies.
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Chapter 1

Introduction

Make no little plans; they have no magic to stir men’s blood and probably
will themselves not be realized. Make big plans; aim high in hope and work,
remembering that a noble, logical diagram once recorded will not die, but long
after we are gone will be a living thing, asserting itself with ever growing
insistency. Remember that our sons and grandsons are going to do things that
would stagger us. Let your watchword be order and your beacon beauty. Think
big

Daniel Burnham [100]

1.1 Motivation

The study of metabolism, the process through which living organisms transform nutrients
into energy and biomolecules usable for fundamental cell processes, has gained interest
in recent years due to the epidemic growth in diseases related to metabolically abnormal
conditions [3]. Metabolic processes are usually organized into metabolic pathways1, a se-
ries of chemical reactions catalyzed by enzymes that take certain input metabolites and
transform them into a set of output metabolites. The comparative analysis of metabolic
pathways in different organisms can yield important clues on their evolution [1], on differ-
ences in drug targets [39], on new therapeutic strategies [107], or on identification of alter-
native enzymes [15]. Indeed, there has been a renewed interest in the study of metabolic
pathways and their properties, both structural and dynamical [69, 123, 126, 150].

The comparative study of metabolism can also provide interesting clues about similar-
ities and differences at the phenotypical level, and further close the genotype-phenotype
gap [43, 65]. Clearly, one of the great challenges in computational biology is to com-
prehend how complex phenotype traits and cellular functions can emerge from simple,
linear nucleotide sequences. It has been shown that genomic differences among species
are smaller than they were expected to be [22], with phenotipically different species such
as human and chimpanzee sharing up to 99% of their gene sequences [20, 37]. Never-
theless, as we move up from genotype to phenotype, differences among organisms will
gradually increase. For instance, recent results show that most human-chimpanzee differ-
ences are due to gene regulation rather than due to gene sequence [50, 71]. Furthermore,

1Through this work, the terms metabolic pathway and metabolic network will be used indistinctly
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the number of different proteins between humans and chimpanzees are nearly 80% [51].
By studying levels of higher biological complexity, we expect to gain even more clear
insights on what are the relevant differences among organisms.

Sequence data has been extensively researched and a variety of tools developed for its
study. Methods for sequence alignment are a well-known example of such tools [5, 63,
89, 90]. As the number of fully sequenced genomes increases and available biochemical
information on different organisms grows, we also need to develop new approaches for the
analysis of such data. Specifically, the comparison of metabolic processes by alignment
algorithms is still an open research question which has not yet been properly answered.

We therefore argue that there is a need to develop methods for non-genomic compari-
son of organisms to better understand their differences. In order to address this problem,
in this thesis we will focus on metabolic similarity, and propose a method for metabolic
pathway alignment based on a new measure of structural similarity among pathways in
different species. We will then apply this method to different biological problems to prove
its usefulness.

1.2 Structural analysis of metabolic pathways

Understanding the organization of metabolic pathways has been identified as one of the
major challenges in genome research [27]. Structural analysis of networks can be addressed
from two different perspectives: either by asking whether a network shows some properties
of interest (is it connected? is it dense? what is the average path length?), or by comparing
how similar is the network to others under some definition of similarity. The first approach
is exemplified by studies on scale-free properties of biological networks [4, 7, 136], while
the second could be represented by alignment techniques ([45, 62]), where two metabolic
networks are compared by establishing a scoring function over the quality of the alignment.

The pathway alignment method that will be described in this work considers metabolic
reactions as the basic elements of the alignment. Our algorithm defines first the similarity
of any two given reactions as a function of the similarity of the set of enzymes and
metabolites present in the reactions. Metabolites can be either similar or dissimilar, while
enzymes can be compared according to their functional similarity. A complete alignment
is obtained by maximizing the sum of similarity scores of all reactions in the pathways
being aligned. This approach can be therefore thought of as a generalization of sequence
alignment, where instead using substitution matrices [59] based on evolutionary rates of
changes of the residues, a functional definition of similarity is used.

1.3 Contributions of this thesis

In this thesis, we have achieved three main contributions. First, we introduce a new
method for metabolic pathway alignment based on a measure of similarity of enzymes,
compounds and reactions involved in the pathway. This method has several advantages
over previous approaches: there is no need to introduce a penalty score for missing re-
actions, we do not use sequence information, we can establish the relative importance of
enzymes and metabolites in the global metabolic similarity measure, and our approach is
computationally faster than graph-based methods.

2
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Second, several applications of this method to problems of biological interest are de-
scribed, showing how our method yields better results than previous approaches.

Finally, we present a web server to reconstruct phylogenetic relationships among a set
of organisms by using their metabolic similarity as calculated by our algorithm. This
server can be useful for bioinformaticians interested in phylogenetics and metabolism
evolution. A series of Perl modules implementing our algorithm are also discussed.

1.4 Thesis organization

The rest of this thesis is organized as follows:

i. Chapter 2 introduces some basic concepts on metabolism that are considered rele-
vant to understand the biological context in which we will be working This chapter
also introduces the Kyoto Encyclopedia of Genes and Genomes (KEGG), the pri-
mary resource of metabolic information we utilized in this thesis, as well as some
terminology commonly used. Finally, the chapter reviews previous methods for
metabolic pathway alignment.

ii. Chapter 3 presents in detail our method for metabolic pathway alignment. We start
by describing how will we represent metabolism, and then introduce an algorithm to
calculate the alignment between pathways corresponding to a maximum metabolic
similarity score. A brief description of the main differences between our method
and previous approaches is presented at the end of the chapter.

iii. Chapter 4 presents four applications of this method to biological problems of rel-
evance. First, reconstruction of phylogenetic relationships among a group of or-
ganisms is addressed, with the underlying hypothesis that species with similar evo-
lutionary history should have similar metabolic processes. Second, we study the
conserved reactions among a set of organisms. In this case, given a set of species
belonging to a certain taxonomic unit, we try to find out what reactions are being
conserved in a majority of the species and how these reactions are fundamental
for the set of organisms under study. Third, we use our algorithm for detecting
reactions that might have been incorrectly annotated to certain bacteria in a repos-
itory of metabolic data. Finally, we present a possible application of our approach
to choose candidate model organisms for clinical trials based on their metabolic
similarity with humans under specific conditions.

iv. Chapter 5 presents a web server for phylogenetic reconstruction based on our algo-
rithm for pathway alignment. This chapter also describes a set of Perl modules we
developed implementing our metabolic pathway similarity algorithms and providing
data structures to facilitate the manipulation of metabolic information.

v. Chapter 6 summarizes this thesis, presents the main contributions and sketches
future directions of research.

vi. Appendix A details the computational complexity of our method both for worst-
and average-case.

4



vii. Appendix B contains detailed information on results presented in Chapter 4 related
to possible misannotations in the KEGG repository.

viii. Appendix C includes the algorithms implementing our similarity measure method
as described in Chapter 3.

ix. Finally, Appendix D presents an additional method for metabolic pathway alignment
based on contextual similarity, and compares it to the one presented in Chapter 3,
discussing advantages and problems of both approaches.

5



Chapter 2

Background

For he who understands his subject is master of his end; and every workman
is king over his work

Francis Bacon [10]

2.1 An introduction to metabolism

2.1.1 Overview

Metabolism is usually defined as the process through which living organisms acquire and
use energy to perform different activities [133]. Metabolism has four main functions [85]:

i. to obtain chemical energy from the degradation of nutrients.

ii. to convert nutrients into the precursors (building-blocks) of cell macromolecules.

iii. to assemble these building-blocks into cell components, such as proteins, nucleic
acids, lipids and polysaccharides.

iv. to form and degrade biomolecules required in specific functions of cells.

According to their metabolism, we can classify organisms into autotrophs or het-
erotrophs. The first ones synthesize all their cellular biomolecules from simple molecules
such as H2O, CO2, NH3, and H2S. These organisms can be further divided into che-
molithotrophs, which obtain energy through the oxidation of inorganic compounds such
as NH3, H2S, or Fe2+ (for instance, cyanobacteria), and photoautotrophs, which ob-
tain their energy through photosynthesis (photosynthetic bacteria and green leaf cells of
plants). Heterotrophs, on the other hand, cannot use atmospheric carbon dioxide and
obtain free energy through the oxidation of organic compounds obtained from their envi-
ronment. Ultimately, heterotrophs depend on autotrophs to obtain such substances (see
Figure 2.1). Heterotrophs can be classified as aerobes, which use molecular oxygen to
oxidize their nutrient molecules, anaerobes, which can degrade their nutrients without
using oxygen, and facultative, which can be either aerobes or anaerobes depending on the
presence or absence of oxygen.

Living organisms also need a source of nitrogen to synthesize the building blocks of
proteins and nucleic acids. Organisms differ in the chemical form of nitrogen they can
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Figure 2.1: The cycle of carbon dioxide and oxygen (adapted from [85])

utilize. Higher animals usually need to obtain nitrogen in the form of amino acids ingested
from their diet. Plants can use ammonia as their source of nitrogen, and only a few
organisms can obtain their nitrogen directly from the gaseous nitrogen in the atmosphere.
Figure 2.2 shows the relation among different organisms according to how they consume
nitrogen.

Atmospheric
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Nitrogen-
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bacteria
Ammonia

Nitrifying
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Nitrates

Plants

Amino
acidsAnimals

Figure 2.2: The nitrogen cycle (adapted from [85])

Metabolism can be differentiated into catabolic (or degradative) pathways and anabolic
(or biosynthetic) pathways. Catabolism takes organic nutrients and cell constituents (car-
bohydrates, lipids, and proteins) and breaks them down into simpler products (lactic acid,
CO2, and ammonia) generating energy in the process.This energy is usually conserved in
the form of adenosine-triphospate (ATP), or nicotinamide adenine dinucleotide phosphate
(NADPH ). During anabolism precursor molecules are used to build large macromolecules,
such as proteins. The energy required in this process is provided by the breakdown of
ATP and NADPH , as shown in Figure 2.3.

It should be noticed that although catabolic and anabolic pathways represent the two
opposite directions of metabolism, there are significant differences among them. Catabolic
pathways converge from a large pool of initial macromolecules to a few end products, the
energy-poor molecules CO2, H2O, and NH3. Anabolic pathways, on the other hand,
diverge into a large number of products from very few precursors. More importantly,
the corresponding and oppositely directed pathways (catabolic and anabolic) between a
specific precursor and a given product are usually not identical (see Figure 2.4), since some
steps in the pathway are catalyzed by two different enzymes (one for the catabolic and
one for the anabolic direction). Furthermore, in eukaryotic cells anabolic and catabolic
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Figure 2.3: Relation between catabolic and anabolic pathways through energy molecules
ATP and NADPH (adapted from [85])

reactions involving the same constituents are frequently located in separate locations for
simultaneous but independent operation.

1

A

2
XY

Figure 2.4: Independent catabolic and anabolic routes (adapted from [133])

Metabolism is a process that operates under the principle of maximum economy, with
cells consuming only those nutrients necessary to meet the rate of energy utilization. The
rates of synthesis of macromolecules is also adjusted to immediate needs, in order to avoid
overproduction.

Control of metabolic flux can be regulated through different mechanisms. Allosteric
enzymes, for instance, can change their catalytic activity in response to effectors that are
often substrates, products, or coenzymes of the pathway but not necessarily of the reaction
catalyzed by the enzyme itself. Allosteric enzymes are usually near the beginning of a
sequence of enzymes, catalyzing its rate-limiting step. For instance, Figure 2.5 presents
an example of negative feedback regulation, where the product of a reaction, galactose,
competitively inhibits the catalyzing enzyme, beta-galactosidase.

A second mechanism for metabolic control is hormonal regulation, where hormones
secreted by endocrine glands are carried by the blood to different tissues or organs, where
they stimulate or inhibit certain metabolic processes. Finally, the concentration of an
enzyme in the cell can be used as a way to regulate metabolic activities. The concentration
of an enzyme, which depends on the relative synthesis/degradation rate, can be altered by
turning on or off the corresponding biosynthesis pathway depending on the needs imposed
by environmental conditions. Allosteric control is the fastest responding mechanism for
metabolic flux control, while hormonal regulation and enzyme concentration respond more
slowly to changing conditions.
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Figure 2.5: Allosteric control (adapted from [133])

Finally, it should be noticed that metabolic pathways occur in different compartments
of the cell. Prokaryotic cells do not have internal membranes to separate specific cellular
locations, yet there exists a partial separation of certain enzyme systems in bacteria (gly-
colysis in the cytosol, protein synthesis in the ribosomes, phosphorylation and electron-
transport system in the cell membrane, etc). Eukaryotic cells do have a membrane-
surrounded nucleus, as well as other membranous internal organelles (mitochondria, en-
doplasmic reticulum, Golgi complex, chloroplasts in green plant cells). This allows whole
metabolic pathways to operate in different locations: glycolysis and fatty acid biosyn-
thesis in the cytosol; citric acid cycle, electron transport and oxidative phosphorylation,
fatty acid oxidation and amino acid catabolism in the mitochondria, protein synthesis
in the ribosomes; replication of DNA and synthesis of nuclear proteins in the nucleus,
etc. Because metabolites are synthesized in different membrane-bounded compartments
in eukaryotic cells, a mechanism to transport these substances between compartments is
required, making transport proteins essential for many metabolic processes.

2.1.2 ATP and NADPH: high energy compounds

ATP is a high energy intermediate metabolite which occurs in all life forms. It consists
of adenosine moiety, linked to three phosphoryl groups via a phosphoester bond followed
by two phosphoanhydride bonds. Energy released by degradation of complex nutrient
molecules such as glucose is conserved as ATP by the synthesis of adenosine diphosphate
(ADP) and inorganic phosphate (Figure 2.6). The energy conserved in ATP can then be
used for different cell activities. ATP provides the energy required for the chemical work
of biosynthesis, is the energy source for cell motility, can help transport nutrients through
membranes against concentration gradients, and is used to ensure accurate genetic infor-
mation transfer during the biosynthesis of DNA, RNA and proteins.

NADPH carries energy in the form of hydrogen atoms and electrons. In order to
reduce double bonds to single bonds, reducing power is needed in the form of hydrogen
atoms, as in the formation of glucose from carbon dioxide or when fatty acids are made
from acetate. To be effective in the reduction process hydrogen atoms must have free
energy, which is obtained from cell fuels by dehydrogenases. Particularly, the hydrogen-
carrying form of the coenzyme NADP+, NADPH , transports electrons from catabolic
reactions to electron-requiring biosynthetic reactions.
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Figure 2.7: Reduction power transfered from catabolic to biosynthetic reactions via the
NADP cycle (adapted from [85])

2.1.3 Experimental identification of metabolic pathways

Metabolic pathways can be studied from different perspectives:

• how nutrients are converted into end products, and how energy is utilized during
the conversion process.

• how each intermediate metabolite is converted to its successor, and how specific
enzymes catalyze each reaction.

• which are the mechanisms that regulate the flow of metabolites in the pathway, and
how metabolic activity is adjusted to the needs of the entire organism.

Determining metabolic processes on all these levels is a complex problem, and sev-
eral approaches are used (singly or in combination) to work out the chemical details of
metabolic pathways.

A first approach is based on perturbing the system to alter its metabolic activity and
study the effects of the perturbation. Adding certain substances to a pathway, such as
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metabolic inhibitors, can block the pathway at certain points and provoke an accumulation
of preceding intermediate metabolites. Addition of substances that block electron transfer
can also be used for this purpose.

The study of genetic mutations of organisms in which certain enzymes cannot be
synthesized is another important method to elucidate metabolic pathways. When such
defects are not lethal, they may result in the accumulation and excretion of the substrate
of the defective enzyme. For instance, individuals with inherited alcaptonuria excrete
homogentisic acid in their urine on the ingestion of phenylalanine or tyrosine, since these
individuals lack the enzyme that catalyzes the breakdown of homogentisic acid. Alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are also well-studied exam-
ples of genetic mutations. These enzymes allow the consumption of alcoholic beverages
in human. It was found that 85% of Japanese have an atypical ADH and 50% an unusual
ALDH [125], which explains the common alcohol sensitivity in individuals of Mongoloid
origin.

A similar approach is to directly provoke some genetic modification to inactivate an
enzyme in a specific pathway through the use of mutagens (chemical agents that induce
genetic changes) or by genetic engineering, making inoperative certain genes (gene “knock-
out”). Higher organisms engineered in such way are especially useful, in particular when
the modification is not lethal.

Finally, isotropic tracers can be used to label metabolites. For instance, acetic acid
can be synthesized so that its carboxyl carbon atom is enriched in the radioactive isotope
14C. This radioactively labeled sample is then fed to an animal, where its metabolic fate
can be easily traced. The respiratory CO2 exhaled will contain 14C, indicating some
of the acetate is metabolized so that its carboxyl carbon atom is converted into CO2.
Alternatively, nuclear magnetic resonance (NMR) can be used to detect specific isotopes,
such as 1H, 13C, 15N , and 31P , by their characteristic nuclear spin. Recent developments
in NMR technology have even allowed to study metabolic pathways noninvasively in
animals and humans, localizing the study in specific organs [103, 122].

2.1.4 KEGG: a repository for metabolic pathways

Although there are several pathway databases such as MetaCyc [18], WIT [110], Ex-
PASy [49], PathDB [78] or UM-BBD [38], in this thesis we will work with data obtained
from the KEGG repository [70], which has an extensive coverage of several metabolic
processes in different species [140]. KEGG provides a knowledge base for linking infor-
mation from the genomic to the phenotypical level, aiming at understanding high-order
functions of biological systems from genomic and molecular data. The database is orga-
nized in a series of interconnected components to represent each of the levels, as presented
in figure 2.8.

• KEGG GENES contains a series of gene catalogs for complete and partial genomes
(85 eukaryota, 354 bacteria and 28 archaea as of October 2006) obtained from
several public resources, mainly NCBI RefSeq [117]. Draft genomes are stored in
the DGENES catalog, and expressed sequence tag consensus contigs in EGENES.

• KEGG ORTHOLOGS collects organized knowledge about orthologous and par-
alogous genes in the form of a pathway-based classification. The KO (KEGG Or-
thologs) identifier links genomic information in the GENES database to network
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Figure 2.8: KEGG architecture (adapted from [70])

information in the PATHWAY database. Two additional ways to define KO’s have
been introduced: to use COG [128], to cover a wide range of possible orthologous
groups, and to rely on classifications of protein families provided by experts.

• KEGG LIGAND stores data on chemical components, both endogenous and ex-
ogenous molecules. Enzymes (ENZYME), chemical compound structures (COM-
POUND), chemical reaction formulas (REACTION), glycan structures (GLYCAN),
reactant pair transformation patterns (RPAIR) and drug information (DRUG) are
all stored in this database. The DRUG database, for instance, contains information
such as therapeutic categories or target molecules.

• KEGG PATHWAY represents the molecular interactions and reaction networks
for different processes. Metabolism, genetic information processing, environmental
information processing (such as signal transduction), cell processes and human dis-
eases are all modeled in this database as a collection of manually drawn pathway
maps.

• KEGG BRITE is a set of hierarchical classifications representing knowledge on
various aspects of biological systems. This component was designed to help auto-
mate functional interpretations associated with the KEGG pathway reconstruction
and to assist discovery of empirical rules involving genome-environment interactions.

KEGG was our primary source of data for the experiments described in this thesis,
and it is therefore necessary to discuss here the notation utilized to describe the different
components in KEGG. Basically, in our work we have extensively used information from
the KEGG LIGAND and KEGG PATHWAY databases. Enzymes in KEGG are identified
according to the recommendations by the Enzyme Commission [137]: alcohol dehydroge-
nase, for instance, corresponds to ec:1.1.1.1. Chemical compounds are identified by the
three letters “cpd” and an unique sequence of five digits, such as cpd:00001 for water or
cpd:00037 for glycine. Reactions follow a similar schema, where R00001 would correspond
to the reaction 2.1.

Polyphosphate + H2O ⇔ Oligophosphate (2.1)
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Organisms have a three or four letter identifier (“hsa” for Homo sapiens). Metabolic
pathways are represented by maps, such as “path:00010” for glycolysis. These maps are
generic models abstracting the actual pathways occurring in different organisms. The
specific pathway for an organism, represented by the organism and the pathway identifier
(“hsa:00010” for glycolysis in Homo sapiens), would have annotated only those reactions,
compounds and enzymes for which there is concrete evidence in the organism.

All information in KEGG can be accessed through their web site or by FTP. The
KEGG API service (a SOAP/WSDL interface) provides also an alternative way of access
to the databases.

2.2 Pathway alignment: previous approaches

2.2.1 Methods based on graph similarity

The structural similarities between metabolic pathways can be asserted by determining
the isomorphisms [74, 131] and/or homeomorphisms [19, 132] of their graph representa-
tions. Although in general both problems are NP complete [48], simplifications utilizing
properties of metabolic pathways can lead to tractable solutions. A general review of
graph-based approaches for biological networks can be found in [2].

Forst and Schulten (1999, 2001)

Forst and Schulten [45, 46] consider a metabolic pathway as a reaction graph with certain
topological properties (such as connectivity). Sequences corresponding to each functional
role (gene product and how this product performs a specific task in a metabolic network)
appearing in the pathway are combined into a set of sequences over which a multiple
sequence alignment is performed. Pathways with different topologies are then compared
using gap penalties for missing enzymes and adjacency matrices to address the graph
topology.

The distance between two pathways Γ and Γ′ with identical topology is defined by the
equation 2.2.

∆ =
n∑

i=1

Φi∆Xi (2.2)

where ∆Xi is the distance between the functional roles Ii and I ′i, Φ = 1 for ortholog pair
i, Φ = f for paralog pair i (with f chosen manually to minimize the number of distance
triples violating the triangle inequality in the calculated distance matrix), and there are n
functional roles Ii, I

′
i(i = 1, . . . , n). Orthologs are genes evolved from a common ancestral

gene by speciation, which retain the same function in the course of evolution. Paralogs, on
the other hand, are homologous sequences separated by a gene duplication event within a
genome. Orthologs usually have the same or similar function, while this is not always true
for paralogs (the lack of selective pressure upon one of the duplicated genes allows it to
evolve and acquire new functions). It should be noticed that assessment of orthologs and
paralogs can only be done for completed genomes. When the networks compared have
different graph topology, the common graph that includes both networks is used instead.
If a functional role Ik is missing in one of the pathways, the distance ∆Xk is substituted
by a gap value ∆gap = 0.9.
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Heymans and Singh (2003)

The work by Heymans and Singh [62] takes the enzyme-enzyme relational graph repre-
sentation for metabolic pathways, as described in [52, 108]. Similarity of two graphs is
then calculated in four phases: first, the similarity between every pair of nodes (a, b) is
iteratively calculated, where a ∈ G1 and b ∈ G2. Second, a bipartite graph is constructed
using the similarity scores, and the maximal weight matching of this graph is found. The
score between every pair of matched nodes is then recomputed, and finally the similarity
score for the two graphs is calculated by normalizing the sum of the similarity of matched
nodes.

The similarity of two nodes combines the similarity between the nodes themselves (the
enzymes) and the similarity of their neighborhoods. The similarity of any two enzymes
is calculated using the hierarchical similarity measure based on the respective Enzyme
Commission identifiers [130]. Neighborhood similarity for nodes a and b is computed
by summing their similarities and subtracting their dissimilarities. The first four terms
correspond to the presence and absence of arcs from and to similar nodes, while the
remaining four terms represent the mismatches between these edges.

The total complexity of the method is O(Kn2
1n

2
2 + (n1 + n2)

3), where n1 and n2 are
the number of nodes of each graph and K is the number of iterations needed to converge
to a solution (typical values of K are ≈ 20, depending on the size of the graph).

Pinter et al. (2005)

The work by Pinter et al. [116] is also based on the enzyme-enzyme relational graph
to represent metabolic pathways. The similarity of pathways depends on two factors:
the resemblance between any two corresponding nodes in the pathway graph (similarity
between matched enzymes based on functional homology and calculated using the infor-
mation content measure [130]), and the likeness between the pathways’ network structure
(topological similarity of the networks).

The pathway alignment algorithm is based on subtree homeomorphism, allowing the
matching of nodes with distinct labels and scoring the match according to the similarity
between the node labels. Extending the work on approximate subtree homeomorphism
(see Figure 2.9 and original reference [115]), the authors recursively calculates the align-
ment scores among all subtrees of two given labeled trees to obtain a final alignment based
on the maximum score. The complexity of this method is O(m2n/logm+mnlogn), where
m and n are the number of vertices in the trees.

2.2.2 Methods based on algebra of sets

Algebra of sets describes basic properties of set operations and set relations, such as
set union, intersection, equality or inclusion [55, 68]. The use of set theory has certain
advantages over graph similarity measures when comparing metabolic pathways, such as
simplicity and a lower computational cost.

Tohsato et al. (2000)

Tohsato [130] describes the multiple alignment of more than two pathways based on
the enzyme hierarchy. It is argued that expressing enzyme similarity by using their
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Figure 2.9: Approximate labeled subtree homeomorphism between trees T and T ′, with
node-label similarity specified in Table ∆ and deletion score -1. The dotted line encircles
a subtree in T ′ homeomorphic to T , with score +7 (figure adapted from [116])

proximity within the enzyme hierarchy is problematic since there is a large deviation in
the distribution of enzymes in the hierarchy (i.e., some subtrees are significantly larger
than others). Enzyme similarity for two given enzymes is calculated using a new similarity
measure based on the information content of the subtree rooted in their least common
ancestor (see section 3.4 for more details).

The pathway alignment is obtained by extending the global alignment algorithm of
Needleman and Wunsch on protein alignment [105]. Arranging the enzymes present in
each pathway in a two-dimensional array, the algorithms looks for an optimal path starting
at the top-left point and reaching the bottom-right point. Choosing a diagonal in the
array corresponds to aligning the corresponding enzymes (with a score based on their
information content similarity), while left-to-right and top-to-bottom moves in the array
are considered gaps (with a score corresponding to the information content of the whole
enzyme hierarchy tree, i.e., the smallest similarity). Figure 2.10 presents an example of
this method.

The complexity of this method is O(`2), with ` being the maximum length of the two
pathways. It does not use any information on chemical compounds or sequence. Although
this algorithm is not strictly based on set theory, it discards information on graph topology
and considers pathways as a set of enzymes, and therefore we have included it in this
section.
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Figure 2.10: Pathway alignment based on global dynamic programming. The red dashed
line shows the best path from the top-left to the bottom-right points, indicating the
highest scoring match between the pathways

Forst and Schulten (2005)

In a different work by Forst and Schulten [44] to the one previously described, they use
a new approach based on set algebra operations (union, intersection, and difference).
Metabolic networks are represented as a directed hypergraph, with metabolites as nodes
and reactions as directed hyperedges. In general, a metabolic network is defined as a pair
(X, ξ), where X is the set of metabolites and ξ is the set of reactions.

The union of two networks M and M ′ is defined as M ′′ = M ∪M ′ = (X ∪X ′, ξ ∪ ξ′),
the intersection as M ′′ = M ∩M ′ = (X ∩X ′, ξ ∩ ξ′), the difference as M ′′ = M \M ′ =
(X \X ′, ξ \ ξ′), and the symmetric difference as M ′′ = M∆M ′ = (M ∪M ′) \ (M ∩M ′).
The number of reactions of a metabolic pathway M is denoted as ||M ||.

Using this notation, a distance measure is calculated as defined by the equation 2.3.

d(M, M ′) =
||M∆M ′||

||M ||+ ||M ′|| − ||M ∩M ′||
=
||M∆M ′||
||M ∪M ′||

(2.3)

This method was developed in order to infer phylogenetic trees from the distance
among a set of organisms. Since phylogenies based on single genes usually have problems
associated with gene transfer, gene duplication, gene deletion, and functional replacement
of genes, the authors took instead an approach not based on sequence information, as
opposed to their previous work [45, 46].
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Chapter 3

A New Method for Metabolic
Pathway Alignment

Todo hombre puede ser, si se lo propone, escultor de su propio cerebro

Santiago Ramón y Cajal [144]

3.1 Representation of metabolic pathways

There has been much interest in the structural comparison and alignment of metabolic
pathways, and several techniques have been conceived to assess the similarity of such
networks for different organisms. In the comparative analysis of metabolism, pathways
from different genomes are aligned upon similar enzymes, substrates, and products [29,
116, 130].

The assessment of structural metabolic similarity among different organisms involves
both a graph representation of metabolic processes and a similarity measure between
individual reactions, enzymes, and compounds present in the pathways. Metabolic path-
ways are represented as directed hypergraphs, with the compounds and enzymes being
the nodes and the reactions activated by the enzymes being hyperarcs [33]. For instance,
the directed hypergraph for the Citric Acid Cycle pathway in the bacterium Escherichia
coli consists of 35 nodes and 18 hyperarcs.

A more abstract representation, called the enzyme-enzyme relational graph, has been
used in [62, 109], where nodes represent enzymes and arcs represent compounds shared
between reactions catalyzed succesively by specific enzymes/nodes. For instance, the
enzyme-enzyme relational graph for the Citric Acid Cycle pathway in Escherichia coli
consists of only 14 nodes and 23 arcs.

The representation of metabolic pathways as hypergraphs has several advantages over
the enzyme-enzyme relational graph, since it allows to use both enzymes and metabolites
when calculating the similarity of two pathways. By using this representation we can
also establish the relative importance of enzymes and compounds in the global measure
of similarity, as will be seen in Section 3.3.

The algorithm for metabolic pathway alignment presented in this thesis will be detailed
in the following sections as follows: the similarity of two given pathways (Section 3.2) is
constructed as the similarity of the set of reactions involved on them (Section 3.3), which
depends on the similarity of the enzymes (Section 3.4) and compounds (Section 3.5). The
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alignment of pathways is obtained by aligning the reactions in a way such that the total
score of the alignment is maximized.

3.2 Similarity of metabolic pathways

The similarity of metabolic pathways presented in this thesis is based on the similarity
of reactions, enzymes and compounds as described later in this chapter. This measure is
based on two operations, set intersection and set difference, as follows: given two pathways
P and P ′, each reaction belonging exclusively to P (P \ P ′) is aligned to its most similar
reaction in P ′, while each reaction belonging exclusively to P ′ (P ′ \ P ) is aligned to its
most similar reaction in P . Reactions belonging to the intersection (P ∩P ′) are aligned to
their respective equivalents. Figure 3.1 depicts a graphical representation of this method.

The similarity of two metabolic pathways P = (C,R) and Q = (D,S), where C,D are
sets of compounds and R,S are sets of enzymatic reactions, is described by Equation 3.1.

sim(P,Q) =
1

|R ∪ S|

( ∑
R∈R∩S

max
S∈R∩S

sim(R,S)

+
∑

R∈R\S

max
S∈S

sim(R,S)

+
∑

S∈S\R

max
R∈R

sim(R,S)

) (3.1)

Equation 3.1 can be simplified into Equation 3.2 when the reaction similarity is a nor-
malized metric, as it is the case.

sim(P,Q) =
1

|R ∪ S|

|R ∩ S|+
∑

R∈R\S

max
S∈S

sim(R,S) +
∑

S∈S\R

max
R∈R

sim(R,S)

 (3.2)

Equation 3.2 has three terms. The first term corresponds to reactions shared by both
pathways, so their alignment is immediate and does not have a direction. The second and
third term, on the other hand, take into account both directions of the alignment (from
the first pathway to the second, and vice versa), resulting in a final measure of similarity
that is symmetric. This equation can be implemented using algorithm 1 in Appendix C.

The metabolic pathway similarity measure is a normalized metric, and it can be com-
puted in time quadratic in the number of compounds, enzymes, and reactions in the
metabolic pathways. Assuming the comparison of two compounds, enzymes, or reactions
can be done in O(1) time, the similarity of two pathways with respectively n and m reac-
tions can be calculated in O(mn) time. Although the actual comparison of two enzymes
might take more than O(1) (in particular when using the information content or gene
ontology enzyme similarity measures that will be discussed in Section 3.4), for practical
purposes we can precompute and store them in order to achieve O(1) time bound in
subsequent queries. Chapter 5 discusses the implementation details of our method, and
Appendix A further describes the order of the algorithm for the worst and average cases.
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Figure 3.1: Metabolic pathway alignment based on set operations. Given two pathways
represented by their set of reactions (left), reactions in their intersection get mutually
aligned (right, top), reactions belonging exclusively to the first pathway are aligned to
reactions in the second pathway (right, middle), and reactions only in the second pathway
are aligned to reactions in the first pathway (right, bottom). Notice that the alignment is
directed (reaction C aligns to A, but A aligns instead to B) and many-to-one (reactions
D and E get aligned to F)
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3.3 Similarity of metabolic reactions

Similarity of reactions can be assessed by measuring the similarity of compounds and
enzymes involved in them. Let R and R′ denote two reactions, with CR and CR′ their
respective compound sets, and ER and ER′ their enzyme sets. Equation 3.3 defines the
similarity of R and R′.

sim(R,R′) =
1− α

|CR ∪CR′|

( ∑
c∈CR∩CR′

max
d∈CR∩CR′

sim(c,d) +
∑

c∈CR\CR′

max
d∈CR′

sim(c,d)

+
∑

d∈CR′\CR

max
c∈CR

sim(c,d)

)
+

α

|ER ∪ ER′|

( ∑
e∈ER∩ER′

max
f∈ER∩ER′

sim(e, f)

+
∑

e∈ER\ER′

max
f∈ER′

sim(e, f) +
∑

f∈ER′\ER

max
e∈ER

sim(e, f)

)
(3.3)

In Equation 3.3, α represents a weight parameter (0 6 α 6 1) to establish the relative
weight of compound similarity to enzyme similarity in the assessment of reaction similar-
ity: a value of α = 0 would mean no relevance is given to enzymes, while α = 1 would
give no relevance to compounds.

Equation (3.3) can be simplified when compound and enzyme similarity are normalized
metrics, as in the case of the similarity measures used in this work, as follows:

sim(R,R′) =

1− α

|CR ∪CR′|

|CR ∩CR′|+
∑

c∈CR\CR′

max
d∈CR′

sim(c,d) +
∑

d∈CR′\CR

max
c∈CR

sim(c,d)

+

α

|ER ∪ ER′|

|ER ∩ ER′|+
∑

e∈ER\ER′

max
f∈ER′

sim(e, f) +
∑

f∈ER′\ER

max
e∈ER

sim(e, f)

 (3.4)

The value of parameter α can have great relevance in deciding which reaction is the
most similar to others. For instance, consider reaction R00351 in Archaeoglobus fulgidus :

R00351 Citrate + CoA⇔ Acetyl-CoA + H2O + Oxaloacetate [2.3.1.1]

and reactions R00362 and R01323 in Clostridium perfringens :

R00362 Citrate⇔ Acetate + Oxaloacetate [4.1.3.6]
R01323 Acetyl-CoA + Citrate⇔ Acetate + (3S)-Citryl-CoA [2.8.3.10]

By applying equation (3.4), we obtain:

sim(R00351, R00362) = (1− α)/2
sim(R00351, R01323) = (4− α)/20
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The relative weight α can then select whether we want to emphasize more on en-
zyme similarity or compound similarity of the reactions. In this case values of α < 2/3
would mean reaction R00362 is more similar to R00351, while values of α > 2/3 would
mean reaction R01323 is closer. The above equations can be implemented using the
algorithms 2, 3 and 4 in Appendix C.

Figure 3.2 presents an example of reactions alignment for the TCA cycle in three
different organisms. As it can be noticed the alignment produced is many-to-one (reactions
R00342, R00344 and R00351 in Archaeoglobus fulgidus get all aligned with R00362 in
Clostridium perfringens) and directed (reaction R01324 in Listeria innocua gets aligned
to R00351 in Archaeoglobus fulgidus, but the opposite does not hold). The similarity score
for a specific alignment is nevertheless symmetric (not directed): the similarity of R01324
in Listeria innocua and R00351 in Archaeoglobus fulgidus is 0.5 in both directions.

cpe

R00362
R01323

afu

R00268
R00342
R00344
R00351
R00405
R00412
R01082
R01197

R01899

lin

R00268
R00344
R00351
R00412
R01082
R01324
R01325
R01698
R01899
R01900

cpe

R00362
R01323

Figure 3.2: Maximum similarity alignment of the TCA cycle (KEGG pathway number
00020) for the organisms Archaeoglobus fulgidus (afu), Clostridium perfringens (cpe), and
Listeria innocua (lin). Each reaction in the metabolic pathway of one organism is pseudo-
aligned with the most similar reaction in the metabolic pathway of another organism, in
both directions, and the mapping is shown in blue/solid in the case of reactions common
to the pathway in the two organisms (equivalent reactions), in green/dashed for similarity
between reactions greater than 0 but less than 1, and in red/dotted for reaction similarity
equal to zero. Notice that pairs of reactions not connected by arrows could be aligned,
although with lower similarity scores. Since this graph shows only the best possible
alignment those connections are not represented

3.4 Similarity of enzymes

In order to assess the similarity of enzymes, we have utilized three measures: hierarchical
similarity [130], information content similarity [130], and gene ontology similarity [23].

The first two measures are based on the enzyme hierarchy, an accepted system for
naming and classification of enzymes developed by the Enzyme Commission [137] of the
International Union of Biochemistry and Molecular Biology (IUBMB). The enzyme hi-
erarchy classifies enzymes into six main classes on the basis of the reaction activated by
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the enzyme. Each enzyme is assigned a code, the EC number, which is a string of four
digits separated by dots. The first digit shows the main class to which the enzyme be-
longs. The second and third digits in the EC number further describe the kind of reaction
being activated, and their meanings are defined separately for each of the main classes.
The fourth digit distinguishes between enzymes activating very similar but non-identical
reactions, by defining the actual substrate.

Consider, for instance, EC code 3.2.1.108. This code corresponds to the lactase en-
zyme, which activates the hydrolysis of the disaccharide lactose to its component monosac-
charides glucose and galactose. The first digit corresponds to class 3.-.-.-, the hydrolases.
For the hydrolases, the second digit identifies the type of bond hydrolyzed and the third
digit further describes the type of bond hydrolyzed. In the case of lactase, 3.2.-.- cor-
responds to the glycosylases, which have a glycosidic bond (linking carbohydrate units),
while 3.2.1.- represents the glycosidases (enzymes hydrolysing O-glycosyl and S-glycosyl
compounds). Lactase actually activates hydrolysis of the O-glycosyl bond. The fourth
and last digit identifies the particular reaction. In the case of lactase, 3.2.1.108 identifies
the actual lactose being hydrolyzed.

The third measure of enzyme similarity used in this thesis is based on the molecu-
lar function subtree of the Gene Ontology (GO) [8, 91], which describes cell activities
at the molecular level using a directed acyclic graph and includes annotations to en-
zymatic activity. For example, EC code 3.2.1.108 is annotated in GO to the term/node
GO:0000016 (lactase activity), which is child of GO:0004553 (hydrolase activity, hydrolyz-
ing O-glycosyl compounds). This node is in turn child of GO:0016798 (hydrolase activity,
acting on glycosyl bonds), which is child of GO:0016787 (hydrolase activity). Figures 3.3
and 3.4 present both the Enzyme Hierarchy and Gene Ontology representation of this
enzyme.

Enzyme Hierarchy

Oxidoreductase Transferase Hydrolase [3.-.-.-]

... Glycosylases [3.2.-.-]

... Glycosidases [3.2.1.-]

... Lactase [3.2.1.108]

Lyase Isomerase Ligase

Figure 3.3: Lactase represented in the Enzyme Hierarchy

3.4.1 Hierarchical enzyme similarity

The hierarchical similarity of two enzymes [130] is the number of common most significant
EC digits of the enzymes over 4. The five possible values of hierarchical similarity are
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Gene Ontology

... Catalytic activity (GO:0003824)

... Hydrolase activity (GO:0016787)

Hydrolase activity, acting on glycosyl bonds (GO:0016798)

Hydrolase activity, hydrolyzing O-glycosyl compounds (GO:0004553)

Lactase activity (GO:0000016)

Figure 3.4: Lactase represented in the Gene Ontology

thus: 0, for two dissimilar enzymes (with their first digit different); 0.25, if the first digit
is identical and the second digit is different; 0.5, if the first two digits are identical but
the third digit is different; 0.75, if the first three digits are identical but the last digit is
different; and 1, for two identical enzymes (with all four digits identical). More formally,
consider enzymes e and e′, and their string representations ea.eb.ec.ed and e′a.e

′
b.e

′
c.e

′
d cor-

responding to their respective EC identifiers. If α represents the value (0 or 1) of the
logical expression ea = e′a, β is eb = e′b, γ is ec = e′c, and δ is ed = e′d, then the similarity
of e and e′ can be calculated as shown in Equation 3.5.

sim(e, e′) =
α(1 + β(1 + γ(1 + δ)))

4
(3.5)

The intuition behind hierarchical similarity is to measure how close two enzymes are
to each other in the enzyme hierarchy, with higher similarity values for closer enzymes.
The hierarchical similarity between two enzymes is inversely related to the shortest path
distance between the enzymes in the enzyme hierarchy as presented in Equation 3.6.

sim(e, e ′) = max (0, 1− dist(e, e ′)

8
) with dist(e, e ′) = 0, 2, 4 . . . (3.6)

For instance, the hierarchical similarity between the enzymes lactase (3.2.1.108) and
glycosylceramidase (3.2.1.62) is 0.75 (path length 2), because they share the first three dig-
its, while the hierarchical similarity between lactase and adenosine nucleosidase (3.2.2.7)
is 0.5 (path length 4), and the hierarchical similarity between lactase and phloretin hy-
drolase (3.7.1.4) is 0.25 (path length 6).
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Enzyme Hierarchy

1.-.-.- 2.-.-.- 3.-.-.-

3.2.-.-

3.2.1.-

3.2.1.62
Glycosylceramidase

3.2.1.108
Lactase

3.2.2.-

3.2.2.7
Adenosine

nucleosidase

3.7.-.-

3.7.1.-

3.7.1.4
Phloretin
hydrolase

4.-.-.- 5.-.-.- 6.-.-.-

Figure 3.5: Enzyme hierarchical similarity between lactase and glycosylceramidase, adeno-
sine nucleosidase and phloretin hydrolase

3.4.2 Information content enzyme similarity

The similarity of two enzymes can also be taken to be the information content of their
least common ancestor in the enzyme hierarchy. The information content similarity of two
enzymes [130] is minus the logarithm of the size (E) of the enzyme hierarchy subtree rooted
at the least common ancestor (lca) of the enzymes. Similarity values based on information
content range from a smallest value of 0, for two identical enzymes, to a largest negative
value of about −12, for two dissimilar enzymes, and they can be normalized by dividing
over the size of the whole enzyme hierarchy (k) and subtracting the obtained value from
1 (Equation 3.7). The intuition behind information content similarity is also to measure
how close two enzymes are to each other in the enzyme hierarchy, with higher similarity
values for closer enzymes. Unlike hierarchical similarity, though, the basis of the similarity
measure is not the shortest path between the enzymes in the enzyme hierarchy but the
whole subtree rooted at their least common ancestor, thus avoiding problems related to
unequal distribution of enzymes among the hierarchy.

sim(e, e′) = 1− log2E(lca(e, e′))

k
(3.7)

For instance, the normalized information content similarity between lactase (3.2.1.108)
and glycosylceramidase (3.2.1.62) is 0.404, because class 3.2.1.- has 151 enzymes, between
lactase and adenosine nucleosidase (3.2.2.7) is 0.386, because class 3.2.-.- has 176 enzymes,
and between lactase and phloretin hydrolase (3.7.1.4) is 0.153, because class 3.-.-.- has
1,252 enzymes.

3.4.3 Gene ontology enzyme similarity

The third method used to assess the similarity of two enzymes is based on the gene
ontology. The Gene Ontology (GO) is a widely accepted standard for describing genes
and gene products [8]. GO is composed of concepts, each of them described by an unique
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Enzyme Hierarchy

1.-.-.- 2.-.-.-
3.-.-.- [1,252
enzymes]

3.2.-.- [176
enzymes]

3.2.1.- [151
enzymes]

3.2.1.62
Glycosylceramidase

3.2.1.108
Lactase

3.2.2.-

3.2.2.7
Adenosine

nucleosidase

3.7.-.-

3.7.1.-

3.7.1.4
Phloretin
hydrolase

4.-.-.- 5.-.-.- 6.-.-.-

Figure 3.6: Information content similarity between lactase and glycosylceramidase, adeno-
sine nucleosidase and phloretin hydrolase

identifier and one or more strings to name the concept. GO concepts are related to each
other by is-a and/or part-of relations, arranged as a directed acyclic graph.

GO includes three different ontologies: molecular function, to describe activities at
the molecular level; biological process, which deals with series of events accomplished by
molecular functions; and cellular component, describing different parts of the cell. The
molecular function ontology contains concepts representing most of the enzymes present
in the Enzyme Commission (EC) database. In a previous work [23] we introduced a
new enzyme similarity measure based on the shortest distance in the GO hierarchy (not
considering direction or type of relation) between the concepts representing any pair of
enzymes. Enzymes that have no associated GO entry are substituted by the concept in
the GO corresponding to the closest sibling enzyme in the EC tree. Dijkstra’s algorithm
was used to calculate the minimum distance between GO concepts.

The gene ontology similarity measure is conceptually similar to the hierarchical one,
since both are based on the shortest path between enzymes, but using a different repre-
sentation of the enzyme taxonomy, namely, the corresponding associated subgraph of the
Gene Ontology.

The gene ontology distance between lactase (mapped to GO:0000016, “lactase acti-
vity”) and glycosylceramidase (mapped to GO:0017042, “glycosylceramidase activity”)
is 2, since the shortest path is [GO:0000016, GO:0004553, GO:0017042]. Lactase and
adenosine nucleosidase (GO:0047622, “adenosine nucleosidase activity”) are at distance
4 through the path [GO:0000016, GO:0004553, GO:0016798, GO:0016799, GO:0047622].
The most dissimilar examples under hierarchical similarity are also the most distant ones
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under gene ontology similarity: lactase and phloretin hydrolase (GO:0050180, “phloretin
hydrolase activity”) are at distance 6 in the path [GO:0000016, GO:0004553, GO:0016798,
GO:0016787,GO:0016822, GO:0016823, GO:0050180]. It should be noticed that the gene
ontology similarity is more fine-grained than those previously presented: while similar-
ity between lactase and alcohol dehydrogenase (1.1.1.1, GO:008016) is positive for this
measure (path distance 9), both hierarchical and information content measures score the
similarity as 0. The normalized similarity values for the gene ontology measure were
obtained by dividing the obtained path distances over the maximum distance among all
pairs of enzymes in the metabolic pathway, and subtracting the resulting values from 1.

Gene Ontology: molecular function

GO:0003824

GO:0016787

GO:0016798

GO:0004553

GO:0000016
Lactase

GO:0017042
Glycosylceramidase

GO:0016799

GO:0047622
Adenosine

nucleosidase

GO:0016822

GO:0016823

GO:0050190
Phloretin
hydrolase

GO:0016491

GO:0016614

GO:0016616

GO:004033

GO:008016
Alcohol

dehydrogenase

Figure 3.7: Gene ontology similarity between lactase and glycosylceramidase, adenosine
nucleosidase and phloretin hydrolase

3.5 Similarity of compounds

In order to assess the similarity of compounds, we have just taken a similarity of 1 for
identical compounds and 0 for distinct compounds. A more complex similarity measure
based on shortest path distance among compounds using ChEBI, a chemical ontology [31],
did not improve results presented in Chapter 4 and therefore was not included in this
thesis.

As in previous studies [94, 153], we have discarded the so-called current metabolites,
which function as cofactors in many reactions, namely: H2O (KEGG id: C00001), ATP
(C00002), NAD+ (C00003), NADH (C00004), NADPH (C00005), NADP+ (C00006), O2

(C00007), ADP (C00008), Orthophosphate (C00009), CoA (C00010), CO2 (C00011), Py-
rophosphate (C00013), NH3 (C00014), and UDP (C00015). Whether a metabolite is
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essential or not depends on the reaction in which it appears [94], but for simplicity we
have considered current metabolites to function as cofactors in all reactions. Appendix D
offers some more insights into the role of common metabolites and their possible influence
in the results here presented.

3.6 Comparison with previous approaches

The method presented in this chapter has certain differences with those presented in
Chapter 2, which can be summarized as follows:

• we do not use sequence information in our calculations. The motivation behind this
decision is twofold: first, by not using sequence data we do not require full genomes
of the organisms to be compared (as, for example, in [45]. And second, as we will see
in Section 4.1, by not using sequence information we are trying to avoid problems
associated with horizontal gene transfer [14, 66, 82]1.

• our method does not need to artificially establish a penalty score for “gaps” (i.e.,
reactions in a pathway that cannot be aligned to any reaction in the second pathway
with similarity greater than zero).

• we use a metabolic pathway representation including both compounds and enzymes,
which better reflects the relevance of both elements in metabolism, as opposed to
those approaches based exclusively on catalytic enzymes.

• we can control the relative influence that metabolites and enzymes will have in
the overall metabolic similarity score, by using the α parameter as described in
Section 3.3. As we will see in Chapter 4, this parameter can be adjusted to improve
results in phylogenetic reconstruction from metabolic similarity.

• our method is computationally faster than methods based on graph similarity [46,
62, 116], and at least as fast as methods based on algebra of sets [44, 130].

1Although the extension to which horizontal gene transfer is relevant in evolutionary process is still
argued, see for instance [79].
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Chapter 4

Applications

The nature of physical things is much more easily conceived when they are
beheld coming gradually into existence, then when they are only considered as
produced at once in a finished and perfect state

René Descartes [32]

4.1 Phylogenetic reconstruction

The understanding of evolutionary relationships among species has recently shifted from
more conventional studies that exploit polymorphism information in DNA or protein
sequence to assess the phylogenetic relationship among species [54, 106], to new studies
aimed at assessing the evolution of complete biological processes [1]1.

There has also been much interest in the phylogenetic analysis of metabolic pathways,
and several techniques have been conceived to extend the similarity assessment of these
pathways into phylogenies for different organisms. Previous phylogenetic analyses have
been based on the number of common enzymes between two organisms [45, 46], on profiles
of the presence and absence of the various metabolic pathways [88], and on the topology
of the underlying enzyme-enzyme relational graphs [62]. The produced phylogenies have
often been evaluated by comparing them against the NCBI taxonomy [138], which is
based on 16s ribosomal RNA sequences, and the best results so far have been obtained by
Heymans and Singh [62]. The phylogenetic analysis of metabolic pathways has also lead
to the identification of conserved pathway modules in different organisms [76, 145, 146].

Phylogenetic reconstruction can be greatly affected by horizontal gene transfer (HGT),
the process by which organisms transfer genetic material independent of reproduction [127].
The use of single genes as phylogenetic markers has been shown to be particularly unre-
liable [152]. Reconstruction of phylogenies from metabolic similarity of species provides
therefore an alternative approach not burdened by problems associated to HGT.

Co-analysis of phylogeny and metabolic pathways can, from a more general perspec-
tive, provide valuable insights into the problem of explaining the appearance and de-
velopment of complex networks of interacting proteins and chemical molecules [36, 120].
Several theories have been proposed to explain the evolution of such networks (see [84] for

1The interested reader is referred to [42] for a complete review on phylogenetics
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a review), and although current research seems to support the so-called patchwork evolu-
tion model [83], it is still unclear whether other biological mechanisms play a significant
role in the emergence of metabolic pathways.

Figure 4.1 explains the process for phylogenetic reconstruction from metabolic sim-
ilarity. Given a set of organisms, we start by obtaining all their shared pathways. We
compute then the similarity among all organisms by aligning their pathways (as described
in Chapter 3) and averaging the obtained similarity scores for all pathways, producing
a triangular similarity matrix for the set of species. Finally, a hierarchical clustering
algorithm is applied to the similarity matrix in order to obtain a phylogenetic tree.

D. melanogaster (dme)
C. elegans (cel)

(mmu)M. musculus
E. coli (eco)

(hsa)H. sapiens
P1 P2 P3 P4
1 1 1 1
1 1 1

1 1
1 1
1 11

1
0

0
0
0

0

cel dme ecommuhsa

sim(A,B)[P2]+sim(A,B)[P4]
sim(A,B)=

2

hierarchical
clustering hsa

mmu
eco
cel

dme

hsa mmu eco cel dme

similarity
matrix

Figure 4.1: Phylogenetic reconstruction from metabolic similarity

We will first address the reconstruction of phylogenetic relationships among a set
of organisms by using their metabolic similarity obtained from the structural compari-
son of the glycolysis pathway (Section 4.1.1) [23]. We will then present three different
methods to improve results on the reconstructed phylogenetic trees: fuzzy clustering (Sec-
tion 4.1.2) [17], incremental use of shared metabolic pathways (Section 4.1.3) [25], and
filtering “noisy” pathways (Section 4.1.4) [25]. Section 4.1.5 presents some results for
phylogenetic reconstruction with photosynthetic organisms [25].

4.1.1 Phylogenetic reconstruction from the glycolysis pathway

Experimental setup

Glycolysis is a metabolic pathway that serves, among other functions, to generate high-
energy ATP molecules. This pathway has been thoroughly studied in the literature,
being highly conserved in the genetic code and occurring in most species. Because of
these characteristics, similarity among different organisms can be studied by analyzing
the similarity of their respective glycolysis pathways.

Using the method presented in Chapter 3, we determined the structural similarity
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of the glycolysis pathway among 73 organisms [23]2. Table 4.1 presents the full list
of organisms, together with their corresponding biological domain and NCBI identifier.
Results were obtained for the three enzyme similarity measures described in Section 3.4
(hierarchical, information content, and gene ontology similarity), and for values of the α
parameter (see Section 3.3) ranging from 0 to 1 at increments of 0.01.

Table 4.1: Organisms studied, classified by domain (E: eukaryota, B: bacteria, A: archaea),
together with their identifier in the NCBI taxonomy

Code Organism Domain NCBI Code Organism Domain NCBI
ATH A.thaliana E 3702 MTC M.tuberculosis CDC1551 B 83331
CEL C.elegans E 6239 MTU M.tuberculosis B 83332
DME D.melanogaster E 7227 NMA N.meningitidis A B 122587
HSA H.sapiens E 9606 NME N.meningitidis B 122586
MMU M.musculus E 10090 PAE P.aeruginosa B 208964
RNO R.norvegicus E 10116 PMU P.multocida B 272843
SCE S.cerevisiae E 4932 RPR R.prowazekii B 272947
SPO S.pombe E 4896 RSO R.solanacearum B 267608
AAE A.aeolicus B 224324 SAU S.aureus N315 B 158879
ANA Anabaena B 103690 SAV S.aureus Mu50 B 158878
ATC A.tumefaciens C B 176299 SCO S.coelicolor B 100226
ATU A.tumefaciens B 176299 SME S.meliloti B 266834
BHA B.halodurans B 86665 SPN S.pneumoniae B 170187
BME B.melitensis B 224914 STM S.typhimurium B 99287
BSU B.subtilis B 224308 STY S.typhi B 220341
CAC C.acetobutylicum B 272562 SYN Synechocystis B 1148
CCR C.crescentus B 190650 TMA T.maritima B 243274
CJE C.jejuni B 192222 TTE T.tengcongensis B 273068
CMU C.muridarum B 243161 VCH V.cholerae B 243277
CPA C.pneumoniae AR39 B 115711 XCC X.campestris B 190485
CPJ C.pneumoniae J138 B 138677 XFA X.fastidiosa B 160492
CPN C.pneumoniae B 115713 YPE Y.pestis B 214092
CTR C.trachomatis B 272561 AFU A.fulgidus A 224325
DRA D.radiodurans B 243230 APE A.pernix A 56636
ECE E.coli O157 B 155864 HAL Halobacterium A 64091
ECJ E.coli J B 83333 MAC M.acetivorans A 188937
ECO E.coli B 83333 MJA M.jannaschii A 243232
ECS E.coli O157J B 83334 MMA M.mazei A 192952
FNU F.nucleatum B 190304 MTH M.thermoautotrophicum A 187420
HIN H.influenzae B 71421 PAB P.abyssi A 272844
HPJ H.pylori J99 B 85963 PAI P.aerophilum A 13773
HPY H.pylori B 85962 PFU P.furiosus A 186497
LIN L.innocua B 272626 SSO S.solfataricus A 273057
LLA L.lactis B 272623 STO S.tokodaii A 273063
LMO L.monocytogenes B 169963 TAC T.acidophilum A 273075
MLE M.leprae B 272631 TVO T.volcanium A 50339
MLO M.loti B 266835

From the similarity matrix so obtained, we clustered the organisms using UPGMA
(Unweighted Pair Group Method with Arithmetic mean) hierarchical clustering [98], pro-
ducing phylogenetic trees for each of the previously described parameter settings.

2Those which have at least three enzymes annotated to their glycolysis pathway in KEGG
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Results and discussion

In order to evaluate the effectiveness of our method, we have compared the produced phy-
logenies with the NCBI taxonomy (the gold standard for this and following experiments)
and the phylogeny for the same organisms in [62]. Figure 4.2 shows one of the produced
phylogenies, together with the NCBI taxonomy [138] and the phylogenetic tree from [62,
Fig. 2] (best published results to our knowledge).

In order to facilitate comparison of results, we have used the cousins algorithm [151]
to compute similarity measures between phylogenies. This tool compares unordered trees
with labeled leaves, like phylogenetic trees, by comparing in a specific way, and up to
a certain cousin distance, the sets of cousin pairs, triples consisting of a pair of leaves
and their cousin distance: 0 if they are siblings (they share the same parent), 0.5 if the
parent of one of them is the grandparent of the other, 1 if they are cousins (they share
the same grandparent but not the same parent), 1.5 if their last common ancestor is the
grandparent of one of them and the great-grandparent of the other one, 2 if they are
second cousins (they share the same great-grandparent but not the same grandparent)
and so on.

We were unable to reproduce the 0.19 similarity claimed by Heymans and Singh in [62,
Table 2] for any parameter of the cousins tool3, and have therefore adopted the one that
gives the closest result (similarity up to second cousins of the trees) for our experiments.
Table 4.2 presents results for the glycolysis pathway on 73 organisms when comparing
both our method and the method presented in [62] against the NCBI taxonomy. As
it can be observed, our method achieves a significantly higher similarity to the NCBI
taxonomy.

Table 4.2: Similarity measures based on the NCBI taxonomy for the glycolysis pathway

Technique Similarity
Our technique 0.1709924
Heymans and Singh’s technique 0.1346749

As previously described, the measure of metabolic pathway similarity presented in
this thesis is parameterized by the relative weight of compounds and enzymes in the
assessment of reaction similarity (Section 3.4). The influence of this parameter in the
final phylogenies was also studied, and it was found that results vary with the under-
lying enzyme similarity measure: while hierarchical enzyme similarity yields the highest
metabolic pathway similarity for a weight of about 30%, gene ontology enzyme similarity
yields the highest metabolic pathway similarity for a weight between 45% and 65%, and
information content enzyme similarity yields the highest metabolic pathway similarity for
a weight close to 40% (see Figure 4.3).

From a qualitative point of view, the phylogenetic trees obtained include several bio-
logically relevant clusters. In Figure 4.2 (right), we can appreciate how archaea organisms
are clustered in two groups: MTH, MJA, PFU and PAB in the first cluster (with the ther-
mococci PFU and PAB forming a subcluster), and APE, PAI, TVO, TAC, SSO, HAL,
AFU, STO, MMA, and MAC in the second (with methanosarcinales MMA and MAC

3Both authors were contacted concerning this issue
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Figure 4.2: Phylogenetic trees obtained from the glycolysis pathway for 73 organisms:
NCBI (left), Heymans and Singh (middle), and gene ontology enzyme similarity (right,
average-link hierarchical clustering, α = 40%)
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Figure 4.3: Influence of the α weight parameter on metabolic pathway similarity: hierar-
chical (top), information content (middle), and gene ontology (bottom) enzyme similarity
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forming a subcluster). Regarding bacteria, the Chlamydia CPN, CPJ, CPA, CTR, and
CMU are also clustered together, as well as the proteobacteria gamma STY, STM, YPE,
ECJ, ECS, ECO, and ECE (with the Escherichia in one subcluster and the Salmonella
STY and STM in another one). Firmicutes bacillus appear in two main clusters: one for
the Bacillales LIN, LMO, BHA, SAU, and SAV, and another one for the Lactobacillales
and Clostridia TTE, SPN, and LLA. The proteobacteria delta are also clustered in one
group, HPJ, HPY, and CJE.

Despite the goodness of our approach to find relevant clusters, detailed inspection
shows we are still far from a fully significative taxonomy. Heymans and Singh’s method
(Figure 4.2, center), is capable of clustering together all the proteobacteria alpha but one
(MLO). The eukaryota also appear grouped into two clusters: mammals (HSA, RNO,
MMU), and the remaining eukaryota (DME, SCE, CEL, SPO, and ATH).

Figure 4.4 presents the best trees obtained for each of the three enzyme similarity
measures (hierarchical, information content, and gene ontology). Any of these trees pro-
duces phylogenies more similar to the NCBI taxonomy than those obtained with previous
approaches, and the three of them have a similar clustering of related organisms, showing
the robustness of our approach.

4.1.2 Fuzzy clustering improves phylogenetic reconstruction

Although results presented in Section 4.1.1 showed how our method is more similar to
the NCBI taxonomy than previous approaches, in this and following sections we will
investigate which inconsistencies found in the phylogenies are actually due to our method
and which are related to some of the techniques utilized in the reconstruction process (for
instance, the hierarchical clustering algorithm) or due to noise present in the datasets.

In this section we will show how by substituting the UPGMA clustering by a fuzzy
equivalence relations-based (FER) hierarchical clustering method [101, §4.2], the resulting
phylogenetic trees can be further improved [17]. Fuzzy clustering has been successfully
used in bioinformatics, mostly through variants of the fuzzy c-means (FCM) clustering
method. For instance, [113] introduced a method for DNA-based phylogenetic tree recon-
struction based on FCM and Markov models.

FCM-based hierarchical clustering methods have the disadvantage of requiring the
desired number of clusters be given a priori in each step. Alternatively, all possible
number of clusters must be tried and then the optimal number chosen according to some
“least fuzzy partitions” criterion, although this method is computationally expensive.
The FER clustering method overcomes these drawbacks: it is faster, logically simpler,
and naturally hierarchical [148]. Although it has found several applications in health
sciences (see [101, Ch. 4] and the references therein), to our knowledge it has only been
used once to produce phylogenetic trees [93].

In the FER clustering method, we determine a fuzzy similarity relation S (reflexive and
symmetric) on the set of objects and compute the fuzzy equivalence relation E generated
by this similarity, as the max-min transitive closure of the matrix of S. Then, for each t
appearing in E’s matrix, the t-cut crisp equivalence relation obtained by replacing every
entry in E’s matrix smaller than t by 0 and every entry greater than or equal to t by 1,
induces a crisp partition of the set of objects: each element of the partition is a maximal
subset of objects that have “E-equivalence value” > t with each other. These partitions,
together with the hierarchy induced by the increasing order of the values t, yields a
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Figure 4.4: Phylogenetic trees obtained from the glycolysis pathway for 73 organisms
using average-link hierarchical clustering: hierarchical enzyme similarity (left, α = 30%),
information content enzyme similarity (middle, α = 50%), and gene ontology enzyme
similarity (right, α = 40%)
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classification tree for the objects.
For instance, consider the similarity matrix

MGE HIN MTU MJA ECO AFU
MGE 1.00 0.33 0.07 0.02 0.17 0.22
HIN 0.33 1.00 0.33 0.32 0.34 0.27
MTU 0.07 0.33 1.00 0.09 0.20 0.20
MJA 0.02 0.32 0.09 1.00 0.18 0.24
ECO 0.17 0.34 0.20 0.18 1.00 0.32
AFU 0.22 0.27 0.20 0.24 0.32 1.00

on the set of organisms

{MGE, HIN, MTU, MJA, ECO, AFU}

(see Table 4.3). The fuzzy equivalence relation generated by this similarity is given by
the matrix 

1.00 0.33 0.33 0.32 0.33 0.32
0.33 1.00 0.33 0.32 0.34 0.32
0.33 0.33 1.00 0.32 0.33 0.32
0.32 0.32 0.32 1.00 0.32 0.32
0.33 0.34 0.33 0.32 1.00 0.32
0.32 0.32 0.32 0.32 0.32 1.00


The hierarchy of partitions of the set of organisms defined by the t-cuts of this fuzzy

equivalence relation is:

t Partition corresponding to the t-cut
1.00 {MGE} {HIN} {MTU} {MJA} {ECO} {AFU}
0.34 {HIN,ECO} {MGE} {MTU} {MJA} {AFU}
0.33 {MGE,HIN,MTU,ECO} {MJA} {AFU}
0.32 {MGE,HIN,MTU,MJA,ECO,AFU}

This hierarchical clustering yields a classification tree, depicted as a dendogram in
Figure 4.5, and which is very close to the NCBI taxonomy tree for these six organisms,
the only difference being that in the latter the archaea MJA and AFU are also clustered
(that is, they should be at cousin distance 1 from MGE and MTU, instead of 0.5).

AFU

MJA

MTU

MGE

HIN

ECO

Figure 4.5: A dendogram for MGE, HIN, MTU, MJA, ECO, and AFU similar to their
NCBI taxonomy
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Experimental setup

To compare the performance of FER clustering and UPGMA clustering, we computed the
similarities defined in 3 of the glycolysis pathways of a model set of 16 organisms presented
in table 4.3. From this information, we reconstructed the corresponding phylogenetic trees
and computed their similarity to the NCBI taxonomy corresponding to those 16 organisms
using the cousins tool up to cousin distance 2, for each of the three enzyme similarity
measures, and for each α = 0, 0.1, 0.2, . . . , 0.9, 1. This produced 33 16× 16 matrices with
entries in [0, 1]. These matrices are symmetrical and all entries in their main diagonal are
1. We have then clustered the 16 organisms based on these similarities, using UPGMA
clustering [98].

To use the FER hierarchical clustering on these matrices, we computed their max-min
transitive closure using the algorithm derived from [101, Thm. 4.2.1]. In this way we
obtained the matrix of the fuzzy equivalence generated by each one of the 33 similarity
matrices on the set of the 16 organisms. We have then computed the classification tree
given by each one of these fuzzy equivalences, and considered them as the phylogenetic
trees for the set of organisms.

Table 4.3: Organisms studied, classified by domain (A: archaea, B: bacteria, E: eukaryota),
together with their identifier in the NCBI taxonomy

AFU A. fulgidus A 224325
MJA M. jannaschii A 243232
CPN C. pneumoniae B 115713
MGE M. genitalum B 243273
MPN M. pneumoniae B 272634
HIN H. influenzae B 71421
SYN Synechocystis B 1148
DRA D. radiodurans B 243230
MTU M. tuberculosis B 83332
TPA T. pallidum B 243276
BSU B. subtilis B 224308
AAE A. aeolicus B 224324
TMA T. maritima B 243274
ECO E. coli B 83333
HPY H. pylori B 85962
SCE S. cerevisiae E 4932

Results and discussion

We were unable to reproduce the 0.27 similarity claimed in [61, Table 5] for any parameter
of the cousins tool, and we have therefore adopted the parameter setting that provides
the closest result (similarity up to second cousins, that is, up to cousin distance 2) for our
experiments, which yields a similarity of 0.1935484 between NCBI’s and Heymans-Singh’s
trees.
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Table 4.4: Similarity values for both clustering methods and all similarity measures

UPGMA FER UPGMA FER UPGMA FER
go0.0 0.2386 0.2604 hier0.0 0.2386 0.2604 info0.0 0.2386 0.2604
go0.1 0.2386 0.2736 hier0.1 0.2222 0.2736 info0.1 0.2386 0.3125
go0.2 0.2222 0.3195 hier0.2 0.2222 0.3020 info0.2 0.2222 0.2526
go0.3 0.2222 0.2736 hier0.3 0.2222 0.2903 info0.3 0.2222 0.3020
go0.4 0.2222 0.2659 hier0.4 0.2222 0.2553 info0.4 0.2222 0.2234
go0.5 0.2222 0.2659 hier0.5 0.2222 0.2842 info0.5 0.2386 0.2105
go0.6 0.2222 0.2307 hier0.6 0.2222 0.2340 info0.6 0.2386 0.1827
go0.7 0.2222 0.2127 hier0.7 0.2222 0.2197 info0.7 0.2386 0.1413
go0.8 0.2222 0.2947 hier0.8 0.2527 0.2340 info0.8 0.2777 0.1505
go0.9 0.2222 0.2600 hier0.9 0.2527 0.1935 info0.9 0.2777 0.1630
go1.0 0.2527 0.2043 hier1.0 0.2527 0.1956 info1.0 0.2777 0.1868

Table 4.4 shows the similarity values to the NCBI taxonomy tree of the phylogenetic
trees obtained through UPGMA clustering (column UPGMA) and through FER hierar-
chical clustering (column FER) for each of the similarity measures goα, hierα and infoα,
α = 0, 0.1, 0.2, . . . , 0.9, 1.

As it can be seen in Table 4.4, the gene ontology similarity yields better results when
using the FER clustering method. For all values of α except α = 1 (that is, except when
compound similarity is not taken into account) and α = 0.7, the FER tree is closer to
the NCBI taxonomy than the UPGMA tree. The greatest similarity is go0.2 with FER
(almost 0.32), while the maximum with UPGMA is go1.0 (slightly under 0.253). The
average similarity of the FER trees to the NCBI taxonomy is 0.260, while the average
similarity of the UPGMA trees is 0.228.

FER clustering also generates better trees than UPGMA for the hierarchical similarity.
The FER tree is closer to the NCBI taxonomy than the UPGMA tree for all values of
α except for all α > 0.7. The greatest similarity is reached again for hier0.2 using FER
(slightly over 0.3), while the maximum with UPGMA is reached for hierα with α > 0.8
(slightly under 0.253). The average similarity of the FER trees to the NCBI taxonomy is
in this case 0.249, while the average similarity of the UPGMA trees is 0.232.

Interestingly, FER behaves worse than UPGMA for the information content similarity:
the FER tree is more similar to the NCBI taxonomy than the UPGMA tree for all α 6 0.4,
while the UPGMA tree is better when α > 0.5. The greatest similarity is reached in
this case for info0.1 with FER (slightly over 0.31), while the maximum with UPGMA is
obtained for infoα with α > 0.8 (slightly above 0.277).

The better performance of FER when using gene ontology and hierarchical similarity
might be explained by the fact that these measures are conceptually similar, since both
are based on shortest path distance among enzymes (in the GO graph and the EC tree,
respectively). On the other hand, information content similarity (where FER obtained
worse results) is based on EC subtree size, which results in a more fine-grained measure
than gene ontology or hierarchical similarity.

It is also evident from Table 4.4 that for all three types of enzyme similarity the best
results are obtained using FER and low values of α. Indeed, if we only take into account
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the values α = 0, . . . , 0.4, the average similarity of the phylogenetic trees to the NCBI
taxonomy is 0.2786602 for go, 0.27636518 for hier and 0.27020718 for info.

The best phylogenetic trees obtained with FER clustering for each one of the three
enzyme similarity measures are shown in Figure 4.6.

4.1.3 Incremental reconstruction

In Section 4.1.1 we presented results for reconstruction of phylogenetic trees from the
similarity of the glycolysis pathway for a set of organisms. It comes as a natural idea to use
information from more than one single pathway to reconstruct phylogenetic relationships
among species. In this section, we will extended previous results by performing a series
of additional experiments that will take into account all shared pathways for a set of
organisms containing at least one reaction. Intuitively, we would expect to obtain better
results (phylogenetic trees closer to the NCBI taxonomy) since we now use a whole range
of metabolic processes rather than focusing only in the glycolysis pathway [25].

Experimental setup

A first experiment consisted in the phylogenetic reconstruction of a set of organisms based
on the comparison of all of their common metabolic pathways. The organisms chosen
were Archaeoglobus fulgidus (afu), Clostridium perfringens (cpe), Haemophilus influenzae
(hin), Listeria innocua (lin), Methanocaldococcus jannaschii (mja), Mus musculus (mmu),
Neisseria meningitidis (nme), and Rattus norvegicus (rno). In a second experiment, we
have performed the incremental phylogenetic reconstruction of the same set of 8 organisms
by adding their 53 common metabolic pathways one by one.

The alpha parameter was set to 0.5 (equal weight for enzymes and compounds in
the reaction similarity measure), similarity of enzymes was calculated using hierarchical
similarity, and the phylogenetic trees were produced using UPGMA. Similarity of obtained
phylogenies were compared against the NCBI taxonomy (Figure 4.7) for the set of chosen
organisms using the cousins tool, up to second cousins.

Results and discussion

As can be seen in Figure 4.7, the phylogenetic reconstruction obtained in the first exper-
iment based on the 53 common metabolic pathways produced a phylogeny which is very
close to the NCBI taxonomy.

In the second experiment, where pathways were gradually incorporated and then sim-
ilarity to the NCBI taxonomy calculated, it was observed how the addition of a metabolic
pathway does not always have a consequence on the resulting phylogeny and, as illustrated
in Figure 4.8, incremental phylogenetic reconstruction produces only 11, instead of 53,
different phylogenies for the set of 8 organisms. Figure 4.8 also shows that second cousins
similarity to the NCBI taxonomy increases gradually when adding metabolic pathways
until reaching a highest similarity value.

4.1.4 Filtering of noisy pathways

Analysis of results presented in Section 4.1.3 showed how some of the shared metabolic
pathways among the organisms tend to be too dissimilar (suggesting incomplete metabolic

39



AFU

MJA

TMA

AAE

DRA

SYN

TPA

CPN

MTU

MPN

MGE

BSU

HPY

HIN

ECO

SCE

TMA

BSU

AFU

TPA

SYN

MPN

HPY

DRA

SCE

CPN

MJA

MGE

ECO

AAE

MTU

HIN

TMA

BSU

SYN

MPN

AFU

HPY

TPA

DRA

CPN

SCE

MJA

AAE

MGE

ECO

MTU

HIN

TMA

BSU

AFU

SYN

MPN

HPY

TPA

DRA

CPN

SCE

MJA

AAE

MTU

MGE

ECO

HIN

Figure 4.6: Phylogenetic tree for the set of 16 organisms (NCBI taxonomy, top left) and
best trees obtained with FER clustering from the similarity of their glycolysis pathways,
using gene ontology (top right), hierarchical (bottom left), and information content en-
zyme similarity (bottom right)
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Figure 4.7: Left: NCBI taxonomy for the 8 organisms Archaeoglobus fulgidus (afu),
Clostridium perfringens (cpe), Haemophilus influenzae (hin), Listeria innocua (lin),
Methanocaldococcus jannaschii (mja), Mus musculus (mmu), Neisseria meningitidis
(nme), and Rattus norvegicus (rno). Right: phylogenetic reconstruction based on the
53 metabolic pathways common to the 8 organisms

information in organisms with extremely few reactions) or too similar (even for organisms
phenotypically very different, suggesting the metabolic pathway data is still not complete
in all organisms, and is therefore useless for phylogenetic reconstruction purposes). The
main repository of information on metabolic pathways used in this thesis, KEGG, is an
ongoing effort that automatically incorporates data which is afterwards manually reviewed
by annotators. Information stored in KEGG should therefore be considered as tentative
only, and in this section we present a basic method to detect and discard pathways which
are suspected to be incomplete and would therefore introduce “noise” in the phylogenetic
reconstruction process [25].

Experimental setup

We repeated the incremental phylogenetic reconstruction experiment on the same set of
8 organisms presented in Section 4.1.3, discarding some of the 53 common metabolic
pathways according to one of three following criteria:

• Discard those metabolic pathways where the distance of an organism to its closest
neighbour is more than a certain threshold, for a percentage of all organisms. The
intuition behind this criteria is to remove pathways where some of the organisms
have very few annotated reactions, producing a non-meaningful mapping among
reactions and making the organisms appear more dissimilar than they are in reality
(and hence the artificially high distance).

• Discard those metabolic pathways where the distance of an organism to its closest
neighbour is equal to zero, for a percentage of all organisms. Information about some
metabolic pathways appears to be still incomplete in most organisms, producing an
artificially high metabolic similarity score between clearly different organisms.

• Discard those metabolic pathways where either the number of reactions is less than
a certain threshold, or one organism has significantly less reactions than the or-
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Figure 4.8: Incremental phylogenetic reconstruction for the 8 organisms Archaeoglobus
fulgidus (afu), Clostridium perfringens (cpe), Haemophilus influenzae (hin), Listeria
innocua (lin), Methanocaldococcus jannaschii (mja), Mus musculus (mmu), Neisseria
meningitidis (nme), and Rattus norvegicus (rno), from their 53 common metabolic path-
ways (top). Second cousins similarity of the reconstructed phylogenies with respect to
the NCBI taxonomy (bottom)
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ganism with more reactions in the metabolic pathway. This criteria is somehow a
combination of the two previous ones, trying to eliminate those pathways for which
information is suspected to be incomplete.

Parameters for our metabolic similarity measure were set to the same values as in
previous sections: α = 0.5, UPGMA clustering, and enzyme hierarchical similarity.

Results and discussion

Best results for the first filtering criteria were obtained with a distance threshold of 0.4
and 10% of the organisms, where the remaining 25 metabolic pathways produced a top
second cousins similarity score of 0.714, improving those presented in 4.8. Notice though
how the similarity curve now reaches a maximum after adding 7 pathways, and drops to
the previous 0.571 once we add more than 10 metabolic routes (Figure 4.9, left).

For the second criteria, best results were obtained using a threshold of 20% of the
organisms having distance 0 to its closes neighbour. The remaining 37 metabolic pathways
produce similar results to the previous criteria, with best second cousins similarity score
of 0.714 using 10 to 12 and 30 to 37 pathways (Figure 4.9, center).

For the last criteria, a reaction threshold of 0.3 reduces the set to 19 metabolic path-
ways, with best second cousins similarity of score of 0.714 using 5 to 8 pathways (Fig-
ure 4.9, right).

Results using these three criteria show how the method for metabolic pathway simi-
larity presented in this thesis can produce phylogenetic trees quite similar to the correct
NCBI taxonomy, provided that information on enough metabolic pathways is available,
and that “noisy” pathways are removed by some criteria. Figure 4.10 presents the best
phylogeny obtained after filtering.
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0.4285
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pathway

1 5 10 15 19
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Figure 4.9: Incremental phylogenetic reconstruction for 8 organisms and a subset of their
common metabolic pathways chosen according to three criteria: too dissimilar pathways
(left), too similar pathways (center), and too few reactions (right)

As shown in [21], the use of filters to eliminate sequences that are phylogenetically
discordant can improve the reconstruction of genome trees. Following a similar reasoning,
we argue that filtering of noisy metabolic pathways can help in reconstructing better
phylogenies. It is unclear though if even removing such discordant pathways we will ever
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Figure 4.10: Most similar tree to NCBI taxonomy for set of 8 organisms, after removing
noisy pathways

beat results obtained using the 16s rRNA gene. In fact, it has been suggested that despite
expanding data sets and alternative markers for inferring phylogenetic relationships, 16s
rRNA will remain as the gold standard in the field [92] [97, Ch. X,XI]. Nevertheless, it
should be noticed that this work is focused on evolution of metabolism rather than in
genome evolution, and therefore different results with trees reconstructed from sequence
data are to be expected.

4.1.5 Photosynthetic organisms

The experiments discussed in previous sections used a set of organisms belonging to the
three domains of life, eukarya, bacteria and archaea [142]4. It could be argued that
reconstructing phylogenetic trees from organisms with such different metabolic processes
is a somehow non-complex problem, and we have therefore performed one more experiment
to reconstruct the phylogenetic relationships among a set of 10 photosynthetic organisms:
eight bacteria, and two eukaryota containing chloroplasts [25].

Chloroplasts descended from cyanobacteria [95], and despite horizontal gene transfer
of many ancestral cyanobacterial genes to the plant nuclear genome, a selective set of
metabolic pathways is maintained in chloroplasts [135]. As a result, these eight photosyn-
thetic bacteria share a large number of metabolic pathways with the two photosynthetic
eukaryotes, which makes it particularly hard to distinguish them by comparison of their
metabolism only.

Experimental setup

We utilized the 61 shared metabolic pathways containing at least one reaction annotated
to the set of selected organisms: the photosynthetic bacteria Anabaena (ana), Gloeobacter
violaceus (gvi), Prochlorococcus marinus marinus (pma), Prochlorococcus marinus pas-
toris (pmm), Prochlorococcus marinus (pmt), Synechocystis (syn), Synechococcus (syw),

4Whether there are two or three domains, and how are they subdivided, has been extensively discussed
in the literature [96, 139, 142]. In this work we will assume the existence of three domains as postulated
in [143], which is currently recognized as the most plausible hypothesis
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and Thermosynechococcus elongatus (tel), and the eukaryota Arabidopsis thaliana (ath),
Cyanidioschyzon merolae (cme). We then applied our method for metabolic similarity by
incrementally adding all the pathways and reconstructing a set of phylogenetic trees from
them. Parameters for our algorithm were set to the same values as in previous sections:
α = 0.5, UPGMA clustering, and enzyme hierarchical similarity.

Results and discussion

As it can be seen in Figure 4.11, the incremental phylogenetic reconstruction based on
61 common metabolic pathways produced a phylogeny that clearly separates the pho-
tosynthetic eukaryotes from the photosynthetic bacteria. Inside the bacteria cluster,
our method was not able to separate the Chroococcales (Synechocystis, Synechococcus,
Thermosynechococcus elongatus) from the Prochlorales (Prochlorococcus marinus mar-
inus, Prochlorococcus marinus pastoris, Prochlorococcus marinus), the Nostocales (An-
abaena), and the Gloeobacterales (Gloeobacter violaceus). It should be noticed though
that parameter fine-tuning (election of enzyme similarity measure, α value, hierarchical
clustering method) and removal of “noisy” pathways could improve the results in the final
phylogeny.

tel

syn

gvi

ana

syw

pmt

pmm

pma

cme

ath

Figure 4.11: Tree reconstructed for the eight photosynthetic bacteria Anabaena (ana),
Gloeobacter violaceus (gvi), Prochlorococcus marinus marinus (pma), Prochlorococcus
marinus pastoris (pmm), Prochlorococcus marinus (pmt), Synechocystis (syn), Syne-
chococcus (syw), Thermosynechococcus elongatus (tel) and the two photosynthetic eu-
karyotes Arabidopsis thaliana (ath), Cyanidioschyzon merolae (cme) when using 61 of
their 68 common pathways

4.2 Conserved and non-conserved reactions

In previous sections, we have utilized our algorithm to obtain metabolic similarity values
among organisms. Using those similarity values, we can reconstruct phylogenetic trees
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depicting the common metabolic history of a group of organisms, or find suitable model
organisms in the study of diseases related to certain metabolic conditions. In this section
we will further expand the range of possible applications of our method by investigating
the significance behind the pathway alignments that we produce, and how to detect
conserved and non-conserved metabolic reactions in a set of organisms [24].

Let us first consider how our approach produces an alignment between different reac-
tions in the metabolism of two organisms. Borrowing terminology from sequence align-
ment, we will define the alignment of reactions as a perfect match, a substitution or a
gap. In a perfect match, both reactions are composed of the same set of metabolites
and enzymes, and our algorithm would score their similarity as 1. Figure 4.12 has sev-
eral examples of perfect matches between reactions in the TCA cycle of Archaeoglobus
fulgidus and Listeria innocua marked in blue/solid (00268, 00344, 00351, 00412, 01082
and 01899). Substitutions occur when the reactions are not exactly the same, but share
some compounds or enzymes. In such case, the similarity value will be greater than 0 but
less than 1. Figure 4.12 contains three such substitutions: reactions 00342, 00405 and
01197 in Archaeoglobus fulgidus are respectively substituted by 01082, 00412 and 00268
in Listeria innocua (alignment marked in green/dashed lines). Finally, gaps occur when
a reaction in one of the organisms cannot be mapped with similarity greater than 0 in the
other organism. Figure 4.13 presents an example of a gap: reaction 01698 (underlined) in
Listeria innocua has similarity 0 to any reaction in Archaeoglobus fulgidus, and therefore
creates a gap in the alignment. Biologically, a gap between species A and B represents
a reaction which, in the course of evolution, has been gained by A (“insertion” event) or
lost by B (“deletion”). Generalizing for a set of organisms {A, B, C, . . . , Z}, a reaction
is said to be a gap when it is present in one of the organisms and cannot be aligned with
any of the remaining organisms with similarity greater than 0.

Notice that because we are aligning unordered sets of reactions instead of ordered
sequences of nucleotides or amino acids, our algorithm produces a directed alignment since
the mapping of reactions is not symmetric. Reaction 00342 in Archaeoglobus fulgidus is
aligned to reaction 01082 in Listeria innocua (Figure 4.12), but the opposite is not true
since reaction 01082 in Listeria innocua gets aligned to 01082 in Archaeoglobus fulgidus
(Figure 4.13). Although for simplicity we have described an alignment between two
organisms only, the same method can be applied to a set of species by calculating all their
respective alignments.

In this section, we will study in detail perfect matches and gaps. Perfect matches are
interesting since they represent highly conserved reactions in the metabolism of different
organisms. Vital biological processes in a group of related species (taxons such as bacteria
or archaea) should be conserved and expressed by a significant number of reactions in all
the organisms of the group. We will validate this hypothesis by studying perfect matches
among bacteria, archaea and eukarya in Section 4.2.2.

Gap reactions, on the other hand, are interesting since they imply the complete absence
of a certain group of metabolites and enzymes in one of the organisms being compared.
More specifically, if the organisms being compared are known to be similar we would
not expect to find many gaps in the alignment of their metabolism. We will test this
hypothesis by studying the alignment of a set of strains (genetic variants of an organism)
in Section 4.2.3.
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A. fulgidus (afu)

00268
00342
00344
00351
00405
00412
01082
01197
01899

L. innocua (lin)

00268
00344
00351
00412
01082
01324
01325
01698
01899
01900

Figure 4.12: Alignment of TCA cycle from
Archaeoglobus fulgidus to Listeria innocua.
Reactions 00342, 00405 and 01197 in afu
(green/dashed) are substituted in lin for
01082, 00412 and 00268 with similarity < 1;
rest of reactions are perfectly aligned, simi-
larity = 1 (blue/solid)

A. fulgidus (afu)

00268
00342
00344
00351
00405
00412
01082
01197

01899

L. innocua (lin)

00268
00344
00351
00412
01082
01324
01325
01698

01899
01900

Figure 4.13: From Listeria innocua to
Archaeoglobus fulgidus : 01324, 01325 and
01900 (green/dashed) are substituted for
00351, 00351 and 01899 with similarity < 1.
01698 (red/dotted) cannot be mapped with
similarity > 0. Remaining reactions are per-
fectly aligned (blue/solid)

4.2.1 Experimental setup

All data used was obtained from KEGG release 39.0 (July 2006). For each experiment, we
selected a set of organisms and retrieved all shared pathways which contained at least one
reaction. We then applied our metabolic pathway alignment algorithm using hierarchical
enzyme similarity and parameter α = 0.5.

Experiments described in section 4.2.2 utilized the obtained alignment to select all
reactions that were aligned with similarity 1 (perfect alignments) for all organisms in a
taxon: bacteria, archaea, eukarya, mammals, and plants. With this set of highly conserved
reactions, we then calculated the percentage of each pathway that was conserved as the
number of conserved reactions appearing in the pathway divided by the total number of
reactions of the pathway.

Experiments in section 4.2.3 used results from the pathway alignment to obtain gap
reactions in any strain, i.e., reactions that could not be mapped with similarity greater
than 0 to any of the remaining strains, thus inducing a gap in the alignment. Finally, we
calculated the number and type of enzymes involved in such reactions by counting the
number of reactions in which each enzyme appeared.

4.2.2 Conserved reactions

Given a set of organisms, we expect reactions conserved with high similarity to perform
functions related to biologically relevant processes in the set. We performed experiments in
a group of bacteria, archaea and eukarya and their shared metabolic pathways (Table 4.5).
Ideally, reactions conserved with high similarity only in one of the domains and not in
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the others should reflect some property exclusive to that specific domain.

Table 4.5: Conserved reactions among bacteria, archaea and eukarya: organisms and
shared pathways

Taxon Organisms Shared path.

Bacteria

aae ana atc atu bha bme bsu cac ccr cje cmu 00010 00061 00190 00230
cpa cpj cpn ctr dra ece ecj eco ecs fnu hin 00240 00251 00252 00260
hpj hpy lin lla lmo mle mlo mtc mtu nma nme 00271 00272 00280 00290
pae pmu rpr rso sau sav sco sme spn stm sty 00310 00330 00400 00450
syn tma tte vch xcc xfa ype 00500 00550 00564 00620

Archaea
afu ape hal mac mja mma mth pab pai pfu sso 00630 00640 00650 00670
sto tac tvo 00710 00790 00860 00900

Eukarya ath cel dme hsa mmu rno sce spo 00970

As seen in Table 4.6(a), Bacteria were very clearly characterized. Most of the reactions
exclusively conserved with high similarity in bacteria belong to the fatty acid biosynthesis
pathway (00061), with 64% of the total number of reactions in the pathway being con-
served. The peptidoglycan biosynthesis pathway (00550) also has over 37% of its reactions
highly conserved in bacteria. Remnant pathways were conserved in lower proportions.

Archaea had a significant number of conserved reactions related to the phenylala-
nine pathway (00400), with 80% of the total number of reactions in the pathway. The
pyrimidine metabolism pathway (00860) is also partially conserved, with over 27% of its
reactions present (Table 4.6(b)).

Results in eukaryota, as seen in Table 4.6(c), show how oxidative phosphorylation
(00190), carbon fixation (00710), and glyoxylate and dicarboxylate metabolism (00630)
pathways have over 60% of their total number of reactions highly conserved. The valine,
leucine and isoleucine biosynthesis pathway (00290) also had a significant number of
reactions highly conserved.

We ran two more experiments using the previous archaea and bacteria organism sets,
but recalculating the shared pathways among all organisms. In the first one, we substi-
tuted the eukaryota organism set by all the mammals present in KEGG except Rattus
norvegicus5. Table 4.7 presents the selected organism and shared pathways among them.

Results in Table 4.9(a) shows the oxidative phosphorylation pathway (00190) still
ranks as the most relevant, with nearly 43% of its reactions highly conserved. In the
second experiment, eukaryota were substituted by a subset of all plants6 present in KEGG.
Table 4.8 describes the set of organisms and their shared pathways. In this case, the
carbon fixation in photosynthetic organisms pathway was selected as the most relevant
(nearly 80% of its reactions are conserved), while oxidative phosphorylation is also highly
conserved (Table 4.9(b)).

5Information in KEGG about this organism seems to be incomplete, unpublished results.
6Results for plants were based on metabolic pathways obtained from Expressed Sequence Tag (EST)

data, which are of lower quality
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Table 4.6: Conserved pathways in bacteria, archaea, and eukaryota

(a) Bacteria

Path Cons. reacs.
00061 64% (16/25)
00550 37.5% (6/16)
00670 16.66% (1/6)
00190 14.28% (1/7)

(b) Archaea

Path Cons. reacs.
00400 80% (16/20)
00860 27.27% (3/11)
00670 25% (1/4)
00252 22.22% (2/9)

(c) Eukaryota

Path Cons. reacs.
00190 66.66% (4/6)
00710 64.28% (9/14)
00630 62.5% (5/8)
00290 50% (3/6)

Table 4.7: Conserved reactions among bacteria, archaea and mammals: organisms and
shared pathways

Taxon Organisms Shared path.

Bacteria

aae ana atc atu bha bme bsu cac ccr cje cmu cpa cpj cpn
ctr dra ece ecj eco ecs fnu hin hpj hpy lin lla lmo mle 00010 00190
mlo mtc mtu nma nme pae pmu rpr rso sau sav sco sme 00230 00240
spn stm sty syn tma tte vch xcc xfa ype 00251 00280

Archaea afu ape hal mac mja mma mth pab pai pfu sso sto tac tvo 00310 00500
Mammals bta cfa hsa mmu ptr ssc 00650 00710

Table 4.8: Conserved reactions among bacteria, archaea and plants: organisms and shared
pathways

Taxon Organisms Shared path.

Bacteria

aae ana atc atu bha bme bsu cac ccr cje cmu cpa cpj 00010 00061 00190 00230
cpn ctr dra ece ecj eco ecs fnu hin hpj hpy lin lla lmo 00240 00251 00252 00260
mle mlo mtc mtu nma nme pae pmu rpr rso sau sav 00271 00272 00280 00290
sco sme spn stm sty syn tma tte vch xcc xfa ype 00300 00310 00330 00400

Archaea
afu ape hal mac mja mma mth pab pai pfu sso 00450 00500 00550 00564
sto tac tvo 00620 00630 00640 00650

Plants
ebna ecsi egar egma egra ehan ehvu elco eles elsa 00670 00710 00760 00860
emtr eosa epba epta esbi esof estu etae evvi ezma 00900 00970

49



Table 4.9: Conserved pathways in mammals and plants

(a) Mammals

Path Cons. reacs.
00190 42.85% (3/7)
00240 6.66% (5/75)
00280 3.03% (1/33)

(b) Plants

Path Cons. reacs.
00710 79.16% (19/24)
00190 71.42% (5/7)
00272 60% (6/10)

Table 4.10: Non-conserved reactions: strains and shared pathways

Organism Strains Shared path.
S. pyogenes spy spz spm 00010 00030 00040 00051 00052 00061 00071 00072 00100

spg sps sph 00190 00220 00230 00240 00251 00252 00260 00271 00272
spi spj spk 00280 00290 00300 00310 00330 00340 00350 00360 00380
spa spb 00400 00430 00450 00460 00471 00473 00480 00500 00520

00521 00523 00530 00550 00561 00562 00564 00590 00620
00624 00630 00632 00640 00650 00670 00710 00740 00760
00770 00780 00790 00860 00900 00903 00910 00920 00960
00970

E. coli eco ecj ece 00010 00020 00030 00040 00051 00052 00053 00061 00062
ecs ecc eci 00071 00100 00120 00130 00190 00220 00230 00240 00251
ecp 00252 00260 00271 00272 00280 00290 00300 00310 00330

00340 00350 00360 00361 00380 00400 00401 00410 00430
00450 00460 00471 00473 00480 00500 00520 00521 00523
00530 00540 00550 00561 00564 00600 00603 00620 00624
00627 00630 00632 00640 00650 00660 00670 00680 00710
00720 00730 00740 00750 00760 00770 00780 00790 00860
00900 00903 00910 00920 00930 00950 00960 00970 00980
01053

S. aureus sau sav sam 00010 00020 00030 00040 00051 00052 00061 00100 00120
sar sas sac 00190 00220 00230 00240 00251 00252 00260 00271 00272
sab saa sao 00280 00290 00300 00310 00330 00340 00350 00360 00380

00400 00410 00430 00440 00450 00460 00471 00472 00473
00480 00500 00520 00530 00550 00561 00564 00600 00602
00604 00620 00624 00630 00632 00640 00650 00660 00670
00680 00710 00720 00730 00740 00760 00770 00780 00790
00860 00900 00903 00910 00970
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4.2.3 Non-conserved reactions

We also investigated how different strains of the same organism can be aligned, focusing in
gap reactions which are not conserved among the strains (that is, cannot be aligned with
similarity higher than 0). Since the strains are all genetic variants of a single organism,
we expect to have a high-score alignment among strains, with few or no gap reactions.
We performed experiments with strains of Streptococcus pyogenes, Escherichia coli and
Staphylococcus aureus and their respective sets of shared metabolic pathways (Table 4.10).

In the following sections we describe results for these experiments as presented in
tables B.1, B.2 and B.3, where gap reactions annotated to a strain S indicate that the
reactions are present in some of the other strains but cannot be aligned with similarity
greater than 0 in S.

Streptococcus pyogenes

Streptococcus pyogenes is a Gram-positive bacteria associated with different diseases
through the release of toxins, as in scarlet fever and toxic shock syndrome. We used
11 strains from Streptococcus pyogenes currently stored in KEGG, and aligned 64 of their
shared pathways which contained at least one reaction.
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Figure 4.14: Gaps in the alignment of Streptococcus pyogenes strains (ordered by publi-
cation year)

Figure 4.14 represents the gaps induced in the alignment between different strains.
As it can be seen, recently published strains (years 2005 and 2006) tend to have a larger
number of reactions that cannot be aligned to “older” strains. In particular, the serotype
M3 strains sph, spi, spj and spk [13], introduced in KEGG in 2006, contain many reactions
that cannot be aligned and therefore appear as gaps in other strains. These four strains
can have all their reactions aligned with no gaps among them, which indicates a high
degree of similarity.

Strains spg and sps are also serotype M3, but they have some gaps in their alignment
to previous M3 strains. Serotype M18 strain spm, associated with acute rheumatic fever
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outbreaks, shares the gaps with both spg and sps. Strains spy and spz are serotype
M1. The more recent strain spz (2005) has no gaps, while spy (2001) contains several.
Serotype M28 strain spb (2005) also presents no gaps. Table B.1 details the exact reactions
introducing gaps in each of the strains.

We also investigated what enzymes catalyze the gap reactions (Table B.4). Most of
these enzymes are still not fully characterized, as indicated by the “-” symbol in their EC
identifier. Only enzymes 3.1.3.73 and 1.14.18.1 are fully characterized, and they appear
in few reactions.

Escherichia coli

Escherichia coli, a bacteria present in the lower intestine of mammals, is a common
bacterial model organism responsible for different kinds of infections, as well as for food-
poisoning in contaminated meat. We used 7 strains stored in KEGG, and aligned 82
shared pathways containing at least one reaction.

As with Streptococcus pyogenes, strains of Escherichia coli recently incorporated in
KEGG seem to have less gap reactions than older ones. Figure 4.15 shows how the two
most recent strains, eci and ecp, introduce a significant number of gaps in the alignment
with older strains. The number of gaps does not strictly correspond with the year of
publication though: strain ecc was introduced after ecj, ece or eco, but has a larger
number of gaps.

Strains representing the toxigenic Escherichia coli O157:H7 (ece and ecs) share their
set of gap reactions. K-12 type strains eco (MG1655) and ecj (W3110), on the other hand,
do not fully share their gap reaction set. These two strains were published respectively
in 1997 and 2006 (the web entry in KEGG’s organism list incorrectly marks 2001), with
the second publication correcting some of the entries of the first one [58]. Inspection of
enzymes involved in gap reactions in Escherichia coli shows again a large predominance
of not fully-characterized enzymes, as it can be seen in Table B.5. Table B.2 presents the
detailed list of gaps for each strain.
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Figure 4.15: Gaps in the alignment of Escherichia coli strains (ordered by publication
year)
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Staphylocossus aureus

Staphylococcus aureus is a Gram-positive bacterium that can cause a wide range of dis-
eases, such as pneumonia, meningitis, or toxic shock syndrome. The bacteria has become
resistant to many antibiotics in the last years, and may be fatal in cases of severe infec-
tions. KEGG currently contains data on 9 different strains, and for our experiments we
used 68 of their shared pathways containing at least one reaction.

Figure 4.16 presents how, as in the two previous sections, recently published strains
tend to have less gap reactions. In this case, saa (2006) and sab (2005) have the least
number, closely followed by sao (2006). Methicillin-resistant (MRSA) and methicillin-
susceptible (MSSA) strains sar and sas were published together [64] and have an identical
set of gap reactions. The three strains for which the primary repository is the NITE/Jun-
tendo database (sau, sav and sam) have the same gap set as well. A detailed revision of
the papers associated with the first two strains [80] and the last one [9] reveals that the
group that published the three strains is in fact the same. Finally, the strain sac has a
significant number of gaps despite its recent publication. Table B.3 summarizes the list
of gap reactions. Most of the enzymes present in gap reactions in Staphylococcus aureus
were again not fully-characterized (Table B.6).
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Figure 4.16: Gaps in the alignment of Staphylococcus aureus strains (ordered by publica-
tion year)

4.2.4 Results and discussion

Understanding which metabolic processes are fundamental for a group of organisms can
be of great utility [11]. In this section we have presented an approach based on our
metabolic pathway alignment algorithm to detect what pathways have a significant num-
ber of reactions conserved with high similarity. Results show how can we establish which
are the most relevant metabolic pathways for taxa such as bacteria, archaea, mammals
or plants.

We also investigated how an alignment among strains of three different bacteria reveals
a significant number of reactions that belong exclusively to some of the strains, and
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therefore produce a gap in the alignment with other strains. We found out such gap
reactions to be much more common in species recently introduced in KEGG. Also, most
gap reactions seem to be catalyzed by enzymes which are not yet fully determined. These
evidence seem to imply that these reactions are in fact misannotations.

KEGG is probably the most complete resource on metabolic information publicly
available, and despite its high quality standards it is to be expected that misannotations
are introduced due to the automated nature of the annotation process. Methods to detect
such errors are well-known in the case of sequence data, and have been recently introduced
also for metabolic data [40, 41]. The work presented in this section provides a different
approach towards detecting such misannotations.

Conserved reactions in a group of organisms

By studying conserved reactions in a group of organisms, we expected to find biological
processes which are relevant for some of the organisms. The fatty acid biosynthesis
pathway was significantly conserved in bacteria when compared to the other two domains
(Table 4.6(a)). It is known that enzymes of fatty acid biosynthesis represent excellent
targets for drugs against bacteria [16, 102], therefore the relevance of this pathway and
its high number of conserved reactions in our experiments.

Our method was also able to detect the relevance of the peptidoglycan biosynthesis
pathway (Table 4.6(a)). These polymers enable bacteria to withstand high osmotic pres-
sures. Highly conserved in bacteria, peptidoglycans have no parallels in eukaryota, and
disruption of the peptidoglycan pathway can be lethal for bacteria [134].

We also found out the phenylalanine pathway was significantly conserved in Archaea
(Table 4.6(b)). Phenylalanine is an essential alpha amino acid that cannot be synthesized
by animals, which have to obtain it from their diet. It is produced from prephenate, an
intermediate on the shikimate pathway. Interestingly, although this pathway is present in
archaea, bacteria, fungi, and plants, there are two kinds of shikimate kinases: archaeal and
non-archaeal. Archaeal shikimate kinases are, by sequence similarity, distantly related to
homoserine kinases (GHMP kinase domain superfamily) [30], while all non-archaeal shiki-
mate kinases (the typical form) belong to the (structurally unrelated) NMP kinase domain
superfamily [77]. We found 6 entries for enzymes related to shikimate in KEGG: 1.1.1.25,
1.1.1.282, 1.14.13.36, 2.3.1.133, 2.5.1.19 and 2.7.1.71. Except for 1.14.13.36 and 2.3.1.133,
which are not annotated to any pathway, all enzymes belong to the phenylalanine pathway.

Eukaryotes were more complex to analyze. The first experiment (see Table 4.6(c))
shows a series of conserved pathways which cannot be directly linked to fundamental
metabolic processes in all eukarya: carbon fixation (00710), for instance, is vital only for
plants. It is not clear either how the glyoxylate and dicarboxylate metabolism (00630) are
of relevance to the selected eukaryotes. After detailed inspection of results we found out
reactions conserved in these pathways are actually annotated to more than one metabolic
pathway. Additionally, the definition of a metabolic pathway in KEGG does not neces-
sarily correspond to the traditional understanding expressed in the literature, and KEGG
pathways are known to overlap. Several reactions in the Calvin cycle are also present
in the pentose phosphate pathway, which might explain the high value for conserved
reactions in the carbon fixation pathway among all eukaryotes.

The most conserved pathway in eukaryota was oxidative phosphorylation, which is
the final pathway of cellular respiration after glycolysis and the cytric acid cycle. Its ba-
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sic function is to transfer electrons from NADH or FADH2 to molecular oxygen through
protein complexes located in the mitochondria. Arguably, the fact that mitochondria are
not found in bacteria or archaea [60] could explain that metabolic pathways related to
activity in the mitochondria would be relevant to eukaryotic organisms only. Tables 4.9(a)
and 4.9(b) show the relevance of this pathway both in mammals and plants, which is con-
sistent with this hypothesis. Additionally, Table 4.9(b) also describes how carbon fixation
in photosynthetic organisms is effectively conserved for plants, as would be expected.

It should be noticed that genome sequences for nearly all bacteria and archaea present
in KEGG are fully determined, which only happens for a few of the eukarya. Given that
metabolic information in KEGG is obtained by analyzing sequence data from GenBank,
this might explain the poorer quality of results for eukaryota.

Non-conserved reactions in a group of strains

Non-conserved reactions (gaps) are those reactions which are contained in one strain
but cannot be aligned with similarity greater than 0 to any other reaction in different
strains. This means that the set of enzymes and compounds contained in such reactions
do not appear in any other reaction. Since strains are variants of one single organism,
gap reactions are worth studying because they represent a set of enzymes and compounds
unique to a certain strain. We argue that such reactions are most probably an annotation
mistake.

Sections 4.2.3, 4.2.3 and 4.2.3 describe how strains recently included in KEGG contain
a significant number of reactions that appear as gaps in older strains. Specifically, strains
introduced in years 2006 and 2005 in Streptococcus pyogenes (sph, spi, spj, spk, spz, spb;
Table B.1), Escherichia coli (eci, ecp; Table B.2), and Staphylococcus aureus (sca, sco,
scc, scb; Table B.3) contained the smallest number of gaps and the largest number of
reactions that are gaps in older strains. This suggests that such strains contain misan-
notated reactions due to the automated nature of the annotation process. Although our
experiments are limited to alignment among strains of an organism, it is reasonable to
expect similar results for any organism in general. Information about species recently
included in KEGG should therefore be considered as tentative, as it has been confirmed
by other authors [40, 41].

Additionally, most gap reactions are catalyzed by enzymes not fully determined (Ta-
bles B.4, B.5 and B.6). Analysis of the references associated with each of the strains in
KEGG did not explain either why these enzymes should be annotated to those strains,
which further implies that these reactions might indeed be misannotations. Even for reac-
tions with fully determined enzymes, such as 3.1.3.73 in Streptococcus pyogenes, 1.18.1.4
in Escherichia coli, and 3.1.3.73 in Staphylococcus aureus, we found out that they have no
genes annotated to them. EC numbers are not always supported by experimental valida-
tion, and they can introduce errors in metabolic pathway repositories as those presented
in this work. Further details on errors associated with EC numbers can be found in [53].

4.3 Model organisms

A different set of questions of biological relevance can also be answered using our method
for metabolic pathway alignment. Experimentation of novel disease treatments on humans
is costly, can imply risks for the subject, and might raise ethical issues. The alternative use
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of model organisms is a common practice in biology to avoid these problems. Identifying
appropriate model organisms for a specific experiment can be of great use for the biologist.
Our method for metabolic similarity can provide this functionality by simply choosing the
candidate model organisms and the set of pathways involved in the experiments [25].

As an example of such use, we performed an experiment to find a suitable model
organism in a hypothetical condition related to pyruvate kinase deficiency in humans,
which is usually related to haemolytic anaemias [12, 149]7.

Given a set of candidate organisms (Escherichia coli, Caenorhabditis elegans, Rattus
norvegicus, Drosophila melanogaster, and Homo sapiens), we started by aligning all their
common pathways to reconstruct their phylogenetic relations. The result, as seen in Fig-
ure 4.17 (left), is a phylogenetic tree with one cluster for animals, further divided into
vertebrate (Rattus norvegicus, Homo sapiens) and non-vertebrate (Caenorhabditis elegans
and Drosophila melanogaster), and a second cluster with the bacterium Escherichia coli.
This tree corresponds with the NCBI taxonomy for this set of organisms. We then consid-
ered those KEGG pathways that contain pyruvate kinase and are common to the candidate
organisms, namely: glycolysis, pyruvate metabolism, and purine metabolism. Figure 4.17
(right) presents the produced tree in this case, which places Drosophila melanogaster
closer to Homo sapiens than Rattus norvegicus. Although we could not find conclusive
confirmation in the literature, this result suggests that organisms with a most similar
global metabolism might not necessarily be the best option as model organisms for spe-
cific biological experiments.
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hsa

dme

rno

cel

eco

Figure 4.17: Tree reconstructed for Escherichia coli, Caenorhabditis elegans, Drosophila
melanogaster, Rattus norvegicus, and Homo sapiens when using all their common path-
ways (left) and common pathways that contain pyruvate kinase (right)

7Interestingly, deficiency in this enzyme has also been linked to protection against malaria in mice [99]
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Chapter 5

Implementation

The competent programmer is fully aware of the limited size of his own skull.
He therefore approaches his tasks with full humility, and avoids clever tricks
like the plague

E. W. Dijkstra [34]

5.1 Phylogenetic web server

We have implemented the method described in Chapter 3 as a web service that can be
used to reconstruct the phylogeny of a set of organisms from the observed similarity of
their common metabolic pathways. Although some tools have been previously described
for querying pathways [86, 116, 124], comparing metabolic connectivity [118], and recon-
structing phylogenetic trees from genome sequence [75], we are not aware of any publicly
available web server that allows the user to reconstruct phylogenetic trees from similarity
of metabolic processes.

Information about organisms and pathways in the server is periodically retrieved from
KEGG through a Perl script, and then updated into a local SQLite database that contains
information on all organisms, pathways, reactions, enzymes, and chemical compounds. In
order to save computation time in scoring the similarity of pathways, we precalculate and
store distances among all enzymes, compounds, and reactions to provide results in linear
time. Figure 5.1 describes the overall implementation process of the web server. Currently,
our database stores information for 13 organisms, 25 metabolic pathways, and over 1,000
enzymes, compounds, and reactions, as well as precalculated distances for 180,000 enzyme
pairs and over 1,000,000 reaction pairs. Figure 5.2 presents the database schema used. Our
web server can be accessed at http://www.jaist.ac.jp/~clemente/cgi-bin/phylo.pl.

The user can select among a set of organisms and pathways, three different enzyme
similarity measures (hierarchical, information content and gene ontology), two clustering
methods (UPGMA [98] and neighbor-joining [121]), the choice of full organism names
or abbreviations in the output, and the value of the α parameter (relative weight of
compounds and enzymes in assessing the similarity of enzymatic reactions). The interface
is designed in a way such that, when selecting an organism, all the pathways not present
in that organism are disabled, and vice versa. This is to ensure that the alignment of
pathways is done in a meaningful way, that is, we are not aligning against an empty set
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DB
query

similarity
values

Homo sapiens
D. melanogaster
C. elegans
Glycolysis
TCA cycle
Pyruvate met.

reconstructed
phylogeny

user query

interface
SOAPKEGG

pre−calculate
similarity values

SQLite DB

web interface
dynamic generation

periodic
updates

(a)

(b)

(e)

(f)

(d)

(g)

algorithm
metabolic similarity(c)

metabolic pathways
species

Figure 5.1: Web server implementation. Information from KEGG is retrieved periodically
through its SOAP interface (a) to update the local SQLite database with new metabolic
data, precalculating distances among enzymes, compounds and reactions (b). From the
list of metabolic pathways and species contained in the database, a web interface is dy-
namically generated (c). When a user makes a query by selecting a set of organisms,
pathways and control parameters (d), a set of scripts implementing our metabolic sim-
ilarity algorithm make the relevant queries to the database (e) retrieving the necessary
similarity values (f) and returning the calculated phylogenetic tree obtained from the
metabolic similarity of the selected species (g)
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Figure 5.2: SQLite database schema for the web server. Data in the “primary” tables
(Organism, Reaction, Enzyme and Compound) is directly retrieved from KEGG, with
each entry having a unique identifier. Tables CompoundReaction, EnzymeReaction and
OrganismReaction relate compounds, enzymes and organisms to reactions. Each entry
is defined by exporting the appropriate primary key, and indices are defined to speedup
lookups. Distance tables (EnzymeDistance, CompoundDistance and ReactionDistance)
contain pairs of objects for which the precalculated distance is greater than zero. Indices
were also created in these tables to improve efficiency
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of reactions. Two screenshots of our web server can be seen in figures 5.3, 5.4, and 5.5,
showing the list of currently available organisms, metabolic pathways, and parameters.

Figure 5.3: Web server screenshot: organism selection

Once a query is submitted, we calculate the phylogenetic tree for the selected organ-
isms, pathways, and parameters, as previously described. Results are presented both in
Newick and graphic format, including branch lengths. A Postscript file of the produced
tree can be downloaded by clicking on the displayed image (see Figure 5.6).

The server includes several optimizations to reduce the time required to calculate a
phylogenetic tree. As explained above, similarity values are precalculated offline and then
stored in the database. Whenever a new organism or metabolic pathway is retrieved
from KEGG all similarity values not already calculated are computed and updated in the
database if the value is greater than 01. Queries to the database are also optimized for
speed, at the cost of retrieving data which might not be used. For instance, if we need
the similarity value of objects A and B (where A and B might be enzymes, compounds or
reactions), instead of obtaining only the value sim(A, B) we retrieve all similarity values
for A. We found out that retrieving more data and post-processing it afterwards is faster,
since many of the similarity values for A would be required at some point later in the
calculations anyways. These optimizations allow our web server to answer user queries in
time almost linear in the number of enzymes, compounds and reactions.

1In order to save disk space, since most similarity values are in fact 0.
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Figure 5.4: Web server screenshot: metabolic pathway selection

Figure 5.5: Web server screenshot: parameter selection
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Figure 5.6: Web server screenshot: produced phylogenetic tree

5.2 Standalone distribution

We have also developed a series of Perl modules to ease the manipulation of metabolic
data and implementing the algorithms presented in this thesis. A total of 5 modules rep-
resent each of the objects to be found in metabolism: Compound, Enzyme, Reaction,

Pathway, and Organism. Three auxiliary modules are used for input/output operations
(PathwayIO), user queries (Query), and calculation of similarity values (Similarity).
These modules make use of the Graph module and the BioPerl collection, which should
be previously installed by the user2. All modules are currently available from the au-
thor upon request, and will be made publicly available in the near future at CPAN
(http://www.cpan.org).

The Compound module represents metabolites used in metabolism. The module pro-
vides operations to create, assign name, convert into a string and compare with other
metabolites (determine whether metabolites are exactly the same or not).

The Enzyme module represents catalytic enzymes acting upon reactions. Operations to
create, assign name, convert into a string and compare with other enzymes are similar to
those in the Compound module. Since enzymes are represented by their EC identifier, we
also implemented a function to determine when two enzymes are similar : either all their
four digits are the same, or they share their most significant digits and less significant
digits are replaced by dashes (“-”). For instance, enzymes 3.1.2.4 and 3.1. − .− are
similar under this definition, but 3.1.2.4 and 4.1. − .− are not. Since some enzymes in
KEGG are not fully determined, this function is useful to calculate similarity among
partially determined enzymes. This function should not be confused with the comparison
of enzymes previously described. In fact it provides a more general functionality: instead
of strict equality, partial equality of enzymes is checked by using wildcards (dashes).

2We recommend installing BioPerl 1.4. Later versions seem to have several problems when using the
Ontology module which we require for the calculations in our Similarity module.
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The Reaction module implements metabolic reactions. The usual set of basic op-
erations are included in this module: create, assign a name, convert into a string and
compare with other reactions. Reactions are composed of compounds and enzymes, and
in order for two reactions to be equal they should contain exactly the same compound
and enzyme sets. Operations to declare and/or retrieve the compounds and enzymes of
the reaction are also implemented, with additional functions to determine if a compound
is either a substrate or a product of the reaction. A string-to-reaction conversion is also
implemented to facilitate loading reaction data from standard KEGG text files.

Metabolic pathways are implemented in the Pathway module. Functions to create,
name, convert into a string, convert from a string and compare with other pathways were
implemented as with previously described modules. Operations to declare and/or retrieve
the compounds, enzymes and reactions of a pathway are also included.

The metabolism of whole organisms can be specified by using the module Organism,
which includes operations to create, name and compare organisms, as well as a function
to declare/retrieve the pathways that compose it.

The PathwayIO module manages input/output processes, reading pathway data from
a file or directly from KEGG’s API, and printing metabolic information. The data format
for files follows the regular expression:

(path:\w{3,4}:\d{5} (R\d{5} (C\d{5})+ (\d.\d.\d.\d)*)+)+

where path:\w{3,4}:\d{5} is the name of the organism and the KEGG pathway iden-
tifier, R\d{5} is one of the reactions included in the pathway, (C\d{5})+ is the set of
compounds (substrates and products) that take part in a reaction, and (\d.\d.\d.\d)*

represents the enzymes catalyzing the reaction. For instance:

path:hsa:00010 R00947 C00103 C00001 C00267 C00009 3.1.3.10

corresponds to reaction R00947 (D-Glucose-1-phosphate phosphohydrolase) in the Homo
sapiens glycolysis pathway (hsa:00010), which takes as substrates D-Glucose 1-phosphate
(C00103) and water (C00001) to produce alpha-D-Glucose (C00267) and Orthophosphate
(C00009), catalyzed by the enzyme glucose-1-phosphatase (3.1.3.10).

The Similarity module implements all similarity operations between metabolic ob-
jects (compounds, enzymes, reactions, pathways, and organisms). When creating a
Similarity object, we initialize it with a list of references for the objects for which
we would like to have their similarities computed, and with the parameters to calculate
the similarity values as described in Chapter 3: enzyme similarity measure (hierarchical,
information content or gene ontology) and α value (relative weight of enzymes and com-
pounds in reaction similarity). Once similarity values are calculated, they can be accessed
through a similarity matrix stored with the object. In order to save computation time
when using the information content or gene ontology similarity measures, we provide a
precomputed enzyme similarity matrix that is automatically loaded by the Similarity

object if found present in the working directory. Figures 5.7 to 5.10 present code using
this module to calculate similarity among enzymes, reactions, pathways and organisms.
Figures 5.11 to 5.14 present the respective outputs for each of this programs.

Finally, the Query module is initialized with a set of organisms, a set of pathways,
an alpha value, an enzyme similarity method, and a clustering method (UPGMA or
neighbor-joining), and then proceeds to reconstruct a phylogenetic tree in the same way
the web server does. For each pathway, we calculate the similarity matrix containing all
organisms which are annotated to it. We then average all the similarity matrices and
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my @enz_list = ("1.1.1.1","1.1.2.3");

print "... enzyme similarity with hierarchical measure ...\n";

my $hier_sim_obj = new Metabolism :: Similarity(

’-method ’ => "hierarchical",’-objects ’ => \@enz_list);

my $aa = $hier_sim_obj ->similarity_matrix;

my $bb = $hier_sim_obj ->object_index;

for ( my $i = 0 ; $i < scalar(@$bb) - 1 ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$bb) ; $j++ ) {

print "Similarity ";

print $bb ->[$i] . " , " .

$bb ->[$j] . "= $$aa[$i][$j]\n";

}

}

print "... enzyme similarity with information content ...\n";

my $info_sim_obj = new Metabolism :: Similarity(

’-method ’ => "information",’-objects ’ => \@enz_list);

$aa = $info_sim_obj ->similarity_matrix;

$bb = $info_sim_obj ->object_index;

for ( my $i = 0 ; $i < scalar(@$bb) - 1; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$bb) ; $j++ ) {

print "Similarity ";

print $bb ->[$i] . " , " .

$bb ->[$j] . "= $$aa[$i][$j]\n";

}

}

print "... enzyme similarity with GO...\n";

my $go_sim_obj = new Metabolism :: Similarity(

’-method ’ => "go",’-objects ’ => \@enz_list);

$aa = $go_sim_obj ->similarity_matrix;

$bb = $go_sim_obj ->object_index;

for ( my $i = 0 ; $i < scalar(@$bb) - 1; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$bb) ; $j++ ) {

print "Similarity ";

print $bb ->[$i] . " , " .

$bb ->[$j] . "= $$aa[$i][$j]\n";

}

}

Figure 5.7: Similarity module sample session for enzyme similarity: code
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my $reac_c = new Metabolism :: Reaction(

’-name’ => ’R00003 ’,’-subst’ => [’sC00001 ’,’sC00002 ’],

’-prod’ => [’C00008 ’,’C00004 ’],’-enz’ => [’2.1.1.1 ’]);

my $reac_d = new Metabolism :: Reaction(

’-name’ => ’R00004 ’,’-subst’ => [’sC00001 ’,’sC00009 ’],

’-prod’ => [’C00008 ’,’C00004 ’],’-enz’ => [’1.1.1.1 ’]);

my @reac_list = ( $reac_c , $reac_d);

print "... reaction similarity with hierarchical measure ...\n"

;

my $reac_sim_obj = new Metabolism :: Similarity(

’-method ’ => "hierarchical",’-alpha’ => 0.5,’-objects ’ => \

@reac_list);

my $cc = $reac_sim_obj ->similarity_matrix;

my $dd = $reac_sim_obj ->object_index;

for ( my $i = 0 ; $i < scalar(@$dd) - 1 ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$dd) ; $j++ ) {

print $dd ->[$i]->name . " - " .

$dd ->[$j]->name . "= $$cc[$i][$j]\n";

}

}

print "... reaction similarity with information content ...\n";

$reac_sim_obj = new Metabolism :: Similarity(

’-method ’ => "information",’-alpha’ => 0.5,’-objects ’ => \

@reac_list);

$cc = $reac_sim_obj ->similarity_matrix;

$dd = $reac_sim_obj ->object_index;

for ( my $i = 0 ; $i < scalar(@$dd) - 1 ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$dd) ; $j++ ) {

print $dd ->[$i]->name . " - " .

$dd ->[$j]->name . "= $$cc[$i][$j]\n";

}

}

print "... reaction similarity with GO...\n";

$reac_sim_obj = new Metabolism :: Similarity(

’-method ’ => "go",’-alpha’ => 0.5,’-objects ’ => \@reac_list

);

$cc = $reac_sim_obj ->similarity_matrix;

$dd = $reac_sim_obj ->object_index;

for ( my $i = 0 ; $i < scalar(@$dd) - 1; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$dd) ; $j++ ) {

print $dd ->[$i]->name . " - " .

$dd ->[$j]->name . "= $$cc[$i][$j]\n";

}

}

Figure 5.8: Similarity module sample session for reaction similarity: code
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my @path_list;

$path_a = new Metabolism :: Pathway(’TCA’,[$reac_c ]);

$path_b = new Metabolism :: Pathway(’Photosynthesis ’,[$reac_d ])

;

push(@path_list ,$path_a);

push(@path_list ,$path_b);

print "... pathway similarity with hierarchical measure ...\n";

my $sim_obj3 = new Metabolism :: Similarity(

’-method ’=>"hierarchical",’-alpha’=>0.5,’-objects ’=>\

@path_list);

my $ee = $sim_obj3 ->similarity_matrix;

my $ff = $sim_obj3 ->object_index;

for ( my $i = 0 ; $i < scalar(@$ff) ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$ff) ; $j++ ) {

print $$ff[$i]->name . " - " .

$$ff[$j]->name . "= $$ee[$i][$j]\n";

}

}

print "... pathway similarity with information content ...\n";

$sim_obj3 = new Metabolism :: Similarity(

’-method ’=>"information",’-alpha’=>0.5,’-objects ’=>\

@path_list);

$ee = $sim_obj3 ->similarity_matrix;

$ff = $sim_obj3 ->object_index;

for ( my $i = 0 ; $i < scalar(@$ff) ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$ff) ; $j++ ) {

print $$ff[$i]->name . " - " .

$$ff[$j]->name . "= $$ee[$i][$j]\n";

}

}

print "... pathway similarity with GO...\n";

$sim_obj3 = new Metabolism :: Similarity(

’-method ’=>"go",’-alpha’=>0.5,’-objects ’=>\ @path_list);

$ee = $sim_obj3 ->similarity_matrix;

$ff = $sim_obj3 ->object_index;

for ( my $i = 0 ; $i < scalar(@$ff) ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$ff) ; $j++ ) {

print $$ff[$i]->name . " - " .

$$ff[$j]->name . "= $$ee[$i][$j]\n";

}

}

Figure 5.9: Similarity module sample session for pathway similarity: code (reac c and
reac d are the same as in Figure 5.8)
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my @path_list_g;

push(@path_list_g ,$path_a);

push(@path_list_g ,$path_b);

my $org_a = new Metabolism :: Organism(

’-name’=>"hsa",’-path’=>\ @path_list_g);

my @path_list_b;

my $reac_z = new Metabolism :: Reaction(

’-name’=>’R00003 ’,’-subst’=>[’sC00001 ’,’sC00002 ’],

’-prod’=>[’C00008 ’,’C00004 ’],’-enz’=>[’2.1.5.10 ’]);

my $path_z = new Metabolism :: Pathway(’TCA’,[$reac_z ]);

push(@path_list_b ,$path_z);

push(@path_list_b ,$path_b);

my $org_b = new Metabolism :: Organism(

’-name’=>"mmu",’-path’=>\ @path_list_b);

my $reac_a = new Metabolism :: Reaction(

’-name’ => ’R00003 ’,’-subst’ => [’sC00001 ’,’sC00002 ’],

’-prod’ => [’C00008 ’,’C00004 ’],’-enz’ => [’2.2.1.1 ’]);

my $reac_w = new Metabolism :: Reaction(

’-name’=>’R00004 ’,’-subst’ => [’sC00001 ’,’sC00002 ’],

’-prod’=>[’C00008 ’,’C00004 ’],’-enz’ => [’1.1.1.10 ’]);

my $path_w = new Metabolism :: Pathway(’Photosynthesys ’,[

$reac_w ]);

my $path_t = new Metabolism :: Pathway(’TCA’,[$reac_a ]);

my @path_list_c;

push(@path_list_c ,$path_t);

push(@path_list_c ,$path_w);

my $org_c = new Metabolism :: Organism(

’-name’=>"dme",’-path’=>\ @path_list_c);

my @org_list;

push(@org_list ,$org_a);

push(@org_list ,$org_b);

push(@org_list ,$org_c);

print "... organism similarity with hierarchical measure ...\n"

;

my $sim_obj4 = new Metabolism :: Similarity(’-method ’=>"

hierarchical",’-alpha’ => 0.5,’-objects ’=>\@org_list);

my $ee = $sim_obj4 ->similarity_matrix;

my $ff = $sim_obj4 ->object_index;

for ( my $i = 0 ; $i < scalar(@$ff) ; $i++ ) {

for ( my $j = 0 ; $j < scalar(@$ff) ; $j++ ) {

print $$ff[$i]->name . " - " . $$ff[$j]->name . "= 

$$ee[$i][$j]\n";

}

}

Figure 5.10: Similarity module sample session for organism similarity: code (path a
and path b are the same as in Figure 5.9)
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... enzyme similarity with hierarchical measure ...

Similarity 1.1.1.1 , 1.1.1.1= 1

Similarity 1.1.1.1 , 1.1.2.3= 0.5

... enzyme similarity with information content ...

Similarity 1.1.1.1 , 1.1.1.1= 1

Similarity 1.1.1.1 , 1.1.2.3= 0.318356190414535

... enzyme similarity with GO...

Similarity 1.1.1.1 , 1.1.1.1= 1

Similarity 1.1.1.1 , 1.1.2.3= 0.789473684210526

Figure 5.11: Similarity module sample session for enzyme similarity: output to Fig-
ure 5.7

... reaction similarity with hierarchical measure ...

R00003 - R00003= 1

R00003 - R00004= 0.3

... reaction similarity with information content ...

R00003 - R00003= 1

R00003 - R00004= 0.33737670243871

... reaction similarity with GO...

R00003 - R00003= 1

R00003 - R00004= 0.563157894736842

Figure 5.12: Similarity module sample session for reaction similarity: output to Fig-
ure 5.8

... pathway similarity with hierarchical measure ...

TCA - TCA= 1

TCA - Photosynthesis= 0.3

Photosynthesis - TCA= 0.3

Photosynthesis - Photosynthesis= 1

... pathway similarity with information content ...

TCA - TCA= 1

TCA - Photosynthesis= 0.356760901089303

Photosynthesis - TCA= 0.356760901089303

Photosynthesis - Photosynthesis= 1

... pathway similarity with GO...

TCA - TCA= 1

TCA - Photosynthesis= 0.563157894736842

Photosynthesis - TCA= 0.563157894736842

Photosynthesis - Photosynthesis= 1

Figure 5.13: Similarity module sample session for pathway similarity: output to Fig-
ure 5.9
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hsa:TCA Photosynthesis

mmu:TCA Photosynthesis

dme:TCA Photosynthesys

... organism similarity with hierarchical measure ...

hsa - hsa= 1

hsa - mmu= 0.875

hsa - dme= 0.625

mmu - hsa= 0.875

mmu - mmu= 1

mmu - dme= 0.625

dme - hsa= 0.625

dme - mmu= 0.625

dme - dme= 1

Figure 5.14: Similarity module sample session for organism similarity: output to Fig-
ure 5.10

obtain a phylogenetic tree by applying the clustering method to the averaged matrix.
Notice that the user can annotate a different number of pathways to each organism. In
such cases, whenever two organisms are being compared and a certain pathway is present
in one of the organisms but not in the other, the similarity for that pathway would be
0. All experiments presented in this thesis and the web server implementation previously
described use only those pathways common to the set of organisms under study. The
standalone distribution, on the other hand, allows the use of non-common pathways.
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Chapter 6

Conclusion

Since we now witness its end, some past moment must have witnessed its
beginning

William James [67]

6.1 Summary

Metabolism is the transformation of chemical compounds inside the cell. Biosynthesis
of complex molecules to perform cellular functions (anabolism), and their breakdown to
generate energy (catabolism) are fundamental processes in any living organism. These
processes are usually grouped into collections of enzymatic reactions called metabolic
pathways. The study of the differences among such pathways in different species is a
problem which has only been recently addressed in a systematic way. In this thesis, we
have specifically focused on how to align pathways in a biologically relevant way. We
have presented a new approach for metabolic pathway alignment based on a measure of
metabolic similarity, and a series of applications of this method to biological problems.

Chapter 3 described our approach for pathway alignment. This approach is based
on algebra of sets, considering pathways as sets of reactions, which are composed of
compounds and enzymes. By using a measure of compound similarity, three different
enzyme similarity measures, and a weight parameter α to establish the relative weight
of compounds and enzymes, we can compute how similar two given reactions are. A
maximum-scoring alignment of all reactions involved in the metabolic pathways under
study thus produces an alignment and a similarity score of the pathways.

Three different applications of our method were presented in Chapter 4. Horizontal
gene transfer events can hinder phylogenetic reconstruction from sequence data, and we
therefore showed how our measure of metabolic similarity can be used to reconstruct
robutst phylogenies in section 4.1. Section 4.2 described how to detect conserved (perfectly
aligned) and non-conserved (non-alignable) reactions, and the relevance of such reactions.
Finally section 4.3 introduces the idea of applying our approach to detect model organisms
similar to humans under certain metabolic conditions.
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6.2 Contributions

In this thesis, we have made three main contributions. First, we introduce a new method
for metabolic pathway alignment based on a measure of similarity of the enzymes, com-
pounds and reactions involved in the pathway, which has several advantages over previous
approaches. We do not utilize sequence information, thus avoiding problems with hori-
zontal gene transfer events. There is no need to artificially introduce a gap penalty for
missing reactions, since our algorithm allows for alignment of non-identical reactions. In
contrast with methods based on an enzyme-enzyme relational representation, we make
use of both enzymes and metabolic compounds to align metabolic pathways. The use of
a weight parameter allows us to balance the relevance of enzymes and compounds in the
final assessment of pathway similarity. Our method is also computationally faster than
those based on graph similarity.

Second, we introduced applications of this method to problems of biological interest.
Phylogenetic reconstruction from metabolic similarity was more accurate than previous
approaches, and different modifications to the original algorithm were introduced showing
how to further improve results. We also detected conserved and non-conserved reactions in
a group of organisms, linking the first to fundamental biological processes, and the latter
to possible misannotations in KEGG. Furthermore, we proposed a method to identify
appropriate model organisms for the study of specific metabolic conditions in humans.

Finally, we present a web server to reconstruct phylogenetic relationships among a set of
organisms by using their metabolic similarity as calculated by our algorithm. This server,
which is optimized to answer queries in linear time, can be useful to bioinformaticians
interested in phylogenetics and metabolism evolution. A series of publicly available Perl
modules implementing our algorithm were also introduced to help in the manipulation of
metabolic data.

6.3 Future directions

Several lines of research could be conducted from the work presented in this thesis. First,
it would be interesting to infer the metabolic characteristics of the common ancestor of a
group of species to understand the mechanisms of emergence and evolution of biochem-
ical pathways. Different models of metabolic evolution have been proposed (see [84] for
a review), and although current observations tend to support the patchwork evolution
model [147], certain research questions still remain open [120]. Furthermore, there is
much controversy on whether current organisms evolved from one single common uni-
versal ancestor [35, 47, 111, 114, 119, 141], and if so, what characteristics would such
last common ancestor possess [6, 87, 112]. We could address these questions as follows:
given a phylogeny for a set of species, and using the metabolic alignment produced by
our method, we would move from the tips (species) to the root (common ancestor) of the
phylogenetic tree transferring up only those reactions conserved with a certain similarity
in all nodes below. In such way we would obtain a tree having both tips and inner nodes
annotated with metabolic reactions that would depict the evolutionary history of the set
of species.

We could also investigate how significative the alignments between different biological
networks are. Signal transduction networks [56], for instance, are a set of reactions inside
the cell by which some kind of stimulus (such as heat or light) is converted into a response
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(activation of genes, initiation of metabolic processes, etc.). In bacteria, the variety of
signal transduction processes directly influences in how many ways it can respond to its
environment, while in plants or animals this also holds although in a less direct way.
It could therefore be of interest to understand which parts of the transduction network
are conserved among species and how they are linked to responses fundamental for the
survival of organisms.

The study of similarities among species in gene regulatory networks [26, 81] could
also be of great interest. Gene networks are groups of DNA segments interacting with
each other and controlling whether and how genes will be transcribed into mRNA. These
networks vary extremely in complexity, from the relatively simple bacterial structures to
the most complex structures in higher species. Understanding similarities among such
networks can be of great usefulness, for instance in the identification of gene functions or
therapeutic compounds in certain diseases [129].
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Appendix A

Algorithm Order Analysis

For many years I have been convinced that computer science is primarily the
study of algorithms

Donald E. Knuth [72]

A.1 Worst-case analysis

The worst-case complexity of the algorithm presented in Chapter 3 can be calculated as
a function of the complexity of calculating similarity among set of compounds, enzymes,
and reactions.

The similarity of two compounds can be calculated in order O(1), since we are only
establishing whether the compounds are the same or not. The similarity of two sets of p
and q compounds can therefore be calculated by finding the intersection of the sets, which
is O(p + q).

Similarity of enzymes depends on the enzyme similarity measure to be used. Hierar-
chical similarity can be directly calculated in O(1). For information content similarity we
calculate the normalized size of the subtree rooted at the least common ancestor. Pre-
calculating all subtree sizes simply requires a traversal of the EC hierarchy, which takes
O(Vec), with Vec being the number of nodes. The similarity of any two enzymes can then
be calculated in O(1) using the precalculated values. For the gene ontology similarity
measure, we can again precalculate all distances in the Gene Ontology using Dijkstra’s al-
gorithm [28, §24.3] and then lookup the required value in O(1). Since the Gene Ontology
is a sparse graph, Dijkstra’s algorithm can be efficiently implemented using a Fibonacci
heap [28, §20] in O(Ego + VgologVgo), with Vgo and Ego being the number of edges and
vertices respectively. Calculating all versus all distances using this procedure takes then
O(V 2

goEgo + V 3
gologVgo).

The similarity of two reactions R and R′, with C and C ′ compounds, and E and E ′

enzymes depends on calculating the intersection of the set of compounds, the intersection
of the set of enzymes, and the difference of the set of enzymes (see Section 3.3). Given two
ordered sets, the intersection and difference can be calculated in order equivalent to the
sum of the cardinal of the sets by simultaneously traversing them. Since the similarity of
compounds and enzymes can be calculated in order O(1) as explained above, the order of
calculating the similarity of two reactions will be O(C + C ′) + O(E + E ′) plus the cost of
ordering all the sets, O(ClogC) + O(C ′logC ′) + O(ElogE) + O(E ′logE ′) [73]. In general,
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for any given reaction the number of compounds is greater than the number of enzymes,
so the order of comparing two reactions has an upperbound order O(ClogC), assuming
|C| > |C ′|.

Given two pathways A and B with m and n reactions, we can calculate the intersection
and difference of the reaction sets using an algorithm of order O(m + n). Following the
equations presented in 3.2, we need now to calculate the similarity of each reaction in A\B
versus all reactions in B, the cardinal of A∩B, and the similarty of each reaction in B \A
versus all reactions in A. If we define |A∩B| = p, |A \B| = q, and |B \A| = r, the total
number of calculations needed is O(nq +p+mr). The value p can be previously obtained
when calculating the set intersection, resulting in a final cost of O(nq +mr) ≈ O(m×n).

A.2 Average-case analysis

Using results from the previous section, we will essume order O(1) for the comparison of
compounds and enzymes. KEGG reactions have an average of 4.35 compounds (σ = 2.33)
and 0.84 enzymes (σ = 0.46). The average order of comparing two reactions is therefore
bounded by O(4.35log4.35) ≈ O(6.4).

In order to calculate the average complexity of comparing two pathways, we want
to show now that the cost of calculating the similarity values among the reaction sets,
O(nq + mr), does not grow substantially faster than the order of calculating the reaction
sets intersection and difference, O(m+n). Figure A.1 shows the evolution of these values
for the glycolysis pathway in all organisms stored in KEGG compared to linear, loglinear,
and quadratic growing functions. As it can be seen, the relation between O(m + n) and
O(nq + mr) is clearly lower than quadratic in the average case. The average complexity
calculated using pathways different to glycolysis does not vary substantially (results not
shown).
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Figure A.1: Average complexity of pathway comparison for glycolysis in all KEGG or-
ganisms, compared against linear, loglinear, and quadratic functions
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Appendix B

Non-conserved reactions in S.
pyogenes, E. coli, and S. aureus

Table B.1: Gap reactions: Streptococcus pyogenes

Strain Year serotype Gap reactions
sph 2006 M3 (none)
spi 2006 M3 (none)
spj 2006 M3 (none)
spk 2006 M3 (none)
spz 2005 M1 (none)
spb 2005 M28 (none)
spa 2004 M6 00118 01906 03540 03674 03730 03937 04008 04172 04594

04732 04885 04906 05202 05601 05602 06369 06906 06925
sps 2003 M3 00118 00148 00501 01906 01966 02518 02520 03113 03234

03540 03674 03730 03937 04008 04142 04172 04360 04594
04732 04885 04906 04937 04938 05202 05601 05602 06021
06097 06192 06198 06369 06404 06729 06906 06925

spm 2002 M18 00118 00148 00501 01906 01966 02518 02520 03113 03234
03540 03674 03730 03937 04008 04142 04172 04360 04594
04732 04885 04906 04937 04938 05202 05601 05602 06021
06097 06192 06198 06369 06404 06729 06906 06925

spg 2002 M3 00118 00148 00501 01906 01966 02518 02520 03113 03234
03540 03674 03730 03937 04008 04142 04172 04360 04594
04732 04885 04906 04937 04938 05202 05601 05602 06021
06097 06192 06198 06369 06404 06729 06906 06925

spy 2001 M1 00118 00148 00501 01906 02518 02520 03113 03234 03540
03544 03545 03674 03730 03937 04008 04142 04172 04360
04594 04732 04885 04906 05202 05601 05602 06021 06097
06192 06198 06369 06404 06729 06906 06925
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Table B.2: Gap reactions: Escherichia coli

Strain Year Gap reactions
eci 2006 02000 02002 04986 06405 06782 06783 06784 06785 06786 06787 06920
ecp 2006 02000 02002 04910 04986 05049 05615 05617 05625 05644 05645 05646

05647 06397 06782 06783 06784 06785 06786 06787 06858
ecc 2002 00069 01452 01453 01719 01966 02000 02002 02383 02518 02912 03674

03730 03811 03937 03955 04008 04131 04172 04306 04732 04826 04857
04885 04895 04906 04910 04916 04917 05001 05448 05449 05504 05505
05602 05623 06367 06369 06396 06397 06398 06400 06405 06406 06407
06735 06736 06782 06783 06784 06785 06786 06787 06853 06854 06905
06906 06907 06914 06920 06925 06935

ecj 2001 00069 01452 01453 01719 02518 02912 03317 03674 03730 03811 03937
03955 04008 04131 04142 04172 04306 04313 04360 04375 04732 04809
04813 04826 04857 04885 04895 04910 04916 04917 05001 05448 05449
05504 05505 05602 05623 06369 06396 06397 06398 06400 06405 06406
06407 06735 06736 06853 06854 06905 06906 06907 06914 06920 06925
06935

ece 2001 00069 01452 01453 01719 01966 02383 02518 02912 03674 03730 03811
03937 03955 04008 04131 04142 04172 04306 04360 04375 04515 04732
04784 04809 04813 04826 04857 04885 04895 04910 04916 04917 05001
05448 05449 05504 05505 05602 05623 06369 06396 06397 06398 06400
06405 06406 06407 06735 06736 06853 06854 06905 06906 06907 06920
06925

ecs 2001 00069 01452 01453 01719 01966 02383 02518 02912 03674 03730 03811
03937 03955 04008 04131 04142 04172 04306 04360 04375 04515 04732
04784 04809 04813 04826 04857 04885 04895 04910 04916 04917 05001
05448 05449 05504 05505 05602 05623 06369 06396 06397 06398 06400
06405 06406 06407 06735 06736 06853 06854 06905 06906 06907 06920
06925

eco 1997 00069 01452 01453 01966 02518 02912 03674 03730 03811 03937 03955
04131 04172 04306 04732 04826 04857 04885 04895 04906 04910 05001
05448 05449 05504 05505 05602 05623 06367 06369 06396 06397 06398
06400 06405 06406 06853 06854 06906 06920 06925
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Table B.3: Gap reactions: Staphylococcus aureus

Strain Year Gap reactions
saa 2006 01966 03113 03234 03540 03544 03545 04142 04360 04937 04938 06405

06920
sao 2006 00118 01452 01453 02383 03811 04254 04306 04313 04594 04826 05001

05118 05623 06398 06400 06405 06406 06413 06916 06920 06926
sac 2005 00118 01452 01453 01966 02383 03730 03811 04131 04306 04594 04826

04895 04916 04917 04937 04938 05001 05601 05602 06369 06398 06400
06405 06406 06407 06905 06906 06914 06920 06935

sab 2005 00118 01452 01453 02383 03811 04306 04594 04826 05001 06372 06398
06400 06406

sar 2004 00118 01452 01453 01719 01966 02383 02528 03113 03234 03730 03811
04131 04142 04306 04360 04594 04809 04813 04826 04895 04916 04917
04937 04938 05001 05601 05602 06369 06372 06398 06400 06405 06406
06407 06905 06906 06914 06920 06935

sas 2004 00118 01452 01453 01719 01966 02383 02528 03113 03234 03730 03811
04131 04142 04306 04360 04594 04809 04813 04826 04895 04916 04917
04937 04938 05001 05601 05602 06369 06372 06398 06400 06405 06406
06407 06905 06906 06914 06920 06935

sam 2002 00118 01452 01453 01719 01966 02383 03730 03811 04131 04306 04594
04826 04895 04916 04917 04937 04938 05001 05601 05602 06369 06372
06398 06400 06405 06406 06407 06905 06906 06914 06920 06935

sau 2001 00118 01452 01453 01719 01966 02383 03730 03811 04131 04306 04594
04826 04895 04916 04917 04937 04938 05001 05601 05602 06369 06372
06398 06400 06405 06406 06407 06905 06906 06914 06920 06935

sav 2001 00118 01452 01453 01719 01966 02383 03730 03811 04131 04306 04594
04826 04895 04916 04917 04937 04938 05001 05601 05602 06369 06372
06398 06400 06405 06406 06407 06905 06906 06914 06920 06935

Table B.4: Enzymes catalyzing gap reactions: Streptococcus pyogenes

Enzyme # reacs.
1.1.1.- 49
4.1.1.- 28
3.2.1.- 24
1.13.12.- 14
1.14.-.- 7

Enzyme # reacs.
3.1.1.- 7
3.5.1.- 6
3.1.3.73 5
3.1.3.- 5
5.3.1.- 5

Enzyme # reacs.
6.3.2.- 5
2.7.1.- 5
1.14.18.1 4
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Table B.5: Enzymes catalyzing gap reactions: Escherichia coli

Enzyme # reacs.
1.14.13.- 36
4.1.1.- 23
1.2.1.- 19
4.2.1.- 18
1.1.1.- 16
2.5.1.- 15
2.7.-.- 10
1.3.1.- 9
1.18.1.4 8
1.14.12.- 8
1.14.12.19 8

Enzyme # reacs.
5.-.-.- 6
2.3.1.- 6
3.4.-.- 6
3.1.-.- 6
1.1.-.- 5
1.18.1.1 4
2.1.1.- 4
1.2.1.71 4
1.14.18.1 4
1.2.1.24 4
6.2.1.- 3

Enzyme # reacs.
3.6.1.- 3
3.2.1.- 3
1.14.13.95 2
2.7.1.- 2
4.2.1.107 2
1.97.1.- 2
6.3.2.- 2
1.3.99.- 2
3.5.3.- 1

Table B.6: Enzymes catalyzing gap reactions: Staphylococcus aureus

Enzyme # reacs.
1.1.1.- 42
4.2.1.- 27
1.2.1.- 15
1.14.13.- 13
2.3.1.- 8
3.5.1.- 8

Enzyme # reacs.
3.4.-.- 8
3.2.1.- 6
3.6.1.- 4
1.1.-.- 3
1.3.-.- 3
3.1.1.- 2

Enzyme # reacs.
3.1.3.73 1
3.1.3.- 1
1.14.18.1 1
1.3.99.- 1
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Appendix C

Algorithms for Pathway Similarity

Algorithm 1 SIMILARITY(P, P ′)

RP ← reactions of P
RP ′ ← reactions of P ′

pathwaysim← 0

%%% Pathway similarity: intersection %%%
for all r ∈ RP ∩RP ′ do

pathwaysim + +
end for

%%% Pathway similarity: reactions in P but not in P ′ %%%
for all r ∈ Rp \RP ′ do

max← 0
for all s ∈ RP ′ do

if sim(r, s) > max then
max← s

end if
end for
pathwaysim← pathwaysim + sim(r, max)

end for

%%% Pathway similarity: reactions in P but not in P ′ %%%
for all s ∈ RP ′ \RP do

max← 0
for all r ∈ RP do

if sim(s, r) > max then
max← r

end if
end for
pathwaysim← pathwaysim + sim(s, max)

end for
return pathwaysim
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Algorithm 2 SIMILARITY(R,R′)

reacsim← 0
CR ← compounds of R
CR′ ← compounds of R′

ER ← enzymes of R
ER′ ← enzymes of R′

reacsim← (1− α)× compoundsim(CR, CR′) + α× enzymesim(ER, ER′)
return reacsim

Algorithm 3 SIMILARITY(CR, CR′)

compoundsim← 0
CR ← compounds of R
CR′ ← compounds of R′

%%% Compound similarity: intersection %%%
for all c ∈ CR ∩ CR′ do

compoundsim + +
end for

%%% Compound similarity: compounds in R but not in R′ %%%
for all c ∈ CR \ CR′ do

max← 0
for all d ∈ CR′ do

if sim(c, d) > max then
max← d

end if
end for
compoundsim← compoundsim + sim(c, max)

end for

%%% Compound similarity: compounds in R′ but not in R %%%
for all d ∈ CR′ \ CR do

max← 0
for all c ∈ CR do

if sim(d, c) > max then
max← c

end if
end for
compoundsim← compoundsim + sim(d,max)

end for
return compoundsim
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Algorithm 4 SIMILARITY(ER, ER′)

enzymesim← 0
ER ← enzymes of R
ER′ ← enzymes of R′

%%% Enzyme similarity: intersection %%%
for all e ∈ ER ∩ ER′ do

enzymesim + +
end for

%%% Enzyme similarity: enzymes in R but not in R′ %%%
for all e ∈ ER \ ER′ do

max← 0
for all f ∈ ER′ do

if sim(e, f) > max then
max← f

end if
end for
enzymesim← enzymesim + sim(e,max)

end for

%%% Enzyme similarity: enzymes in R′ but not in R %%%
for all f ∈ ER′ \ ER do

max← 0
for all e ∈ ER do

if sim(f, e) > max then
max← e

end if
end for
enzymesim← enzymesim + sim(f, max)

end for
return enzymesim
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Appendix D

Pathway Alignment Through
Context Similarity

For a long time completion was like a dream, I even felt such a thing would
never be permitted to happen. On the other hand I could picture myself dancing
barefoot over the garden on the morning when I finished.

Yukio Mishima [104]

D.1 Introduction

In Section 3.1 we presented an approach for metabolic pathway alignment using three
different enzyme similarity measures. In this section we will introduce a new approach for
pathway alignment based on the contextual similarity of reactions, this is, the more similar
the context of two reactions is, the higher their similarity score. Contextual similarity is
based on the distributional hypothesis by Zellig Harris [57]:

The meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction on combinations of these entities relative to
other entities

Roughly speaking, the distributional hypothesis states that words appearing in similar
contexts tend to have similar semantics. By adapting this idea to metabolic similarity,
we would like to test the hypothesis that metabolic reactions playing similar functional
roles tend to appear in similar contexts. A functional role here is to be understood as
the biological function of a reaction in a wide sense, either from an enzymatic point of
view (is the reaction an oxidating process? a hydrolytic process?) or by considering the
metabolites being used as substrates/products. A context will therefore contain those
reactions catalyzed by similar enzymes or synthesizing/degrading similar compounds.

Figures D.1 and D.2 show examples of reactions with similar contexts according to
their compounds and their enzymes. Given a reaction R, reaction S will be in the context
of R if some of its products are used by R as substrates, or some of its substrates are
produced by R as products. Therefore the compound context similarity tries to measure
the topological similarity of the subnetwork in which the reactions are taking place. In
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Figure D.1: Compound context of R and R′. The context of R (left) is the set
{R2, R3, R5, R6}, while the context of R′ (right) is {R2, R4, R6}. The shared context
is {R2, R6} (in blue/solid)

Figure D.1, reactions R and R′ have a significant degree of similarity, as they respectively
share 2 out of 4, and 2 out of 3 of the reactions appearing in their compound contexts.

The enzymatic context, on the other hand, does not require for two reactions to share
any compounds to be in each other’s context. Reactions can be part of different metabolic
processes and still be contextual, as long as they have an enzymatic similarity above a
certain threshold k. Reactions R7 and R9 in Figure D.2 (up) do not share any compound
with R but they belong to its enzymatic context since their enzymatic similarity is greater
than the specified threshold. We are clustering into a context those reactions that share
a certain metabolic functionality by using the EC identifiers of their catalyzing enzymes.
Since EC identifiers are constructed to reflect a hierarchy of biochemical roles [137], we
argue that our approach does in fact reconstruct sets of functionally related reactions.

In general, the context of a reaction will be defined as the set of reactions sharing
some compounds with it or being catalyzed by similar enzymes (Section D.2 provides
a more formal definition). In the rest of this chapter, we will test the hypothesis on
contextual similarity presented above and compare results using contextual similarity to
those obtained with the approach presented in Chapter 3 (non-contextual similarity).

D.2 Materials and methods

D.2.1 Contextual similarity

We will consider a reaction R as a set of enzymes, enz(R), and a set of compounds,
cpd(R), which can be divided into the set of substrates, sub(R), and the set products,
prod(R), with cpd(R) = sub(R) ∪ prod(R).

The compound context Ccpd of a reaction R in a fixed, but arbitrary metabolic pathway
M , is the set of all reactions in M that share some substrate or product with it:

Ccpd(R,M) = {R′ ∈M | R′ 6= R ∧ ((prod(R) ∩ sub(R′) 6= ∅) ∨ (prod(R′) ∩ sub(R) 6= ∅))}
(D.1)

The enzymatic context Cenz(R)k of a reaction R in a pathway M is the set of all
reactions that have enzymatic similarity greater than k with reaction R:

Cenz(R,M)k = {R′ ∈M | R′ 6= R ∧ simenz(R,R′) > k} (D.2)
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Figure D.2: Enzymatic context of reactions R (up) and R′ (down) for hierarchical en-
zymatic similarity > 0.25. Since all reactions area catalyzed by a single enzyme, any
reaction catalyzed by an enzyme sharing at least the most significant EC digit with R or
R′ will appear in their context. The context of R is {R4, R7, R8, R9}, while the context
of R′ is {R4, R7, R8, R10}. Reaction R9, for instance, is in the context of R since it shares
two EC digits of its catalyzing enzyme with R (e.f , underlined). The shared context of
R and R′ is then {R4, R7, R8} (in blue/solid). Notice how R7 and R8 do not share any
compounds with R or R′ but they are part of the shared context since the catalyzing en-
zymes of R7 and R8 are similar enough to those catalyzing R and R′. Reactions belonging
to the context of R or R′ but not in their shared context are presented with dashed lines
(R9 and R10)
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Values of k can range from 0 to 1, since the enzymatic similarity measure is normalized.
The higher the value of k, the more similar enzymes in two reactions should be to consider
them contextual. For instance, if a reaction R is catalyzed by the enzyme e = 1.2.3.4
and k is set to 0.5, only reactions catalyzed by enzymes sharing at least the two most
significative digits with e (that is, only 1.2.) would be contextual to R.1 Setting k = 1
would require reactions to share exactly the same enzymes, and setting it to 0 would mean
any reaction is enzymatically contextual to any other.

The context of a reaction C(R,M)k in a metabolic pathway M is defined as the union
of its compound context Ccmp(R,M) and its enzymatic context Cenz(R,M)k.

C(R,M)k = Ccmp(R,M) ∪ Cenz(R,M)k (D.3)

Finally, we define the contextual similarity of reactions R1 and R2 in a metabolic
pathway M for a given k as:

simc(R1, R2, M)k =
|C(R1, M)k ∩ C(R2, M)k|
|C(R1, M)k ∪ C(R2, M)k|

(D.4)

D.2.2 Experimental setup

All data used in our experiments was obtained from KEGG release 39.0 (July 2006). We
chose organisms Drosophila melanogaster (dme), Escherichia coli (eco) and Archaeoglobus
fulgidus (afu), since they represent the three domains of life and complete sequence in-
formation is available for all of them. We retrieved the 68 shared pathways among these
organisms containing at least one reaction. To calculate the contextual similarity of re-
actions, we first create a context graph G = (V, E) with all reactions present in KEGG,
where a node v represents a reaction and an edge e = (u, v) means that reactions u and
v are contextual according to a certain value of the parameter k. We then calculate the
contextual similarity for any two nodes of the graph and store it in a similarity matrix,
which is then used to obtain the similarity for all reactions present in the shared pathways
among dme, eco and afu. Non-contextual similarity among reactions was calculated using
the algorithm described in Chapter 3, with parameter α = 0.5. Similarity of enzymes was
calculated using the hierarchical similarity measure.

Once similarity of reactions was calculated using both methods we compared results
by studying the respective alignments produced. We sorted all reactions according to the
difference between contextual and non-contextual similarity values, and analyzed those
reactions which showed a larger similarity value difference.

D.3 Results and discussion

For each pair of reactions, we calculated their contextual and non-contextual similarity
values, and then we obtained the absolute difference between these two measures. Fig-
ure D.3 is a histogram representing such differences for all pairs of reactions. As it can be
seen, the great majority of calculated values are very similar with both measures: 2161
(k = 0.5) and 2214 (k = 0.75) values have a difference in similarity less than 0.1. The

1Since we are using hierarchical enzyme similarity, enzymes a.b.c.d and a.b.x.y would have exactly
similarity 0.5
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number of reaction pairs with large difference in their similarity values decreases as we
look for larger differences: nearly 300 pairs have difference between 0.1 and 0.2, while
there were 127 with difference between 0.6 and 0.7 and only 18 between 0.7 and 0.8 (for
k = 0.5).

It is interesting to notice though the increase in number of pairs of reactions with
differences between 0.9 and 1. This large difference means that while one of the measures
scores the reactions as nearly identical, the other measure considers these reactions share
little resemblance. We investigated what reactions appear often in pairs where the dif-
ference between contextual and non-contextual similarity is larger than 0.9, and results
are presented in table D.1. For instance, for k = 0.75 reaction R4986 appears 11 times in
reaction pairs with large disagreement between the similarity scores: R04732 (similarity
difference: 0.9504), R04008 (0.9504), R04172 (0.9349), R06925 (0.9055), etc.

For those reactions pairs with large differences in similarity values, we found out con-
textual measure was always the one scoring high similarity, while non-contextual gave low
similarity scores. In fact, we found that the contextual measure is systematically biased
towards higher scores. Detailed analysis of the results shows that some reactions have an
extremely large context due to the presence of metabolites such as H+ (C00080), which
were not previously identified as common metabolites. The presence of such metabolites
in a large number of reactions incorrectly increases the similarity score, and the contextual
similarity appears to be too sensitive to this noise. The non-contextual measure, on the
other hand, is more resilient to the presence of those metabolites and can calculate more
accurately the similarity among reactions. Given that common metabolites act as cofac-
tors depending on the reaction, we therefore argue that the less any method for pathway
alignment relies on lists of common metabolites, the better.

Because we have limited our experiments to reactions appearing in an extremely re-
duced set of organisms, we suspect several other common metabolites could have been
missed. We plotted a histogram of compounds versus number of reactions in which they
appear (Figure D.4), in order to visually determine what is a good “cut point” to establish
which metabolites are common and which are not. From a practical point of view, this
can help to eliminate bias towards high similarity scores for those reactions containing
common metabolites.

A more sophisticated way to reduce this bias would be to determine which substrates
in a reaction are being transformed into which products, and which metabolites are act-
ing as cofactors (understood as non-protein compounds required to assist in biochemical
transformations). Similarity scores could then be adjusted to prioritize those reactions
where the transformed substrates or products are similar, rather than those where only
the cofactors are.

86



similarity difference
contextual/non-contextual

number of
reaction pairs

2161

500

300

100

0-
0.

1
0.

1-
0.

2
0.

2-
0.

3
0.

3-
0.

4
0.

4-
0.

5
0.

5-
0.

6
0.

6-
0.

7
0.

7-
0.

8
0.

8-
0.

9
0.

9-
1

similarity difference
contextual/non-contextual

number of
reaction pairs

2214

500

300

100

0-
0.

1
0.

1-
0.

2
0.

2-
0.

3
0.

3-
0.

4
0.

4-
0.

5
0.

5-
0.

6
0.

6-
0.

7
0.

7-
0.

8
0.

8-
0.

9
0.

9-
1

Figure D.3: Histogram for differences between contextual and non-contextual similarity
measure, k = 0.5 (left) and k = 0.75 (right)

Reaction Large differences
R04737 25
R04456 21
R03299 20
R01813 16
R04778 16
R04986 13
R03348 13
R04031 10
R06728 9
R04355 8
R04984 6
R00219 6
R00750 5

Reaction Large differences
R04737 16
R04778 14
R04986 13
R04001 11
R04984 6
R03299 6
R00132 5
R04506 5
R04993 4
R04810 4
R06728 4
R00084 4
R04405 4

Table D.1: Top reactions for which the similarity value calculated using contextual and
non-contextual methods is larger than 0.9 with k = 0.5 (left) and k = 0.75 (right). Large
differences represents the number of reaction pairs where the difference is greater than
0.9
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