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Abstract

Ontology—a formal, explicit, shared conceptualization of a domain—is intended to
facilitate semantic interoperability among distributed and intelligent information systems
where diverse software components, computing devices, knowledge, and data, are in-
volved. Since a single global ontology is no longer sufficient to support a variety of
tasks performed on differently conceptualized knowledge, ontologies have proliferated in
multiple forms of heterogeneity—terminological heterogeneity, taxonomical heterogeneity,
schematic heterogeneity, and instantiation heterogeneity—even for the same domain, and
such ontologies are called heterogeneous ontologies. For interoperating among informa-
tion systems through heterogeneous ontologies, mapping mechanisms need to bridge their
knowledge gaps. Ontology matching (or mapping) is a process of finding correspondences
between semantically related entities in heterogeneous ontologies.

The main aim of this research is to deal with wide-scale semantic heterogeneity in
ontology matching. Although several efforts in ontology mapping have already been con-
tributed, they have different focuses, assumptions, and limitations. A common point
among existing methods is that possible correspondences between two ontologies are de-
termined by the similarity of entity names; this is known as name-based matching. In order
to decide semantic correspondences between concepts, those methods need to analyze the
similarities between all related properties and instances; this is known as content-based
matching. In the case of wide-scale semantic heterogeneity, content-based matching be-
comes complex, and user’s approval or expert-interaction needs to verify mapping results.

In my research, I focus on two issues. The first issue is that the chance of correspon-
dence between two terminologically quite different concepts is very less or not obtainable
through name-based matching, because the name of a concept cannot express the pre-
cise semantics of the concept. In practice, two concepts with the same name may have
different semantics, or two differently-naming concepts may have the same semantics.
Thus, what is an alternative approach besides name-based matching, to find the possible
correspondences between terminologically heterogeneous ontologies? The second issue is
how to reduce complexity, concerning wide-scale semantic heterogeneity in content-based
matching.

To accomplish the major aim and focuses, my underlying assumption is the more
explicit semantics is specified in ontologies, the feasibility of matching will be greater. In
order to improve the accuracy and automation of mapping processes, it is necessary that
ontologies be well conceptualized with adequate semantics. Hence, an important step
in handling semantic heterogeneity should be the attempt to enrich (and clarify) the
semantics of concepts in ontologies.

Therefore, I proposed a semantically-enriched model of ontologies (called EnOnto-
Model) in which every domain concept is treated as a sort—an entity type that carries
a criteria for determining the individuation, persistence, and identity of its instances—
regarding every individual defined in a universe of discourse is countable and identifiable.
In the philosophical literature, ontological concepts can be classified into four disjoint
sort categories: type, quasi-type, role, and phase. I set up a logic-based formal system
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to classify domain concepts into these sort categories, using three philosophical notions:
identity, existential rigidity, and external dependency. In my research, this classification
knowledge is intuitively represented as concept-level properties that are different from or-
dinary properties (called individual-level properties) which are used to specify individuals.
Then, I defined EnOntoModel in which the semantics of domain concepts are described by
using individual-level properties, as well as concept-level properties; this is my approach
of semantic enrichment.

The innovation behind EnOntoModel is to supply an identifiable link between two
heterogeneous descriptions of a concept, regarding that if two concepts are semantically
equivalent, then they must be classified within the same sort category. For the usability
of EnOntoModel, I implemented sortal meta-class ontology as an open source interface in
enrichment process as well as conceptual analysis of enriched ontologies. By the aim of
the thesis, I designed a matching method between enriched ontologies.

A novel idea of EnOntoModel-based Ontology Matching (EOM) method is that direct
concept matching is driven between the same categories of sorts instead of exhaustive
search among all sorts, because domain concepts are systematically classified into four
disjoint sort categories. Moreover, it is examined that EnOntoModel can support not only
determining the scope of possible correspondences, but also determining the most relevant
properties which can certainly indicate a correspondence between two similar concepts.
This means that semantic correspondences between highly heterogeneous concepts can
be achieved without taking an exhaustive search in taxonomies and an analysis among
all related properties. Consequently, EnOntoModel supports content-based matching in
a less complexity.

The method is implemented in Java for matching between OWL ontologies by utilizing
Jena OWL API and Protégé OWL API. The efficiency of EOM is evaluated in terms of
mathematical complexity and proved that this method could reduce the complexity of
the matching process by comparing it with other methods, particularly GLUE’s content
learners. Moreover, an experiment is done in two real data sets, and the effectiveness of
EOM is shown in terms of precision and recall.
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4.18 The screenshot of “PAL constraint” editor . . . . . . . . . . . . . . . . . . 88
4.19 Five PAL constraints in the meta-class ontology . . . . . . . . . . . . . . . 89
4.20 Major steps of semantic enrichment process . . . . . . . . . . . . . . . . . 90
4.21 A view of classes and properties in Proteégé . . . . . . . . . . . . . . . . . 92
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Chapter 1

Introduction

The term ontology is borrowed from philosophy, where it is known for metaphysics—the
science of what is. By the early 1980s, researchers in AI had realized that ontology was
relevant to intelligent systems for knowledge representation and reasoning [93]. Philo-
sophical ontology seeks a classification for all types of entities, more precisely, the kinds
and structures of objects, properties, events, processes, and relations, in every area of re-
ality [29]. In Information Science, a more pragmatic view of ontologies is taken, where an
ontology is considered a kind of consensus on a specific area of knowledge representation.

Ontologies represent the formal semantics of domain terms and their conceptualization
in hierarchies. In a formal ontology, the description of each concept is explicitly given
with a set of attributive properties together with restrictions. And then relationships
among concepts set up a semantic net as ontology.

Today, Ontologies have become a silver bullet not only in the development of the
Semantic Web, but also in several collaborative application areas such as Intelligent En-
vironments or Smart Spaces, E-commerce, Multi-Agent Systems, Social Networks, etc.,
because they are respected as a means of consensus for efficient reasoning and sharing
capabilities. Moreover, system interoperability is an important issue, widely recognized
in information technology intensive enterprises and in the research community of infor-
mation systems (IS). Increasing cooperation among organizations have created a need for
many organizations to access remote as well as local information sources. Also, the wide
adoption of the World Wide Web (WWW) needs interoperability to access and distribute
information.

Since a single global ontology is no longer enough to support the variety of tasks
pursued in distributed environments, ontologies have proliferated in multiple forms of
heterogeneity even for the same domain. Thus, ISs face a trade off between interoper-
ability and heterogeneity. In order to keep a balance between heterogeneity and inter-
operability, ontology matching (or mapping)—a process to find correspondences between
semantically related entities among heterogeneous ontologies—has become a plausible so-
lution in various tasks, such as ontology merging, query answering, information retrieval,
exchange, and integration of BioInformatics, Medical Informatics, Security Informatics,
Social Informatics, Computing Informatics, etc. To access multiple knowledge sources
through heterogeneous ontologies, mapping mechanisms need to bridge their knowledge
gaps. The main aim of this research is how to deal with wide-scale semantic heterogeneity
in ontology matching.
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1.1 Motivation

In this section, the development of ontologies with some challenges, which motivated this
research are introduced concerning two generous visions: the Semantic Web [200] and
Smart Spaces [96].

1.1.1 The Semantic Web

According to Google, the current World Wide Web (WWW) has well over 15.5 billion
pages in 2006 [62]. However, the vast majority of them are in human readable format only,
more precisely in eXtensible Markup Language (XML). XML provides a set of meta-data1

tags to represent the semantics of web data, but XML does not define the meaning of
the tags. Thus, the information available on the Web can be accessed only by syntactic
interoperability. As a consequence, software agents cannot understand and process this
information efficiently, and the potential of the Web has so far remained untapped. In
2001, Tim Berners-Lee and his colleagues set up the vision of the Semantic Web [200] as
follows:

“....The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in
co-operation.”

Tim Berners-Lee, James Hendler, Ora Lassila

The Semantic Web, Scientific American, May 2001

The idea is that ontologies allow users to organize information into taxonomies of
concepts, each with their own properties, and to describe relationships between concepts.
When data is represented using ontologies, software agents can better understand the
content of the message, and therefore more intelligently locate and integrate data for a
wide variety of tasks. Tim Berners-Lee illustrated an example of how the Semantic Web
might be useful.

“...Suppose you want to compare the price and choice of flower bulbs that
grow best in your zip code, or you want to search online catalogs from differ-
ent manufacturers for equivalent replacement parts for Volvo 740. The raw
information that may answer these questions, may indeed be on the Web, but
it is not in a machine-usable form. You still need a person to discern the
meaning of the information and its relevance to your needs....[201]”

The Semantic Web can address this problem by requesting people to add knowledge to
computers, to explain the relationships between different sets of meta-data. For example,
one will be able to make a semantic link between web data with XML tag zip-code and a
data of zip column from a database, that they both actually mean the same. Ontologies
will allow machines to follow semantic links, and facilitate efficient information retrieval
by the integration of data from many different data sources.

Meanwhile, the need has increased for shared semantics. According to the article “The
Semantic Web Revisited” which is published by the IEEE Computer Society (2006) [203],
there are a number of research areas that also drive the development of ontologies together

1Meta-data is data about data.
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Figure 1.1: The layer cake of data representation standards for the Semantic Web

with the Semantic Web. One major driver is e-science—computationally intensive science
that is carried out in highly distributed network environments, or science that demands the
integration of diverse and heterogeneous data sets originated from distinct communities of
scientists in separate subfields. For example, environmental science is looking to integrate
data from hydrology, climatology, ecology, and oceanography2. Scientists, researchers,
and regulatory authorities in genomics, proteomics, clinical drug trials, and epidemiology
all need a way to incorporate these components for data and information integration.
This is being achieved in large part through the adoption of common conceptualizations
referred to as ontologies.

A new interpretation of the Semantic Web, described in [203] is as follows:

“....The Semantic Web is a Web of actionable information—information de-
rived from data through a semantic theory for interpreting symbols. The se-
mantic theory provides an account of “meaning” in which the logical connection
of terms establishes interoperability between systems.”

Tim Berners-Lee, Massachusetts Institute of Technology

Nigel Shadbolt and Wendy Hall, University of Southampton

To be consistent with the need for the Semantic Web, the Internet Engineering Task
Force3 and the World Wide Web Consortium (W3C)4, have directed major efforts at
specifying, developing, and deploying languages for sharing meaning. These languages
provide a foundation for semantic interoperability. The Semantic Web will be built on
the standard layers as shown in Figure 1.1.

Uniform Resource Identifiers (URIs) are the most fundamental component of the cur-
rent Web, which provide the ability to uniquely identify web resources as well as links
among the resources. Everything on the Semantic Web must have a URI. Associating a
URI with a resource means that anyone can link to it, refer to it, or retrieve it [202].

Resource Description Framework (RDF) provides a simple but powerful triple-based
representation language for URIs. An RDF triple consists of a subject, predicate, and

2http://marinemetadata.org/examples/mmihostedwork/ontologieswork
3http://www.ietf.org/
4http://www.w3.org/
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object. The subject identifies what object the triple is describing. The predicate defines
the relational property from the subject to the object. The object is the actual value. For
example, in the statement “Lee initiates the Semantic Web”, Lee is the subject, initiates
is the predicate, and the Semantic Web is the object. RDF Schema is an extension of
RDF, in order to provide a modeling language on top of RDF. It has provided a minimal
ontology representation language that the research community has adopted fairly widely.

The ontology layer provides more meta-information, such as relationships between
meta-data, the cardinality of the relationships, the transitivity of the relationships, etc.
Ontology Web Language (OWL) is the current recommendation of W3C as ontology rep-
resentation language. The core idea of OWL is to enable efficient representation of on-
tologies that are also amendable by decision procedures. Rules check an ontology to see
whether it is logically consistent, or to determine whether a particular concept falls within
the ontology. A range of automated reasoners are available5. Because it is difficult to
specify a formalism that will capture all the knowledge, Rule Interchange Format (RIF)6

is an attempt to support and interoperate across a variety of rule-based formats. RIF
will address the plethora of rule-based formalisms: Horn clause logics, higher-order logics,
production systems and so on.

SparQL is a W3C recommended query language for easy access to RDF triples. The
logic layer enables the writing of reasoning rules. The proof layer executes the use of
rules and evaluates, together with the logic layer, mechanisms for applications to decide
whether to trust the given proof or not.

The Semantic Web has been creating many challenges, especially ontology develop-
ment and management. Some people perceive ontologies as top-down, some what au-
thoritarian constructs [99]. This perception might be related to the idea of developing
a single consistent ontology of everything—like Cyc [39]. However, this is not flexible in
the Semantic Web because of its dynamic nature in diverse data, knowledge, and users.
Ontologies are attempts to more carefully define parts of the data world, and to allow
mappings and interactions between data held in different data formats. The ontologies
that will furnish the semantics for the Semantic Web, must be developed, managed, and
endorsed by all committed practice communities and users. Thus, the Semantic Web
allows the proliferation of ontologies. However, a consistent and seamless data ubiquity is
expected through the ontologies. The following substantial research challenges has been
considered for such data ubiquity on the Web [203].

• How do we align and map between ontologies that are independently created from
different community groups and users?

• How do we effectively query a huge number of decentralized information repositories
of varying scales?

• How do we construct a Semantic Web browser that effectively visualizes and navi-
gates the huge connected RDF graph?

• How do we establish trust and provenance of the content?

Regarding the above challenges, ontology matching is still a critical need to accomplish
the vision of the Semantic Web.

5http://www.cs.man.ac.uk/ sattler/reasoners.html
6http://www.w3.org/2005/rules
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1.1.2 Smart Spaces

A smart space is a logical boundary for a rich area of computing and resources in a perva-
sive computing environment—an environment saturated with numerous devices embedded
with heterogeneous computing and communication capabilities [96]. For example, an in-
telligent meeting room, home, office, university campus, software house, hotel, airport,
and every kind of intelligent environment are called smart spaces.

A smart space needs to be aware of what users are trying to do, in order to offer
appropriate assistance. Intelligent tools and applications need to be built on top of these
components. MIT’s Oxygen project seeks to construct the prototype of such smart spaces
[107]. The project Oxygen proposed Agent-based Intelligent Workspaces (also called
Intelligent Environments) [150] and defined them as follows.

An Intelligent Environment (IE) is a physical space that is perceptually en-
abled, that is capable of natural human interactions, and that provides both
proactive and reactive services to a community of users.

Stanford Interactive Workspaces [26] explores new possibilities for people to work
in technology-rich meeting spaces that consist of computing and interacting devices on
various scales. It has contributed with a great effort in solving problems in switching
displays between different sizes of screens. iRoom is the prototype of their interactive
workspaces.

Microsoft Easyliving Project [23] explores the architecture and technologies for intel-
ligent environments that contain many different types of devices and support rich inter-
actions with users. Easyliving aggregates diverse devices into a coherent user experience.

A smart space needs to control a wide range of physical devices: lights, audio/video
equipment, telephone, mobiles, handheld computers, etc. Additionally, a smart space
needs to control a significant number of software components: messaging systems, personal
file databases, schedule-keeping agents, and so on. A control system for a smart space
needs to provide a standard mechanism that manages components, enables communication
between them, facilitates interaction between users and the environment, and protects
security and privacy. Mobile components need a mechanism for discovering and effectively
using their surroundings, while stable environments need to be able to incorporate those
mobile devices. Lastly, these control and coordination mechanisms need to be extensible
to work over different smart spaces. It is believed that users and devices are not stationary
in one smart space. They move across different spaces.

Satyanarayanan [120] identified three types of challenges in the design and implemen-
tation problems raised for the smart spaces of a pervasive computing environment.

• The first type is related to hardware and system designs, such as high-level energy
management, client thickness, balancing proactivity and transparency.

• The second type is security issues like privacy and trust.

• The last type is about generating and exchanging information in pervasive comput-
ing paradigm, like user’s intent (or preferences) and context information (state of
environment), to achieve cyber foraging and adaptation strategy.

For the third challenge, ontologies are employed to provide a common representation
of information and background knowledge across a variety of computing devices and
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Figure 1.2: An architecture of pervasive computing environment with smart spaces [96]

information systems. Effective internal communications refer to a standard ontology
for services and resources lookup. However, effective external communications require
bridging knowledge across different ontologies of different smart spaces.

Most smart space research focuses on the design of infrastructure, and explores new
technologies, migrating tasks to more powerful devices, and detecting the environment
states using sensors. Kong’s research work was different from those in that and it was
considered to provide interoperability between different smart spaces through online ontol-
ogy matching [96]. The architecture of a pervasive computing environment with multiple
smart spaces proposed by Kong, is described in Figure 1.2.

In the architecture, three types of ontologies have been classified. Domain ontology
is the ontology about the smart space, for example, the environment context, resources,
activities done, and people who are present at the smart space. Smart space monitors are
used to store the domain ontology. Assume that there is a single domain ontology in each
smart space. Application ontologies store the concepts used in applications like device
configuration, application parameters, and service descriptions. A smart space can have
various application ontologies which all are stored inside application servers and managed
by application vendors. At run-time, application ontologies are cached in smart space
monitors. User ontology consists of the user’s knowledge such as user identity, social
and mental status, and all sorts of user information and preferences, that all express
the characteristics and behaviors of a user. Complete user ontologies may be resident
somewhere in the Internet or in their high-storage machine. However, most frequently
used concepts (called partial user ontology) will be stored in users’ handheld mobile
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devices like smart phones7 or PDA phones8. Each user has his/her own user ontology.
Kong also presented an interesting daily life scenario in the smart spaces, as follows:

“...Alice is traveling to another country on the plane. She does not understand
the language spoken in the destination country. As usual, she brings her smart
phone that stores her personal details such as her identity and daily schedule.
Alice gets off the plane and arrives at the immigration building located at the
airport. Once she steps into the building, the sensors immediately inform the
smart space monitor about the arrival of Alice and the smart space monitor
forwards the information to the immigration department computers. Smart
space monitor forwards a travel declaration form to Alice’s smart spone when
it gets response from immigration department computers. The smart phone
askes Alice whether her personal details are allowed to be disclosed when it
receives the form. Alice clicks ‘OK’. As the terminology used to represent the
personal information in Alice’s smart phone is different from those required
by the immigration department, online ontology matching is performed. When
mappings completes, Alice’s smart phone automatically fills in the form. Be-
sides, the smart phone retrieves Alice’s schedule and fills in the name of the
hotel where Alice is going to stay and the departure date. After that, the
form is sent back to the immigration department. The immigration depart-
ment computers collect the form and verify whether Alice can legally enter the
country....”

Kong presented other similar scenarios that need mapping between Alice’s user ontology
and smart phone application ontology to recognize Alice is hungry, mapping between
Alice’s user ontology and hotel’s domain ontology to locate a fish ball machine, mapping
between Alice’s user ontology and hotel’s application ontologies to access resources and
devices in the hotel, and etc. In summary, it is obvious that ontology matching helps in
bridging knowledge gaps between smart spaces.

1.2 Problem Definition

In order to tackle the need for sharing knowledge within and across organizational bound-
aries, the last decade has seen researchers both in academia and industry advocating the
development of ontologies and the use of them. Ontolingua [207, 5], Protégé9 [102, 206,
199, 103, 104, 129, 130, 132, 133, 89, 71, 72, 73, 74], WebODE10 [86, 159, 87], OntoEdit
[222, 223], OILEd11 [184], and SWOOP [12, 13, 14, 15, 16], are some examples of ontol-
ogy development tools. TOVE [111] and METHONTOLOGY [109, 9, 10, 110] are the

7A smart phone is any electronic handheld device that integrates the functionality of a mobile phone,
personal digital assistant (PDA) or other information appliance. A key feature of a smartphone is that
additional applications can be installed on the device.

8A PDA Phone is a combination of mobile phone (cellular phone) and personal digital assistant
functionality in one device. It differs from a smartphone in that it has a touch screen and a stylus.
Compared with a smartphone it usually has a larger screen, a more powerful microprocessor, more
memory, etc. In short, it functions more like a computer in it’s input/output of information.

9http://protege.stanford.edu/
10http://webode,dia.fi.upm.es/
11http://oiled.man.ac.uk
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methodologies for building ontologies. Cycl [38, 39], XOL [163], RDF [161], OIL [79, 80],
DAML+OIL [81], and OWL [106], are gradually invented as ontology languages.

Because of independent conceptualization of domain knowledge, and different appli-
cation requirements in each domain, ontologies have proliferated, so that a trade off
between interoperability and heterogeneity is faced. Heterogeneity is both a welcome
and unwelcome feature because it improves the efficiency of applications on one hand,
but it degrades interoperability on the other hand. In order to keep a balance between
heterogeneity and interoperability, ontology matching has become a plausible solution in
various tasks. Heterogeneity is generally distinguished in terms of syntactic heterogeneity
and semantic heterogeneity. Syntactic heterogeneity is caused by using different ontol-
ogy modeling paradigms (e.g., RDF-based model or Frame-based model) and different
ontology languages (e.g. DAML or OWL), while semantic heterogeneity is created by
conceptualization divergence in describing the semantics of ontological classes.

Research on resolving syntactic heterogeneity has been undertaken by many researchers
so far [185, 66, 67]. For instance, Gruber [210] describes a mechanism for defining on-
tologies that are portable over representation systems. Descriptions written in a standard
format of predicate calculus are translated by a system called Ontolingua into specialized
representations, including frame-based languages as well as relational languages. Today,
most ontology editors allow the utilities of ‘import’ and ‘export’ for syntax translation.
The deep and unsolved problems are thus with the semantic issue. Therefore, I focus on
semantic heterogeneity between ontologies.

Recent mapping methods, methodologies and tools such as IF-Map [220], ONIONS
[164, 6, 63], FCA-Merge [64], PROMPT [128, 131, 134, 135, 136, 137], MAFRA [17, 18],
GLUE [4], NOM [108], QOM [113], OMEN [165], COMA [68], and COMA++ [69], have
attempted various semi-automatic and automatic methods for the discovery of correspon-
dences, using a common reference ontology, instance analysis, schema analysis, referring
to a shared thesaurus like WordNet12 and corpuses, analyzing structural information,
applying statistic and probabilistic models, and other machine learning techniques. Al-
though many efforts in ontology mapping have already been contributed, they have dif-
ferent focuses, assumptions, and limitations. A common point among existing methods
is that possible correspondences between two ontologies are determined by the similar-
ity of entity names; this is known as name-based matching. In order to decide semantic
correspondences between concepts, the methods need to analyze the similarities between
all related properties and instances; this is known as content-based matching. In the case
of several forms of heterogeneities, content-based matching becomes complex, and user’s
approval or expert-interaction needs to verify mapping results.

In my research, I focus on two issues. The first issue is that using name-based matching
to determine possible correspondences is risky. In practice, two concepts with the same
name may have different semantics, or two differently-naming concepts may have the
same semantics. Because the name of a concept cannot express the precise semantics of
the concept, the chance of correspondence between two terminologically quite different
concepts is very less or not obtainable through name-based matching. The second issue is
how to reduce complexity, concerning wide-scale semantic heterogeneity in content-based
matching.

As discussed in the motivation section, a matching method without (or with very little)
expert-interaction is helpful especially in the applications and services of the Semantic

12http://wordnet.princeton.edu/
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Web and Smart Spaces. When matching is done between two large ontologies, efficiency
becomes critical. The accuracy of matching results accelerates interoperability. Therefore,
this research is considered as a theoretical framework that can improve the efficiency and
accuracy of matching between semantically heterogeneous, large ontologies, in a balanced
manner particularly concerning the above two issues.

1.3 Objectives

The aim of this thesis is how to deal with wide-scale semantic heterogeneity in matching
between large ontologies. This aim is further divided into the following intermediate goals.

1. To propose an intuitive idea of bridging over semantic heterogeneities between on-
tologies based on some philosophical foundations. I call this semantic enrichment
in ontologies.

2. To present a formal modeling framework of semantically-enriched ontologies.

3. To provide an implementation framework of semantically-enriched ontologies.

4. To supply a conceptual analysis system that gruntees for well-structured and con-
sistent ontologies.

5. To present a method of enrichment-based ontology matching for the effective dis-
covery of semantic correspondences between heterogeneous ontologies.

6. To provide an evaluation of enrichment-based matching method.

7. To analyze the applicability of enrichment framework to existing ontologies and real
applications.

1.4 Approach and Scope

As noted by McGuinness [42], an explicit description of the semantics of domain terms
would be helpful in determining whether two concepts are similar or not. For ontology
matching, my underlying assumption is the more explicit semantics is specified in ontolo-
gies, the feasibility of matching will be greater. Hence, an important step in handling
semantic heterogeneity should be the attempt to enrich the semantics of concepts in on-
tologies, as it is well understood that the richer knowledge the ontologies possess, the
higher probability of accurate and efficient mappings will be derived.

The semantic enrichment techniques are based on different theories and a variety of
knowledge sources, linguistic knowledge, fuzzy terminology, and intensional or extensional
knowledge [187]. An ontology mostly specifies the semantics of concepts using intensional
knowledge which consists of the properties of concepts and relationships between them.
Extensional knowledge is used to populate ontologies by interpreting each concept with
a set of individuals from a universe of discourse13. The linguistic knowledge, especially
shared thesauri, is used to assist in determining correspondences between domain terms.

13The term ‘universe of discourse’ generally refers to the entire set of terms used in a specific discourse.
In model-theoretical semantics, it refers to the set of individual entities that a model is based on.
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However, Mitra and Wiederhold claim that full automation for a mapping using such
linguistic knowledge, is not feasible due to the inadequency of today’s natural language
processing technology [164]. There are still different opinions on whether it is intension
or extension that best decides the exact context of a concept [218]. It is obvious that
the semantics of similar concepts described by either intensional knowledge or exten-
sional knowledge, in two different ontologies, is still heterogeneous especially in open and
distributed systems.

According to METHONTOLOGY [110], a process of ontology development involves
five activities as follows:

• The specification activity states purpose, scope of domain knowledge, and intended
user, for an ontology.

• The conceptualization activity converts an informally perceived view of a domain
into a conceptual model represented in the form of graphs and tables.

• The formalization activity transforms a conceptual model into a formal computable
model using logic languages.

• The implementation activity codes computable models in the syntax of ontology
languages, via ontology editors.

• The maintenance activity corrects and updates ontologies and their models, if
needed.

Among these activities, semantic heterogeneity between independently designed ontolo-
gies is progressively appeared by the conceptualization step. Thus, we may also call it
conceptual heterogeneity of ontologies.

In order to improve the accuracy and automation of mapping processes, it is neces-
sary that ontologies be well conceptualized with adequate semantics. For this purpose,
I propose an enrichment approach that is based on the classification of concepts/classes
using some philosophical notions. In my approach, every fundamental domain concept is
treated as a sort—an entity type that carries a criteria for determining the individuation,
persistence, and identity of its instances—regarding every individual (or instance) defined
in a universe of discourse is countable and identifiable. This means there is no ontology
without sorts which are the most fundamental classes to answer what an individual is. A
detailed discussion can be seen in Section 4.2.1. In the philosophical literature [147, 61],
ontological concepts can be classified into four disjoint sort categories: type, quasi-type,
role, and phase. I redefine these sort categories using three philosophical notions: iden-
tity, existential rigidity, and external dependency. Also, the notions are reformalized in a
precise semantics by providing a First-order Quantified Modal Language. Then, a model
of semantically-enriched ontologies ( called EnOntoModel) is created by using this classi-
fication scheme, and a formal way of embedding concept-level properties into ontologies
is developed. This is my approach of semantic enrichment. Concept-level properties are
the properties which describe the classification knowledge for concepts only and not for
individuals, that is individuals cannot employ these properties. Individual-level properties
(or intensional knowledge) of a concept describes the semantics of the concept, however
they are used as the specification to define data of individuals instantiated to the concept.
Thus, concept-level properties are different from individual-level properties and they are
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also called the meta-knowledge of concepts. Though the description of a concept can
be slightly different according to domain experts, the meta-knowledge—particularly sort
category—of the concept is not distinctive for the same semantics. The innovation behind
EnOntoModel is to supply an identifiable link between two heterogeneous descriptions of
a concept, regarding that if two concepts are semantically equivalent, then they must
be classified within the same sort category. For the usability of EnOntoModel, a sortal
meta-class ontology is implemented as an open source interface not only for enrichment
process but also for conceptual analysis of enriched ontologies. By the aim of the thesis,
a matching method between enriched ontologies is designed.

A novel idea of EnOntoModel-based Ontology Matching (EOM) method is that direct
concept matching is driven between the same categories of sorts instead of exhaustive
search among all sorts, because domain concepts are systematically classified into dis-
joint sort categories. Moreover, it is examined that EnOntoModel can support not only
determining the scope of possible correspondences, but also providing the most relevant
properties which can certainly indicate a correspondence between two similar concepts.
In this thesis, an assumption is made for ontological concepts and individuals following
by a postulate of Guizzardi [61], that is, if a concept is interpreted as an abstract de-
scription of individuals that are countable and identifiable, then every individual should
be the instance of at least one sort which supplies an Identity Condition (IC)—a property
of a sort that provides a unique IC value for each individual of the sort such as supplying
fingerprint is the IC for sort Person. By this assumption, semantic correspondences
between two concepts are possibly to be detected mainly by finding similarity between
their ICs instead of all available properties and relationships of the concepts. This idea
is applied in EOM in order to support a content-based matching with less complexity.

This research brings together techniques in philosophy, conceptualization, formal on-
tologies, mathematical logic, and knowledge representation. It is constituted with two
major phases: (1) semantic enrichment phase and (2) enrichment-based matching phase.
In phase (1), a philosophy-based semantic enrichment approach is proposed. It is com-
posed of three major contributions:

1. modeling semantically enriched ontologies in a formal way by providing a First-order
Quantified Modal Language LE ,

2. implementing a sortal meta-class ontology as an open source interface for the us-
ability of EnOntoModel, and

3. a practical framework of enrichment and conceptual analysis.

In phase (2), the design and evaluation of enrichment-based matching method are pre-
sented. It consists of four parts:

1. a content-based matching method between enriched-ontologies for the purpose of
intelligent information retrieval or exchange,

2. an evaluation of matching method in terms of mathematical complexity,

3. the implementation of EOM in Java using Jena OWL API and Protégé OWL API,
and an experiment with two real data sets, and

4. a comparison with some related mapping methods as well as with OntoClean.
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1.5 Thesis Outline

In this chapter, the motivation of the work, the main problem tackled, the objectives,
and the approach and scope of solving the problem, are described. The remainder of the
thesis is organized as follows.

Chapter 2 presents the fundamental concepts of ontological engineering in order to
introduce the current technical foundation of ontologies.

Chapter 3 focuses on heterogeneities in ontologies and presents my classification of
semantic heterogeneities. Moreover, a survey work on existing ontology mapping tools
and methods is well provided.

Chapter 4 is about semantic enrichment in ontologies. This is one of the main chap-
ters of the thesis. It consists of five sections. In Section 1, a First-order Quantified Modal
Language LE is constructed in order to express the precise meaning of each referred
philosophical notion based on a Kripke model that concerns the issue of actual existence
and varying domains among possible worlds. In Section 2, I present some philosophical
foundations, in particular identity, existential rigidity, and external dependency, for on-
tological conceptualization. Section 3 is a modeling framework of semantically-enriched
ontologies, where ontological concepts are classified into four sort categories based on the
philosophical notions. Then, a model for semantically-enriched ontologies (called EnOn-
toModel) is proposed. In the model, the semantics of concepts are well defined with not
only a set of individual-level properties, but also concept-level properties. Thus, it is
called enriched-model. Section 4 is an implementation framework of a sortal meta-class
ontology that supplies as an open source interface for the enrichment process. Five sub-
sumption constraints are authored in Protégé Axiom Language (PAL) and embedded in
the meta-class ontology for conceptual analysis of enriched ontologies. In the final section,
Section 5, the development of semantically-enriched ontologies is demonstrated in Protégé
OWL API together with an analysis of conceptual consistency in enriched ontologies via
“PAL Constraints” plug-in.

Chapter 5 presents EnOntoModel-based ontology matching method. It consists of
matching architecture, method, algorithm, implementation, and its evaluation in terms
of mathematical complexity for efficiency, as well as in terms of precision and recall for
effectiveness. As for related work, I discuss my work concerning ontology matching and
conceptual analysis.

Chapter 6 concludes the thesis with a summary of my contributions, advantages and
limitations, a brief history of my research progress, and a list of issues and perspectives
sketched for the future research.
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Chapter 2

Ontological Engineering

Today, ontologies are widely used in Computer Science, in applications related to knowl-
edge engineering and management, intelligent information retrieval and integration, and
in new emerging fields like the Semantic Web and Smart Spaces.

Ontological Engineering refers to the set of activities that concern the on-
tology development process (ontology life cycle), and the methodologies, tools,
and languages for building ontologies [11].

This chapter introduces the theoretical and technical foundation of ontological engineer-
ing.

2.1 Basic Ontology Concepts

The word ontology comes from the Greek ontos for being and logos for treatise [11]. In
philosophy [169], ontology is a study of being or existence. The concept of ontology is
generally thought to have originated in early Greece and occupied Plato and Aristotle.
The oldest extant record of the word itself is the Latin form ontologia which appeared
in 1606. The term Ontology was coined in 1613 by Rudolf Göckel—a German scholastic
philosopher who is also known as Rudolf Goclenius. The first occurrence in English of
“ontology” as recorded by the OED appears in Baileys dictionary of 1721, which defines
ontology as an Account of being in the Abstract. Ontology has some basic questions [169]:

• What is existence?

• Is existence a property?

• What constitutes the identity of an object?

• What features are the essential attributes of a given object?

• Can one give an account of what it means to say that a physical object exists?

• When does an object go out of existence, as opposed to merely changing?

These questions have being debated by a number of philosophers and logicians. Also,
philosophers have struggled with deep problems of existence, such as God, life and death,
or whether a statue and the marble from which it is made are the same entity.
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2.1.1 What is an Ontology?

Guarino and Giaretta [141] proposed to use the words ‘Ontology’ (with capital ‘o’) and
‘ontology’ (with small ‘o’) to refer to the philosophical and knowledge engineering senses
respectively. There are many definitions about what an ontology, is [169]. In this section,
a summary of those definitions changed and evolved over the years is provided, and I
conclude with my own.

A definition given by Neches and Colleagues [181] is as follows:

An ontology defines the basic terms and relations comprising the vocabulary of
a topic area as well as the rules for combining terms and relations to define
extensions to the vocabulary. (Neches and colleagues, 1991)

Note that, according to Neches’s definition, an ontology includes not only the terms but
also the rules to infer new knowledge from them. A few years later, Gruber [208] defined
as:

An ontology is an explicit specification of a conceptualization. (Gruber, 1993)

This definition became the most quoted one in the ontology community. Borst [215]
modified Gruber’s definition slightly as:

Ontologies are defined as a formal specification of a shared conceptualization.
(Borst, 1997).

Gruber’s and Borst’s definitions have been merged and explained by Studer and colleagues
[182] as follows:

“An ontology is a formal, explicit specification of a shared conceptualization”.
Conceptualization refers to an abstract model of some phenomenom in the
world by having identified the relevant concepts of that phenomenom. Ex-
plicit means that the types of concepts used, and the constraints in their use
are explicitly defined. Formal refers to the fact that the ontology should be
machine-readable. Shared reflects the notion that an ontology captures con-
sensual knowledge, that is, it is not private of some individual, but accepted
by a group (Studer and colleagues, 1998).

Regarding an ontology to be used for building several knowledge bases, Swartout and
colleagues [30] defined an ontology as:

An ontology is a hierarchically structured set of terms for describing a domain
that can be used as a skeletal foundation for a knowledge base (Swartout and
colleagues, 1997).

In 1998, Guarino and Giaretta [142] proposed to consider an ontology as:

A logical theory which gives an explicit, partial account of a conceptualization
(Guarino and Giaretta, 1998).

Since ontologies are widely used for different purposes in different communities, Uschold
and Jasper [125] defined ontology in a different way:
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An ontology may take a variety of forms, but it will necessarily include a vo-
cabulary of terms and some specification of their meaning. This includes def-
initions and an indication of how concepts are inter-related which collectively
impose a structure on the domain and constrain the possible interpretations of
terms (Uschold and Jasper, 1999).

Even though the definitions are slightly different from each other, according to different
development experience in different domains and communities, “a conceptualization of
consensual knowledge in a domain” is commom among these definitions. By the demands
of semantic heterogeneity, my own definition is given below.

An ontology is an explicit and semantically-enriched specification of a shared
conceptualization in a domain, that is formalized in terms of a logic system and
is coded in a machine readable format, so that efficient interoperability with
seamless reasoning and data ubiquity, is performed in an intelligent manner
among information systems.

2.1.2 Which are the Main Components of an Ontology?

The answer depends on the kind of knowledge modeling paradigm used for an ontology.
Moreover, the degree of formality and granularity of the knowledge that is conceptualized
for an ontology, distinguishes the components of one ontology from another ontology.

Ontologies are generally classified as lightweight and heavyweight ontologies. Light-
weight ontologies include concepts, concept taxonomies, relationships between concepts,
and properties that describe concepts. On the other hand, heavyweight ontologies add
axioms and constraints to lightweight ontologies in order to clarify the intended meaning
of each concept.

Moreover, ontologies can be highly informal if they are expressed in natural language;
semi-informal if expressed in a restricted and structured form of natural language; semi-
formal if expressed in an artifical and fomally defined language (i.e., RDF, OWL); and
rigorously formal if they provide precisely defined terms with formal semantics, theorems
and proofs of soundness and completeness1 [124, 162]. According to the definition of
Studer and colleagues, a highly informal ontology would not be an ontology because it is
not machine readable.

Gruber [208] proposed a model of ontologies using frames2 and first order logic3. He
identified five kinds of components: classes, relations, functions, formal axioms, and in-
stances, as follows:

• Classes represent both abstract concepts (Belief, Feeling, Action, etc.) and
concrete concepts (Person, Book, Computer, Car, Wine, Apple, etc.).

1Inspired by classical first order logic terminology [70, 95], we say that an ontology is sound if and
only if it does not allow deducing invalid conclusions. We say that an ontology is complete if and only if
it allows deducing all the possible valid conclusions starting from the ontology vocabulary and applying
deduction rules permitted.

2A frame is a collection of certain slots which are the relations between constant values. Alternatively,
a frame can be considered just a convenient way to represent a set of predicates applied to constant
symbols.

3First order logic is a system of mathematical logic which extended propositional logic using quantifiers:
∀ and ∃. It is also known as First Order Predicate calculus and it allows variables ranging over different
sorts of individuals given in a universe of discourse.
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• Relations represent a type of n-ary association between concepts. However, on-
tologies usually contain binary relations between two arguments called domain
and range. Subsumption or sub-class relationships in class taxonomies are ex-
amples of binary relations. For examples, SubclassOf(Student, Person),
SubclassOf(RedWine, Wine). Binary relations are also used to express con-
cept attributes (aka slots). Attributes are distinguished from relations in that their
range is a datatype such as String, Integer, Date, Year. As an example,
VintageOf(Wine, Year), NameOf(Person, String).

• Functions are a special case of relations in which the n+1-th element of the relation
is retrieved for the n preceding elements. For example, if Z is the set of integers, N
is the set of natural numbers (except for zero), and Q is the set of rational numbers,
then division is a binary function from Z and N to Q.

• Formal axioms serve to model sentences that are always true, and they are used to
verify the consistency of the ontology itself or to infer new knowledge. Every class
is a sub-class of itself, or sub-class relation does not allow symmetric relationship
between two classes, or there is no instance which belongs to two disjoint classes,
are some examples of formal axioms.

• Instances are used to represent individuals of a class. For example, “Louis Latour,
France, Burgundy, Chambolle Musigny, red wine, Pinot Noir, 750ml, 1993” is an
instance of RedWine.

An alternative candidate for modeling ontologies is using description logic based sys-
tems. Description Logic (DL) [52] is a logical formalism whose early implemented lan-
guages and systems are: KL-ONE [175], Krypton [174], Classic [1], LOOM [178], and
Kris [51]. The theory of DL is divided into two parts: the T-Box and the A-Box. T-Box
contains terminological knowledge together with the properties of concepts. The A-Box
contains assertional knowledge which is specific to the individuals of a domain. DL system
allows the representation of ontologies with three kinds of components: concepts, roles,
and individuals. Basically,

• Concepts have the same usage like the classes of a frame paradigm.

• Roles describes the binary relations between concepts, hence they allow the descrip-
tion of the properties of concepts.

• Individuals represent instances of concepts.

The T-Box contains the definitions of concepts together with roles, while the A-Box
contains the definitions of individuals according to the T-Box. Both concepts and roles
allow hierarchies with subConcept and subRole relationships respectively. In DL, the
term terminological axioms are used to make statements about how concepts or roles are
related to each other, such as subsumption or equality relationships between concepts.

In summary, the major components of an ontology consist of classes (or concepts),
properties of both relations and attributes (or roles), individuals (or instances), and ax-
ioms (formal axioms and terminological axioms).
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domain ontologies task ontologies

application ontologies

Figure 2.1: The ontology classification by Guarino

2.1.3 Categorization of Ontologies and their Uses

Ontologies are generally categorized according to abstraction level and subject of concep-
tualization.

The classification of ontologies by Guarino [142] is presented in Figure 2.1. Top-
level ontologies or upper-level ontologies describe very general concepts and provide
general notions under which the top-most concepts of other ontologies should be linked.
Even though a top-level ontology can serve as a root of other ontologies, the existing
several heterogeneous top-level ontologies which are shown in Figure 2.2 (which is also
described in [11]) prove that a single global ontology cannot fulfill all requirements of
enormous ontology-based applications.

Domain ontologies provide a set of concepts, their relationships, and principles gov-
erning their usage, within a single domain. For example, Universal Standard Products
and Services Classification (UNSPSC)4, Gene Ontology5, Education Ontology6, Breast-
CancerOntology7, and Wine Ontology8.

Task ontologies describe the vocabulary related to a generic task or activity like
diagnosing, scheduling, selling, communication, etc., by specializing the concepts of top-
level ontologies. Task ontologies may include more than one domain. Some examples of
task ontologies are OKAR9-Ontology, COBRA-ONT Action Ontology10, and FIPA Agent
Communication Ontology11.

Domain-task ontologies are task ontologies in a given domain, but not across do-
mains. Moreover, they are application independent. Some examples of domain-task
ontologies are (a) the Enterprise Ontology12 developed in the enterprise project by the
Artificial Intelligence Applications Institute at the University of Edinburgh with its part-
ner: IBM, Lloyd’s Register, Logica UK Limitted, and Univeler, (b) Biological Processes
Ontology13 developed for the Gene Ontology project, and (c) ATO-98 Message Set On-

4http://www.cs.vu.nl/ mcaklein/unspsc/
5http://protege.stanford.edu/ontologies/go/gopage.html
6http://education.state.mn.us/mde/index.html
7http://acl.icnet.uk/ mw/
8http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml
9http://jp.fujitsu.com/group/labs/en/

10http://daml.umbc.edu/ontologies/cobra/0.4/action.owl
11http://taga.umbc.edu/ontologies/fipaowl
12http://www.aiai.ed.ac.uk/project/enterprise/ontology.html
13http://mis.hevra.haifa.ac.il/ morpeleg/NewProcessModel/Malaria PN Example

Files.html
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Figure 2.2: Examples of top-level ontologies

tology14 developed for the Joint Battlespace Infosphere (JBI) project of the Air Force
Research Laboratory.

Application ontologies are application-dependent domain and task ontologies, for
instance, Soccer Match Ontology15, United States Postal Service Zone Improvement Pro-
gram (ZIP) Code Ontology16, and Travel Itinerary Ontology17.

Meta-ontologies are ontologies which capture the representation primitives used to
formalize knowledge under a given knowledge representation paradigm such as OKBC,
RDF(S), OIL, OWL, Frames, UML, etc.

Mizoguchi and colleagues [180] proposed the following four kinds of ontologies.

• Content ontologies for reusing knowledge. These ontologies include three subcate-
gories: task ontologies, domain ontologies, and general ontologies.

• Communication (or Tell & Ask) ontologies are the ones for sharing knowledge.

• Indexing ontologies are the ones for knowledge retrieval.

• Meta-ontologies are the ones for other ontologies to refer as a knowledge represen-
tation ontologies.

14http://reliant.teknowledge.com/DAML/ATO98MessageSet Ontology.owl
15http://www.lgi2p.ema.fr/ ranwezs/ontologies/soccerV2.0.daml
16http://www.daml.org/2001/10/html/zipcode-ont
17http://www.daml.org/2001/06/itinerary/itinerary-ont
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The basic notions of Mizoguchi’s general ontologies is similar to Guarino’s top-level ontolo-
gies. Mizoguchi’s communication ontologies are included in task ontologies of Guarino.

Additional examples can be seen in ontology libraries like OWL ontology library18,
DAML ontology library19, and SchemaWeb ontology library20. This research concerns
the semantic enrichment of domain ontologies under Guarino & Welty’s top-level ontology
expressed in Figure 2.2.

2.2 Methodologies for Building Ontologies

The goal of this section is to present some typical methodologies21 used to build ontologies.
Gruber [209] identified five general principles in designing ontologies, as follows:

• Clarity: Concept definitions in ontologies should be objective, clearly stated in terms
of formal axioms, and well-documented in natural language.

• Coherence: This concerns consistent reasoning. If a sentence that can be inferred
from the axioms contradicts a given definition or example, then it is incoherent.

• Extendibility: The existing concept definitions should be able to define new concepts,
in a way that does not require revision.

• Minimal encoding bias: The conceptualization should be specified at the knowledge
level without depending on a particular symbol-level encoding.

• Minimal ontological commitment: Since ontological commitments22 are defined as
agreements to use shared vocabulary in a coherent and consistent manner.

The above principles should be employed in the ontology development process. There are
a number of well-known methodologies to develop ontologies. Two of them are Grüninger
and Fox’s TOVE methodology and METHONTOLOGY methodology.

2.2.1 TOVE Methodology

Based on the experience of the TOVE project23 in the enterprise domain, which was
developed at the University of Toronto, Grüninger and Fox [111] set out to design a
methodology for creating ontologies in several categories as shown in Figure 2.3. The
methodology is composed of six steps as depicted in Figure 2.4. First, a set of motivating
scenarios are defined in order to identify intuitively possible applications and solutions.
Second, a set of informal competency questions that the ontology must answer in order
to support the motivating scenarios, are defined. Third, the formal terminology of the
ontology—objects, attributes, and relations—are defined in terms of FOL functions and

18http://protege.stanford.edu/plugins/owl/owl-library/
19http://www.daml.org/ontologies/
20http://schemaweb.info
21A methodology is a comprehensive, integrated series of techniques or methods creating a general

system theory of how a class of though intensive work ought be performed.
22According to Guarino [139], ontological commitments offer connections between ontology vocabulary

and the meaning of the terms of vocabulary.
23http://www.eil.utoronto.ca/enterprise-modelling/entmethod/index.html
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Figure 2.3: TOVE Ontologies excerpted from [111]

predicates. Fourth, the competency questions are formally redefined as an entailment of
consistency problems with respect to the axioms in the ontology. Fifth, the formal axioms
are defined using FOL. Finally, completeness theorems—conditions (or constraints) under
which the solutions to the questions are complete–are constructed.

Grüninger and Fox’s methodology is inspired by the development of knowledge-based
systems using FOL. This is a very formal FOL-based methodology that takes advantage of
the robustness of classical logic, and can be used as a guide to transform scenarios in com-
putable models. The unique contribution of this work is the introduction of compentency
questions as a basis of defining the scope of an ontology.
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Formal
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Formal
Competency
Questions

Formal
Axioms

Completeness
Theorems

Figure 2.4: The major development processes of TOVE Methodology
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Figure 2.5: The ontology development life cycle of METHONTOLOGY Methodology

2.2.2 METHONTOLOGY

METHONTOLOGY [109, 9, 10, 110] is a methodology created by the ontology group
of Universidad Politécnica de Madrid. It includes some main activities identified in the
software development process [78] and knowledge engineering activities [36]. The activities
are divided into three layers: 1) management, 2) development-oriented, and 3) support,
as shown in Figure 2.5.

Each major activity of the development process is explained as follows:

• The specification activity states purpose, scope of domain knowledge, and intended
user, for an ontology.

• The conceptualization activity converts an informally perceived view of a domain
into a conceptual model represented in the form of graphs and tables.

• The formalization activity transforms a conceptual model into a formal computable
model using logic languages.

• The implementation activity codes computable models in the syntax of ontology
languages, via ontology editors.

• The maintenance activity corrects and updates ontologies and their models, if
needed.

Figure 2.6 illustrates a set of step-by-step tasks performed in conceptualization activ-
ity. Each step emphasizes specific ontology components—concepts, attributes, relations,
constants, formal axioms, rules, and instances. ODE [105] and WebODE [159] were build
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Figure 2.6: Tasks of conceptualization activity according to METHONTOLOGY

to provide technological support for METHONTOLOGY. When tools like WebODE on-
tology editor are used, the conceptualization model can be automatically implemented
into several ontology languages using appropriate translators. Consequently, formaliza-
tion is not a mandatory activity in METHONTOLOGY. METHONTOLOGY has been
applied in the building of many ontologies [110] such as a chemical ontology, an ontol-
ogy of Monatomic Ions, Environmental Pollutant ontologies, Silicate ontology, Reference
ontology, and FIPA-Foundation for Intelligent Physical Agents24 ontology.

2.3 Ontology Languages

This section briefly present the step-by-step evolution of ontology representation lan-
guages. Thereafter, RDF (Resource Description Framework) and OWL (Ontology Web
Language) are introduced with their key characteristics. For a comparative survey of
ontology languages, refer to [217, 112, 219, 11].

2.3.1 Evolution

At the begining of 1990s, a set of AI-based ontology languages was created. Basically,
the Knowledge Representation (KR) paradigm underlying such ontology languages were
based on First Order Logic (FOL), F-Logic, and Description Logic (DL).

24http://www.fipa.org/specs/fipa00086/
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Cycl is a formal language whose syntax is derived from first-order predicate calculus.
It was first developed in the Cyc project [38, 39] in the 1980s, which aimed at providing a
general ontology (called Cyc ontology) for commonsense knowledge. KIF [119, 127] was
created in 1992, and was designed as a knowledge interchange format based on FOL. Since
ontologies are difficult to create directly in KIF, Ontolingua [207, 208, 5]—the ontology
language supported by ontolingua server—was developed on top of it. It was released in
1992 by the Knowledge Systems Laboratory of Stanford University. At the same time,
LOOM [178, 179] was built initially for general knowledge bases using DL and produc-
tion rules. LOOM provides automatic concept classificaation features. OCML (Options
Configuration Modeling Language) [50] was invented in 1993, as a kind of operational
Ontolingua for developing executable ontologies and models in problem solving methods
(PSMs). In 1995, FLogic [116] was appeared as a language that combined frames and
FOL.

The boom of the Internet led to the creation of ontology languages for exploiting the
characteristics of the web. Such languages are usually called web-based ontology languages
or ontology markup languages. Their syntax is based on existing markup languages such
as HTML (Hyper Text markup Language) [43] and XML (eXtensible markup Language)
[205], whose purpose was not for ontology development, but data representation and ex-
change on the web. The first ontology markup language to appear was SHOE [196].
SHOE is a language that combines frames and rules. It was built an extension of HTML,
in 1996. Later, its syntax was adpted to XML. XOL (XML-Based Ontology Exchange
Language) [163] is a language for exchange of ontologies. The language is intended to
be used as an intermediate language for transferring ontologies among different database
systems, ontology-development tools or application programs. RDF (Resource Descrip-
tion Framework) [161] was developed by the W3C (World Wide Web Consortium) as a
semantic-network-based language to describe web resources. Its development started in
1997, and RDF was proposed as a W3C Recommendation in 1999. The RDF Schema
[37] language was also built by the W3C as an extension to RDF with frame-based prim-
itives. The combination of RDF and RDF Schema is known as RDF(S).

Three additional languages have been developed as extensions to RDF(S): OIL, DAML
+OIL, and OWL. OIL (Ontology Inference Layer) [79, 80] was developed at the begining
of the year 2000 in the framework of the European IST project On-To-Knowledge25. It
adds frame-based KR primitives to RDF(S) and its formal semantics is based on descrip-
tion logics. DAML+OIL (DAML-DARPA Agent markup Language) [81] was created
between the years 2000 and 2001 by a joint committee from the US and the EU in the
context of the DARPA project DAML26. It was based on the previous DAML ontology
language specification and OIL. DAML+OIL adds DL-based KR primitives to RDF(S). In
2001, the W3C formed a working group called Web-Ontology (WebOnt) Working Group27.
The aim of this group was to make a new ontology markup language for the Semantic
Web. The result of their work is OWL (Web Ontology Language) [106]. OWL covers
most of the features of DAML+OIL, but renames them.

Figure 2.7 depicts a classification of ontology languages, by adopting from [160]. The
background logic of all traditional ontology languages is FOL. Later, F-logic and DL are
integrated into the languages. Web standard languages are developed by combining the

25http://www.ontoknowledge.org
26http://www.daml.org
27http://www.w3.org/2001/sw/WebOnt/
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Figure 2.7: A classification of ontology languages
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Figure 2.8: A simple view of RDF triple

web standards XML and RDF onto the traditional languages.

2.3.2 RDF-Resource Description Framework

Resource Description Framework (RDF) is a graphical language used for representing
information about resources on the web. It is a basic of all web ontology languages.
RDF statements are expressed in the form of RDF triples: subject, predicate, and object.
Figure 2.8 shows a simple view of RDF triple.

RDF uses URIRefs to identify resources. A URIRef consists of a URI and an op-
tional Fragment Identifier separated from the URI by the hash symbol ]. For example,
http://www.jaist.ac.jp/is/student]nini. A set of URIRefs is known as a vocabulary. A set
of linked RDF statements (triples) forms an RDF Graph. The subject of one statement can
be the object of another statement. A sample RDF graph depicted for a personal ontology
(denoted by ‘po’) is shown in Figure 2.9. For ontology ‘po’, its vocabulary may consist
of po:hasName, po:hasDOB, po:hasAddress, po:hasHomepage, po:studyIn,
po:hasFriend, po:Person, and so on.

The RDF Vocabulary is the set of URIRefs used in descibing the constructs of RDF lan-
guage, for example, rdf:Property, rdf:Resource, rdf:type. The RDFS Vocabu-
lary is the set of URIRefs used in describing the RDFS language. Some of RDFS built-in
constructs are rdfs:Class, rdfs:subClassOf, rdfs:domain, rdfs:range, etc.
Figure 2.10 illustrates a simple usage of RDFS to define an ontology. The rdf:type
property is used to state any instance of a class. RDF and RDFS provide basic capabilities
for defining the vocabularies of ontologies.
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Figure 2.9: A sample RDF graph
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Figure 2.10: A usage of RDFS

2.3.3 OWL-Ontology Web language

Ontology Web language (OWL)28 is the latest W3C proposed recommendation for that
purpose. OWL has three increasingly-expressive sub-languages, namely, OWL Lite, OWL-
DL, and OWL Full. OWL Lite was designed for easy implementation of concept hierarchy
and simple constraints, and to provide users with a functional subset that will get them
started in the use of OWL. OWL-DL was designed to support the existing Description
Logic and to provide a language subset with desirable computational properties for rea-
soning systems. The complete OWL language (called OWL Full) relaxes some of the
constraints on OWL-DL so as to make available features of using many database and
knowledge representation systems, but which violates the constraints of current DL rea-
soners. Ontology developers should consider which sub-languages best suits their needs.

There are three components of OWL: classes, properties, and individuals. A class is
interpreted as a set of individuals, and a property generally describes a relationship be-
tween two individuals. OWL is primarily designed to describe and define classes. Classes
are therefore the basic building blocks of an OWL ontology. OWL supports six main ways
of describing classes, as follows:

• Named class is the simplest one defined by using owl:Class. Every individual

28http://www.w3.org/2004/OWL/
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in the OWL world is a member of the class owl:Thing. Thus each user-defined
class is implicitly a subclass of owl:Thing. Domain-specific classes are defined by
simply declaring a named class. OWL named classes can be organized in a tax-
onomy with subsumption (or set inclusion) relationship, using a subclass property
rdfs:subClassOf.

• Intersection classes are formed by combining two or more classes with property
owl:intersectionOf.

• Union classes are formed by integrating two or more classes with property owl:uni
onOf.

• Complement classes are specified by negating another class. owl:complementOf
is an OWL construct for that purpose.

• Restrictions describe a class of individuals based on the type and possibly num-
ber of relationships that they participate in. Restrictions can be grouped into
three main categories: two quantifier restrictions (owl:someValuesFrom for Ex-
istential ∃, owl:allValuesFrom for Universal ∀), two cardinality restrictions
(owl:maxCardinality, owl:minCardinality), and hasValue restriction (owl
:hasValue). The most common type of restriction is the existential restriction
which means some values from, or ‘at least one’. An existential restriction describes
the class of individuals that have at least an individual that is a member of a spec-
ified class. Universal means ‘all values from’, or ‘only’. For a given property, all
the individuals must be members of a specified class. Cardinality restrictions allow
us to talk about the number of relationships that a class of individuals partici-
pate in. owl:hasValue restriction allows us to specify a class of individuals that
participate in a specified relationship with a specific value.

• Enumerated classes are specified by explicitly and exhaustively listing the individ-
uals that are members of the enumerated class.

Individuals are the instances of the universe of discourse. An individual is minimally
introduced by declaring it to be a member of a class.

There are two main categories of OWL properties: object properties and datatype
properties. Object properties (owl:ObjectProperty) link individuals to individu-
als. Datatype properties (owl:DatatypeProperty) link individuals to XML Schema
datatype values, for example xsd:integer, xsd:float, xsd:string, etc., or other
user defined datatype values. OWL properties have a specified domain and range by
using rdfs:domain and rdfs:range. The certain characteristics of OWL properties
are described in the following.

• Functional (owl:FunctionalProperty): For a given individual, the property
takes only one value, and not more than one.

• Inverse functional (owl:InverseFunctionalproperty): The inverse of the
property is functional.

• Symmetric (owl:SymmetricProperty): If a property links A to B then it can
be inferred that it links B to A.
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Figure 2.11: An example OWL ontology
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Figure 2.12: The architecture of SWOOP

• Transitive (owl:TransitiveProperty): If a property links A to B and B to C
then it can be inferred that it links A to C.

OWL properties can have a subproperty relationship. rdfs:subpropertyOf is a con-
struct for that. A detailed expression of OWL is available at [54, 55, 56, 57]. Ipresent an
example OWL ontology in Figure 2.11.

2.4 Ontology Development Tools and Tool Suites

Ontology development tools have improved enormously since the creation of the first
environments in the mid-1990s. The tools can be divided into two groups as follows:

• Language dependent tools are those whose knowledge model maps directly to an
ontology language. They are developed as ontology editors for a specific language.
Some examples are the Ontolingua server [5] with Ontolingua and KIF, Ontosaurus
[30] with LOOM, WebOnto [88] with OCML, OilEd [184] with OIL at first, and
later with DAML+OIL, and SWOOP29.

• Language independent tool suites are ontology development-environments whose
main characteristic is that they have an extensible architecture, and whose knowl-
edge model is usually independent of an ontology language. These tool suites provide
a core set of ontology-related services and are easily extended wth other tools to
provide more flexible functions. Protégé30, WebODE31, OntoEdit32, and KAON33,
are included in this group.

Among the tool suites, a brief introduction about SWOOP and protégé are presented
below.

2.4.1 SWOOP

SWOOP is a hypermedia-inspired OWL-based web ontology browser and editor, which
is implemented by the Maryland Information and Network Dynamics Lab Semantic Web

29http://www.mindswap.org/2004/SWOOP/
30http://protege.stanford.edu
31http://webode.dia.fi.upm.es/webode/jsp/webode/frames.jsp
32http://ontoserver.aifb.uni-karlsruhe.de/ontoedit/
33http://kaon.semanticweb.org/
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Figure 2.13: A screenshot of SWOOP Web Ontology Browser

Agents Project [12, 13, 14, 15, 16]. The current version is v2.2.1, that is downloadable at
MINDSWAP project page34. The main purpose of SWOOP is to develop OWL ontologies
concerning the Semantic Web.

Swoop is based on the Model-View-Controller (MVC) paradigm [176]. In the archi-
tecture described in Figure 2.12, the SwoopModel component stores all ontology-centric
information. Control is handled through a plugin based system, which loads new Ren-
derers and Reasoners dynamically. Swoop is implemented by using Java, as an editor for
OWL ontologies. Thus, all OWL reasoners can be integrated for consistency checking in
terms of open-world semantics. Since Swoop intends to provide a web browser for the
Semantic Web, its user interface supplies the feature of hyperlink-based navigation, as
shown in Figure 2.13. This is the main distinctive feature of SWOOP from other OWL
editors.

2.4.2 Protégé

Protégé 3.2 beta35 is the latest version of the Protégé tools, created by the Stanford
Medical Informatics (SMI) group at Stanford University. The first Protégé tool was
created in 1987 [118]; its main aim was to simplify the knowledge acquisition process for
expert systems. To achieve this objective, it used the knowledge acquired in the previous
stages of the process to generate customised forms of acquiring more knowledge. Since

34http://www.mindswap.org/2004/SWOOP
35http://protege.stanford.edu/download/registered.html
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Figure 2.14: The architecture of OWL plug-in extended on Protégé core system

then, Protégé has gone through several releases, and has focused on different aspects of
knowledge acquisition (knowledge bases, problem solving methods, ontologies, etc.,), the
result of which is Protégé 3.2 beta. The evolution of Protégé was described by Gennai
and colleagues [89]. Protégé has a community of 17,000 members and 52,000 registered
users, at the moment. Although the development of Protégé has historically been mainly
driven by biomedical applications [4], the system is domain-independent, and has been
successfully used for many other application areas as well.

Architecture

Like most other modeling tools, the architecture of Protégé is cleanly separated into a
“model” part and a “view” part. Protégé’s model is the internal representation mechanism
for ontologies and knowledge bases. Protégé’s view components provide a user interface
to display and manipulate the underlying model. Protégé metamodel (also known as
knowledge model) is based on frames and FOL. The main modeling components of Protégé
are classes, slots, facets, and instances. Protégé has an extensible architecture for creating
and integrating easily new extensions (aka plug-ins). Most of these plug-ins are available
from the Protégé Plug-in Library36, where contributions from many different research
groups can be found.

Among those plug-ins, the OWL plug-in is a complex Protégé extension that can be
used to edit OWL files and databases. The OWL plug-in includes a collection of custom-
tailored tabs and widgets for OWL, and provides access to OWL-related services such
as consistency checking, taxonomy classification, inferencing, ontology testing, graphical
view of OWL classes, and OWL query with SparQL. As illustrated in Figure 2.14, the
OWL plug-in extends the Protégé model and its API with classes to represent OWL
specification. The OWL plug-in supports RDF(s), OWL Lite, OWL DL (except for
anonymous global class axioms, which need to be given a name by the user) and significant
parts of OWL Full (including metaclasses). The OWL plug-in provides a comprehensive

36http://protege.stanford.edu/download/plugins.html
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Figure 2.15: A screenshot of the OWL class tab in Protégé

mapping between its extended API and the standard OWL parsing library Jena37. There
are many ways to access Protégé ontologies from ontology-based applications. All the
ontology components can be accessed with the Protégé Java API. Hence it is easy for
ontology-based applications to access ontologies, as well as use other functions provided
by different plug-ins. This API is also available through a CORBA-based38 server so
that remote clients can access Protégé ontologies. Moreover, Protégé ontologes can be
exported and imported with some backends: RDF(S), XML, UML, XMI, and OWL.

OWL Plugin User Interface

The Protégé OWL Plugin provides several custom-tailored graphical user interface com-
ponents for OWL. When started, the system displays five tabs: Metadata, OWL classes,
Properties, Individuals, and Forms, as depicted in Figure 2.15. Most ontology designers
will focus on the OWL classes and Properties tabs. The Forms and Individuals tabs
are mostly geared for the acquisition of Semantic Web contents (instance data), while
the Metadata tab allows users to specify global ontology settings such as imports and
namespaces.

The generic architecture of Protégé and the OWL-specific extensions make it relatively
easy to add custom-tailored components. For example, optimized editors for Semantic

37http://jena.sourceforge.net
38Common Object Request Broker Architecture
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Web Rule language (SWRL) [85] or OWL-based Web Service Ontology (OWL-S)39 could
be added to the system. Likewise, description-logic reasoners such as Racer40, could
be directly implemented on top of the Protégé OWL API or Jena. Since all of these
components are available as open-source, it is possible to extend and customize them.

The OWL Plugin provides direct access to DL reasoners such as Racer, Pellet. The
current user interface supports two types of DL reasoning: consistency checking and
classification.

Protégé Axiom Language

The Protégé Axiom Language (PAL)41 extends the Protégé knowledge modeling environ-
ment with support for writing and storing logical constraints and queries about frames
in a knowledge base. More than just a language, PAL is a plugin toolset that comprises
engines for checking constraints and running queries on knowledge bases, as well as a set
of useful user interface components. More specifically, the features of PAL toolset are:

• a language to express logical constraints and queries in a knowledge base;

• a set of special-purpose frames to model constraints and queries;

• a structured editor that provides context-sensitive help to write PAL sentences;

• a constraint-checking engine, which can be invoked either with the PAL Constraints
Tab or programmatically; and

• a querying engine which can be invoked either with the PAL Queries Tab or pro-
grammatically.

The primary purpose of the PAL is exactly to support the definition of such arbitrary
logical constraints on the frames of a knowledge base. PAL constraints are modeled
with special-purpose frames (called meta-classes) and thus can be saved as part of the
knowledge base. The PAL constraint-checking engine can be run against the knowledge
base to detect frames that violate those constraints. Note that the underlying philosophy
of PAL is model-checking rather than theorem-proving. In other words, PAL makes strong
closed world assumptions and is used for writing restrictions on existing knowledge, not
for asserting new knowledge. The primary goals of PAL are therefore to detect incomplete
entry of information and to check entered information for inconsistencies.

A constraint (or a query) is a statement that holds on a certain number of variables,
which range over a particular set of values. Therefore, a constraint or query in PAL
consists of a set of variable range definitions and a logical statement that must hold on
those variables. The language of PAL is a limited predicate logic extension of Protégé
that supports the definition of such ranges and statements. A PAL constraint statement
consists of a sequence of sentences linked by logical connectives. A sample PAL constraint
written for “the salary of an editor should be greater than the salary of any employee whom
the editor is responsible for” is as described in Figure 2.16.

To write those sentences, PAL supports a number of predefined predicates and func-
tions, that can be used in constraint statements to test or compute properties of variables.

39http://www.daml.org/services/owl-s/1.1B/
40http://www.sts.tu-harburg.de/ r.f.moeller/racer/
41http://protege.stanford.edu/plugins/paltabs/pal-quickguide/
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Figure 2.16: A sample PAL constraint

In addition, any slot in a knowledge base can be used directly as a function or a unary
predicate in PAL statements. Finally, all variables that appear in a constraint statement
must be quantified, either with the universal quantifier (forall) or with the existential
quantifier (exists). Documentation of the PAL Structure Editor can be found in the
comprehensive documentation of the PAL plugin42.

2.4.3 Concluding Remarks

As I have discussed in above, SWOOP is a URI-based Web ontology editor while Protégé
is a frame-based ontology editor. Although both editors provide the development of OWL
ontologies, I choose Protégé OWL API to use in the later enrichment process with respect
to the following utilities.

• Protégé knowledge model supports the creation of customized meta-classes43.

• Protégé Axiom Language (PAL) is available to create internal constraints. And
“PAL constraints” plugin is provided for verification and query on the defined knowl-
edge. Moreover, Protégé supports to write PAL constraints in OWL ontologies.

• Protégé ontologies can be exported into a variety of formats including RDF(S),
OWL, and XML Schema.

42http://protege.stanford.edu/plugins/paltabs/pal-documentation/
43A meta-class is a frame template that is used to define new classes in an ontology.
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Chapter 3

Ontology Matching and Semantic
Heterogeneity

The aim of this chapter is to provide a survey of tools and techniques for automatic and
semi-automatic ontology matching. I will start by exploring the terminology related to
ontology matching, and then will provide a clear definition and prototype for that. To
lay the foundation of ontology matching, I first examine the classifications of semantic
heterogeneity which are characterized by mismatches between ontological entities, and
then propose my classification. A number of matching mechanisms has been proposed in
the literature. An objective style review of the tools and methods will be presented in
this chapter.

3.1 What is Ontology Matching

In general, ontology matching is a process that takes two ontologies as input and retrieves
similarity relationships between their entities as output.

In order to set the context and scope for ontology matching precisely, first, I list some
definitions of the term “ontology matching (or mapping)” in the literature.

• In [92], it is defined that a mapping will be a set of formulae that provide the
semantic relationships between the concepts in the models.

• In [131], it is explained that matching is to establish correspondences among the
source ontologies, and to determine the set of overlapping concepts, that are similar
in meaning but have different names or structure, and concepts that are unique to
each of the sources.

• In [40], it is stated that the aim of mapping is to map concepts in the various
ontologies to each other, so that a concept in one ontology can be queried to other
ontologies to find corresponding concepts.

To sum up, ontology matching is a process to find semantically similar concepts between
ontologies. Due to the wide range of expressions used in this area, I want to describe my
understanding of the term ontology matching as:

Given two ontologies O1 and O2, ontology matching means for each concept
(node) in ontology O1, a corresponding concept (node) which has the same or
similar semantics is discovered in ontology O2, and vice verse.
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Figure 3.1: A view of ontology matching

The idea is depicted in Figure 5.2. A well defined matching process can be considered as
a component which provides a mapping service. This service can be plugged into various
applications. Through this work, I will use the following terms consistently according to
their given specific meaning:

• Merging or Integration: Building a new ontology from two or more existing
ontologies as an approach of knowledge reuse.

• Aligning: Bring two or more ontologies into mutual agreement, making them con-
sistent and coherent with one another.

• Correspondences: The specification of matched relations between concepts.

• Articulation: The linkage between two aligned ontologies, that is, the specification
of the alignment.

• Translation: Changing the representation formalism (or syntax) of an ontology
while preserving its semantics.

3.2 Semantic Heterogeneity in Ontologies

First of all, I present a number of classification frameworks in heterogeneity, that have
been discussed in the literature [167, 168, 65, 66]. Then, I will summarize them and
provide my own classification of semantic heterogeneity in ontologies.

3.2.1 Klein’s Mismatches

Heterogeneities between ontologies are called mismatches in [117], where a framework of
issues related to the integration of ontologies, is depicted in Figure 3.2. Among the three
issues discussed, practical problems, mismatches between ontologies, and versioning, the
main concern in this thesis is related to the number of mismatches between ontologies.
These mismatches can be described generally as occurring at the language level, and/or
the ontology level. The former conforms to the syntactic layer, and the latter to the
semantic layer. I describe a summary of ontology level mismatches presented by Klein,
below.
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Figure 3.2: Different levels of ontology mismatches given in [117]

Ontology Level Mismatches are the mismatches happened at the ontology level when
two or more ontologies—which have overlapping domains—are combined. These mis-
matches occur when the ontologies are written in the same language, as well as when they
use different languages. At the ontology level a distinction is made between conceptualiza-
tion and explication, as described in [168]. A conceptualization mismatch is a difference
in the way a domain is interpreted, whereas an explication mismatch is a difference in the
way the conceptualization is specified.

• Conceptualization mismatches are further divided into model coverage and concept
scope (granularity).

– Model coverage and granularity. This is a mismatch in the part of the domain
that is covered by the ontology, or the level of detail to which that domain is
modeled. Chalupsky [66, 67] gives the example of an ontology about cars: one
ontology might model cars but not trucks. Another one might represent trucks
but only classify them into a few categories, while a third ontology might make
very finegrained distinctions between types of trucks based on their physical
structure, weight, purpose, etc.

– Concept scope. Two classes seem to represent the same concept, but do not
have the same instances, although they may intersect. The classical example
is the class “employee”, where several administrations use slightly different
concepts of employee, as mentioned by Wiederhold [65].

• Explication mismatches are divided into terminological, modeling style, and encod-
ing.

– Terminological mismatches: Two types of differences can be classified as ter-
minological mismatches.

∗ Synonym terms: Concepts are represented by different names. One exam-
ple is the use of the term “car” in one ontology and the term “automobile”
in another ontology.
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Figure 3.3: A classification of ontology mismatches given in [168]

∗ Homonym terms: The meaning of the same term is different in different
contexts. For example, the term conductor has a different meaning in a
music domain than it has in an electric engineering domain.

– Modeling style: This is related to the paradigm and conventions taken by the
developers.

∗ Paradigm: Different paradigms can be used to represent concepts such as
time, action, plans, causality, propositional attitudes, etc. For example,
one model might use temporal representations based on interval logic, while
another might use a representation based on point logic [66].

∗ Concept description: This type of difference is called modeling convention
in [66]. Several choices can be made for the modeling of concepts in the
ontologies. For example, a distinction between two classes can be modeled
using a qualifying attribute or by introducing separate class.

– Encoding: One last mismatch in the explication category is encoding. Encoding
mismatches are differences in value formats, like measuring distance in miles
or in kilometers.

3.2.2 Visser’s Mismatches

In the work of Visser et al [167, 168], a detailed assessment of semantic heterogeneity
is presented by classifying a number of ontology mismatches. They classified ontology
mismatches into two levels: conceptualization mismatches and explication mismatches,
similarly to Klein. A detailed classification of both levels described in [168] is shown in
Figure 3.3. We briefly summarize the mismatches below.

• Conceptualisation mismatches are mismatches between two (or more) conceptu-
alisations of a domain. The conceptualisations differ in the ontological concepts
distinguished or in the way these concepts are related.
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– A Class mismatch is a conceptualisation mismatch relating to the classes distin-
guished in the conceptualisation. In particular, this type of mismatch concerns
classes and their subclasses.

– A categorisation mismatch occurs when two conceptualisations distinguish the
same class but divide this class into different subclasses. As an example, Visser
gave two categorizations about animals: mammals and birds, or carnivores and
herbivores.

– An aggregation-level mismatch occurs if two conceptualisations both recognise
the existence of a class, but define classes at different levels of abstraction. For
instance, one conceptualisation may distinguish person as male and female,
but it does not have person as their superclass.

• A relation mismatch is a conceptualisation mismatch relating to the relations dis-
tinguished in the conceptualisation. Relation mismatches concern, for instance, the
hierarchical relations between two classes, or the assignment of attributes to classes.

– A structure mismatch occurs when two conceptualisations distinguish the same
sets of classes, but differ in depicting their relations.

– An attribute-assignment mismatch occurs when two conceptualisations differ
in the way they assign an attribute to classes.

– An attribute-type mismatch occurs when two conceptualisations distinguish the
same attribute in two different datatypes or units, such as ‘Distance’ in meters
and in kilometers.

• Explication mismatches are not defined on the conceptualisation of the domain but
on the way the conceptualisation is specified.

– A CT mismatch (or Concept and Term mismatch) occurs when two ontologies
use the same definiens D, but differ in both the concept C they define and
the term T linked to the definiens. For instance, both Vessel and Whale are
defined as something which is large and sea going.

– A CD mismatch (or Concept and Definiens mismatch) occurs when two on-
tologies use the same term T, but differ in the concept C they define and the
definiens D used for the definition. Consider the term Mitre. One ontology
may define the concept of the headgear of a bishop, whereas a second ontology
may define the concept of a straight angled joint of wood.

– A C mismatch (or Concept mismatch) occurs when both ontologies have the
same term T and definiens D, but differ in the concepts they define.

– A TD mismatch (or Term and Definiens mismatch) occurs when two ontologies
define the same concept C but differ in the way they define it; both with respect
to the term T and the definiens D. For instance, Vessel and Ship are defined
as things which are large and floating.

– A T mismatch (or Term mismatch) occurs when two ontologies define the same
concept C using the same definiens D, but refer to it with different terms, such
as Vessel and Ship.
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Figure 3.4: A general illustration of semantic heterogeneity between two classes

– A D mismatch (or Definiens mismatch) occurs when two ontologies define the
same concept C and use the same term T to refer to the concept, but use
different definiens. For example, Mitre in two different definitions.

3.2.3 An Alternative Classification of Semantic Heterogeneity

In summary, the above mismatches can be distinguished in terms of syntactic hetero-
geneity and semantic heterogeneity. Syntactic heterogeneity is caused by using different
ontology modeling paradigms (e.g., XML-based model or Frame-based model) and differ-
ent ontology languages (e.g. DAML or OWL), while semantic heterogeneity is created by
conceptualization divergence in describing the semantics of ontological classes.

Dealing with semantic heterogeneity in ontologies is strongly related to information
integration of heterogeneous databases and systems [31, 198]. Since ontologies have close
relations to both knowledge-based systems and database systems, this classification of
semantic heterogeneity in ontologies will concern both.

Ceri and Widom [186] list four categories of semantic conflicts in databases: naming
conflicts, domain conflicts, meta-data conflicts, and structural conflicts. In knowledge
acquisition, Shaw and Gaines [122] have proposed a method to compare and resolve
conflicting conceptualizations by domain experts in terms of four different dimensions:
(a) consensus if the same name is used for the same semantics, (b) correspondence if
different names are used for similar or equivalent semantics, (c) conflict if the same name
is used for different semantics, and (d) contrast if different names are used for different
semantics.

Since ontology mapping is a process to find correspondences between semantically re-
lated classes among heterogeneous ontologies, I classified semantic heterogeneity between
ontology classes into four categories. For two semantically similar or equivalent classes,
there is

1. terminological heterogeneity if they have different names or labels;

2. taxonomical heterogeneity if they have different taxonomic (or subsumption) struc-
tures;
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3. schematic heterogeneity if they have different sets of properties and constraints;

4. instantiation heterogeneity if they are defined using different sets of individuals.

Figure 3.4 illustrates these heterogeneities between two semantically similar classes: s and
s′.

Ontologies which are conceptualized for the same or overlapped domain in the
form of the above kinds of semantic heterogeneities are called semantically-
heterogeneous ontologies (in short heterogeneous ontologies).

For two semantically-same concept names, terminological heterogeneity may basically in-
volve. Moreover, the number of properties defined for those concept names can not be the
same by different subsumption levels in ontologies. In addition, instantiation heterogene-
ity can exist between them. This condition is called wide-scale semantic heterogeneity. In
this research, I propose a semantically-enriched model of ontologies in order to deal with
matching between wide-scale heterogeneous ontologies.

3.3 Ontology Matching Tools and Techniques

To discover the correspondences between ontologies, several different approaches have
been proposed in the literature [131, 137, 17, 4, 64, 42, 220, 197]. Semantic correspon-
dences are found in roughly two ways: (1) applying a set of matching rules or heuristics,
and (2) evaluating similarity measures that compare a set of possible correspondences and
help to choose valid correspondences from them.

The creation of correspondences will rarely be completely automated. However, auto-
mated tools can significantly speed up the process and provide efficient matching. In large
domains, while many correspondences might be fairly obvious, some parts need expert-
interaction. There are two general approaches for building ontology mapping tools.

• The first is to use a wide range of heuristics to generate correspondences. The
heuristics are often based on names or structures of concepts. In some cases, do-
main independent heuristics may be augmented by more specific heuristics for the
particular representation language or application domain.

• A second approach is to learn for matching. In particular, manually provided corre-
spondences or experts’ suggestions are considered as examples or training data for
a learning algorithm that can generate subsequent correspondences.

Developing ontology mapping tools and methodologies has focused on a variety of works
originating from diverse communities over a number of years. There are many works
regarding ontology mapping, merging, alignment, and integration. Kalfoglou and Schor-
lemmer conducted a comprehensive survey of a total of 35 mapping-related works by
classifying them into nine categories: frameworks, methods and tools, translators, media-
tors, techniques, experience reports, theoretical frameworks, surveys, and examples [221].
Noy and Musen also provided an evaluation-oriented analysis of some mapping tools,
comparing them with their experience in PROMPT for ontology merging [137]. There is
also a survey of schema-based matching approaches by Shvaiko and Euzenat [166].
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Figure 3.5: The conceptual architecture of MAFRA

Not only the major tasks but also the assumptions employed in each work are more or
less different. Here, I provide an objective style review concerning how each tool deals with
semantic heterogeneity, and to what extent. For that purpose, I present these methods
and tools in brief, with respect to their background theory, mapping approach, and the
level of expert-interaction.

3.3.1 MAFRA

MAFRA is an ontology MApping FRAmework using Semantic Bridge Ontology (SBO)—a
skeleton ontology of semantic bridges (or similarity relations) between ontology compo-
nents, such as concept bridges, property bridges, etc., in order to transform instances
of a source ontology into instances of a target ontology. The framework consists of five
horizontal modules and four vertical modules as shown in Figure 3.5 [17, 18].

Horizontal modules describe the phases of a typical mapping process, and vertical
modules accompany them to assist in constructing semantic bridges and in archiving the
bridges for future mapping. Among horizontal modules, the first module, Lift & Normal-
ization, is a process of normalization between source and target ontologies by transforming
them into a common ontology representation (RDFs), using LIFT. The second module,
similarity, calculates similarity between ontology components employing a multi-strategy
approach, mainly using lexical analysis via WordNet, domain glossaries, bi-lingual dictio-
naries, and corpuses. The third module, semantic bridging, constructs semantic bridges
between concepts and between properties, based on the output of the similarity module.
Figure 3.6 illustrates MAFRA’s semantic bridge-based ontology mapping.

• First, concept bridging chooses a bridge between two concepts according to the
similarities found in the previous phase, pairs of entities to be bridged. The same
source entity may be part of different bridges.

• Second, the property bridging step is responsible for specifying the matching prop-
erties for each concept bridge. As for concepts, a property may be part of several
matchings.
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Figure 3.6: The UML representation of MAFRA’s semantic-bridge-based ontology map-
ping [17]

• Third, the inferencing step focus in endowing the mapping with bridges for concepts
that do not have a specific counterpart target concept.

The fourth module, execution, executes on semantic bridges in order to transform
instances of source ontology into target ontology. The final module is post-processing that
is an expert-interactive process to improve the quality of executed results.

Regarding the examples given in the work, there is no explicit deterministic heuristics
other than lexical heuristics (or synonyms), in the semantic bridge construction. In the
case of terminological heterogeneity with complex labels between concepts and between
properties, MAFRA may not have a solution for how to determine semantic bridges.

3.3.2 ONION

ONION [164] is an heuristic-based ONtology compositION system to resolve termino-
logical heterogeneity using two matching approaches: linguistic matching via WordNet1

and instance-based matching via databases. ONION has a semi-automatic Articulation
Generator (ArtGen) that suggests matches between source ontology and target ontology,
regards the similarity score returned by any approach, and verifies the matches by domain
expert. Figure 3.7 illustrates a matching of two airline ontologies using an articulation
rule.

Mitra and Wiederhold argue that semantic heterogeneity can be resolved by using
articulation rules which express the relationship between two (or more) concepts belonging
to the ontologies.

Establishing such rules manually, the authors continue, is a very expensive and labo-
rious task; on the other hand, they also claim that full automation is not feasible due
to the inadequacy of today’s natural language processing technology. So, they take into
account relationships in defining their articulation rules, but these are limited to subclass

1http://wordnet.princeton.edu/
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Figure 3.7: An example of matching by using an articulation rule in ONION

of, part of, attribute of, instance of, and value of. In their experiments the ontologies
used were constructed manually, and represent two websites of commercial airlines. The
articulation rules were also established manually. However, the authors used a library
of heuristic matchers to construct them. Then, a human expert, knowledgeable about
the semantics of concepts in both ontologies, validated the suggested matches. Finally,
they include a learning component in the system which takes advantage of users feedback
to generate better articulation in the future, when articulating similar ontologies. The
algorithms used for the actual mapping of concepts are based on linguistic features.

ONION provided algorithms for how to calculate a similarity score between some
complex names of ontological components such as ‘Department of Defense’ and ‘Defense
Ministry’. In my opinion, analysis of lexical semantics alone cannot fully decide the
matches between domain concepts precisely.

3.3.3 PROMPT

PROMPT [137] is a semi-automatic and interactive tool suit for performing ontology
mapping, alignment, versioning, and merging, based on the Frame paradigm. Noy and
Musen have developed ANCHORPROMPT [134] for ontology mapping and PROMPT-
DIFF [136] for ontology merging. PROMPT is available as a plugin for the open source
ontology editor Protégé. For the phase of matching, AnchorPROMPT first detects lin-
guistic similarity matches (called anchors) between ontology components. Then, Anchor-
PROMPT analyzes the paths of the input ontologies delimited by the anchors in order to
determine terms frequently appearing in similar positions on similar paths. Finally, based
on frequencies and user feedback, AnchorPROMPT determines matching candidates (or
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Figure 3.8: A screenshot of PROMPT

correspondences). The limitation of PROMPT is that the two ontologies in the mapping
(and merging) process should be different versions of the same ontology.

A user makes many of the decisions, and PROMPT either performs additional actions
automatically based on the user’s choices,or creates a new set of suggestions and identifies
additional conflicts among the input ontologies. The tool takes into account different
features in the source ontologies to make suggestions for merging two classes such as similar
names between the classes, attachement by similar slots, similar restrictions on their
facets, and similarity between their super-classes. In addition to providing suggestions
to the user, PROMPT identifies conflicts. Some of the conflicts that PROMPT identifies
are:

• name conflicts (more than one frame with the same name),

• dangling references (a frame refers to another frame that does not exist),

• redundancy in the class hierarchy (more than one path from a class to a parent
other than root),

• slot-value restrictions that violate class inheritance.

Figure 3.8 shows a screenshot of PROMPT. The main window (in the background)
shows a list of current suggestions in the top left pane and the explanation for the se-
lected suggestion at the bottom. The righthand side of the window shows the evolving
merged ontology. The internal screen presents the two source ontologies side-by-side (the
superscript m marks the classes that have been merged or moved into the evolving merged
ontology).
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Figure 3.9: The ontology mapping approach of IF-Map

Summarizing, PROMPT gives iterative suggestions for concept merges and changes,
based on linguistic and structural knowledge, and it points out to the user the possible
effects of these changes. User approval is considered for merging between all kinds of
correspondences. A big limitation of PROMPT tools is that the two ontologies in the
mapping (and merging) process, should be different versions of the same ontology.

3.3.4 IF-Map

IF-Map (Information Flow-based Mapping) [220] is a channel theory based on ontology
mapping technique. Kalfoglou and Schorlemmer developed an automatic method for
ontology mapping based on the Barwise- Seligman theory of information flow.

Figure 3.9 illustrates the underpinning framework of IF-Map for establishing map-
pings between ontologies. The solid rectangular lines surrounding Reference ontology,
Local ontology 1 and Local ontology 2 denotes existing ontologies. It is assumed that
Local ontologies are used by different communities and populated with instances, while
Reference ontology is an agreed understanding that favours the sharing of knowledge,
and is not supposed to be populated. The dashed rectangular line surrounding Global
ontology denotes an ontology that does not exist yet, but will be constructed by merging.
This is similar to Kents virtual ontology of community connections [177].

The architecture of IF-Map is shown in Figure 3.10. The authors built a step-wise
process that consists of four major steps: (a) ontology harvesting, (b) translation, (c)
infomorphism generation, and (d) display of results. In the ontology harvesting step,
ontology acquisition is performed. IF-Map applies a variety of methods such as using ex-
isting ontologies from ontology libraries, editing them in ontology editors, and harvesting
them from the Web. Then, the format of ontologies is translated into Prolog clauses. The
next step in their process is the main mapping mechanism—the IF-Map method. This
step finds logic infomorphisms, if any, between the two ontologies under examination and
displays them in RDF format.

As a summary, there are two assumptions in IF-Map, which are (1) a common ref-
erence ontology for all local ontologies, and (2) considering an equal set of instances for
the decision of concept mapping. Kalfoglou and Schorlemmer claim that IF-Map could
provide fully automation for a matching process. However, the second assumption is a
big restriction for the applicability of IF-Map concerning instantiation heterogeneity.
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Figure 3.10: The architecture of IF-Map

3.3.5 COMA++

COMA++ (COmbination of MAtching algorithms) [69] extends COMA [68] using a com-
prehensive infrastructure and a graphical user interface. COMA is a composite schema
matching tool that combines different matching algorithms. COMA++ supports higher-
level strategies to address complex match problems, in particular fragment-based match-
ing and the reuse of previous match results. Following the divide-and-conquer idea, it
decomposes a large match problem into smaller subproblems by matching at the level of
schema fragments. The architecture of COMA++ is shown in Figure 3.11. COMA++
encompasses two matching phases: (a) identifying similar fragments, and (b) matching
fragments. In the automatic mode, both phases are executed in a single pass using pre-
specified strategies. COMA++ also supports step-by-step fragment matching, allowing
the user to verify and make changes to the outcome of each phase.

3.3.6 QOM

QOM (Quick Ontology Mapping) [113] is a successor of NOM (Naive Ontology Mapping)
[108] which adopts the idea of composite matching from COMA. Some other innovations
with respect to COMA, are in the set of elementary matchers based on rules, exploiting
explicitly codified knowledge in ontologies, such as information about super- and sub-
concepts, super- and sub-properties, etc. At present the system supports 17 rules. For
example, rule (R5) states that if superconcepts are the same, the actual concepts are
similar to each other. NOM also exploits a set of instance-based techniques. QOM focuses
on less run-time complexity for mapping efficiency of large-size, light-weight ontologies.
For the purpose of efficiency, the use of some rules has been restricted. The principle
idea of QOM’s mapping process is as shown in Figure 3.12. QOM avoids the complete
pair-wise comparison of trees in favor of a top-down strategy. The approach is based
on the idea that the loss of quality in matching algorithms is marginal (compared to
a standard baseline), however improvement in efficiency can be tremendous. However,
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Figure 3.11: The architecture of COMA++ [69]

Figure 3.12: Mapping process of QOM

QOM mostly constitutes a straightforward name-based similarity computation on RDFS
syntax in order to determine correspondences between entities defined in two ontologies.

3.3.7 GLUE

GLUE [3, 4] is a system that employs a multi-strategy machine learning technique with
joint probability distribution to identify similarities of instances, and then compares be-
tween concepts and between relations.

The basic architecture of GLUE is shown in Figure 3.13 [4]. It consists of three main
modules: Distribution Estimator, Similarity Estimator, and Relaxation Labeler.

• First, the Distribution Estimator takes as input two taxonomies O1 and O2, together
with their data instances. Then machine learning techniques are applied to compute
joint probability distributions for every pair of concepts. GLUE contains two kinds
of base learner: name learner and content learner. Name learner uses linguistic
knowledge to calculate similarity between the names of two entities, by exploiting
the frequency of words. Each content learner focuses on a certain type of information
belonging to instances. Meta-learner is used to linearly combine the predictions of
all base learners. The distribution estimator learns on a sample mapping set using
a set of base learners and a meta-learner.

• Second, the similarity estimator determines the similarity between instances us-
ing multiple base learners and a meta learner. The output from this module is a
similarity matrix between the concepts in the two taxonomies.
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Figure 3.13: The architecture of GLUE

• Finally, relaxation labeler determines the best mapping—which best satisfies the
given domain constraints and heuristic knowledge—for each entity by analyzing
the similarity results of all neighborhood entities. Machine learning supports more
automation on the one hand, but the accuracy of matches relies much on training
data sets.

3.3.8 Concluding Remarks

According to the above tools, the techniques of similarity analysis used in existing mapping
methods can be generally classified into four groups as follows.

• Instance-based similarity analysis (IBSA): The similarity between two concepts is
determined by having common instances.

• Lexical-based similarity analysis (LBSA): The similarity between two concepts is
decided by analyzing the linguistic meaning of their names.

• Schema-based similarity analysis (SBSA): The similarity between two concepts is
found by analyzing similarity between their properties.

• Taxonomy-based similarity analysis (TBSA): The similarity between two concepts
is found by analyzing structural relationships between them such as subsumption
(generalization/specialization), siblings, etc.
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Matching Tools and Methods IBSA LBSA SBSA TBSA
MAFRA * * * *
ONION * *
PROMPT * * *
IF-Map *
COMA++ * * *
QOM * * *
GLUE * * * *

Table 3.1: Mapping tools (and methods) and their techniques of similarity analysis

I present a general review of each of above mapping tools in Table 3.1 regarding the
techniques of similarity analysis. More than one technique may involve in each tool. Each
technique is helpful to determine correspondences between two ontologies.

I learned that most matching tools rely much on name-based matching between on-
tological entities, rather than semantics (or content) defined for each entity, in order to
predict possible correspondences. For very complex names, the tools need expert’s ver-
ification or user’s approval. Except in the cases of GLUE and QOM, expert-interaction
is highly involved in other mapping techniques. According to the name-based matching
methods, the accuracy of matches or unmatches is rather risky. Two concepts might have
different names. However, they can have semantic correspondence because the meaning of
concept names cannot completely express the semantics of concepts. Moreover, termino-
logical heterogeneity as well as other kinds of heterogeneity may be involved between two
concepts. In that case, content-based matching of all available properties and instances
will become complex.

Regarding the major aim of my thesis, I have two focuses as described in the following.

• Besides name-based matching, what is an alternative approach to determine the
possible semantic correspondences between heterogeneous ontologies.

• Concerning wide-scale semantic heterogeneity, how to reduce complexity in content-
based matching.

I will present an enrichment-based matching method regarding these two focuses.
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Chapter 4

Semantic Enrichment in Ontologies

A good step in handling semantic heterogeneity is the attempt to enrich the semantics of
concepts in ontologies, as it is well understood that the richer knowledge the ontologies
possess, the higher probability of accurate and efficient semantically-correspondences will
be derived. Thus, I define the meaning of seamntic enrichment as follows:

Semantic enrichment is a process that renders adequate and precise seman-
tics for domain concepts in the form of structured and consistent taxonomies.

In general, semantic enrichment for ontology matching involves the usage of alternative
knowledge sources together with original ontology. The semantic enrichment techniques
are currently based on different theories and a variety of knowledge sources such as linguis-
tic knowledge, fuzzy terminology, intensional or extensional knowledge [187]. Ontology
mostly specifies the semantics of concepts using the intensional knowledge—the properties
and relations of concepts. The extensional knowledge is used to populate ontologies by
defining each concept with a set of individuals from the universe of discourse. The lin-
guistic knowledge especially shared thesauri like WordNet, is used to assist in determining
correspondences between domain terms.

However, Mitra and Wiederhold [164] claim that full automation for a mapping by
such linguistic knowledge, is not feasible due to inadequency of today’s natural language
processing technology. There are still different opinions on whether it is intension or
extension that best decides the exact context of a concept [218]. It is obvious that the
semantics of similar concepts described by either intensional knowledge or extensional
knowledge, in two different ontologies, can be heterogeneous because of different specifi-
cation and conceptualization on diverse knowledge. Therefore, my enrichment approach
is based on defining concept-level properties according to a classification of ontological
concepts through some philosophical foundations.

In this chapter, I first provide a First-order Quantified Modal Language LE in order
to express the precise semantics of philosophical notions, as well as my enriched-model of
ontologies. Second, I discuss some philosophical foundations for ontological conceptualiza-
tion. Third, I present my approach of modeling semantically-enriched ontologies. Fourth,
for the development of such enriched ontologies by users, I provide a sortal meta-class
ontology (named sort.owl) as an open source interface. Thus, a design and imple-
mentation of the sortal meta-class ontology is presented. Finally, the development of
semantically-enriched ontologies using sort.owl is set out and demonstrated through
Protégé OWL API.
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4.1 A First-order Quantified Modal Language LE

In order to deal with semantic heterogeneity, I adopt three philosophical notions of Onto-
Clean1 [147]. These notions are identity, rigidity, and dependency. Identity is the logical
relation of sameness, in which an individual identifies only to itself globally. Rigidity
supports the essentiality of a concept to its individuals. By Lowe [48], “a concept is
essential for its individuals” means every individual of a concept is always an individual
of the concept. Dependency states an externally dependent relation between concepts. I
apply these notions as foundational knowledge to cope with heterogeneity in ontological
conceptualization. In this section, I provide a First-order Quantified Modal Language LE

as a formal logic language to represent my theory of semantic enrichment.
Quantified Modal Logic (QML) is a philosophical logic that develops formal systems

and structures for the analysis of ontological concepts using philosophical notions such
as essence, existence, actualism, individualism, possibilism, identity, part-whole, depen-
dency, etc [101]. Modal Logic is the logic of necessity (or ‘must be’) and possibility (
or ‘may be’). QML comprises modal logic and first-order predicate logic grammatically,
axiomatically, and semantically. In QML, there are some philosophical issues such as
actualism/possibilism2, realism about possible worlds3, and trans-world identity of indi-
viduals4. These subject matters relate to the fields of ontology, epistemology, philosophy
of science, ethics, etc. QML has first appeared in papers by Barcan Marcus [170, 171, 172],
Hintikka [90, 91], Prior [20, 21, 22], and Kripke [189, 190, 191, 192].

There are three circumstances for this research to employ QML.

• The basic influence is Guarino & Welty mentioned that the notions of OntoClean
were formalized in S55 QML with the Barcan formula (BF )6, which gives us a con-
stant domain (every object exists in every possible world) and universal accessibility
(every world is accessible from every other world) [35].

• The second condition is a claim of varying domains among possible worlds, because
in practice, we cannot expect the same set of individuals actually exists in each
arbitrary accessible world. Consequently, there is a need of actual existence, as
opposed to logical existence, that indicates some objects actually exist in the possible
worlds [27, 114]. For example, “God exists” is a kind of logical existence, however
“Mars exists” is an actual existence because we can prove that a planet called Mars
actually exists in our universe.

• The third condition is that QML amounts to trans-world identity—the identity of
two incomplete descriptions of an individual can be detected across multiple possible
worlds.

1OntoClean is a domain-independent methodology for ontological analysis—a framework for cleaning
taxonomic structure of ontologies.

2The fundamental thesis of actualism is “Everything that exists is actual”. Possibilism is the denial
of this thesis with a claim of possible but non-actual individuals [33].

3Modal realism is the view, notably propounded by David Lewis, that possible worlds are as real as
the actual world [34].

4A trans-world identity is an identity that holds across possible worlds [115].
5S5 is a system where accessibility relation R is reflexive: 2φ → φ, symmetric: φ → 23φ, and

transitive: 2φ → 22φ.
6∀x2φ → 2∀xφ [Barcan formula]
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4.1.1 Syntax

A first-order QML is a group of logical axioms and rules of inference that systematizes
the logically true sentences of a standard first-order modal language with identity. Thus,
it is the sum of classical propositional logic, classical first-order quantification theory, the
logic of identity, and modal theory [114, 53, 59]. Here, I provide a formal language of
QML, that concerns possible worlds which have different (or varying) actual domains in a
given universe of both individuals and datatype values. The language amounts necessity
and possibility with a special concern of actual existence.

Let LE be a first-order modal language which contains a special predicate symbol for
the actual existence of individuals.

Definition 1 (Alphabet) The alphabet of language LE is AE = {X , C,Pn,Fn, E,=}
where

• X is a countable infinite set of individual variables x, y, z, · · ·;

• C is a countable infinite set of individual constants c1, c2, · · ·;

• Pn is a countable infinite set of n-ary predicate symbols p1, p2, · · ·;

• Fn is a countable infinite set of n-ary function symbols f1, f2, · · ·;

• E is a predicate symbol to describe the actual existence of individuals, and

• = is identity symbol.

The following connectives, quantifiers, and modal operators, will also be used in LE

according to the usual way of first-order predicate logic and modal logic [59].

• propositional connectives: not (¬), and (∧), or (∨), implies (→), and equivalence
(↔)

• quantifiers: universal quantifier (∀) and existential quantifier (∃)

• modal operators: necessity (2) and possibility (3)

• falsehood: ⊥

Terms of LE, t1, t2, · · ·, are either constants, variables, or n-ary functions fn(t1, ..., tn) ∈
Fn.

Definition 2 (Atomic Formula) If pn is an n-ary predicate symbol and 〈t1, ..., tn〉 is
an n-tuple of terms, then pn(t1, ..., tn) is an atomic formula.

Definition 3 (Atomic Identity Formula) If t1 and t2 are any terms, then t1 = t2 is
an atomic identity formula, that is, t1 is identical to t2.

Definition 4 (Atomic Actual Existence Formula) If t is any term, then E(t) is an
atomic actual existence formula, that is, an individual belongs to term t actually exists in
a possible world.
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Definition 5 (Formulas of LE) A set of formulas φ, ψ, · · · in alphabet AE (called ∆AE )
is defined as follows:

• All atomic formulas are formulas of ∆AE .

• If φ is a formula, then so is ¬φ.

• If φ,ψ are formulas, then so is φ→ ψ.

• If φ is a formula and x is a variable, then ∀xφ is a formula of ∆AE .

• If φ is a formula, then so is 2φ.

Complex formulas are constructed using connectives. The definitions of some complex
formulas are given below.

• φ ∧ ψ =def ¬(φ→ ¬ψ)

• φ ∨ ψ =def ¬φ→ ψ

• φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ)

• ∃xφ =def ¬∀x¬φ

• 3φ =def ¬2¬φ

4.1.2 Semantics

I give the semantics of languages LE in terms of Kripke semantics. Kripke semantics is
a formal semantics for non-classical logic systems, created in late 1950 and early 1960
by Saul Kripke. It was originally developed for modal logics, but it was subsequently
adapted to intuitionistic logic and some other non-classical systems. The discovery of
Kripke semantics was a major breakthrough in the development of non-classical logics, as
the model theory of such logics was virtually nonexistent before Kripke.

Definition 6 (Kripke frame) A kripke frame in QML is F = 〈W,R〉 where W is a
non-empty set, and R is a binary relation on W . Set W is intuitively interpreted as the
domain of possible worlds, whereas R is the accessibility relation between worlds.

Since this logic system is intended to formalize ontological components due to the spec-
ification of OWL properties: object properties (owl:ObjectProperty) and datatype
properties (owl:DatatypeProperty)7, I consider both individuals and datatype val-
ues, in a universe.

Definition 7 (Universe) Universe U includes a set of individuals Uind and a set of
datatype values Udtp, such that U = Uind ∪ Udtp.

Udtp is similar to the concrete domain of Description Logic language SHIQ(D)8. The
interpretation function of language LE is defined as follows.

7owl:ObjectProperty relates two individuals, but owl:DatatypeProperty relates an individual and a
datatype value (see http://www.w3.org/TR/owl-guide/).

8SHIQ(D) [84] is an extension of SHIQ with a concrete domain with datatype values. SHIQ is an
extension of the well known DL ALC [52] to include transitively closed primitive roles [82].
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Definition 8 (Interpretation) A tuple I = 〈U, ·I〉 is the interpretation function of
language LE in Kripke frame F , where U is a non-empty universe and .I is a mapping
function from a symbol of alphabet AE to the members of U .

The key insight in Kripke’s QML is the replacement of the single domain of individuals
in the interpretation of a first-order modal language with a function that assigns to each
world its own distinct domain of individuals. Thus, instead of a single domain common
to all worlds, domains are permitted to vary from world to world. Interpretations like
this for first-order modal languages in which each world has its own domain are known
as Kripke models. Regarding an S5 Kripke frame, domains of possible worlds become
constant. However, if we regard actual existence of individuals and no individuals actually
exists forever in a world, for example, a person can die in someday, then each world has
two nested domains: a possible domain and an actual domain. Therefore, I define such
nested domains in each possible world, that is constant outer domain and varying inner
domain, by distinguishing the actual domain of a possible world from its possible domain
by using existential predicate E.

Definition 9 (Kripke Model) A Kripke model given in universe U , is a quintuple M =
〈F,, D, d, I〉 where

• F is a Kripke frame,

•  is a satisfaction relation between members of w ∈W and formulas of ∆AE ,

• D is a function that assigns a non-empty outer domain D(w) = U to every w ∈W ,

• d is a function that assigns a non-empty inner domain to every w ∈ W such that
d(w) ⊆ D(w), and

• I = 〈U, ·I〉 is the interpretation in frame F such that

– I(pIn, w) ⊆ D(w)n for any n-ary predicate pn ∈ Pn,

– I(f In , w) : D(w)n → D(w) for any n-ary function fn ∈ Fn,

– I(cI , w) ∈ D(w) for any individual constant c ∈ C, and

– I(EI , w) = d(w) for existential predicate E.

Each outer domain D(w) contains the objects which it makes sense to talk about
the possible domain of w, on the other hand in each inner domain d(w) there appear
individuals actually existing in w.

I assume that model M satisfies the inclusion requirement [114], that is, if wRw′ then
D(w) ⊆ D(w′). As frame F employs S5 there is a constant outer domain between possible
worlds such that D(w) = D(w′). In practice, we cannot expect that the same individuals
actually exist in each arbitrary accessible world. Therefore, I regard that the inner domain
of each world varies, depending on the actual existence of individuals in the world.

Definition 10 (w-assignment) To define truth conditions for atomic and quantified
formulas with variables x ∈ X given in LE, w-assignment function ∂ into interpretation
I in world w is defined as I∂(xI , w) = ∂(x, w). There is also a variant of w-assignment,
∂x,a, which assigns individual element a ∈ D(w) to x.
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Figure 4.1: The outer and inner domains of possible worlds in an S5 Kripke model

Definition 11 (Satisfaction) For any world w ∈ W given in Kripke model M , the
satisfaction relation of the formulas of ∆AE with respect to I∂ is as follows:

• (I∂ , w)  pn(t1, ..., tn) iff 〈I∂(tI1, w), ..., I∂(tIn, w)〉 ∈ I∂(pIn, w)

• (I∂ , w)  t1 = t2 iff I∂(tI1, w) = I∂(tI2, w)

• (I∂ , w)  ¬φ iff (I∂, w) 6 φ

• (I∂ , w)  φ→ ψ iff (I∂ , w)  ¬φ or (I∂ , w)  ψ

• (I∂ , w)  2φ iff for every w′ ∈W such that wRw′, (I∂ , w′)  φ

• (I∂ , w)  ∀xφ iff for every individual a ∈ D(w), (I∂
x,a
, w)  φ

• (I∂ , w)  E(t) iff I∂(tI , w) ⊆ d(w)

In particular (I∂, w)  ⊥ never holds. A formula is true in Kripke model M if and only
if it is true in every possible world w ∈W of M . Similarly, a formula is valid (denoted by
`) in Kripke frame F if and only if it is true in every Kripke model M given on F . For
obtaining an S5 frame F , the following axioms must be satisfied in any Kripke model M
given in the frame.

• K: 2(φ→ ψ) → (2φ→ 2ψ)

• T : 2φ→ φ [reflexive]

• 4: 2φ→ 22φ [transitive]

• 5: φ→ 23φ [symmetric]
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Figure 4.1 illustrates the state of outer and inner domains of possible worlds given
in an S5 Kripke model M . In an S5 Kripke model, every world is accessible not only
to itself, but also to any other possible worlds. This is called universal accessibility, and
by that every possible world has a constant outer domain whilst the inner domains differ
from each other according to the actual existence of individuals in the worlds.

Following to Menzel [33], a proof of Barcan Formula (BF) in S5 can be driven through
the following steps:

• Proof(I): φ→ 23φ
(1) 2¬φ→ ¬φ [instance of axiom T ]
(2) φ→ ¬2¬φ [from (1) by contraposition]
(3) φ→ 3φ [from (2) by definition of 3]
(4) 3φ→ 23φ [instance of axiom 5]
(5) φ→ 23φ [from (3) and (4) by propositional logic]

• Proof(II): 32φ→ φ
(1) ¬φ→ 23¬φ [instance of Proof(I)]
(2) 23¬φ↔ ¬32φ [instance of modal negation principle]
(3) ¬φ→ ¬32φ [from (1) and (2) by propositional logic]
(4) 32φ→ φ [from (3) by contraposition]

• Proof of Rule1: if ` φ→ ψ, then 2φ→ 2ψ
(1) φ→ ψ [assume as theorem]
(2) 2(φ→ ψ) [from (1) by rule of necessitation: φ→ 2φ]
(3) 2(φ→ ψ) → (2φ→ 2ψ) [instance of axiom K]
(4) 2φ→ 2ψ [from (2) and (3) by Modus Ponen (MP): (φ ∧ φ→ ψ) → ψ]

• Proof of Rule2: if ` 3φ→ ψ, then φ→ 2ψ
(1) 3φ→ ψ [assume as theorem]
(2) 23φ→ 2ψ [by Rule1]
(3) φ→ 23φ [instance of Proof(II)]
(4) φ→ 2ψ [from (2) and (3) by propositional logic]

• Proof of Barcan Formula (BF): ∀x2φ→ 2∀xφ
(1) ∀x2φ → 2φ [By quantifier axiom]
(2) 2[∀x2φ → 2φ] [from (1) by rule of necessitation φ→ 2φ]
(3) 2(φ→ ψ) → (2φ→ 2ψ) [by K]
(4) 3∀x2φ → 32φ [from (2) given (3)]
(5) 32φ→ φ [instance of 32φ→ φ]
(6) 2∀x2φ → φ [from (4) and (5) by propositional logic]
(7) ∀x[3∀x2φ → φ] [from (6) by generalization]
(8) ∀x2φ → ∀xφ [from (7) and quantifier axiom by MP]
(9) ∀x2φ → 2∀xφ [from (8) by Rule2]

Since language LE contains existence predicate E, the following two axioms are applied
[114, 53].

• ∀x[φ→ (E(y) → φ[x/y])] [E-exemplification]9

9For a proof for (I∂ , w)  φ[x/y] iff (I∂
x,∂(y)

, w) |= φ, I refer to [53].
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• φ→(E(x)→ψ)
φ→∀xψ

where x is not free in φ [Universal E-instantiation]

A logic formulated in a given language is said to be sound with respect to the given
semantics, if and only if every theorem of the language is valid relative to that semantics
(i.e., is true in every interpretation or model of the semantics). Also, the logic is said to
be complete if and only if every valid formula of the language is a theorem of the logic.

The soundness and completeness of QML for S5+BF , have been proved by Corsi and
Belardinelli. Thus, I refer to [58, 53] for the proofs of the soundness and completeness.

4.2 Philosophical Foundations for Ontological Con-

ceptualization

Conceptual Modeling is a fundamental discipline in computer science, playing an essen-
tial role in areas such as database and information systems design, software and domain
engineering, design of knowledge-based and intelligent systems, requirements engineer-
ing, information integration, semantic interoperability, natural language processing, and
enterprise modeling.

In the philosophical sense, ontology is the study of existence and models of existence.
In computer science, ontology is the study of what exists in a given domain. Domain
ontologies are used to refer to specific theories about material domains such as law, medi-
cine, archeology, molecular biology, etc. Abstractions of a given portion of reality are
constructed in terms of concepts. I name modeling a set of concepts used to articulate
abstractions of the state of affairs in a given domain as ontological conceptualization.
Therefore, a domain ontology is a kind of conceptual specification and, hence, ontology
modeling is a specific type of conceptual modeling.

Having a precise representation of a given conceptualization becomes even more criti-
cal when we want to integrate different independently-developed models (or systems based
on those models). In order for these systems to function properly together, we must guar-
antee that they ascribe compatible meanings to real world entities of their shared subject
domain. The ability of systems to interoperate, with compatible real-world semantics is
known as semantic interoperatibility [126]. In order to support semantic interoperability
through heterogeneous ontologies, I apply some philosophical notions to cope the semantic
heterogeneity of ontological conceptualization.

In this section, I present a philosophical theory for defining ontological distinctions
on the category of conceptual modeling, as well as constraints on the construction of
taxonomic structures using these distinctions. By using a number of formally defined
philosophical notions, we can apply ontological classification to enrich the semantics of
ontological concepts.

4.2.1 Why Fundamental Ontological Classes are Sorts?

In the philosophical literature, ontological concepts are generally divided into two cate-
gories: sortal concepts (called sorts) and non-sortal concepts.

“Sort is an entity type10 that carries a criteria for determining the individu-

10Entity type has an extension (instances) and an intension which includes an applicability criteria for
determining whether an entity is an instance of it.
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ation11, persistence, and identity12 of its instances (Corazzon, 1729)13”.

“No entity without identity” (Quine, 1969) [216].

“A class is called a sort if it supplies or carries an Identity Condition (IC);
otherwise non-sortals” (Guarino & Welty, 2001) [147].

According to the above-quoted statements, it is significant that the principles of iden-
tity and individuation supplied by sorts are essential in conceptual modeling, together
with a universe of discourse. Therefore, Guizzardi and Wagner [60] made the following
postulate.

“Every object in a conceptual model (CM) of a domain must be an instance
of a CM-class representing a sortal” (Guizzardi et al., 2004) [60].

In this research, I follow the above postulate and treat fundamental ontological classes
as sorts, and non-sortals as the attributes values or properties of sorts. Some examples
of sorts are Person, Planet, Dog, House, Student, Wine, Book, and Car, where
individuals (or instances) are countable and identifiable. Unlike sorts, Red, Happy, and
Beautiful, are non-sortals, which do not supply identity for their individuals. The
ontological difference between sort and non-sort, for example Wine and Red, is that
Wine corresponds to a natural kind (or type14) whereas Red corresponds to an attribution.
Whilst the former applies necessarily to its individuals (a wine cannot cease to be a wine
without ceasing to exist), the latter only applies contingently. Moreover, whilst the former
supplies a principle of identity for its individuals such as wine name including appellation,
winery, and vintage year, the latter cannot supply such characteristics.

Again, let us consider Person and Happy. Every individual person has a specific
fingerprint, by which characteristic we can identify each individual person from others.
While Person is a sort, Happy is a non-sortal in that all happy people are not identifiable
via the characteristic of being happy. When HappyPerson is a sort, there is a property
hasEmotion which is restricted by attribute value “happy”. Thus, in this work, the sorts
are considered as classes and non-sortals are treated as attributive properties of the sorts.

However, whether a concept is a sort or not, should rely on the possession of identity
criteria rather than the common sense of a concept’s name. Also, I summarize that
individuals of a sort are countable as well as identifiable. And, any abstract class of such
individuals can be represented as a sort.

4.2.2 Sortal Taxonomy and Subsumption Relationship

Taxonomies are a central part of ontologies. Subsumption relationship is mainly used to
organize sorts in taxonomies. This is also known as ‘is-a’ or ‘class inclusion’. To represent
sorts, I use unary predicates of language LE, by adding predicated names corresponding
to sort names, such as ps ∈ Pn. Then, the fundamental semantics of a subsumption
relationship v between two sorts s1 and s2, can be interpreted as an implication relation
[32].

11An individual means an entity which is countable as a whole [146].
12An identity criteria (also called identity Condition) supports the judgment of whether two particulars

describe the same entity or not.
13http://www.formalontology.it/index.htm
14A type is a category of thing, e.g., a person is a type of living being.
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Figure 4.2: A sortal taxonomy of genealogy domain

Definition 12 (Subsumption relationship) For two sorts s1 and s2,

s2 v s1 iff ∀x[ps2(x) → ps1(x)].

This is read as “if sort s2 is subsumed by sort s1 then every individual of s2 is an individual
of s1, and vice versa”. Then, s1 is called super-sort and s2 is called sub-sort.

Example 1 Student v Person means every student is a person. In this case, Person
is a super-sort and Student is a sub-sort.

Definition 13 (Sortal Taxonomy) A hierarchy of sorts with subsumption relationships
is called a sortal taxonomy, denoted by 〈S,vv〉 where S is a set of sorts and vv is a collection
of subsumption relationships between any two sorts of S.

I consider sorts in a lattice15 with the topmost sort > and a bottommost sort ⊥. Generally
speaking, because some sorts may not have a proper meet, the whole set S of sorts is not
a lattice; however, if I assume that every leaf is connected to the lowest sort ⊥ then it
becomes a lattice. vv is reflexive16, transitive17 and anti-symmetric18 For any two sorts
s1 and s2, if s1 u s2 = ⊥ then I say that s1 and s2 are disjoint and I abbreviate this
as s1 � s2. Figure 4.2 illustrates a sortal taxonomy of genealogy domain, where every
male is a person, every man is a male, and every father is a man as well as a parent.
Similarly, every female is a person and every woman is a female. Child is a join of
Son and Daughter (Son t daughter), and Mother is a meet of Woman and Parent
(Woman u Parent).

15A lattice is a partially ordered set in which any two sorts have join and meet. Join denoted by t is
the least upper bound of two sorts and meet denoted by u is the greatest lower bound of two sorts in a
lattice.

16For any s, s v s.
17For any s1, s2 and s3 ∈ S, if s1 v s2 and s2 v s3, then s1 v s3.
18For any s1 and s2, if s1 v s2 then s2 6v s1.
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4.2.3 Identity and Identity Condition

Identity is one of the most fundamental notions in ontology. Identity states a logical
relation of sameness, in which an individual identifies only to itself. Precisely speaking,
identity is related to the problem of distinguishing a specific instance of a certain class
from other instances by means of a characteristic property, which is unique to it. A typical
example used in OntoClean, to explain identity is “is that my dog?”; see [46] for an account
of identity problems of ordinary objects, and [75] for a collection of philosophical papers
in this area. Logically speaking, identity is a primitive equivalence relation, with the
peculiar property of allowing the substitution of terms within logical formulas (Leibniz’s
rule19). Based on the idea that every individual is what it is and not anything else,
identity is useful in distinguishing a specific individual from other individuals by means of
an identity condition (IC)—a property that provides a unique IC value to each individual.

Before discussing the formal semantics of IC, some clarifications about its intuitive
meaning may be useful. If I say “Two persons are the same if they have the same
fingerprint”, I seem to create a puzzle: how can they be two if they are the same person?
The puzzle can be solved by recognizing that two incomplete descriptions of a person can
be different, even while referring to the same person. The statement “two individuals are
the same” can be therefore rephrased as “two descriptions refer to the same individual”.
A description can be seen as a set of properties that apply to a certain individual. My
intuition is that two incomplete descriptions refer to the same individual if they have a
common IC.

In the philosophical literature, an identity condition for an arbitrary concept pφ
20 is

usually defined as a suitable relation ρ satisfying the following formula [147]:

pφ(x) ∧ pφ(y) → (ρ(x, y) ↔ x = y). (4.1)

The nature of ρ in Equation 4.1 is based on the characteristic relation of a certain concept,
which is unique for a specific individual. That characteristic relation must be definable
for each individual of the concept and must satisfy Equation 4.1 [147]. In point of fact,
identity criteria are conditions used to determine equality and that are entailed by equality.

Guarino & Welty think of IC as diachronic IC—a stable IC at different time points
[147]. Moreover, they consider the actual existence of individuals in the possible world
semantics. Thus, they revised Equation 4.1 as follows:

2(E(x, t) ∧ pφ(x, t) ∧E(y, t′) ∧ pφ(y, t
′) ∧ x = y → Σ(x, y, t, t′) ) (4.2)

2(E(x, t) ∧ pφ(x, t) ∧E(y, t′) ∧ pφ(y, t
′) ∧ Σ(x, y, t, t′) → x = y ) (4.3)

where the predicate E is for actual existance, t and t′ are time parameters, and Σ is the
sameness formula (for example, fingerprint(x, t)=fingerprint(y, t′) for a diachronic identity
between two individual persons). An IC is necessary if it satisfies 4.2 and sufficient if it
satisfies 4.3. In OntoClean, Guarino & Welty used a non-modal time parameter ‘t’ to
mention a time line (called branching time) in each possible world in order to distinguish
diachronic IC (we may call it global IC) from synchronic IC (IC at a single point in time

19(x = y) → (pφ → pφ[x/y]) where pφ denotes a first-order unary predicate for ontological property φ.
20In OntoClean, Guarino & Welty consider an ontological concept as a property similar to the meanings

(or intensions) of expressions like being an apple or being a table, which correspond to unary predicates
in First-order Logic. Here, I use a predicate symbol pφ instead of φ from the original equations.
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Figure 4.3: An illustration of diachronic IC by Equation 4.2 and 4.3

or called local IC). I illustrate the idea of Equation 4.2 and 4.3 in a S5 Kripke model
where W = {w1, w2, w3}, as shown in Figure 4.3. If an IC provides the same IC value for
each individual not only inside a possible world but also across possible worlds, then the
IC is a diachronic IC; otherwise it is a synchronic IC. Basically, the definition of IC obeys
Leibniz’s rule with no exceptions and by holding time-invarient identity. Also regarding
trans-world identity, two individuals are identical if they always have a sameness relation
with a common IC value across possible worlds. I redefine Equations 4.2 and 4.3 with
respect to the following points.

• Every state of possible affairs in time, space, or any possibility, is interpreted as
possible worlds in modalities instead of considering a time line inside possible worlds.

• IC is assumed as a property of sorts because only sortal concepts carry or supply
ICs.

• IC is considered as a unary function of language LE in order to represent it as an
OWL datatype property (owl:DatatypeProperty). And IC values are consid-
ered as datatype values.

• The sameness formula Σ is reformulated in terms of equality between the IC values
of two common individuals of a sort, and the identity of an individual is entailed by
this.

Note that if we consider temporal aspect for some tense-intensive domains, it is nec-
essary to fuse temporal logic21 into language LE.

21Temporal logic (also called tense logic) is used to describe any modal logic-based system of rules and
symbolism for representing, and reasoning about, propositions qualified in terms of time.
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Definition 14 (Identity Condition) Identity Condition (IC) of a sort is a datatype
property, which provides a unique IC value to each individual of the sort. Formally, if ι
is an IC of sort s (denoted by ps), then it satisfies one of the following conditions.

2∀x, y[ps(x) ∧ E(x) ∧ ps(y) ∧E(y) ∧ x = y → ι(x) = ι(y)] (4.4)

2∀x, y[ps(x) ∧ E(x) ∧ ps(y) ∧E(y) ∧ ι(x) = ι(y) → x = y] (4.5)

Equation (4.4) states that “The IC of a sort must necessarily provide the same IC value
for the same individual of the sort”. Equation (4.5) states that “The IC of a sort must
be necessarily sufficient to recognize two individuals which both actually exist and own
the same IC value as the same individual”.

Example 2 Suppose that hasISBN is the IC of sort PublishedBook. So that, it is
necessary to have the same ISBN22 for the same published book, or two individual books
with the same ISBN can be identified as the same published book in every possible world.
Someone may use a global product bar-code to identify each copy of the same Published-
Book (say an individual of PublishedBookCopy). For other examples, hasFingerprint,
hasURI, and hasLatitudeLongitude can be used as the ICs of Person, WebResource,
and Location, respectively.

Note that ICs should be globally identifiable for individuals. For example, Student
possesses property ‘hasStudentID’, however it is world-variant and cannot be used as an
IC. I call it local IC, and use it to identify individuals only inside a possible world.

Example 3 Suppose that studentID gives a unique identification number to each student
in both University 1 (or U1) and University 2 (or U2).

{

In U1, hasStudentID(c1:Student) = ‘320025’
In U2, hasStudentID(c1:Student) = ‘210’

However, the studentID value of student c1 in U1 is different from U2. By Student v
Person with ιPerson = hasF ingerprint, the fingerprint of c1 should be the same in both
U1 and U2.

{

In U1, hasFingerprint(c1:Student) = 8A08 617D 9FC3 D57E
In U2, hasFingerprint(c1:Student) = 8A08 617D 9FC3 D57E

Example 4 Consider two university libraries: library1 (Lib1) and library2 (Lib2). Sup-
pose that CatalogID gives a unique identification number to each book in each library.

{

In Lib1, hasCatalogID(c1:LibBook) = ‘C51-D’
In Lib2, hasCatalogID(c1:LibBook) = ‘E11-G’

22International Standard Book Number (ISBN) is a unique identifier for commercially published books.
Currently, ISBN is a 10-digits code that includes four parts: group code, publisher, title, and a check
digit.
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Figure 4.4: OwnIC and CarriedIC through IC inheritance

Since the catalogID of books are locally enumerated in each library, the CatalogID value
of c1 is possibly different from library1 to library2. When LibBook v PublishedBook
with ιPublishedBook = hasISBN , similarly both library books have the same ISBN.

{

In Lib1, hasISBN(c1:LibBook) = 0-837-120079-2
In Lib2, hasISBN(c1:LibBook) = 0-837-120079-2

More precisely, local ICs are able to identify individuals locally or only inside a possible
world. In the case of IC, it provides a unique IC value to each individual and by that IC,
individuals are globally identifiable. A discussion of local ICs vs global ICs can be seen
in [151, 152, 153, 156].

Multiple ICs

The IC of a sort allows inheritance through subsumption relationships.

Definition 15 (IC Inheritance) In a sortal taxonomy, IC are carried from a super-
sort to its sub-sorts through subsumption relationships and this is called IC inheritance.
I call a set of ICs that all belong to a specific sort s an IC set denoted by I(s). Thus, for
two sorts s1 and s2, IC inheritance in a formal notation is

if s2 v s1 then I(s2) ⊇ I(s1).

If sort s originates an IC, then the IC is called the ownIC of s and is denoted by ιs. If
a sort inherits an IC from a super-sort through subsumption relationship, then the IC is
called carriedIC denoted by ι.

Example 5 As shown in Figure 4.4,

I(Person) = {hasDNA, hasFingerprint}

I(Student) = {hasDNA, hasFingerprint}

By Student v Person v Living being where the ownIC of Person, denoted by ιPerson,
is hasFingerprint and the ownIC of LivingBeing, denoted by ιLivingBeing, is hasDNA.
Person not only originates an IC, but also carries an IC from LivingBeing. However,
Student does not originate an IC, and thus it does not have an ownIC. Student carries
the ICs from Person. In an alternative way, we say Person supplies its ownIC to
Student and Student carries the IC of Person.
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Some sorts may originate more than one ownIC. For example, not only fingerprint
but also iris pattern or palm vein pattern23 are originated by sort Person.
Thus, Person has multiple ownICs. When a sort has multiple ICs, though the IC
values provided by each IC are semantically different, each IC is able to identify every
individual of the sort. For example, the fingerprint and iris pattern of a person
are different but they both are able to identify that person. In summary, a sort can have
multiple ICs—more than one IC–in two ways: (1) by IC inheritance or (2) by multiple
ownICs (see [151, 152]).

ICs are Intrincis or Extrinsic

There is an issue: ICs are either intrinsic or extrinsic. Guarino & Welty discussed this
issue as follows:

“Global unique IDs are used either in object-oriented systems to uniquely iden-
tify an object or in database systems to identify data records. Globally unique
IDs provide ICs for data records, but not for the entities in the world the
records describe. Two or more descriptions may refer to the same entity and
our notion of IC is concerned with this entity. Globally unique IDs (and pri-
mary keys) are rather extrinsic that are required by a system to be unique. Our
notion of IC is based mainly on intrinsic properties. However, this is not to
say that the former type never uses intrinsic properties nor the latter never
uses extrinsic ones. In practice, conceptual modellers may need both” [147].

Some individuals are quite concrete, like a particular person, or a particular copy of a
book. Some are more abstract, like the subject matter covered by a book. The important
property of most individuals is that they have an identity, which allows them to be
distinguished from one another and to be counted. Modeling of individuals is therefore
made easier if they have unique identifiers, like ISBN for published books. Unfortunately,
this may not always be the case. For example, if one sees two brand new copies of a book on
a bookshelf, which may not be distinguishable by any property known to us, one can still
say that they are different copies of the book. In information management systems, and
sometimes in the real world, this leads us to devise some kind of “extrinsic” identification
scheme. For example, books on the library shelf are assigned a copy number. In this
paper, as in object-oriented software systems, we will tend to assign arbitrary internal
identifiers to objects, such as C51-E or OOSBOOK23.

According to Borgida and Brachman [52], a general heuristic is that if we (people)
expect certain notions to be identifiable, then they must be modeled as individuals. More-
over, they must be identifiable through unique IC values or identifiers. Therefore, in this
research, both intrinsic and extrinsic properties are used as ICs if they satisfy Equation
(4.4) or (4.5). For examples, fingerprint is intrinsic but ISBN is rather extrinsic.

4.2.4 Existential Rigidity

Rigidity is strictly related to the philosophical notion of essence. Essentiality is a rela-
tionship between an individual and a concept. Lowe [49] defined essentiality as follows:

23Fujitsu has announced its contactless palm vein authentication technology at
http://www.fujitsu.com/global/news/pr/
archives/month/2005/20050630-01.html.
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Definition 16 (Essentiality) If a concept is essential for an individual, then the indi-
vidual is always an instance of the concept in every possible world. In a formal notation,
concept pφ is essential iff:

2∀xpφ(x). (4.6)

The notion of rigidity originally introduced in [140] is very much related to Lowe’s
essentiality. A rigid concept was first axiomatized in OntoClean [145] as given below.

∀x[pφ(x) → 2pφ(x)] (4.7)

Equation 4.7, concept pφ is rigid if it is essential for all of its individuals. Kaplan
[19] pointed out that Equation 4.7 is weak to describe the standard use of rigidness for
universals, and proposed the following.

∀x[3pφ(x) → 2pφ(x)] [basic rigidity] (4.8)

This amounts to saying the extension (set of individuals) of a rigid concept is the same in
all accessible worlds. In 2000 and after, the later OntoClean papers treated all OntoClean
formulas (or axioms) as necessary, and added time to reflect more accurately the way time
and modality are related [148, 147, 149].

2∀x, t[pφ(x, t) → 2∀t′pφ(x, t
′)] [temporal rigidity] (4.9)

Equation 4.9 states that the extension of a temporally rigid concept must be the same for
all time points and all possible worlds.

In general, the rigid designation in modal context is “it designates the same thing in
all possible worlds”. However, Kai-Yee Wong [100] mentioned what Saul Kripke likes to
say about rigidness is with existence conception [190, 191, 192, 193, 194]. The follow-
ing passage—excerpted from Wong’s discussion [100]—is an original explanation by Saul
Kripke for this point:

“....when I use the notion of rigid designator, I do not imply that the object
referred to necessarily exists. All I mean is that in any possible world where the
object in question does exist, in any situation where the object would exist, we
use the designator in question to designate that object. In a situation where the
object does not exist, then we should say that the designator has no referent
and that the object in question so designated does not exist [193]....” (Saul
Kripke, 1971)

“...a designator rigidly designates a certain object if it designates that object
wherever the object exists [194]...” (Saul Kripke, 1972)

Andersen and Menzel [214], pointed out that Equation 4.9 does not accurately capture
the intuition of Kripke’s rigid designator expressed as, “An individual of a rigid concept
can not cease to be an individual of that concept, unless it ceases to exist”, since Equation
4.9 requires an individual to be an instance of the concept always and in all possible
worlds, for example, if Person is a rigid concept, Aristotle must be a person, even in a
possible world in which he does not exist [148]. To address this, Andersen and Menzel
[214] proposed the following formula.

∀x, t[3pφ(x, t) → 2∀t′(E(x, t′) → pφ(x, t
′))][temporally existential rigidity](4.10)

65



Carrera et al., also proposed a similar idea:

∀x, t[3(E(x, t) ∧ pφ(x, t)) → 2∀t′(E(x, t′) → pφ(x, t
′))] (4.11)

with a slightly stronger restriction on existence.
Both Andersen & Menzel and Carrara et al., pointed out that their accounts of rigid-

ness, by introducing actual existence in the antecedents, say nothing about what happens
to entities when they do not exist, leaving open the possibility that an individual of a
rigid concept could change its membership when it does not exist.

Regarding the above quoted reference, I also agree to consider the actual existence
in rigidity. Removing the time parameter from Equation 4.10, Welty & Andersen [35]
proposed the existential rigidity:

∀x[3pφ(x) → 2(E(x) → pφ(x))] [existential rigidity] (4.12)

This tells us that a concept carries existential rigidity when an individual of the concept
exists in any accessible world and instantiates the concept. This characterization is useful
for concepts defined in ontologies that consider only single states of affairs and treat time,
space, possibility, etc., as modalities.

Since I have fixed my scope to sorts and the actual existence of individuals, here I apply
Equation 4.12 and define the precise meanings of existentially-rigid sort and existentially-
anti-rigid sort according to the Kripke semantics given in language LE.

Definition 17 (Existential Rigidity) For any sort s, s is existentially rigid iff

∀x[3ps(x) → 2(E(x) → ps(x))], (4.13)

otherwise, s is existentially anti-rigid iff

∀x[3ps(x) → 3(E(x) ∧ ¬ps(x))]. (4.14)

In the rigid case, if every individual of a sort in world w exists in every accessible
world w′ such that wRw′, the individual is always a member of the sort. In the anti-rigid
case, this is not so.

Example 6 Let us consider Person as a sort. Every person is a person in every possible
world if s/he exists there. Thus, we can define Person as a rigid sort. However, we
cannot expect every person is always a student. Therefore, Student is an anti-rigid sort
while Person is a rigid sort. Moreover, a person may have different roles in different
worlds, such as Student, Part-timeEmployee, and ResearchStudent. As shown
in Figure 4.5, John is defined as a student in world w, but he may be changed in world
w′ to a part-time employee, and to a research student in world w′′. However, he is still a
Person in every world. Thus, Person is a rigid sort, and others are anti-rigid sorts.

Of course, any person can cease being a person after death because no living being can
live forever. Thus, I consider the actual existence of an individual in an accessible world,
for the rigidity of a sort.
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Example 7 For an alternative example of rigid and anti-rigid sorts in the wine domain,
let us define that DessertWine is a wine which is served for dessert, CookingWine
is a wine which is used in cooking of certain dishes, and AppetizerWine is a wine
which is served to stimulate the appetite before a meal. Whilst Wine is a rigid sort,
DessertWine is an anti-rigid sort, because any individual of DessertWine in a world
may stop being DessertWine in any accessible world. Suppose that ‘Santa Margharita,
Italy 2004’ is defined as a DessertWine in restaurant w but that may be a CookingWine
at restaurant w′, and an AppetizerWine in restaurant w′′. However, it is still a wine in
all restraunts.

4.2.5 External and Existential Dependency

Dependency expresses the external and existential dependent relation of a certain sort
to another disjoint sort whose individuals are neither a part nor a constituent of any
individual of the sort. In order to define the notion of dependence, I need to discuss part
and constituent relations between individuals of sorts. Moreover, I consider the notion of
existential dependency between sorts. Here, I define the existential dependency based on
[61].

Definition 18 (Existential dependency) Sort s is existentially dependent on sort s′

iff, as a matter of necessity, some individuals of sort s′ exist whenever an individual of
sort s exists, formally

2∀x[ps(x) ∧ E(x) → ∃y[Ps′(y) ∧ E(y)].

For example, there is at least one school for a student or there is at least one supplier for
a customer.

Concerning the notions of part and constituent, there is a long history in philosophy,
linguistics and cognitive sciences. The study of parthood (part-whole) relations can be
traced back to the early days of philosophy, beginning with the presocratic atomists and
continuing throughout the writings of Plato, Aristotle, Leibniz and the early Kant, to
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cite just a few. The first attempt at a rigorous formulation of the theory was made by
Edmond Husserl, but the first complete theory of parts, named Mereology, was proposed
in 1916 by the Polish philosopher Stanislaw Lesniewski [195], who used the part-whole
relation as a substitute for class membership in standard set theory. This theory was later
elaborated by Leonard and Goodman in their “The Calculus of Individuals” [76].

In all philosophical theories of parts, including Lesniewski’s mereology, the relation
of (proper) part is in a partial ordering, i.e., an irreflexive, antisymmetric and transitive
relation. For three individuals c1, c2, c3, a proper part holds the following conditions.

• Every individual is not a part of itself.

• If c1 is a part of c2 then c2 is not a part of c1.

• If c1 is a part of c2 and c2 is a part of c3 then c1 is a part of c3.

For example, (a) a cerebellum is a part of a brain, (b) a brain is a part of a person, (c) a
gear is a part of car engine, and (d) an engine is a part of a car. From these premises, we
can conclude a cerebellum is a part of a person, and a gear is a part of a car. A variety
of part theory can be learned in [61].

By attempting to differentiate between the linguistic expressions part of and con-
stituent of, I show the following two propositions: one which is indeed a proper part
relation and one which represents a case of a constituent.

1. A faculty is a part of university.

2. Clay is a constituent of a statute which is made of it.

In the later case, if A is the same lump of clay as long as it constitutes the same statue B,
A would have necessarily the same properties as B and have a complete life-time internal
dependency. For instance: (a) if a piece of B is removed, B is still the same statue and so
is A still the same lump of clay, since it still constitutes the same statue; (b) If the form
of B is altered, B ceases to exist and so does A, since it no longer constitutes the same
statue [61]. In summary, a part-of relation states the component relation between two
individuals, and constituent states the composition relation between individuals. The
external dependency between two sorts concerns neither part nor constituent relation
between their individuals.

Definition 19 (Externally Dependent) Sort s is externally dependent on another sort
s′ if, for all individuals x of s, necessarily some individual y of s′ exist, which is neither
a part nor a constituent of x:

∀x2[ps(x) ∧ E(x) → ∃y(ps′(y) ∧ E(y) ∧ pd(x, y)] (4.15)

where s and s′ are disjoint.

I modify the original dependent definition24 by defining existential dependency and by
adding an External Dependency Relationship (EDR) denoted by pd, so that Equation
4.15 states the external dependency of s to s′ explicitly.

Example 8 Student is externally dependent on School with “EnrollIn” relation-
ship. This means we do not define a person who does not enroll in a school as a student.
Thus, EnrollIn is called the EDR of Student to School. Similarly Parent and Child,
Customer and Supplier, are some examples of externally dependent sorts.

24∀x2[pφ(x) → ∃y(pψ(y) ∧ ¬Part(y, x) ∧ ¬Constituent(y, x))] [147]
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Figure 4.6: An example for sort, properties, and individuals

4.3 Modelling Semantically-enriched Ontologies

A central concern of this section is to model semantically-enriched ontologies by apply-
ing some ontological foundations. For this purpose, I aim at providing a philosophical
classification of sorts.

Regarding both Frame and OWL specifications presented in Section 2.3, there are three
fundamental modeling components in developing ontologies: classes for concepts (and
sorts), properties for attributes and relations (called intensional knowledge) of concepts,
and individuals for instances (called extensional knowledge) of each concept. An ontology
with a universe of discourse constitutes a populated ontology, or ontology base.

4.3.1 Description of a Sort

In a sortal taxonomy 〈S,vv〉, S is a set of sorts. I call a set of properties that constitutes
the intensional semantics of a sort individual-level properties, because the semantics of a
certain indivdual is described in terms of these properties. For a sort s ∈ S, there is a set
of individual-level properties PD(s). For example,

PD(PublishedBook) = {hasT itle, hasAuthor, hasPublisher, hasPublishedY ear,

hasISBN}.

Every individual of a sort has a specific value for each property of the sort. Among the
given properties, let us assume that hasISBN is defined as the IC of PublishedBook.
By the definition of IC (Definition 14), every individual instantiated to PublishedBook
must possess a unique ISBN value, as described in Figure 4.6.

For every p ∈ PD(s), there is a specific domain Ds and range Rp such that p : Ds ⇒ Rp.
The domains and ranges for the example properties of PublishedBook are illustrated in
Figure 4.7. I divide PD(s) into two kinds.

• Object properties Pj(s) ⊆ PD(s) are the properties that relate two individuals,
that is, pj :Ds ⇒ Rj for every pj ∈ Pj(s).
For example, Pj(PublishedBook) = {hasAuthor, hasPublisher}
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Figure 4.7: The domain and range of a property

• Datatype properties Pt(s) ⊆ PD(s) are the properties that relate an individual
to a data value defined in a standard or user-defined datatype such as String,
Integer, Boolean, Date, Year, ISBN, URI, etc., that is, pt:Ds ⇒ Rt for every
pt ∈ Pt(s).
For example, Pt(PublishedBook) = {hasT itle, hasPublishedY ear, hasISBN}

Thus, the individual-level properties of sort s consists of object properties as well as
datatype properties, that is PD(s) = Pj(s)∪Pt(s). IC denoted by ι is a kind of datatype
property. Then, the IC of PublishedBook can be described as ιPublishedBook = hasISBN.
I call the value returned by an IC for an individual “IC value”, and a set of identity
conditions for sort s “IC set” denoted by I(s) such that I(s) ⊆ Pt(s). I(s) 6= ∅ for
every sort s because every sort originates or carries at least one IC. For every ι ∈ I(s),

ι:Ds ⇒ Rι. Moreover, every IC ι has an inverse functional property such that
←
ι :Rι ⇒ Ds.

As shown in Figure 4.8, isISBNof: ISBN ⇒ PublishedBook is the inverse function of
hasISBN:PublishedBook ⇒ ISBN. Thus, one-to-one relations such as

hasISBN(c1:PublishedBook) = 0-123-45678-9, and

isISBNof(0-123-45678-9) = c1:PublishedBook

By Definition 14, one-to-one relation is fixed between the domain and range of an IC, as
depicted in Figure 4.8. This characteristic differentiates ICs from other properties.

One of the major concerns in this research is if ontological concepts are considered as
sorts, then how to represent them in terms of OWL. I intuitively found that a sort can be
represented as an OWL class (owl:Class) with the restriction having at least one IC
(ownIC or carriedIC). Also, owl:Datatypeproperty can be used to represent IC with
the restriction of owl:FunctionalProperty and owl:InverseFunctionalProperty
regarding its characteristic of one-to-one functional. In addition, = 1 cardinality is set up
to restrict every individual possesses at least one IC value. I present the description of
sort PublishedBook in the form of OWL syntax in Figure 4.9.

4.3.2 A Classification of Sorts

My objective of modeling semantically-enriched ontologies is to provide a well-structured
taxonomy and adequate semantics for ontologies concerning the issue of semantic het-
erogeneity in ontology matching. Therefore, I provide a classification of sorts and define
concept-level properties of sorts, according to the classification. Then, I present a model
(called EnOntoModel) of semantically-enriched ontologies in the next section.
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Figure 4.8: IC is one-to-one functional
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Figure 4.9: A representation of Sort and IC in OWL
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Figure 4.10: A classification of ontological concepts in OntoClean [147]

In OntoClean, Guarino & Welty [147] provided a classification of ontological concepts
including sortals and non-sortals as shown in Figure 4.10. Guizzardi [61] designed a
classification of universals25 as ontological distinctions for conceptual modeling by UML26.
I show this classification in Figure 4.11.

Based on the classifications of sorts in OntoClean and by Guizzardi, I define four
categories of sort: type, quasi-type, role, and phase. Before defining each category of
sort, I need to clarify some critical properties. They are Identity Condition (IC), Common
Value Attribute (CVA), External Dependency Relation (EDR), and Common Constraint
(CC). For IC, I refer to Definition 14.

• Common Value Attribute (CVA): A datatype property (represented by owl:Data
typeProperty) is defined as a CVA for a sort, if the property provides a common
attribute value for all individuals belonging to the sort. For example, property
hasColor is a CVA for sort WhiteWine because it provides a common color value
“White” for every individual of WhiteWine. Similarly, hasColor is a CVA for
RedWine by providing the same color value “Red” to every individual of RedWine.
CVA is denoted by pa.

• External Dependency Relation (EDR): An object property (represented by owl:
ObjectProperty) is defined as an EDR for a sort, if the property provides an ex-
istentially and externally dependent relationship between two individuals which are
neither a part nor a constituent to each other. For example, property EmployFor
is an EDR for sort Employee because there probably exists at least one employer
(firm or organization) for any employee. This may need an assumption: “every
employer is neither a part nor a constituent of an employee”. EDR is denoted by
pd.

25In metaphysics, a universal is a type, a property, or a relation. We can map the category of universal

into Object Oriented classes, Entity types of ER-models, and OWL classes.
26Unified Modeling Language
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Figure 4.11: A classification of universals by Guizzardi [61]

• Common Constraint (CC): A datatype property (represented by owl:Datatype
Property) is defined as a CC for a sort, if the property provides a common con-
straint such as the same boolean value, data value range, or qualification, that can
distinguish the individuals of the sort from being the instances of a disjoint sibling
sort. For example, property hasAge is a CC for sorts Boy and Man with an age
constraint. CC is denoted by pc.

Definition 20 (Type sort) If a sort is existentially rigid and it originates (or supplies)
an IC, then the sort is called a type sort.

Some examples of type sort are Person, PublishedBook, and Wine, with ICs has-
Fingerprint, hasISBN, and hasWineName27, respectively. type sort is also known as rigid
substance sortal that supplies a principle of identity for its individuals [60]. Since every
individual is assumed to be an identifiable object, any individual must be an instance of
a type sort, directly or indirectly.

Definition 21 (Quasi-type sort) If a sort is existentially rigid but it does not originate
an IC, then it is called a quasi-type sort.

More precisely, quasi-type sorts are partitions28 of a type sort, specialized with a CVA.
For example,
(a) MalePerson and FemalePerson are the quasi-type sorts of Person with CVA

27hasWineName includes winery, appellation, and a vintage. For example, “Joseph Drouhin 2004
Chablis Premier Cru” is the name of a wine produced from ‘Joseph Drouhin’, appellation is ‘Chablis
Premier Cru’, and vintage year is ‘2004’.

28The partions of a type sort form a complete generalization and they are disjoint from each other.
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hasGender(c:MalePerson, ‘‘Male’’) and hasGender(c:FemalePerson,
‘‘Female’’);
(b) RedWine and WhiteWine are the quasi-type sorts of Wine with CVA hasColor(c:
RedWine, ‘‘Red’’) and hasColor(c:WhiteWine, ‘‘White’’);
(c) PublishedBookInLogic and PublishedbookInNon-Logic are the quasi-type
sorts of PublishedBookwith CVA hasSubject(c:PublishedBookInLogic,‘‘Lo
gic’’) and hasSubject(c:PublishedBookInNon-Logic,‘‘Non-Logic’’).
The quasi-type sorts of a certain type sort are disjoint to each other, that is, if an indi-
vidual person is modeled as an instance of MalePerson then he cannot be an instance
of FemalePerson.

Definition 22 (role sort) If a sort is existentially anti-rigid and it is externally depen-
dent on another sort by holding an EDR, then the sort is called a role sort. Moreover,
the domains of role sorts are not necessarily disjoint.

Student, Employee, and Customer, are some examples of role sorts, that is (a) a
student is a person who enrolls in a school or university, (b) an employee is a person who
is hired by an organization to perform a job, and (c) a customer is a person who buys a
product from a supplier. Then, the following EDRs will hold for each of them:
(a) enrollIn(Student, School)
(b) employFor(Employee, Employer)
(c) BuyProduct(Customer, Supplier)
In a reverse way, SupplyProduct(Supplier, Customer) can be used as an EDR,
meaning that every supplier is externally dependent on some customers. An individual
can be a member of more than one role sort subsumed by the same type sort, that is, a
person can be a student as well as an employee.

Definition 23 (Phase sort) If a sort is existentially anti-rigid and does not need an
EDR like role sort, then the sort is called a phase sort. phase sorts constitute possible
stages in the history of a super-sort they specialize, by holding a Common Constraint
(CC). Thus, they are disjoint to each other.

For example, (a) Girl, Teenager, and Woman, are the possible stages of FemalePerson,
with age constraint such that a female person under 12 years old is a girl, over 18
years old is a woman, or between 12 and 18 years old is a teenager; (b) Caterpillar
and Butterfly are phase sorts of Lepidopteran with wing constraint, that is, the
boolean value “false” will be assigned for Caterpillar and “true” will be assigned for
Butterfly concerning CC hasWing; (c) UndergraduateStudent, MasterStud
ent, and DoctoralStudent, are phases of university student life with an enrollment
constraint such as “enroll for undergraduate degrees”, “enroll for graduate degrees”, and
“enroll for Phd”.

Contrary to role sort, an individual cannot belong to more than one phase sort. Whilst
quasi-type sorts are the partitions of a type sort only, phase sorts can be the partitions
of any other sort category. A major distiction between a quasi-type sort and a phase sort
is rigidity. A quasi-type sort is rigid, however a phase sort is anti-rigid.

According to the above definitions, S can be divided into four subsets:

S = Stype ∪ Squasi-type ∪ Srole ∪ Sphase
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Figure 4.12: A typical structure of sortal taxonomy

where Stype is a set of type sorts, Squasi−type is a set of quasi-type sorts, Srole is a set of
role sorts, and Sphase is a set of phase sorts. I claim that each subset of S is disjoint
to the others, because their modality and identifiable characteristics are different. This
disjointness is proved as follows.

• By Definition (17), if sort s ∈ S is existentially anti-rigid, then s is not rigid, and
vice versa.

• By Definitions (20) & (21), if sort s ∈ S is a quasi type sort, then it is not a type
sort, and vice versa.

• by Definitions (22) & (23), if sort s ∈ S is a phase sort, then it is not a role sort,
and vice versa.

A typical structure of the above classification is depicted in Figure 4.12. It can also
be called a skeleton of sortal taxonomies which preserve the condition “anti-rigid sorts
never subsume rigid sorts” [147]. I do not mean that every ontology needs to complete
this classification. An important fact is to obey the definition of each sort category and
not to violate the taxonomic structure given in Figure 4.12.

Concerning identity, there is an important notion in ontological conceptualization.

“No individual can instantiate both of two sorts if they have different criteria
of identity associated with them (Lowe, 1989)” [49].

Referring to the above quoted statement, it is clear that a type sort cannot be subsumed by
another type sort which has an incompatible IC, that is, if any individual of the sort does
not possess an IC value supplied by such IC. For example, if an individual is instantiated
as a car then it cannot be a computer, because the ICs of Car and Computer are not
compatible to each other. This is known as IC incompatibility [147].

Therefore, I additionally employ the two conceptual constraints described below.

• Constraint1: Every top-most sort of a sortal taxonomy in a given ontology must
be a type sort which originates (or supplies) an IC to identify an individual globally
in multiple worlds, regarding identity for every individual.

• Constraint2: A type sort is not allowed to have multiple subsumption relationships
such that s3 6v s1 and s3 6v s2 if all are type sorts and s1 � s2, because no individual
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Figure 4.13: A transition of essential processes in ontology development adopted from
Blum (1996)

possesses two incompatible IC values (e.g. an alcoholic drink cannot be defined as
both wine and whisky).

4.3.3 Concept-level Properties of Sorts

According to METHONTOLOGY [110], there are five major activities in the development
of ontologies. Those activities are (a) specification, (b) conceptualization, (c) formaliza-
tion, (d) implementation, and (e) maintenance. Figure 4.13 [11] illustrates the adoption
of Blum’s essential process model [25] of software engineering to ontological engineering.
The transformation T1, which refers to the conceptual modeling process, can be seen as
a transformation of an idea of a domain into a conceptual model that describes such
an idea. The transformation T2 converts the conceptual model into a formalized model.
The transformation T3 transforms the formalized model into a coded model which can be
executed in a computer.

In order to apply the classification of sorts into the formal conceptual model, I create
a modeling component, that is, concept-level properties of sorts. This is my novel idea of
embedding the sort classification into ontology model. Here, I like to distinguish between
concept-level properties and individual-level properties. For an ontological concept/class,
a set of individual-level properties (known as intensional knowledge) are defined for the
precise semantics (or meaning) of the concept. They are abstracted from the specification
of individuals of the concept. In an alternative speaking, these properties are used to
describe data of each specific individual. Inheritance is allowed among individual-level
properties along subsumption relationships. For sort s, PD(s) is a set of individual-level
properties. When s2 v s1, P

D(s2) ⊇ PD(s1). Concept-level properties are different
from individual-level properties. They are defined only for the conceptual knowledge
of a sort such as it is a type sort and it has an ownIC, etc. Inheritance is restricted
among concept-level properties along subsumption relationships. Let PC(s) be a set of
concept-level properties for sort s. For any s2 v s1, P

C(s2) 6⊇ PC(s1).
At the current state, I define two concept-level properties based on the sort classifi-

cation. They are the category and classification constraint of a sort. More clearly, the
category of a sort describe a particular sort is classified under which sort category such as
type, quasi-type, role, or phase. When a sort is classified under a specific category, there
is a specific constraint that forces individual-level properties defined for the sort to be
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Table 4.1: Two kinds of concept-level properties by sort classification
Sort category Constraint

type ownIC: ιs ∈ PD(s)
quasi-type CVA: pa ∈ PD(s)
role EDR: pd ∈ PD(s)
phase CC: pc ∈ PD(s)

semantically adequate. Table 4.1 describes sort categories and their specific constraints
as follows:

1. If sort s is conceptualized as a type sort then the sort category of s will be “type”.
Every type sort originates an IC, thus the constraint for s is PD(s) must include ιs.

2. If sort s is conceptualized as a quasi-type sort then the sort category of s will
be “quasi-type”. Every quasi-type sort is restricted to possess a CVA, thus the
constraint for s is PD(s) must consist of pa.

3. If sort s is conceptualized as a role sort then the sort category of s will be “role”.
Every role sort is restricted to possess an EDR, thus the constraint for s is PD(s)
must consist of pd.

4. Similarly, if sort s is conceptualized as a phase sort then the sort category of s will
be “phase”. Every phase sort is restricted to possess a CC, thus the constraint for
s is PD(s) must consist of pc.

Concept-level properties describe the conceptual knowledge for concepts themselves
and not for their individuals. The concept-level properties of a sort controls not only
subsumption relationship of the sort, but also what kinds of individual-level properties
should be explicitly defined for a precise semantics of the sort. Suppose that sort s1 is
going to be defined as a role sort. Then, the conceptual modeler has to think of the
following questions:

• What are the property EDR and dependent sort of s1, that prove s1 to be a role?

• Is there a type sort s2 such that s1 v s2?

• What is the ownIC of s2 which can globally identify every individual of s1?

Expressed another way, the concept-level properties enrich the semantics of sorts.
In the implementation level, I use owl:DatatypeProperty to implement concept-

level properties. Since sort categories are disjoint to each other, each sort can be con-
ceptualized under only single category, and not more than one. Thus, sort category is a
functional property. In the case of classification constraint, it records the name of specific
domain-level property according to the defined constraint. I define these two concept-level
properties to use in later matching process.
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4.3.4 A Conceptual Model of Semantically-enriched Ontologies

Ontologies are the conceptualized models of a domain that basically consists of a set of
concepts, their subsumption relationships, a set of individual-level properties, and some
axioms. Thus, I model a source ontology as a quaduple O = 〈S,vv, PD, A〉 where S is a
set of concepts, 〈S,vv〉 is a taxonomy of subsumption relationships v between any two
concepts, PD is a set of individual-level properties, and A is a set of ontological axioms
and constraints. The formalization of each modeling component of O is assumed to be
the same as OWL-DL ontologies [52].

Following by the theoretical foundations discussed in the above sections, mainly the
classification of sorts, now I define a formal model of semantically-enriched ontologies.
The model is called EnOntoModel, in which concept-level properties are additionally
embedded in O to enrich the semantics of concepts.

Definition 24 (EnOntoModel) EnOntoModel is a quintuple OE = 〈S,vv, PC, PD, A〉
where S is a non-empty set of sorts, 〈S,vv〉 is a taxonomic structure of S with subsumption
relationship v, PC is a set of concept-level properties such that PC(s) for each sort s ∈ S,
PD is a set of individual-level properties such that PD = {PD(s) | s ∈ S}, and A is a set
of ontological axioms and constraints.

The following axioms and constraints are defined as standards for any EnOntoModel-
based ontology.

A={
[a1] For any s1, s2, s3 ∈ Stype, if s1 � s2 then s3 6v s1 and s3 6v s2 then
[a2] For any s1 ∈ Stype, s2, s3 ∈ Squasi−type, if s2 v s1 and s3 v s1 then s2 � s3

[a3] For any s1 ∈ S, s2, s3 ∈ Sphase, if s2 v s1 and s3 v s1 then s2 � s3

[c1] For any s ∈ Stype, ιs ∈ PD(s) and ‘=1’ cardinality for ιs
[c2] For any s ∈ Squasi−type, pa ∈ PD(s)
[c3] For any s ∈ Srole, pd ∈ PD(s)
[c4] For any s ∈ Sphase, pc ∈ PD(s)
}

Moreover, other domain-dependent constraints can be defined in ontologies. A simple
domain ontology named Research-Community.owl is presented below as an example
of EnOntoModel.

Example 9 (Research-Community.owl) Domain concepts defined in the ontology
are listed according to their sort categories, as follows:
Stype = {ResearchProject, SoftwareTool, ResearchPublication, Event, Person,

LegalOrganization}
Squasi-type = {CommercialP roject, AcademicProject, OntologyEditor,NLParser,

Reasoner, JournalPaper, P roceedingsPaper, Conference,Workshop,
Seminar, Enterprise, Association,ResearchInstitute, University}

Srole = {Employee, Researcher, FacultyMember, AdminMember, ResearchStudent,
Author, Secretary,Manager, P resident}

Sphase = {AssociateProfessor, P rofessor,MasterStudent, PhdStudent,

ScholarshipEligible, ScholarshipNon-eligible}
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Figure 4.14: The taxonomy of Research-Community.owl
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Table 4.2: Type sorts and their ownICs
Type Sort OwnIC(denoted by ιs)
ResearchProject {hasRProjName, hasRProjOrganizer}
SoftwareTool {hasSTName, hasSTDeveloper}
ResearchPublication {hasRPubTitle, hasRPubAuthors, hasRPubTypeID}
Event hasETitle
Person hasFingerPrint
LegalOrganization hasOrgName

Table 4.3: Quasi-type sorts and their CVAs
Quasi-type Sort CVA(denoted by pa)
CommercialRProject hasRProjType=“commercial”
AcademicRPoject hasRProjType=“academic”
OntologyEditor hasSTCategory=“ontology editor”
NLParser hasSTCategory=“NL parser”
Reasoner hasSTCategory=“reasoner”
JournalPaper hasRPubType=“journal issue”
ProceedingsPaper hasRPubType=“proceedings”
Conference hasEType=“conference”
Workshop hasEType=“workshop”
Seminar hasEType=“seminar”
Enterprise hasOrgGroup=“enterprise”
ResearchInstitute hasOrgGroup=“research institute”
University hasOrgType=“university”
Association hasOrgType=“association”

The taxonomic structure of Research-Community.owl is described in Figure
4.14 which follows the standard axioms and constraints of EnOntoModel. Moreover,
other domain-dependent constraints such as FacultyMember � Student, Staff ≡
Employee, etc., are also defined.

Let me explain the classification system of given concepts. According to Constraint1
defined in Section 4.3.2, the root of each sub-taxonomy is restricted as a type sort that sup-
plies an IC for its individuals. Table 4.2 describes the ownIC of each type sort. For extrin-
sic ICs, I use tuples of individual-level properties as ICs. By a certain IC, the individuals
of each type sort are identifiable. For example, the IC value of each ResearchProject
individual is a couple of research project name and organizer name, such as ‘‘The 21st
Century COE Program’’ +‘‘Japan Advanced Institute of Science and
Technology’’. It is similar that each event has a unique event title such as ‘‘AAAI-06:
Twenty-First National Conference on Artificial Intelligence’’ for
the IC of AAAI-06 which is an instance of Conference. Here, hasRPubTypeID re-
lates between a certain research publication and the identifier of a collection in which it is
published ( an ISSN of a journal issue or an ISBN of a proceedings). A list of quasi-type
sorts and their CVAs with restricted values are described in Table 4.3. The quasi-type
sorts are the partitions of a type sort, but do not originate a new IC and only carry the
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Table 4.4: Role sorts and their EDRs
Role Sort EDR (denoted by pd) Dependent Sort
Employee employIn LegalOrganization
Researcher hasRProj ResearchProject
FacultyMember employIn University
AdminMember administerIn LegalOrganization
ProjectManager manage ResearchProject
President headOf LegalOrganization
Author hasRPublication ResearchPublication
AssociationMember isMemberOf Association
Student EnrollIn University

Table 4.5: Phase sorts and their CCs
Phase Sort CC (denoted by pc)
AssociateProfessor hasFacultyPosition=“associate professor”
Professor hasFacultyPosition=“professor”
ScholarshipEligible hasAge=“≤35”
ScholarshipNon-eligible hasAge=“≥36”
MasterStudent EnrollForDegree=“graduate degree”
PhdStudent EnrollForDegree=“phd”

IC from their type sort. All quasi-type sorts are rigid, that is, every individual of a quasi-
type sort is always an individual of that quasi-type sort. For example, every enterprise
is always an enterprise but neither a university nor an association, untill it ceases from
being an enterprise.

For role sorts, I describe their EDRs together with dependent sorts in Table 4.4. In
this domain, FacultyMember is defined as a person who employes in a university, that
is, there is no association member without any association and if a member exists then
there must be an association. Thus, AssociationMember and Association are
externally dependent to each other. Since all role sorts are anti-rigid, the individuals of
every role sort is not stable and they change world by world. Moreover, an individual can
be an instance of more than one role sort such as a person can be both a professor and a
president in a possible world.

Table 4.5 list the phase sorts and their CCs. Also, phase sorts are anti-rigid and they
changes by worlds. They are the partitions of a certain super-sort and thus they are dis-
joint to each other. For example, the set of associate professors are always disjoint from
the set of professors in every possible world, that is, if a person is employed as an associate
professor then he/she cannot be a professor in the same world. AssociateProfessor
and Professor are the serialized stages of FacultyMember. Then, concept-level prop-
erties of each sort can be defined as follows:

1. For any type sort s ∈ Stype, P
C(s) = {sort-category = “type′′, ownIC = ιs}.

2. For any quasi-type sort s ∈ Squasi−type, P
C(s) = {sort-category = “quasi-type′′,

CV A = pa}.
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3. For any role sort s ∈ Srole, P
C(s) = {sort-category = “role′′, ownIC = pd}.

4. For any phase sort s ∈ Sphase, P
C(s) = {sort-category = “phase′′, ownIC = pc}.

The set of individual-level properties, PD, with specific domains and ranges are also
defined for Research-Community.owl. I list some of them in Table 4.6. The ranges
of some properties are restricted with allowed values. For example, only “female”, and
“male” are allowed in the range of hasGender. According to the given properties,
the meaning of each sort s ∈ S is interpreted unambiguously. As an example, every
PhdStudent is a student who enrolls for PhD degree, and has a research work and a
supervisor for that. The set of individual-level properties that belong to PhdStudent
through subsumption relationships such that PhdStudent v Student v Person is:

PD(PhdStudent) = {hasPName, hasGender, hasBirthDate, hasPEmail, enrollIn,

hasF ingerprint, hasStudentID, enrollForDegree, is-supervised, hasRPub}.

PhdStudent has an IC, hasFingerPrint, which is carried from Person. Also, the
description of PhdStudent can be written in terms of DL notation [52], as follows.

PhdStudent ≡ Student u ∀(hasPName u hasGender u hasBirthDateu

hasPEmail u enrollIn u =1hasF ingerPrint u hasStudentIDu

enrollForDegree u is-supervised u hasRPub)

Recall that deciding whether a sort is a type sort or another kind of sort, does not fully
depend on the common sense of its name. More precisely, a sort is classified according
to the properties and constraints defined for it. Two similar domain ontologies may
have different taxonomies with some common sorts. I claim that the sort categories of
two semantically similar (or equal) sorts in both ontologies should be the same. On the
contrary, if two sorts belong to different kinds of sort category, then they cannot be the
same sort, because their semantics have different classification constraints such as ownIC,
CVA, EDR, or CC. However, several forms of semantic heterogeneity can appear between
two semantically similar sorts.

Suppose that Figure 4.15 is a sub-taxonomy of another ontology which is concep-
tualized for a similar domain like Research-Community.owl. There may be some
corresponding sorts between those two ontologies. For example, DoctoralStudent
can be a correspondence of PhdStudent from Research-Community.owl because
they are classified in the same sort category. However, it is visible that both sorts have
terminological heterogeneity and taxonomical heterogeneity.

In summary, the main idea of EnOntoModel is that domain concepts are represented
as sorts and classified into four groups according to the philosophical notions. Then,
concept-level properties enrich the semantics of sorts. EnOntoModel provides a number
of advantages as follows:

• Individuals of a sort are countable and identifiable. Thus, each individual holds a
unique IC value, and the sort possesses at least one IC directly or indirectly.
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Table 4.6: Some individual-level properties of Research-Community.owl
Property Domain Range

hasRProjName ResearchProject String
hasRProjOrganizer ResearchProject LegalOrganization
hasRProjType ResearchProject String
hasEstablishedDate ResearchProject Date
hasRProjManager ResearchProject ProjectManager
MemberOfRProj ResearchProject ∃ Person
hasRProjSeminar ResearchProject Seminar
hasSTName SoftwareTool String
hasSTDeveloper SoftwareTool LegalOrganization
hasSTCategory SoftwareTool String
hasRPubTypeID ResearchPublication String
hasRPubCategory ResearchPublication String
hasRPubTitle ResearchPublication String
hasRPubAuthor ResearchPublication Author
hasPublishingDate ResearchPublication Date
hasEventType Event String
hasEventPlace Event Location
hasEventOrganizer Event LegalOrganization
hasEventStartDate Event Date
hasEventCloseDate Event Date
hasEventFunder Event LegalOrganization
hasEventContact Event String
hasLatitude Location Integer
hasLongitude Location Integer
hasOrgName LegalOrganization String
hasAddress LegalOrganization String
hasLocation LegalOrganization {hasLatitude, hasLongitude}
hasOrgGroup LegalOrganization String
hasHomePage LegalOrganization URL
headOf LegalOrganization President
hasPName Person String
hasGender Person {female, male}
hasPEmail Person Email
hasBirthDate Person Date
hasFingerPrint Person FingerPrint
EmployIn Employee LegalOrganization
hasEmploymentPosition Employee String
hasFacultyPosition FacultyMember String
supervise FacultyMember Student
is-supervised Student FacultyMember
enrollIn Student University
hasStudentID ResearchStudent Integer
enrollForDegree MasterStudent “graduate degrees”
enrollForDegree PhdStudent “PhD”
hasRPub PhdStudent ResearchPublication
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Figure 4.15: An example of the similar domain ontology

• Domain concepts are structured as taxonomies in the form of subsumption rela-
tionships. By EnOntoModel, conceptual levels among domain concepts are further
divided in terms of sort categoriess such as type, Quasi-type, role, and phase. Be-
cause these sort categories are disjoint to each other, they aid in in determining the
scopes of correspondences in ontology matching. Said another way, EnOntoModel
intends to accelerate the matching process.

• By the conceptual constraints, enriched ontologies can be verified for conceptual
consistency.

• Each sort possesses a specific property by the conceptual constraints, by which,
correspondence between two similar sorts can be detected efficiently by using a
restricted property instead of all available properties.

4.4 Implementation of a Sortal Meta-class Ontology

For the usability of my enrichment theory, how users can enrich their ontologies based on
EnOntoModel becomes critical. I solved this by implementing a sortal meta-class ontology
named sort.owl as an open source interface of EnOntoModel. In this section, I explain
the implementation framework of the sortal meta-class ontology using Protégé OWL API
and a representation of this ontology in OWL-DL.

Note that a meta-class is a specification of classes and it supports runtime access to
meta-data associated with classes. Each meta-data element is referred to a property.
In Protégé, meta-class is a frame interface that is used to define user-defined classes
in ontologies. There are two basic reasons why I selected Protégé-OWL editor for the
implementation of the sortal meta-class ontology.

1. Protégé-OWL editor allows creation of customized meta-classes.

84



����

�������� 	�
����� ���������������������

Figure 4.16: A structure of sortal meta-classes

2. In addition, Protégé provides Protégé Axiom Language (PAL) to define internal
constraints, and to embed these constraints in OWL format.

4.4.1 Purpose and Scope

There are two purposes in implementing a sortal meta-class ontology.

• The first purpose is to support for the usability of EnOntoModel.

• The second purpose is to provide conceptual analysis of the enriched ontologies.

The basic motivation of my enrichment is to clarify and enrich the semantics of concepts
for the issue of semantic heterogeneity. The role of ontologies is to provide a well-defined
structure of domain knowledge that acts as the heart of any system of knowledge represen-
tation on that domain for the purposes of reasoning, knowledge sharing, and integration.
Thus, it is also essential to verify taxonomies that provide a substantial structural in-
formation of ontologies. Properly structured taxonomies help bring substantial order to
elements of a model and play a critical role in reuse and integration tasks. Improperly
structured taxonomies have the opposite effect, making models confusing and difficult to
reuse and integrate. I define conceptual analysis as follows:

Conceptual analysis is a framework for cleaning the taxonomic structure of
ontologies by validating subsumption relationships.

It is also known as ontological analysis [147]. By the second purpose, I embed a system of
conceptual analysis in the meta-class ontology, using Protégé Axiom Language (PAL) that
is an internal language of protégé to author constraints which axiomatize subsumption
relationships between super-classes and sub-classes logically.

The scope of this meta-class ontology is bounded to sorts, and the ontology employs
some conceptual constraints in order to maintain subsumption consistency.

4.4.2 Design and Implementation

There are two major components in the meta-class ontology: (a) specification of sortal
meta-classes, and (b) axiomatization for conceptual analysis.
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Table 4.7: Meta-classes and their properties
Meta-class Properties
TypeSort sort-category has “type”

nameofOwnIC
Quasi-typeSort sort-category has “quasi-type”

nameOfCVA
RoleSort sort-category has “role”

nameOfEDR
PhaseSort sort-category has “phase”

nameOfCC

Specification of Sortal Meta-classes

Meta-class ontology consists of five meta-classes labeled Sort, TypeSort, Quasi-type
Sort, RoleSort, and PhaseSort, as shown in Figure 4.16. Sort meta-class is defined
as the root of other four meta-classes. It has a datatype property named sort-category
to define the category of a certain sort. Then, four meta-classes are defined as the sub-
classes of Sort meta-class and they will be mainly used to represent ontological concepts
as sorts. By property inheritance, sort-category is inherited to all sub-classes.

I describe the specification of four meta-classes in Table 4.7. For each of four meta-
classes, there is an additional property such as nameOfOwnIC, nameOfCVA, nameOfEDR,
and nameOfCC. This means, for any instance class of TypeSort meta-class, an ownIC
must be necessarily defined. Thus, the name of ownIC is recorded as a property in
TypeSort meta-class in order to utilize in the matching process. It is also similar for
other meta-classes.

Figure 4.17 shows a screenshot of the specification of RoleSortmeta-class in Protégé.
This specification states that RoleSort is a sub-class of Sort, each instance of RoleSort
meta-class has at least one EDR, and the value of sort-category is restricted by “role”
for every role sort.

Axiomatization for Conceptual Analysis

I define five PAL constraints in the meta-class ontology for the purpose of conceptual
analysis. These constraints are written based on (a) ontological assumption “anti-rigid
sort never subsumes rigid sorts”, and (b) the disjointness between rigid sorts and between
anti-rigid sorts. The names and meanings of these PAL constraints are:

1. notRoleToType: a role sort never subsume a type sort;

2. notQuasi-typeToType: a quasi-type sort never subsume a type sort;

3. notPhaseToType: a phase sort never subsume a type sort;

4. notRoleToQuasi-type: a role sort never subsume a quasi-type sort; and

5. notPhaseToQuasi-type: a phase sort never subsume a quasi-type sort.

86



Figure 4.17: A specification of RoleSort meta-class in Protégé

Table 4.8: The meanings of some PAL keywords
PAL keywords Meaning
super super-class
sub sub-class
?sub sub-class variable
subclass-of ?sub ?super ?sub is the sub-class of ?super
forall ∀
exists ∃
not ¬
and ∧
or ∨
own-slot-not-null if the given property (or slot) is not null
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Figure 4.18: The screenshot of “PAL constraint” editor

In order to understand well the meaning of a PAL constraint, I first express the
meanings of some PAL keywords in Table 4.8. To write a PAL constraint, we need
to make sure PAL constraints tab is successfully installed and visible in the user
interface of Protégé editor. A screenshot of PAL constraint edior is shown in Figure 4.18.
The editor provides not only for writing the logical statements of a constraint, but also
for syntax checking of the statements.

The meaning of the PAL constraint written in Figure 4.18 is “every sub-class which
has sort category “type” can not be subsumed by a super-class that has sort category
“role”. Briefly, that states “a role sort never subsume a type sort”. The statements of all
five constraints are described in Figure 4.19. I built meta-class ontology sort.owl, and
uploaded it in Protégé ontology library29 as an open source. Thus, users can download the
meta-class ontology via Protégé ontology library. The complete source code is attached
in Appendix.

4.5 Development of Semantically-enriched Ontologies

In this section, I present the steps to develop semantically-enriched ontologies based on
EnOntoModel. I demonstrate the implementation framework of EnOntoModel-based on-
tologies using Protégé OWL API and a representation of these ontologies in OWL. The
major steps of semantic enrichment process are illustrated in Figure 4.20.

1. First, users need to open a new project in Protégé for a source ontology called

29http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
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Figure 4.19: Five PAL constraints in the meta-class ontology
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Figure 4.20: Major steps of semantic enrichment process

O. After opening a new project with ontology O, the classes and properties (both
object and datatype properties) can be viewed via a click on OWL Classes and
Properties respectively as shown in Figure 4.21. Object tab is for individual
properties and Datatype tab is for datatype properties.

2. Second, it is necessary to import sort.owl into the opened project via the import
service of Protégé, as shown in Figure 4.22.

3. Third, the meta-class of each ontological class needs to be changed from standard
class, owl:class, to one of the sortal meta-classes via change metaclass op-
tion of Protégé as shown in Figure 4.23. For this selection, users need the background
knowledge of sort classification. By the selection of meta-class, the sort category
value of each ontological class will be assigned automatically. Then, the user needs
to assert necessary concept-level properties together with individual-level properties,
according to the constraints given in Table 4.7.

4. Fourth, the conceptual consistency of semantic enrichment can be evaluated by
invoking the PAL constraints defined in sort.owl, via the PAL constraints
tab of Protégé. For this verification, users need to run a DIG reasoner: Racer30 or
Pellet31. Racer is the default reasoner in Protégé. The reasoner URL of Racer is
http://localhost:8080. In the case of Pellet, users need to change the rea-
soner URL to http://localhost:8081, via Preferences option from OWL

30http://www.sts.tu-harburg.de/ r.f.moeller/racer/
31http://www.mindswap.org/2003/pellet/
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menu. I list the steps of conceptual analysis through PAL constraints tab,
below.

(a) Add all constraints to the list (click on third button from Choose Constraints
menu bar).

(b) Select the constraints you want to verify, by clicking a checkbox for each con-
straint.

(c) Select taxonomies and sorts to be evaluated for the selected constraints, via a
click on Attachments for selected constraints. If users intend to
verify all defined sorts, this step will not be needed.

(d) Then, execute the selected PAL constraints via a click on Evaluate selected
constraints, as shown in Figure 4.24.

If there are some sorts which violate some PAL constraints, a list of the sorts will
be displayed on the right-hand side. Then, users can view and correct them untill
they are consistent. An iterated process may need between Steps 3 and 4.

5. Finally, the semantically-enriched ontology, OE, can be successfully generated in
OWL via Show RDF/XML source code option from Codemenu. Then, enriched-
version OE can be used for the later matching process. I show a part of enriched
ontology Research-Community.owl in OWL source code in Figure 4.25, where
each sort s ∈ S is represented as an instance class of a certain sortal meta-class, for
example, ResearchProject is an instance of meta-class TypeSort, Enterprise
is an instance of meta-class Quasi-typeSort, Employee is an instance of meta-class
RoleSort, and Professor is an instance of meta-class PhaseSort. The complete
source code of Research-Community.owl is uploaded in Protégé ontology li-
brary32.

32http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
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Figure 4.21: A view of classes and properties in Proteégé
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Figure 4.22: A screenshot for importing ontology
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Figure 4.23: A screenshot of semantic enrichment in Protégé
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Figure 4.24: A screenshot of conceptual analysis using PAL constraints
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Figure 4.25: An example of enriched concepts in OWL
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Chapter 5

EnOntoModel-based Ontology
Matching

In this chapter, my idea of matching between semantically-enriched ontologies is pre-
sented. The proposed matching method is intended to support semantic interoperabil-
ity through heterogeneous ontologies. Parts of this chapter have been published before
[155, 157].

5.1 Overview

My approach of ontology matching is based on an enrichment process. Figure 5.1 depicts
an overview of enrichment-based matching. In my approach, firstly ontologies need to
enrich their semantics. Then matching process finds semantic correspondences between
two enriched ontologies. As the focal point of this ontology matching is for semantic
heterogeneity, an enrichment process prior to matching process intends to clarify the
semantics of concepts and their taxonomic structures. Here, recall that my definition of
ontology matching together Figure 5.2.

Given two ontologies O1 and O2, ontology matching means for each concept
(node) in ontology O1, a corresponding concept (node) which has the same or
similar semantics is discovered in ontology O2, and vice verse.

There are several purposes for performing ontology matching. We can divide them into
two general cases: query answering for information exchange, retrieval, or integration, and
ontology merging. For query answering, a matching process is executed only for desired
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Figure 5.1: An overview of enrichment-based matching
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Figure 5.2: A view of ontology matching

concepts (or candidate sorts). The Web portals1 and softbots2 also use this for information
searching and gathering. In the case of merging, the process needs to discover all possible
correspondences between two ontologies. Then, some articulation rules are needed to
integrate corresponding concepts in a balanced way. The objective of ontology merging is
particularly for knowledge reuse in ontology management. For either purpose, ontology
matching comprises how a class from one ontology can be semantically matched to a class
of the next ontology in an automatic or semi-automatic way. In this chapter, I will mainly
discuss EnOntoModel-based ontology matching for query answering.

In matching for query answering, there are generally two settings [138]:

• Peer-to-Peer Matching: Matching is performed between two local (or adjacent)
ontologies.

• Matching via a Global Ontology: Matching is performed among local ontologies via
a global ontology.

Figure 5.3 illustrates these settings where symbols ‘L’, ‘G’, and ‘Q’, denote for local on-
tologies, global ontology, and query process, respectively. Global ontology is an integrated
view of conceptualization that encompasses in all local ontologies. Because my focus is for
matching between two heterogeneous ontologies in order to provide the interoperability
between two information systems where the ontologies are used, my matching architecture
is similar to Peer-to-Peer approach. If each information system employs multiple local
ontologies, then a global ontology must be already constructed and some articulation
rules between the global ontology and local ontologies must be well-defined. For seman-
tic interoperability, a matching process needs to perform between two global ontologies.
There after, an additional matching step will need to run between a global ontology and a
certain local ontology using the defined articulation rules, to accomplish interoperability.

Concerning semantic correspondence between concepts, there are two possible rela-
tionships. They are subsumption relationship (v) and equality (≡). In this research
work, my matching focuses only for equality and the term ‘correspondence’ means for
semantically-equality between two concepts. Thus, I define the equality between two
sorts as follows:

1A Web portal is a site on the World Wide Web that typically provides personalized capabilities to
its visitors, providing a pathway to other content.

2A Software robot that aggregates Web search services for users.
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Figure 5.3: Two mapping settings in query answering

Definition 25 (Sort Equality) For two sorts s and s′, there is an equality:

s ≡ s′ iff ∀x[ps(x) ↔ ps′(x)].

5.2 Matching Architecture

A general architecture of EnOntoModel-based ontology matching is given in Figure 5.4.
Suppose that there are two information systems driven in a common or overlapped do-
main. The systems are constructed using two heterogeneous ontologies: O and O′. Here, I
concern wide-scale heterogeneity between these ontologies, that is, several kinds of hetero-
geneity such as terminological heterogeneity, taxonomical heterogeneity, schematic het-
erogeneity, and instantiation heterogeneity, may exist in the ontologies. Recall that, for
two concepts, terminological heterogeneity occurs when they have different names, taxo-
nomical heterogeneity occurs when they have different subsumption structures, schematic
heterogeneity comes when they are defined with different sets of individual-level prop-
erties, and instantiation heterogeneity appears when they are instantiated with different
sets of individuals.

In the architecture, I assume that source ontologies are populated, that is, some indi-
viduals are defined as the instances of each concept/class. In practical cases, information
systems employ ontologies together with application databases. Therefore, the concept of
a populated ontology is fundamental to several approaches to ontology mapping.

A requirement of this mapping architecture is ontologies need to enrich their semantics
in terms of EnOntoModel. I have presented the enrichment framework of ontologies
using Protégé OWL API. Following to the enrichment steps described in Figure 4.20,
the enriched versions of source ontologies, OE and O′E , are generated. Each enriched
ontology consists of a set of sorts (S), a taxonomic structure (〈S,vv〉), a set of concept-
level properties PC , a set of individual-level properties PD, and axioms A. The major
characteristics of enriched ontologies are:

• Domain concepts are divided into four disjoint sort categories and conceptual con-
sistency among the sorts is verified by using some philosophical constraints.

• The semantics of each sort, s ∈ S, is defined by a set of individual-level properties
(PD(s)), as well as a set of concept-level properties (PC(s)).

For the purpose of information sharing and integration, semantic interoperability is
required between the systems. In order to achieve this semantic interoperability, the re-
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Figure 5.4: A general architecture of EnOntoModel-based ontology matching

sponsibility of ontology matching is to find semantically similar sorts between two ontolo-
gies. Two enriched ontologies, OE and O′E together with related databases, are the input
of EnOntoModel-based ontology matching process. Since sorts defined in each enriched-
ontology are systematically divided into four groups, the taxonomy of each ontology can
be viewd as a four-layered sorts, as shown in Figure 5.4.

A novel idea of this matching architecture is, for a query, direct matching can be driven
between sorts defined in the same classification group, in stead of matching to all sorts
by traversing taxonomies completely. This is an advantage over other existing mapping
methods. This advantage comes from the following postulate.

For ontology matching, I claim that there is no semantic correspondence be-
tween rigid sorts and anti-rigid sorts, nor between rigid sorts (type sorts
and quasi-type sort) nor between anti-rigid sorts (role sorts and phase sorts),
because their modality and classification constraints are different from each
other.

According to the above postulate, there is no chance of sort correspondences between
different sort categories, that is, a type sort cannot have a correspondence to a quasi-
type sort, a role sort, or a phase sort. It is similarly for quasi-type sorts, role sorts,
and phase sorts. Figure 5.5 illustrates the above postulate and I apply that as matching
heuristics in my method. Consequently, it can flatten iterations of a matching process
and possibly reduce complexity. A detailed technique of EnOntoModel-based matching
method is explained in the next section.
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Rigid sorts Anti-rigid sorts

no match

Type sorts Quasi-type sorts

no match

Role sorts Phase sorts

no match

Figure 5.5: EnOntoModel-based matching heuristics

5.3 Matching Method

Let OE = 〈S,vv, PC , PD, A〉 and O′E = 〈S ′,vv′, P ′C , P ′D, A′〉 be the logical view of two
enriched heterogeneous ontologies. In the matching method, I consider a mapping function
f : s ∈ S =⇒ s′ ∈ S ′ where f performs a matching process to find a semantically
corresponding sort s′ for s. f is further divided into four sub-functions: (1)type sort
matching ftype, (2) quasi-type sort matching fquasi−type, (c) role sort matching frole, and
(4) phase sort matching fphase. The process flow diagram of matching function f is shown
in Figure 5.6. Regarding a query processing, a candidate sort s ∈ S will be the input
of the matching function f and an appropriate sub-function is decided based on the sort
category of s. Finally, the result of correspondence will be retrieved from a specific sub-
function. If there exist a sort, s′ ∈ S ′, which is semantically equivalent to s, then the
related information will be executed as the query definition. In this work, I present the
theoretical aspect of my matching method regarding enriched ontologies. Before a detailed
presentation of matching functions, I first discuss why ICs are useful for matching between
sorts.

5.3.1 Why ICs are useful for matching between sorts?

There are some ways for us to regard that two sorts given in different ontologies are
semantically equivalent. The first possible candidate of such equality can occur when two
given sorts have the same set of individuals, that is,

if [[s]] = [[s′]] then s ≡ s′ (5.1)

where [[s]] denotes for a set of individuals instantiated to sort s. When two sorts are
satisfied by this condition of equality between their extensional knowledge, it is easy
to determine their equality. However, in practice, we cannot expect the exactly same
instantiation in open and incomplete domains.

Example 10 Suppose there are two well-defined ontologies O = 〈S,vv, PD, A〉 and O′ =
〈S ′,vv′, P ′D, A′〉. Their taxonomies are as depicted in Figure 5.7. And assume that the
following sets of properties are defined for each sort in each ontology.

In ontology O,

PD(WebResource) = {hasURL}
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Figure 5.6: The process flow diagram of matching function f

�

���������	�

���
���

�����
���

��

�

������������	�

������
���

��������
���

�����������

� ��

Figure 5.7: Taxonomies of O and O′
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PD(WebBook) = {hasURL, hasT itle, hasAuthor, hasCategory = “Book”}

PD(JavaWebBook) = {hasURL, hasT itle, hasAuthor, hasCategory = “Book”,

hasSubject = “Java”}

In ontology O′,

PD(OnlineResource) = {webAddress}

PD(OnlineBook) = {webAddress, resourceType = “Book”, name, writer,

publishedY ear}

PD(OnlineVideo) = {webAddress, resourceType = “V ideo”, title, director,

V ideoStars, publisher, publishedDate}

PD(JavaOnlineBook) = {webAddress, resourceType = “Book”, name, writer,

publishedY ear, bookCategory = “Java”}

The sets of individuals instantiated to JavaWebBook and JavaOnlineBook via a
web search by Google3 are as follows:
[[JavaWebBook]] = {
c1={Java Application Development on Linux,
http://www.phptr.com/content/images/013143697X/downloads/
013143697X book.pdf, C. Albing and M. Schwarz, Book, Java},
c2={Essentials of the Java Language,
http://java.sun.com/developer/onlineTraining/BasicJava/
index.html, M. Pawlan, Book, Java}
}
[[JavaOnlineBook]] = {
c3={The JavaTM Tutorial,
http://java.sun.com/docs/books/tutorial/index.html,
Sun Developer Network, 2000, Book, Java},
c4={Creating Web Applets with JavaTM ,
http://docs.rinet.ru/webApp/index.html,
D. Gulbransen and K. Rawlings, 2001, Book, Java},
c5={Essentials of the Java Language,
http://java.sun.com/developer/onlineTraining/BasicJava/
index.html, M. Pawlan, 1999, Book, Java}
}

3http://www.google.com
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In Example 10, the semantics of JavaWebBook and JavaOnlineBook can be in-
terpreted as follows:

“JavaWebBook is any WebResource which has properties hasURL, hasTitle, has
Author, hasCategory="Book", and hasSubject="Java".”

“JavaOnlineBook is a set of OnlineResource individuals that possess specific
values for properties webAddress, name, writer, and publishedYear, together
with two constraints resourceType="Book" and bookCategory="Java".”

By the first candidate given by Equation 5.1, [[JavaWebBook]] 6= [[JavaOnlineBook]]
even though their semantics is similar to each other. Kalfoglou and Scholemmer [220]
applies this candidate together with global ontology setting in their matching method
called IF-Map. This candidate is possible from the aspect of enclosed domain but it is
rare to hit such equality in an open and incomplete domain.

The second possible candidate of sort equality can obtain when two given sorts share
a common set of individual-level properties, in a formal notation:

if PD(s) = PD(s′) then s ≡ s′ (5.2)

where PD(s) = PD(s′) iff for every p ∈ PD(s) there exists p′ ∈ PD(s′) such that p ≈ p′.
So, how can we determine that two properties p ∈ PD(s) and p′ ∈ PD(s′) are seman-

tically the same, p ≈ p′? In general, two properties can have the sameness relation when
they both provide the same value for every individual of each sort:

p ≈ p′ iff ∀x[ps(x) ∧ p(x) = p′(x)] ∧ ∀y[ps′(y) ∧ p(y) = p′(y)].

This second candidate is a usage of intensional knowledge defined for each sort. How-
ever again, there are some variations in practice. In Example 10, we can see some sim-
ilar and different properties between JavaWebBook and JavaOnlineBook given in
PD(JavaWebBook) and PD(JavaOnlineBook). Without the same domain and range, it is
hard to determine the sameness between two properties. The difficulties by this second
candidate can be summarized as follows:

1. The number of properties defined for a sort in each ontology may be different, that
is, |PD(s)| 6= |PD(s′)| where |PD(s)| and |PD(s′)| are the numbers of properties
defined for sort s in ontology O, and sort s′ in ontology O′, respectively.

2. The domain of properties may not exactly equal, that is, [[s]] 6= [[s′]].

3. Consequently, the ranges of properties may be different.

Because a sort can be independently defined in ontology, not only the comparison between
two different sets of individuals, but also the property by property comparing between
two different sets of properties, are complex and inefficient.

Thus, how is the IC of each sort for this equality? Regarding the characteristic of
sort “every individual is identifiable and every sort carries an IC for that”, each sort can
possess at least one IC. In Example 10, the ICs of JavaWebBook and JavaOnlineBook
can be defined as ιJavaWebBook =hasURL and ιJavaOnlineBook =webAddress
with a specific domain and range as follows:

hasURL : JavaWebBook⇒ URL

webAddress : JavaOnlineBook⇒ URL
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Figure 5.8: sort correspondences between O and O′

According to the definition of IC (Definition 14), the IC of a sort provides a unique
IC value for each individual of the sort. Both ICs hasURL and webAddress provide
unique URLs to their individuals. A common IC value is sufficient to determine the
identity between two individuals. For example,

hasURL(c2: JavaWebBook) = webAddress(c2: JavaOnlineBook) = v1: URL

where v1=http://java.sun.com/developer/onlineTraining/BasicJava/
index.html. Therefore, c2 and c5 represent for the same individual. Two ICs can be
the same when they supply the same IC value for each individual of the sorts. hasURL
and webAddress can be determined for their sameness by analyzing the URL and web
address of each individual.

When two sorts share a semantically equivalent IC, there are two possible reasons:

• both sorts are subsumed by a similar sort which supplies that IC, or

• the sorts originate that IC and they are the same sort.

It is possible to trace the ICs are whether carried or originated by tracking the path of
subsumption relationships. According to the given properties in Example 10, hasURL and
webAddress are possibly the ownICs of WebResource and OnlineResource. Then,
their sub-sorts carry the ICs through subsumption relationships, and thus each individ-
ual of a sort possess a unique URL. Figure 5.8 shows the possibility of correspondences
between sorts based on their ICs and common attribute values.

In summary, the reason I contend the mapping by ICs is advantageous instead of
comparing all properties and individuals is two-fold:

(a) Picking up only ownIC among properties, we do not need to compare all the prop-
erties nor the property values.

(b) Also, we do not need to care individual names/labels; furthermore, even the IC
names do not need to be same in different ontologies as far as they return same
values.
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Figure 5.9: The IC of sort s, ιs, is exportable to sort s′
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Figure 5.10: The IC of sort s′, ιs′, is importable to sort s

5.3.2 IC-based Type Sort Matching

Among four sub-functions of sort matching f , type sort matching is the most fundamental
process. type sort Matching is a mapping function that finds the correspondence of a type
sort s ∈ Stype in S ′type, where Stype denotes a set of type sorts, that is

ftype : s ∈ Stype =⇒ s′ ∈ S ′type.

Since each type sort originates an IC, the main idea in determining correspondences
between type sorts is based on analyzing whether the ownICs of two type sorts are ex-
portable and importable to each other or not. I give the formal definitions of exportable
and importable below.

Definition 26 (Exportable) If the ownIC of sort s ∈ Stype, ιs, can identify and distin-
guish all the individuals of another sort s′ ∈ S ′type, then ιs is exportable to s′, formally,
∀x, y[ps′(x) ∧ ps′(y) ∧ x = y → ιs(x) = ιs(y))].

Figure 5.9 illustrates ιs is exportable to sort s′, that is, ιs can provide a unique IC value
for each individual of sort s′ similarly like ιs′.

Definition 27 (Importable) If the ownIC of sort s′ ∈ S ′type, ιs′, can identify and dis-
tinguish all the individuals defined for sort s ∈ Stype, then ιs′ is importable to s, formally,
∀x, y[ps(x) ∧ ps(y) ∧ x = y → ιs′(x) = ιs′(y))].

Figure 5.10 illustrates that ιs′ is importable to sort s, that is, ιs′ can provide a unique IC
value for each individual of sort s similarly like ιs. However, for the individuals of each
sort, the IC values provided by both exportable IC and importable IC will not be the
same, if these two ICs were semantically different.

Here after, I divided the relation between two ICs which are both exportable and
importable, into sameness and interchangeability.
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Figure 5.11: Interchangeability between ιs and ιs′

Definition 28 (Interchangeability of ICs) If the ownICs ιs and ιs′, of two sorts s and
s′, are both exportable and importable, then the ICs have an interchangeability relation:

ιs
./
= ιs′ iff ∀x, y[ps(x) ∧ ps(y) ∧ x = y → ιs′(x) = ιs′(y)] ∧

∀x′, y′[ps′(x
′) ∧ ps′(y

′) ∧ x′ = y′ → ιs(x
′) = ιs(y

′)].

Figure 5.11 depicts interchangeability between ιs and ιs′ . By interchangeability, the IC
values provided by the ownICs for each individual are unique but they are different.

Definition 29 (Sameness of ICs) If the ownICs of two given sorts provide the same
IC value for every individual of the sorts, then the ICs have a sameness relation:

ιs
•
= ιs′ iff ∀x[ps(x) ∧ ιs(x) = ιs′(x)] ∧ ∀y[ps′(y) ∧ ιs(y) = ιs′(y)].

Figure 5.12 illustrates the sameness relation between ιs and ιs′. In the case of sameness,
both ownICs must provide the same IC value for the same individual, in addition to being
exportable and importable.

Sameness is actually a kind of interchangeability. I prove if two ownICs: ιs and ιs′ are
in a sameness relation, then they are interchangeable. According to the definition of IC
(Definition 14),

ιs(c1: s) 6= ιs(c2: s) iff c1 6= c2.

If ιs and ιs′ are in a sameness relation, then:
{

ιs(c1: s) = ιs′(c1: s),
ιs(c2: s) = ιs′(c2: s),

and thus,

ιs′(c1: s) 6= ιs′(c2: s) iff c1 6= c2.

The same is true for c′1, c
′
2 ∈ s′. Therefore, ιs and ιs′ are interchangeable. This is the

end of the proof.
Here after, the formal definitions of sort equality by sameness and interchangeability

relations are provided.

Definition 30 (Sort Equality by Sameness of ICs) For sorts s and s′ with ownICs

ιs and ιs′ respectively, sorts are equal with the sameness relation of their ownICs: s
•
≡

s′ iff ιs
•
= ιs′.

In Example 10, there is a sort equality be sameness of ICs between WebResource and

OnlineResource such that WebResource
•
≡ OnlineResource with hasURL

•
=

webAddress.
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Figure 5.12: Sameness between ιs and ιs′
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Figure 5.13: IC-based type sort matching

Definition 31 (Sort Equality by Interchangeability of ICs) For any two sorts s
and s′ with ownICs ιs and ιs′, there is sort equality by the interchangeability relation

between their ownICs: s
./
≡ s′ iff ιs

./
= ιs′ .

Example 11 Suppose that hasFingerPrint and hasIrisPattern are defined as
the ownICs of Person and HumanBeing, and both ICs can identify their related indi-
vidual persons interchangeably but not supplying the same IC value. Also suppose that
hasOrgName and TitleOfOrganization are the ownICs of LegalOrganization
and Organization and they both supply the same organization name or ID to each
individual. Then, sort equalities can be determined as follows:

(a) LegalOrganization
•
≡ Organization with hasOrgName

•
= TitleOfOrganiz

ation
(b) Person

./
≡ HumanBeing with hasFingerPrint

./
= IrisPatternOf

Note that
•
≡ and

./
≡ are the variations of sort equality ≡ by the sameness and in-

terchangeability of ownICs. The source of these variations come from multiple own-
ICs. It is obvious that a sort can originate more than one ownIC, for example, sort
Person originates three ownICs such as hasFingerPrint, hasIrisPattern, and
hasPalmVeinPattern. Thus, the equality between two similar sorts cannot be deter-
mined by the sameness between their ownICs if each ownIC is semantically different to
each other, that is, the IC values provided by such ownICs for an individual are not the
same.

Now, I will present the procedure of IC-based type sort mapping. Figure 5.13 depicts
the approach of IC-based type sort matching. In the process, a bottom-up searching
approach is applied because ICs are inherited from top to bottom. Our intuition in this
is if an IC is exportable to a sort at the bottom-level, then it is a proof that a type sort
exists at the upper-level of the same branch. In order to find the correspondence of a
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candidate sort s ∈ Stype in O′, the matching process needs to analyze the related ownICs
are exportable as well as importable. However, it is unreasonable to check whether ιs′ is
importable to sort s if ιs failed to be exportable to sort s′i. Therefore, the search process
will detect a next possible sort s′i ∈ S ′type whenever ιs is not exportable. When ιs is
successfully exportable to s′i, the export process continues to s′j such that s′j w s′i till the
process assures a top-most exportable sort for ιs. By this approach, the matching process
can reduce complexity. I summarize the procedure of IC-based type sort mapping, below.

1. Choose a sort ,s′i, from S ′type by any chance.

2. Test whether the ownIC of sort s, ιs, is exportable to s′i.

3. If yes, find s′j such that s′j w s′i, and test the top-most exportable sort s′j for ιs, then
test whether the ownIC of sort s′, ιs′, is importable to s or not.

(a) If yes, there is interchangeability, then test for sameness.

i. If yes, there is sort equality by sameness between s and s′j such that s
•
≡ s′j.

ii. Otherwise, there is sort equality by interchangeability between s and s′j

such that s
./
≡ s′j .

(b) Otherwise, try such s′j v s′i on other branches for interchangeability.

4. Otherwise, go to (1) to select a next possible sort s′i.

5.3.3 Matching of Quasi-type sorts, Role sorts, and Phase sorts

Among all matching functions, type sort matching is the most fundamental in my method.
According to the classification structure among sorts, quasi-type sorts, role sorts, and
phase sorts are subsumed by type sorts. In an alternative speaking, type sorts supply ICs
for the identity of individuals and all sorts carry ICs from the type sorts which subsume
them. All matching functions obey the following heuristic.

No correspondence (or match) can be found between two sorts if there is no
sort equality between their type sorts.

Therefore, each matching function invokes type sort matching in order to fix the scope of
possible matches. By the classification of sorts, it comes easy to detect the most pertinent
type sort which supplies an IC to the candidate sort. Two basic ideas in each sub-function
are (1) fixing the scope of possible matches by detecting correspondence between super-
sorts, especally between type sorts, and (2) analyzing the sorts exist in the scope for a
correspondence, via a special property such as CVA, EDR, and CC.

Quasi-type sort Matching

Quasi-type sort Matching is a mapping function that finds the correspondence of quasi-
type sort s ∈ Squasi-type in S ′quasi-type, that is

fquasi−type : s ∈ Squasi−type =⇒ s′ ∈ S ′quasi−type.

There are two main steps in the process of quasi-type sort matching function.
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Figure 5.14: The process flow diagram of quasi-type sort matching

• First, the scope of possible matches in S ′quasi-type is decided by finding type sort

s′1 ∈ S ′type which has a corresponding type sort s1 ∈ Stype such that s v s1.

• After that, the correspondence of s is determined by a similar CVA in both PD(s)
and PD(s′).

Figure 5.14 describes the detailed process flow of quasi-type sort matching. A quasi-type
sort, s ∈ Pquasi−type, will be the input of this process. The function finds type sort s1 which
subsumes s such that s1 w s. Then, the function is proceeded to search the corresponding
type sort of s1 in O′E, that is s′1 ∈ S ′type. For this search, quasi-type sort matching
calls type sort matching function. If s′1 is successfully found, then the scope of possible
matches in O′ for sort s is fixed by selecting quasi-type sorts, s′2 ∈ S ′quasi−type, which all
are subsumed by s′1; otherwise the function will end. There is a loop for checking whether
s and any of s′2 have a similar CVA or not. I use a simple string matching approach to
determine for a similar CVA. If a corresponding sort s′2 is found then the quasi-type sort
matching function will return s′2; otherwise null.
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Figure 5.15: The process flow diagram of role sort matching

109



����������	
�����

����������
��������	
�����

����
����

�	�
����


�
����

��
������������	
�����

����������	
�����

�
�����������

��
��������

Figure 5.16: A view of phase sort matching through divide-and-conquer approach

Role sort Matching

Role sort Matching is a mapping function that finds the correspondence of role sort s ∈
Srole in S ′role, that is

frole : s ∈ Srole =⇒ s′ ∈ S ′role.

Figure 5.15 shows the process flow of roleMatching function. There are three steps in the
role sort matching process.

• First, select sort s1 ∈ S such that s v s1, to find a corresponding type sort s′1 ∈
S ′type by invoking type sort matching function.

• Second, if type sort matching successfully returns a corresponding type sort s′1, then
determine the scope of possible matches by searching a corresponding quasi-type sort
s′2 ∈ S ′quasi−type.

• Third, according to the result of corresponding quasi-type sort s′2, examine the
scope of possible matches among role sorts again. If there is s2 ≡ s′2 then the scope
of possible matches will be s′2 w s′3, otherwise s′1 w s′3. And the correspondence
between s and any of s′3 will be determined by analyzing for a common EDR in
both PD(s) and PD(s′).

Since EDR is a relation between a sort and its dependent sort, the role matching function
needs to analyze whether two given EDR satisfies sameness relation such that pd ≈ p′d.
Figure 5.15 shows the process flow of role sort matching.

Phase sort Matching

Phase sort Matching is a mapping function that finds the correspondence of phase sort
s ∈ Sphase in S ′phase, that is denoted as

fphase : s ∈ Sphase =⇒ s′ ∈ S ′phase.

The process of phase sort matching is almost similar to the steps of role sort match-
ing, except analyzing CC instead of EDR to determine the correspondence of s. There-
fore, please refer to Figure 5.15 for the process flow diagram of fphase by substituting
similarCC(s, s′3) in the place of similarEDR(s, s′3). A general view of phase sort
matching function is shown in Figure 5.16.
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5.4 Matching Algorithm

Following to the matching processes presented in the previous section, I describe the
algorithm of mapping function, f , in the following.

function f(s, OE, O′E)
begin

if s ∈ Stype then s′ := ftype(s, O
E, O′E);

if s ∈ Squasi-type then s′ := fquasi−type(s, O
E, O′E);

if s ∈ Srole then s′ := frole(s, O
E, O′E);

if s ∈ Sphase then s′ = fphase(s, O
E, O′E);

return s′;
end;

function ftype(s, O
E, O′E)

begin
For s′ ∈ S ′type do/% bottom-up approach%/

if interchangeability(s, s′)=yes OR sameness(s, s′)=yes then
return s′;exit;

end for;
return null;

end;

function fquasi−type(s, O
E, O′E)

begin
s′ := null;

if | S ′quasi-type |6= 0 then s′1 := ftype(s1, O
E, O′E), s v s1;

if s′1 6= null then
For s′2 ∈ S ′quasi-type such that s′2 v s′1 do

if similarCVA(s, s′2)=yes then s′ := s′2;exit;
end for;

return s′;
end;

function frole(s, O
E, O′E)

begin
s′ := null;

if | S ′role |6= 0 then s′1 := fquasi−type(s1, O
E, O′E), s v s1;

if s′1 6= null then
For s′2 ∈ S ′role such that s′2 v s′1 do

if similarEDR(s, s′2)=yes then s′ := s′2;exit;
end for;

return s′;
end;
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function fphase(s, O
E, O′E)

begin
s′ := null;

if | S ′phase |6= 0 then s′1 := fquasi−type(s1, O
E, O′E), s v s1;

if s′1 6= null then
For s′2 ∈ S ′phase such that s′2 v s′1 do

if similarCC(s, s′2)=yes then s′ := s′2;exit;
end for;

return s′;
end;

function sameness(s, s′) /% interchangeability plus equal IC values %/
begin

if interchangeability(s, s′) = yes
then

ιs := ownIC(s);ιs′ := ownIC(s′);flag := yes;
for c ∈ s do

if ιs(c: s) 6= ιs′(c: s) then flag = no; end for;
if flag = yes then

for c′ ∈ s′ do
if ιs(c

′: s′) 6= ιs′(c
′: s′) then flag = no; end for;

return flag;
end;

function interchangeability(s, s′) /% both exportable and importable %/
begin

ιs := ownIC(s);
mutual flag := no;
if exportable(ιs, s

′)= yes
then

s′′ := search upward(s′, ιs);
ιs′′ := ownIC(s′′);

if importable(ιs′′ , s)= yes then/% s
./
= s′′ %/

mutual flag := yes; s′ := s′′;
end if;
return mutual flag;

end;

function exportable(ιs, s
′) begin

export flag := yes;
for c1 ∈ s do

for c2( 6= c1) ∈ s do
if ιs′(c1: s) = ιs′(c2: s) then export flag := no;

return export flag;
end;
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function importable(ι, s)
begin

return exportable(ι, s);
end;

function upper sort(s′)
begin

return s′′ such that s′′ w s′ ∈ S ′;
end;

function search upward(s′1, ιs)
begin

exportable top-most := s′1;
s′2 := upper sort(exportable top-most);
while s′2 6= nil and exportable(ιs, s

′
2) = yes do

exportable top-most := search upward(s′2, ιs);
return exportable top-most;

end;

The corresponding sorts between two heterogeneous ontologies can be found through
the above four matching functions.

5.5 Evaluation

In this section, I evaluate the EnOntoModel-based matching method by calculating the
mathematical complexity of matching function f .

Suppose that the maximum number of sorts in OE and O′E are N . Let m and n be
the number of individuals for sorts s and s′. The retrieval of IC value for an individual
takes a constant time. Also, the computation for the equality between two IC values takes
a constant time. Therefore, the complexity to check whether two ICs supply the same
IC value for an individual or not, will cost O(1). Consequently, the tests for exportable
IC and importable IC would take O(m) and O(n) respectively. For the convenience of
estimation, if we regard a binary tree for taxonomies, then the average depth would be
logN , and the approximate number of leaves would be N/2, as shown in Figure 5.17.

The mathematical complexity of matching function f , denoted by Tf , is calculated
based on the complexity of four sub-functions: ftype, fquasi−type, frole, and fphase. Since
type sorts are necessry for EnOntoModel-based ontologies concerning the identity of in-
dividuals, the number of type sorts in both ontologies is not zero. Let the maximum
number of type sorts be k, 1 ≤ k ≤ N . Then, the maximum number of quasi-type sorts,
role sorts, and phase sorts, in each ontology will be N − k.

Let Ttype be the worse case complexity of type sort matching. Ttype can be calculated
based on the cost of exportable IC in maximum plus the cost of importable IC. The
maximum steps to achieve a top-most exportable sort in O′E would be k/2 + log k.
Then, the worse case complexity of type sort matching will be as follows:

Ttype = (k/2 + log k) ×m+ n
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Figure 5.17: The average depth and number of leaves in a binary tree

where (k/2 + log k/2) ×m for the maximum number of comparisons in export test, and
n for the maximum number of comparisons in import test.

Let Tquasi-type, Trole, and Tphase, are the worse case complexities of fquasi−type, frole,

and fphase, respectively. Then, the complexities of these sub-functions are as follows:

Tquasi-type = Ttype + (N − k) ×O(1)

Trole = Tquasi-type + (N − k) × (m+ n)

Tphase = Tquasi-type + (N − k) ×O(1)

Note that the complexity of CVA or CC, is assumed to be O(1) because of direct
attribute value or constraint checking. In the case of role sort matching, matching between
two EDRs will cost O(m+n), due to checking whether two EDRs are semantically similar.
Finally, Tf in the worse case will be as follows:

Tf = Ttype + Tquasi-type + Trole + Tphase

= ( ((k/2 + log k) ×m+ n) + ((N − k) ×m) + ((N − k) × n) )

= O(N ×m)

Although the mathematical complexity of ftype is O(N ×m), in practical cases, we can
expect that (k/2 + log k) < N .

If Tf is applied for the complete ontology matching, Tc, of all available sorts between
OE and O′E , then Tc would be N × Ttype = O(N2 ×m). However, it can be reduced to

O(N logN ×m), because the matching functions need not be executed for the sub-sorts
of every un-matched type sort.

5.6 Experimental Results

In this section, I present the experimental results of EOM and my experience of ontology
mapping. The major objective is to evaluate the matching accuracy of EOM using real
data sets. The implementation of EOM is coded in Java by utilizing Jena OWL API and
Protégé OWL API.
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In the experiments, I conducted evaluations in terms of two measurements: precision
and recall. In general, precision and recall measures are designed to compare the set of
correct correspondences in the program generated correspondences with expert-defined
correspondences. Let me denote three sets: (a) Ce for expert-defined correct correspon-
dences, (b) Cf for program-generated correspondences by using EOM function f , and (c)
Cfe for the correctness of Cf in Ce such that Cfe = Cf ∩ Ce. Then, the correctness of
Precision and recall are defined as follows:

• Precision (P) is the percentage of correctness in the program generated correspon-

dences. P is calculated by
|Cfe|

|Cf |
.

• Recall (R) is the percentage of the correctness of program generated correspon-
dences, comparing with expert-defined correct correspondences. R is calculated by
|Cfe|

|Ce|
.

In order to get real data sets for this experiment, I analyzed a number of OWL
ontology libraries on the Web, in particular Protégé OWL library4. Even though a large
number of ontologies are avaliable, most of them are domain-dependent such as bio-
medical, chemical, geographic, micro-electronic, space & earth, PSM-Problem Solving
Method, country, travel, wine, etc. Thus, it is not easy to choose some of them as
mapping candidates without adequate background knowledge of each domain. Here, I
selected two domains: academic research and wine. Then, I chose two ontologies for each
domain as follow and prepared two data sets.

1. Ontologies in Academic Research. Ontologies describe concepts in academic re-
search such as research areas, activities, publications, institutions, and kinds of
community people. Namely, they are ka.owl5 and Research-Community.owl.
In ka.owl6, the developer focuses on the concepts of academic research partic-
ularly in knowledge acquisition. Research-Community.owl is general rather
than ka.owl. However, both ontologies are partially overlapped with some hetero-
geneities.

2. Ontologies in Wine. Wine ontologies describe concepts in wine domain that consist
of winery, wine region, wine grape, wine categories, and recommended food of fine
wines, etc. wine.owl7 covers most of famous wineries and vineyards around the
world. French-Wine.owl is developed by the author and it is specialized only for
wines in France regions. The significant difference between two wine ontologies is the
approach of conceptualization, that is, wine.owl is mainly focused on wine regions
while wine categories in French-Wine.owl are based on wine grapes particularly
grown in France regions. Thus, heterogeneity is highly involved between two similar
concepts.

4http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
5ka.owl is developed by Ian Horrocks who is a professor in the School of Computer Science at the

University of Manchester, also a member of Information Management Group for Formal Methods and
Bio and Health Informatics (see http://www.cs.man.ac.uk/%7Ehorrocks/).

6http://protege.cim3.net/file/pub/ontologies/ka/ka.owl
7wine.owl is developed from Stanford University (see http://protege.cim3.net/file/pub/

ontologies/wine/wine.owl). The original version is in DAML and it is substantially changed to
OWL version.
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Ontology | S | |SType| |SQuasi-type| |SRole| |SPhase| PD Individual

ka.owl 82 10 60 8 4 137 250
Research- 35 6 14 9 6 59 80
Community.owl
wine.owl 105 26 79 0 0 67 186
French- 73 15 58 0 0 43 142
Wine.owl

Table 5.1: Statistics of data sets

Ontology Mapping |Ce| |Cf | |Cfe| P R
ka.owl and Research- 26=6+11+5+4 20=5+7+4+4 18 90.00 69.23
Community.owl
wine.owl and 29=11+18+0+0 18=6+12+0+0 17 94.44 58.62
French-Wine.owl

Table 5.2: Precision (P) and recall (R) on data sets
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Figure 5.18: Experimental results in two domains
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Note that the enriched versions of ka.owl and wine.owl are generated in the form
of EnOntoModel. Table 5.1 shows the statistics of data sets given for each enriched
ontology. I assigned 90% common individuals for both wine ontologies. However, the
percentage of overlapped individuals between two academic research ontologies is about
40%. Table 5.2 shows the precision and recall of two mapping experiments. Then, Figure
5.18 illustrates the experimental results in a bar chart style.

What I learnt from this experiment is the precision of EOM method is sufficient, that is,
the concept corresspondences found by the program is mostly correct. I contend to say this
correctness is effected from enrichment because concepts and individuals are consistently
defined in terms of specific properties such as ICs, EDR, CVA, and CC. Currently, the
result of recall is not so strong. I observed that there is a little tricky in comparing two
IC values—mostly string values in different orders and phrases—which are given in terms
of compound ICs—a tuple of individual-level properties for IC. It is better to use an
appropriate text analyzer instead of conventional string matching. Also, an issue with
these measures is that the correctness of expert-defined correspondences is a subjective
measure, which are slightly varied by expert to expert according to their knowledge. A
better way is to let appropriate domain experts evaluate the method through ontologies
used in real information systems, and then compare the results with other methods.

5.7 Related Work

As for related work, I will discuss in two divisions. The first division is a comparative
discussion with existing mapping methods. The next division is difference between On-
toClean and my research.

5.7.1 Ontology Matching

I have presented some matching tools and methods such as MAFRA, ONION, PROMPT,
IF-Map, COMA++, QOM, and GLUE, in Section 3.3. Here, I describe a summary of
their matching methods as related work to EnOntoModel-based matching.

In MAFRA, similarity between two concepts is calculated mainly using lexical analysis
via WordNet, domain glossaries, bi-lingual dictionaries, and corpuses. There is no explicit
deterministic heuristics other than lexical heuristics (or synonyms), in the semantic bridge
construction.

ONION is an heuristic-based ontology mapping system to resolve terminological het-
erogeneity using two matching approaches: linguistic matching via WordNet8 and instance-
based matching via databases. ONION provided algorithms for how to calculate a simi-
larity score between a little complex names of ontological concepts such as ‘Department
of Defense’ and ‘Defense Ministry’.

PROMPT is a semi-automatic and interactive tool suit for performing ontology merg-
ing, based on the Frame paradigm. For concept matching, AnchorPROMPT firstly de-
tects linguistic similarity matches (called anchors) between domain concepts. It is a usual
way of fixing the scope of possible correspondences. Secondly, AnchorPROMPT ana-
lyzes the paths of the input ontologies delimited by the anchors in order to determine
concepts frequently appearing in similar positions on similar paths. Thirdly, PROMPT

8http://wordnet.princeton.edu/
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Matching Methods IBSA LBSA SBSA TBSA Meta-knowledge
MAFRA * * * *
ONION * *
PROMPT * * *
IF-Map *
COMA++ * * *
QOM * * *
GLUE * * * *
EOM * * * *

Table 5.3: Techniques of similarity analysis applied in each matching method

proposes some correspondences determined by analyzing the structural knowledge—both
schematic and taxonomical knowledge—of terminologically similar concepts. The limita-
tion of PROMPT is that the two ontologies in the merging process should be different
versions of the same ontology. This limitation intends to reduce the complexity of mapping
and merging between heterogeneous ontologies.

IF-Map is a channel-theory-based ontology mapping technique. In IF-Map, there are
two assumptions: (1) using a common reference ontology for all local ontologies, and (2)
considering an equal set of instances for the decision of concept mapping. Kalfoglou and
Schorlemmer claim that IF-Map could provide fully automation for a matching process.
However, the second assumption is a big restriction for the applicability of IF-Map con-
cerning instantiation heterogeneity.

COMA++ supports higher-level strategies to address complex match problems, in
particular fragment-based matching and the reuse of previous match results. Following the
divide-and-conquer idea, it decomposes a large match problem into smaller subproblems
by matching at the level of schema fragments. COMA++ encompasses two matching
phases: (a) identifying similar fragments, and (b) matching fragments.

QOM focuses on less run-time complexity for mapping efficiency of large-size, light-
weight ontologies. However, QOM mostly constitutes a straightforward name-based sim-
ilarity computation via RDFS syntax in order to determine correspondences between two
ontologies.

GLUE is a system that employs a multi-strategy machine learning technique with joint
probability distribution. Firstly, GLUE identifies the similarities of instances. Secondly, it
compares between relations, based on the similarity results of instances. GLUE uses two
kinds of base learners: a name learner to encounter possible correspondences through a
linguistic approach, and a number of content learners to predict the similarity between in-
stances and between properties according to the types of properties. Finally, meta-learner
combines the predictions of all base learners and determines concept correspondences.

Among the above mapping tools, the matching methods of PROMPT, COMA++, and
GLUE are similar even though PROMPT and COMA++ do not apply instance-based
analysis. The same point among them is that the scope of possible matches is predicted
using name-based matching. EnOntoModel-based matching method uses concept-level
properties (also called meta-knowledge) together with intensional and extensional knowl-
edge of domain concepts. The usage of concept-level properties is a distinctive feature
of my method from the others. I redescribe Table 3.1 by adding EOM and show it in
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Table 5.3. I appreciate that each mapping method has its own advantages with different
focuses, assumptions, and limitations.

In general, I contend two advantages for EOM over other mapping methods. The first
advantage is a more reliable approach of predicting possible correspondences. As I have
discussed, two concepts with the same name may have different semantics. Suppose that
ontology developed by a certain university, where only graduate courses are available, uses
concept name Student for a set of graduate students. Another ontology developed by
a different university, where only undergraduate courses are available, may use the same
name for different semantics. In the opposite case, two concepts might have different
names. Because the meaning of concept names cannot completely express the semantics
of concepts, a chance of correspondence between two terminologically quite different con-
cepts is very less or not obtainable. In my method, domain concepts are systematically
classified into sort categories according to EnOntoModel. Therefore, the scope of possible
correspondences is already fixed. Moreover, my method can trim impossible correspon-
dences mainly by analyzing the equalities of type sorts. The second advantage is less
complexity that is achieved by the following points:

• The complexity is initially reduced by a direct matching between the same sort
groups.

• The complexity is reduced by trimming impossible correspondences via type sorts.

• my method can determine sort correspondences by analyzing only a specific prop-
erty, ownIC, CVR, EDR, or CC, while other methods need to analyze all defined
properties.

In order to prove for less complexity, I examine the similarity analysis by the content
learners of GLUE in terms of mathematical complexity. In GLUE, the similarity between
two nodes (classes) is determined by the similarity of their attributes and relations with
their neighbour nodes. Then, the similarity between two attributes is calculated by the
similarity between their corresponding instances. Suppose that Nc, Np, and Ni are the
maximum number of nodes, properties (attributes & relations), and instances. Let us
assume that the complexity of comparing two attribute values between two instances is
O(1). Then, the complexity of calculating similarity between two instances will be O(Np).
And, O(Np

2 × Ni) will be the complexity for the similarity between two nodes. Finally,
the matching between two ontologies will take O(logNc×Np

2 ×Ni). In order to compare
GLUE with my matching method, let us substitute N for every parameter; the cost of
GLUE will become O(N3 logN), while my matching method costs O(N2 logN) because
the method does not require comparing all properties belonging to each class.

Figure 5.19 illustrates the complexity difference between EnOntoModel-based match-
ing and GLUE’s content-based matching in a line chart style. The chart states that the
complexity difference is especially by number of properties, assuming that number of sorts
and instances are equal in each case. Whenever the number of properties belonging to
sorts increases, then the complexity difference will increase proportionally. In this com-
parison, I consider IC as a compound property, that is, the number of individual-level
properties compiled for an IC is ≥ 1.
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Figure 5.19: EnOntoModel-based matching vs GLUE’s Content-based matching

5.7.2 Ontological Analysis

Welty and Guarino provided a methodology called OntoClean to perform ontological
analysis—cleaning the taxonomic structure of ontologies by validating subsumption re-
lationships. The methodology is based on some ontological notions drawn from philos-
ophy. The foundation of OntoClean was started in 1994 [139, 140, 141, 142, 143, 144].
Then, the OntoClean methodology was first introduced in a series of papers in 2000
[145, 146, 147, 148, 149]. All references can be found at the home page of OntoClean9.

OntoClean methodology consists of three main contributions: (a) defining four fun-
damental meta-properties: identity (I), rigidity (R), unity (U)10, and dependency(D)
for ontological concepts, (b) classifying ontological concepts into sortal and non-sortal
concepts given by a quadruple of certain values11 based on the meta-properties, and (c)
providing some subsumption constraints to clean taxonomic structures of ontologies.

I observed that the philosophical notions behind OntoClean is useful not only for onto-
logical analysis but also for conceptual modeling of ontologies. Therefore, I apply three12

of OntoClean’s meta-properties for ontology mapping in order to deal with semantic het-
erogeneity. Concerning the philosophical notions, I describe my add-ons over OntoClean
as follows:

• The formalizations of OntoClean’s meta-properties are confusing without a precise
semantics by a formal logic language. Thus, I provided a First-order Quantified
Modal Language LE and redefine each notion explicitly.

9http://www.ontoclean.org/
10Unity is the notion of whole for each individual of a concept. Something is a whole if all of its parts

are connected to each other and to nothing else [146]. The unity considers an internal relation between
an instance and its parts, such as the parts of a human body are tightly connected to each other as a
whole body of a human.

11A combination of meta-property values is presented as a classifier of concepts. For example, (+R +
O+I−D) for type, (+R−O+I−D) for quasi-type, and (∼R−O+I+D) for material role where O for
ownIC, and +R and ∼R are rigidity values: rigid and anti-rigid respectively. For each meta-property,
there are three different property values by attaching different symbols: +, −, and ∼.

12I indirectly apply unity in the meaning of individuals because every individual can be assumed as a
whole which is countable and identifiable.

120



• In OntoClean, IC is formalized as a characteristic relation which is not precise to
apply in computer systems. I provided an explicit formalization of IC using a unary
function of language LE . In additon, I showed that ICs can be written in the form
of owl:DatatypeProperty with restrictions of owl:FunctionalProperty,
owl:InverseFunctionalProperty, and = 1 cardinality. Relatively, domain
concepts/classes can be represented as sorts and sorts can be written in the form of
owl:Class which is restricted by an IC.

• I could provide a model of semantically-enriched ontologies (named EnOntoModel),
in which the philosophical notions are explicitly embedded into domain ontologies
as concept-level properties.

• Also, I demonstrated how to enrich domain ontologies in the form of EnOntoModel
through Protégé OWL API, and applied an idea similar to OntoClean’s analysis in
the meta-class ontology, to check conceptual consistency of enriched ontologies.

In summary, the philosophical notions are applied for ontological analysis in the work
of OntoClean. Then, they are employed in my research for an efficient matching between
heterogeneous ontologies through a semantic enrichment process.

5.8 Benefit and Cost of EnOntoModel

The fundamental objective of semantic enrichment is to provide adequate and precise
semantics for domain concepts by fertilizing additional knowledge in the descriptions of
concepts. In this research, the motivation of semantic enrichment is derived from match-
ing between heterogeneous ontologies. In order to deal with wide-scale semantic het-
erogeneity, I proposed philosophy-based concept classification theory and EnOntoModel.
Though some advantages particularly time cost and accuracy, are significant in EOM
method, I admit the cost of enrichment for this. Thus, what is the development cost of
EnOntoModel-based ontology and how to calculate it, is raised as an issue.

There are two ways in the development of enriched ontologies. The first choice is the
development of enriched version for an existing OWL ontology. The second choice is the
direct development of ontologies in the form of EnOntoModel. In the case of second choice,
we first build a conceptually consistent and structured ontology, OE. Then, developers
can reformat OE version to O by reformatting the meta-class of each domain concept to
standard OWL class, and then removing the imported link of sortal meta-class ontology
sort.owl via remove option of Protégé import. Note that the import link should not
be moved out before reformatting concepts; otherwise concepts can be lost together with
import withdrawal. Taxonomies and concept descriptions between OE and O are almost
the same except concept-level properties. By the first way, there may be different between
two versions not only in taxonomies but also in concept descriptions, because enrichment
process might affect to original version in order to clarify and enrich the semantics of
concepts.

In order to deal with semantic heterogeneity, most matching methods need either
a preprocessing before mapping or pruning off mapping results via expert-interaction,
or both. For example, a mapping approach called Risk Minimization-based Ontology
Matching (RiMOM) [47] is recently contributed concerning both name-based matching
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and instance-based matching. In RiMOM, the developers use pre-pruning as well as post-
pruning processes in their experiment. In EOM, we can say enrichment framework is a
kind of pre-pruning process. However, this enrichment can improve not only mapping
results between heterogeneous ontologies, but also conceptual consistency of ontologies.

Currently, I have no idea to estimate the cost of enrichment in mathmetical formula.
However, the above discussion would be useful to judge the benefit and cost of EnOnto-
Model.
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Chapter 6

Conclusion

I have presented an approach of philosophy-based semantic enrichment and a method of
enrichment-based ontology matching in order to deal with semantic heterogeneity. In this
chapter, I conclude the thesis with a discussion of four topics. First, the main contributions
of this thesis are summarized. Second, a list of advantages and limitations of semantic
enrichment and matching method is given. Third, a brief history of my research progress
is described according to the list of publications. Finally, a number of directions for future
work are presented.

6.1 Summary of Contributions

First of all, recall the major aim of the thesis: “how to deal with wide-scale semantic
heterogeneity in matching between large ontologies”. I describe a summary of my con-
tributions according to this major aim and the objectives defined in Section 1.3. In
this thesis, finding semantic correspondences between two heterogeneous ontologies is ap-
proached with focus on a matching method between classified concepts using the most
relevant properties which can certainly determine a correspondence between two seman-
tically equivalent concepts. The whole approach can be partitioned into two phases: (1)
the semantic enrichment phase and (2) the mapping phase. The former phase consists
of modeling and implementing semantically-enriched ontologies. The later phase is for a
matching method between enriched ontologies and an experiment. Now, I list the contri-
butions of each phase in detail.

In phase (1), a distinctive approach of semantic enrichment is proposed. It is composed
of two major parts: modeling and implementing.

• Modeling : I provided a formal semantically-enriched model of domain ontolo-
gies using some philosophical notions intuitively. This part includes the following
contributions.

1. Regarding the major aim of the thesis, I reformalized IC, existential rigidity,
and external dependency, in a precise semantics.

2. For this formalization, I presented a First-order Quantified Modal Language
LE that concerns varying domains of possible worlds together with the issue
of actual existence in Kripke semantics. Moreover, the language focuses on a
systematic formalization of ICs by considering a 2-sorted universe: individuals
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and datatypes. A Kripke model that satisfies axioms S5 + BF is provided to
distingush rigid sorts from anti-rigid sorts, as well as ICs from local identifiers.

3. Firstly, I formalized IC by using a unary function of LE , denoted by ι, and thus
the identity between two individuals could be determined by the entailment of
equality between their IC values. Secondly, I represented IC as a property of a
sort and distinguished it from other properties by the characteristic of one-to-
one functional between its domain and range. Thirdly, I showed that ICs can be
written in OWL by using owl:DatatypeProperty with three restrictions:
owl:FunctionalProperty, owl:InverseFunctionalProperty, and
= 1 cardinality. These ideas are very useful to encounter the identity of indi-
viduals in computer systems.

4. I claimed that domain concepts/classes can be represented as sorts with re-
spect to the fact “the individuals given in a universe of discourse are countable
and identifiable”. Then, a formal description of sorts and the definition of sub-
sumption relationships between sorts, are presented. Also, I observed that a
sort can possess multiple ICs either IC inheritance or multiple ownICs. More-
over, I showed that sorts can be implemented by using owl:class with a
restriction of containing at least one IC. This contribution is a foundational
step to apply the pholosophical notions into formal ontologies in a practical
way.

5. Following the classifications of ontological concepts in the literature of phi-
losophy, especially by N. Guarino & C. Welty [147], and G. Guizzardi [61], I
redefine four sort categories: type, quasi-type, role, and phase, explicitly using
some conceptual constraints based on identity, existential rigidity, and external
dependency. I proved that these sort categories are disjoint to each other by
using rigidity and other distinctive properties such as ownIC, CVA, EDR, and
CC. Although the former works proposed the classifications of sorts, I originally
defined sort categories using such explicit properties. The advantageous point
is that those sort categories can be coded by using ontology languages, partic-
ularly OWL. Also, a typical structure of sort categories is provided together
with some subsumption constraints to apply in the later conceptual analysis.

6. I formalized the classification scheme of sorts as the concept-level proper-
ties (called meta-knowledge) of domain concepts. This idea of embedding a
philosophy-based sort classification into a formal model of ontologies is also
one of my novel contributions.

7. Finally, I defined EnOntoModel in which each sort is described with a set of
individual-level properties, as well as concept-level properties. By this idea,
the semantics of each concept is clarified and enriched. The main difference
between ordinary ontologies and enriched ontologies is such concept-level prop-
erties. The contribution of EnOntoModel is my novelity for the purpose of
enrichment-based ontology matching.

• Implementing : For the usability of my enrichment theory, how users can enrich
their ontologies based on EnOntoModel becomes a critical issue.

1. I solved this issue by implementing sortal meta-class ontology named sort.owl
as an open source interface for EnOntoModel. I presented the implementa-
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tion framework of sortal meta-class ontology using the meta-class construct of
Protégé knowledge model. Moreover, I constructed five PAL constraints and
added them in the meta-class ontology for the conceptual analysis of enriched
ontologies.

2. Also, I presented the development steps of semantically-enriched ontologies
via Protégé OWL API, including conceptual analysis via “PAL constraints”
plug-in.

In phase (2), Enrichment-based Ontology Matching (EOM) method is designed for an
effective discovery of correspondences between heterogeneous ontologies and it is imple-
mented in Java. This phase is accomplished with the following contributions.

1. I proved that there is no semantic correspondence between any two sorts of different
sort categories, as shown in Figure 5.5. Thus, the matching method is divided into
four sub-functions according to the sort categories. That is the first important idea
of my matching method.

2. The second important idea is the usage of ICs as a major tool in determining
semantic correspondences between type sorts, as well as other kinds of sorts.

3. The heuristic “No correspondence can be found between two sorts if there is no sort
equality between their type sorts” is well-suited to define the scope of possible cor-
respondences for a candidate sort. Thus, the third important idea is that matching
functions are designed by using divide-and-conquer approach, precisely, each sub-
function is invoked by another sub-function following the typical structure of sort
categories shown in Figure 4.12.

4. EOM method is explained in the forms of process flow diagrams and algorithm.

5. The method is implemented in Java for matching between OWL ontologies by uti-
lizing Jena OWL API and Protégé OWL API. Effeiciency of EOM is evaluated in
terms of mathematical complexity and proved that this method could reduce the
complexity of the matching process by comparing it with other methods, particu-
larly GLUE’s content learners. Moreover, an experiment is done in two real data
sets, and the effectiveness of EOM is shown in terms of precision and recall.

6.2 Advantages and Limitations

The advantages of the EnOntoModel-based matching method over other mapping meth-
ods are as follows:

• Direct concept matching is initiated between the same sort categories, instead of a
blind or exhaustive matching among all sorts.

• The scope of possible correspondences can be determined according to IC inheritance
via type sorts. This approach is more rigorous than natural language approaches in
the case of highly terminological heterogeneity.
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• Semantic correspondence between two sorts is decided by direct matching between
the properties, ownICs, CVA, EDR, and CC, instead of comparing all the properties
belonging to the sorts. Consequently, the time complexity of EnOntoModel-based
matching is less than others.

• Moreover, expert-interaction is not necessarily required to verify the matching re-
sults.

Also, some philosophical foundations are successfully added into formal ontologies to
support semantic interoperability among information systems. Guarino & Welty first
introduced these philosophical notions for ontological analysis. After them, Guizzardi
introduced the same notions for the foundations of conceptual models, particularly UML
diagrams, as a meta-model. I originally applied these ideas for ontology matching. EnOn-
toModel is an integrated research work of philosophy, conceptualization, formal ontologies,
mathematical logic, and knowledge representation.

The limitation of this work is domain ontologies need to be developed or enriched in the
form of EnOntoModel. Although I proved that my matching has an advantage in finding
correspondences, the developer’s effort required for the enrichment phase will be the
cost of this enrichment-based matching method. However, ontologies are expert-defined
conceptual models whilst folksonomies1 are user-defined models. Therefore, it is optimistic
that developers have sufficient conceptual knowledge to classify domain concepts into sort
categories.

I also need to discuss the precision of correspondences by Definitions 30 and 31. Under
open world assumption, a correspondence between two type sorts using this approach is
always the best guess according to the known individuals and their IC values. However,
this is a common issue for all methods that utilize populated ontologies in open world
assumption.

This matching will be particularly attractive for information exchange in identity
intensive domains such as E-commerce, social security, and trust-worthy services.

6.3 A Brief History of Research Progress

In this section, I describe a brief history of my research trend and progress according to
the listed publications. This research started with a study in ontological analysis, more
exactly OntoClean. I first worked out the presentation of ICs and sortal ontologies in terms
of order-sorted logic (see [151, 152, 153]). Later, I moved my logic language to First-order
Modal logic and started to employ IC-based heuristics for matching between sorts (see
[154, 155]). In [156], I emphasized the classification of sorts based on some philosophical
foundations, implementation of ICs and sorts in terms of OWL-DL, and development
of sortal ontologies using Protégé OWL API. The current progress can be seen in [157,
158] where I applied QML in order to account for actual existence in Kripke semantics.
Moreover, I could implement the meta-class ontology as an open source interface for
EnOntoModel, and then provided a practical development of enriched ontologies.

1A folksonomy is an Internet-based information retrieval methodology consisting of collaboratively
generated, open-ended labels (called tags) that categorize content such as Web pages, online photographs,
and Web links. Two widely cited examples of websites using folksonomic tagging are Flickr and
Del.icio.us.
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In addition, I implemented EOM method in Java and showed experiment results in terms
of precision and recall measurements. I integrated both analysis theory and mapping
theory into formal ontologies concerning the issue of wide-scale semantic heterogeneity.

6.4 Future Directions

Firstly, I would like to discuss some issues in this research, mostly based on the reviews
of my published papers and the former defense presentation.

1. The first issue is how to verify ICs given in enriched ontologies.

2. The second issue is how to assist modelers/developers in defining the IC value
of a certain individual automatically (or semi-automatically) through a computer
system.

3. The third issue is, how is the efficiency of EnOntoModel-based matching, in case
modelers/developers classified domain concepts into sort categories incorrectly, and
the PAL constraints could not detect such conceptual mistakes.

4. The fourth issue is empirical evaluation of EOM in comparing with other methods
in terms of precision and recall.

The first three issues are important for the efficiency of EnOntoModel-based matching
method. EnOntoModel encourages developers to populate ontologies. Concerning the
first issue, ICs can be partially verified through the uniqueness of IC values defined for
individuals by checking logical consistency via a DL reasoner. For the second issue, it is
possible to generate the IC values of individuals after well-defining properties for IC, if a
proper database is available. For the third issue, I am optimistic that PAL constraints de-
fined in the meta-class ontology can detect such conceptual mistakes well, because domain
concepts are classified in hierarchy with some constraints, and incorrect classification will
raise conceptual inconsistency for all concepts through the same hierarchy. According
to myself experience, it is rather hard to escape from the PAL constraints. However,
additional constraints may need to be embeded by future experience.

I hope to implement my matching method as a Java plug-in, and do empirical eval-
uation by uploading as a protégé plug-in and let domain experts to evaluate it by using
some ontologies that are developed for real information systems and operations. How-
ever, the implementation work for a plug-in, is not yet complete. I will continue this
implementation as a part of future work.

For the evaluation of ontology mapping and alignment systems, a number of test cases
are available due to EON Ontology Alignment Contest2. EnOntoModel-based ontology
merging together with an alignment system of mapping results, is also a good direc-
tion. Currently, what I am interested in is to develop a multi-strategy dynamic matching
method concerning incomplete knowledge in intelligent systems, and deciding a best-fit
or first-fit matching strategy for information exchange.

2http://oaei.ontologymatching.org/2004/Contest/
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Appendix A

Sortal Meta-class Ontology:
sort.owl

〈rdf:RDF xml:base=“http://www.owl-ontologies.com/sort.owl”〉
〈owl:Ontology rdf:about=“ ”〉
〈owl:imports rdf:resource=“http://protege.stanford.edu/plugins/owl/protege”/〉

〈/owl:Ontology〉
〈owl:Class rdf:ID=“PhaseSort”〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:onProperty〉
〈owl:DatatypeProperty rdf:ID=“nameOfCC”/〉

〈/owl:onProperty〉
〈owl:minCardinality rdf:datatype=“http://www.w3.org/2001/XMLSchema
]int”〉1 〈/owl:minCardinality〉

〈/owl:Restriction〉
〈/rdfs:subClassOf〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉phase 〈/owl:hasValue〉

〈owl:onProperty〉
〈owl:DatatypeProperty rdf:ID=“sort-category”/〉

〈/owl:onProperty〉
〈/owl:Restriction〉

〈/rdfs:subClassOf〉
〈rdfs:subClassOf〉 〈owl:Class rdf:ID=“Sort”/〉 〈/rdfs:subClassOf〉
〈owl:disjointWith〉 〈owl:Class rdf:ID=“RoleSort”/〉 〈/owl:disjointWith〉
〈owl:disjointWith〉 〈owl:Class rdf:ID=“Quasi-typeSort”/〉 〈/owl:disjointWith〉
〈owl:disjointWith〉 〈owl:Class rdf:ID=“TypeSort”/〉 〈/owl:disjointWith〉

〈/owl:Class〉
〈owl:Class rdf:about=“]TypeSort”〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:minCardinality rdf:datatype=“http://www.w3.org/2001/XMLSchema

145



]int”〉1 〈/owl:minCardinality〉
〈owl:onProperty〉
〈owl:DatatypeProperty rdf:ID=“nameOfOwnIC”/〉

〈/owl:onProperty〉
〈/owl:Restriction〉

〈/rdfs:subClassOf〉
〈owl:disjointWith rdf:resource=“]PhaseSort”/〉
〈owl:disjointWith〉 〈owl:Class rdf:about=“]Quasi-typeSort”/〉

〈/owl:disjointWith〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉type 〈/owl:hasValue〉
〈owl:onProperty〉
〈owl:DatatypeProperty rdf:about=“]sort-category”/〉

〈/owl:onProperty〉
〈/owl:Restriction〉

〈/rdfs:subClassOf〉
〈rdfs:subClassOf〉
〈owl:Class rdf:about=“]Sort”/〉

〈/rdfs:subClassOf〉
〈owl:disjointWith〉
〈owl:Class rdf:about=“]RoleSort”/〉

〈/owl:disjointWith〉
〈protege:SLOT-CONSTRAINTS〉
〈protege:PAL-CONSTRAINT rdf:ID=“PAL-CONSTRAINT 3”〉
〈protege:PAL-NAME rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉notPhaseToType〈/protege:PAL-NAME〉
〈protege:PAL-STATEMENT rdf:datatype=“http://www.w3.org/2001/

XMLSchema]string”〉
(forall ?sub

(forall ?super
(=〉 (and (’sort-category’ ?super ”phase”

(subclass-of ?sub ?super)
(own-slot-not-null ’sort-category’ ?sub))
(not (’sort-category’ ?sub ”type”)))))

〈/protege:PAL-STATEMENT〉
〈/protege:PAL-CONSTRAINT〉

〈/protege:SLOT-CONSTRAINTS〉
〈/owl:Class〉
〈owl:Class rdf:about=“]RoleSort”〉
〈owl:disjointWith rdf:resource=“]TypeSort”/〉
〈owl:disjointWith〉
〈owl:Class rdf:about=“]Quasi-typeSort”/〉

〈/owl:disjointWith〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
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〈owl:onProperty〉
〈owl:DatatypeProperty rdf:ID=“nameOfEDR”/〉

〈/owl:onProperty〉
〈owl:minCardinality rdf:datatype=“http://www.w3.org/2001/XMLSchema
]int”〉1 〈/owl:minCardinality〉

〈/owl:Restriction〉
〈/rdfs:subClassOf〉
〈owl:disjointWith rdf:resource=“]PhaseSort”/〉
〈rdfs:subClassOf〉
〈owl:Class rdf:about=“]Sort”/〉

〈/rdfs:subClassOf〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉role 〈/owl:hasValue〉
〈owl:onProperty〉
〈owl:DatatypeProperty rdf:about=“]sort-category”/〉

〈/owl:onProperty〉
〈/owl:Restriction〉

〈/rdfs:subClassOf〉
〈/owl:Class〉
〈owl:Class rdf:about=“]Sort”〉
〈rdfs:subClassOf〉

〈owl:Restriction〉
〈owl:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉type, quasi-type, role, phase 〈/owl:hasValue〉

〈owl:onProperty〉
〈owl:DatatypeProperty rdf:about=“]sort-category”/〉

〈/owl:onProperty〉
〈/owl:Restriction〉

〈/rdfs:subClassOf〉
〈rdfs:subClassOf rdf:resource=“http://www.w3.org/2002/07/

owl]Class”/〉
〈/owl:Class〉

〈owl:Class rdf:about=“]Quasi-typeSort”〉
〈rdfs:subClassOf rdf:resource=“]Sort”/〉
〈owl:disjointWith rdf:resource=“]TypeSort”/〉
〈owl:disjointWith rdf:resource=“]PhaseSort”/〉
〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:onProperty〉
〈owl:DatatypeProperty rdf:about=“]sort-category”/〉

〈/owl:onProperty〉
〈owl:hasValue rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉quasi-type 〈/owl:hasValue〉

〈/owl:Restriction〉
〈/rdfs:subClassOf〉
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〈rdfs:subClassOf〉
〈owl:Restriction〉
〈owl:minCardinality rdf:datatype=“http://www.w3.org/2001/

XMLSchema]int”〉1 〈/owl:minCardinality〉
〈owl:onProperty〉
〈owl:DatatypeProperty rdf:ID=“nameOfCVA”/〉

〈/owl:onProperty〉
〈/owl:Restriction〉

〈/rdfs:subClassOf〉
〈protege:SLOT-CONSTRAINTS〉
〈protege:PAL-CONSTRAINT rdf:ID=“PAL-CONSTRAINT 2”〉
〈protege:PAL-STATEMENT rdf:datatype=“http://www.w3.org/2001/

XMLSchema
]string”〉

(forall ?sub
(forall ?super

(=〉 (and (’sort-category’ ?super ”role”
(subclass-of ?sub ?super)

(own-slot-not-null ’sort-category’ ?sub))
(not (’sort-category’ ?sub ”quasi-type”)))))

〈/protege:PAL-STATEMENT〉
〈protege:PAL-NAME rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉notRoleToQuasi-type〈/protege:PAL-NAME〉

〈/protege:PAL-CONSTRAINT〉
〈/protege:SLOT-CONSTRAINTS〉
〈owl:disjointWith rdf:resource=“]RoleSort”/〉〈/owl:Class〉
〈owl:DatatypeProperty rdf:about=“]nameOfCC”〉
〈rdfs:domain rdf:resource=“]PhaseSort”/〉
〈rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema
]string”/〉〈/owl:DatatypeProperty〉

〈owl:DatatypeProperty rdf:about=“]sort-category”〉
〈rdfs:range〉
〈owl:DataRange〉
〈owl:oneOf rdf:parseType=“Resource”〉
〈rdf:first rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉type〈/rdf:first〉
〈rdf:rest rdf:parseType=“Resource”〉
〈rdf:rest rdf:parseType=“Resource”〉
〈rdf:rest rdf:parseType=“Resource”〉
〈rdf:first rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉phase〈/rdf:first〉

〈rdf:rest rdf:resource=“http://www.w3.org/1999/02/22-rdf-syntax-ns
]nil”/〉

〈/rdf:rest〉
〈rdf:first rdf:datatype=“http://www.w3.org/2001/XMLSchema

]string”〉role〈/rdf:first〉
〈/rdf:rest〉
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〈rdf:first rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉quasi-type〈/rdf:first〉

〈/rdf:rest〉
〈/owl:oneOf〉

〈/owl:DataRange〉
〈/rdfs:range〉
〈rdfs:domain rdf:resource=“]Sort”/〉
〈rdf:type rdf:resource=“http://www.w3.org/2002/07/

owl]FunctionalProperty”/〉
〈/owl:DatatypeProperty〉

〈owl:DatatypeProperty rdf:about=“]nameOfOwnIC”〉
〈rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema
]string”/〉

〈rdfs:domain rdf:resource=“]TypeSort”/〉
〈/owl:DatatypeProperty〉
〈owl:DatatypeProperty rdf:about=“]nameOfEDR”〉
〈rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema
]string”/〉

〈rdfs:domain rdf:resource=“]RoleSort”/〉
〈/owl:DatatypeProperty〉
〈owl:DatatypeProperty rdf:about=“]nameOfCVA”〉
〈rdfs:domain rdf:resource=“]Quasi-typeSort”/〉
〈rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema
]string”/〉

〈/owl:DatatypeProperty〉
〈protege:PAL-CONSTRAINT rdf:ID=“PAL-CONSTRAINT 5”〉
〈protege:PAL-NAME rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉notQuasi-typeToType〈/protege:PAL-NAME〉
〈protege:PAL-STATEMENT rdf:datatype=“http://www.w3.org/2001/

XMLSchema
]string”〉
(forall ?sub

(forall ?super
(=〉 (and (’sort-category’ ?super ”quasi-type”

(subclass-of ?sub ?super)
(own-slot-not-null ’sort-category’ ?sub))
(not (’sort-category’ ?sub ”type”)))))

〈/protege:PAL-STATEMENT〉
〈/protege:PAL-CONSTRAINT〉
〈protege:PAL-CONSTRAINT rdf:ID=“PAL-CONSTRAINT 4”〉
〈protege:PAL-NAME rdf:datatype=“http://www.w3.org/2001/

XMLSchema]string”〉notPhaseToQuasi-type〈/protege:PAL-NAME〉
〈protege:PAL-STATEMENT rdf:datatype=“http://www.w3.org/2001/

XMLSchema]string”〉
(forall ?sub

(forall ?super
(=〉 (and (’sort-category’ ?super ”phase”
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(subclass-of ?sub ?super)
(own-slot-not-null ’sort-category’ ?sub))

(not (’sort-category’ ?sub ”quasi-type”)))))
〈/protege:PAL-STATEMENT〉

〈/protege:PAL-CONSTRAINT〉
〈protege:PAL-CONSTRAINT rdf:ID=“PAL-CONSTRAINT 1”〉
〈protege:PAL-STATEMENT rdf:datatype=“http://www.w3.org/2001/

XMLSchema
]string”〉
(forall ?sub

(forall ?super
(=〉 (and (’sort-category’ ?super ”role”

(subclass-of ?sub ?super)
(own-slot-not-null ’sort-category” ?sub))
(not (’sort-category’ ?sub ”type”)))))

〈/protege:PAL-STATEMENT〉
〈protege:PAL-NAME rdf:datatype=“http://www.w3.org/2001/XMLSchema
]string”〉notRoleToType〈/protege:PAL-NAME〉

〈/protege:PAL-CONSTRAINT〉
〈/rdf:RDF〉
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