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1 Introduction

Substructural logics are obtained by deleting some or all of structural rules from
formal systems LK, LJ introduced by Gentzen. Through researching substruc-
tural logics, we can consider the relation between logical properties and struc-
tural rules. Moreover, substructural logics are including well researched logics, like
many-valued logics, fuzzy logics, relevance logics, etc. A semantics for substruc-
tural logics is usually based on algebras and a lot of logical properties are proved
by algebraic methods (see [15] or [16]).

One of main reasons we introduce algebraic semantics is the Lindenbaum-Tarski
technique, yielding almost immediate soundness and completeness results, although
some authors are not satisfied with this kind of completeness (e.g. [21]). On the
other hand, relational semantics introduced by Kripke are recently subject of inten-
sive research because of their intuitive character and connection with applicative
structures like automata or transition systems in computer science. They are par-
ticularly popular in modal logic and intuitionistic logic (see [2], [4] or [13]).

Although it may seem these two types of semantics have nothing in common,
Stone’s representation theorem provides a bridge between algebraic semantics and
relational semantics. For example, it is known that relational completeness results
for canonical modal logics can be immediately proved using Stone’s duality.

In recent years, several relational semantics for substructural or other logics
were introduced [8], [10], [11] or [12]. These results were mostly based on Priestley
duality. On the other hand, relevance logics which form a subclass of substructural
logics possess a relational semantics, called Routley-Meyer semantics. Urquhart
studied the duality between relevance algebras and Routley-Meyer semantics in
[20]. In addition, in [18] and [19], a relational semantics for relavance modal logics
is defined and Sahlqvist theorem is also proved.

But, there are relatively few results for distributive substructural logics. Distinct
points of our approach are as follows:

• Since our relational semantics based not on Pristley’s duality but Stone’s
one, our relational semantics consist of just one underlying set and just one
ternary relation.

• Moreover, the single ternary relation provides an interpretation for almost
all connectives, that is, ∨, ∧, ◦, \ and /.

• Because of its simplicity (one set & one relation), our semantics resembles
Kripke semantics for modal logics, which allows for easier transfer of methods
and techniques from the well-developed metatheory of those systems.
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2 Logic

This chapter introduces basic concepts and terminology of logics.

2.1 Basic sequent calculus

Formulas are built from propositional variables (in this paper, countably many
propositional variables are only considered), special constants 1, 0, > and ⊥, and
logical connectives. In this paper, p, q, r, . . . are used for propositional variables
(Φ: the set of all propositional variables), φ, ψ, χ, . . . formulas, ϕ a formula which
may be empty, and Γ,Σ,∆,Ξ sequences or sets of formulas which may be empty.
Moreover, as logical connectives, ∨, ∧, →, ¬, ◦, \, /, 2 and 3 are used, where ∨,
∧, → and ¬ are considered as ”or”, ”and”, ”implication” and ”not”, repsectively,
and 2 and 3 are ”modal operators”. We define two types of formulas as follows.

Definition 2.1 (Formula)
A formula φ is a FL formula, if

φ ::= p | 1 | 0 | > | ⊥ | ψ ∨ χ | ψ ∧ χ | ψ ◦ χ | ψ\χ | χ/ψ.

A formula φ is a modal formula, if

φ ::= p | > | ⊥ | ψ ∨ χ | ψ ∧ χ | ψ → χ | ¬ψ | 2ψ | 3ψ.

We denote FrmFL(Φ) (Frm2(Φ)) as the set of all FL formulas (modal formulas).

In later section, we often call them just formulas, and Frm(Φ) denotes the set
of all formulas. In this paper, as logical (proof) system, sequent calculi introduced
by Gentzen are mainly used. Sequent calculi usually calculate a type of objects,
called sequents, instead of formulas. Therefore, we define sequents as follows.

Definition 2.2 (Sequent)
For any sequent Γ (not set) of formulas and a formula ϕ, an expression Γ ⇒ ϕ is
a sequent.

The basic sequent calculus in this paper, known as Full Lambek calculus (denoted
by FL), is defined by the following.

Definition 2.3 (Full Lambek calculus)
Initial sequents:

φ⇒ φ Γ ⇒ > Γ,⊥,Σ ⇒ ϕ ⇒ 1 0 ⇒
Cut rule:

Γ ⇒ φ Σ, φ,Ξ ⇒ ϕ
(cut)

Σ,Γ,Ξ ⇒ ϕ
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Rules for logical connectives:

Γ,∆ ⇒ ϕ
(1 w)

Γ, 1,∆ ⇒ ϕ
Γ ⇒ (0 w)

Γ ⇒ 0

Γ, φ,∆ ⇒ ϕ Γ, ψ,∆ ⇒ ϕ
(∨ ⇒)

Γ, φ ∨ ψ,∆ ⇒ ϕ

Γ ⇒ φ
(⇒ ∨1)

Γ ⇒ φ ∨ ψ
Γ ⇒ ψ

(⇒ ∨2)
Γ ⇒ φ ∨ ψ

Γ, φ,∆ ⇒ ϕ
(∧1 ⇒)

Γ, φ ∧ ψ,∆ ⇒ ϕ

Γ, ψ,∆ ⇒ ϕ
(∧2 ⇒)

Γ, φ ∧ ψ,∆ ⇒ ϕ

Γ ⇒ φ Γ ⇒ ψ
(⇒ ∧)

Γ ⇒ φ ∧ ψ
Γ, φ, ψ,∆ ⇒ ϕ

(◦ ⇒)
Γ, φ ◦ ψ,∆ ⇒ ϕ

Γ ⇒ φ ∆ ⇒ ψ
(⇒ ◦)

Γ,∆ ⇒ φ ◦ ψ
Γ ⇒ φ Ξ, ψ,∆ ⇒ ϕ

(\ ⇒)
Ξ,Γ, φ\ψ,∆ ⇒ ϕ

φ,Γ ⇒ ψ
(⇒ \)

Γ ⇒ φ\ψ
Γ ⇒ φ Ξ, ψ,∆ ⇒ ϕ

(/⇒)
Ξ, ψ/φ,Γ,∆ ⇒ ϕ

Γ, φ⇒ ψ
(⇒ /)

Γ ⇒ ψ/φ

Sequent calculi consist of initial sequents and inference rules. Initial sequents
are starting points of calculations. In other words, we have to start any calculation
with this type of sequents. Inference rules express what kind of inferences are
permitted in a system. Each inference rule has one or two sequents above the line,
called the upper sequents, and has one sequent below the line, called the lower
sequent. Then, inference rules permit to derive the lower sequent, if all upper
sequents have already been obtained.

We define a sequent Γ ⇒ ϕ to be provable in a sequent calculus S (denoted by
`S Γ ⇒ ϕ, if not, denoted by 6`S Γ ⇒ ϕ) if Γ ⇒ ϕ can be derived in the system. In
other words, in the system, a diagram, called a proof, can be drawn. For example,
see the three diagrams below.

φ⇒ φ ψ ⇒ ψ
(⇒ ◦)

φ, ψ ⇒ φ ◦ ψ
(⇒ \)

ψ ⇒ φ\(φ ◦ ψ)

φ⇒ ψ ψ ⇒ ψ
(⇒ ◦)

φ, ψ ⇒ ψ ◦ ψ
(⇒ \)

ψ ⇒ φ\(ψ ◦ ψ)

φ⇒ φ ψ ⇒ ψ
(⇒ ◦)

φ, ψ ⇒ φ ◦ ψ
φ⇒ ψ\(φ ◦ ψ)

The left diagram is a proof in FL, but the other two diagrams are not proofs
in FL, because the middle diagram does not start with initial sequents and, in
the right diagram, the last inference rule is not permitted in FL. For example, a
sequent (φ ∧ ψ) ∨ (φ ∧ χ) ⇒ φ ∧ (ψ ∨ χ) is provable in FL, because the following
diagram is a proof of (φ ∧ ψ) ∨ (φ ∧ χ) ⇒ φ ∧ (ψ ∨ χ).
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φ⇒ φ
(∧1 ⇒)

φ ∧ ψ ⇒ φ

ψ ⇒ ψ
(∧2 ⇒)

φ ∧ ψ ⇒ ψ
(⇒ ∨1)

φ ∧ ψ ⇒ ψ ∨ χ
(⇒ ∧)

φ ∧ ψ ⇒ φ ∧ (ψ ∨ χ)

φ⇒ φ
(∧1 ⇒)

φ ∧ χ⇒ φ

χ⇒ χ
(∧2 ⇒)

φ ∧ χ⇒ χ
(⇒ ∨2)

φ ∧ χ⇒ ψ ∨ χ
(⇒ ∧)

φ ∧ χ⇒ φ ∧ (ψ ∨ χ)
(∨ ⇒)

(φ ∧ ψ) ∨ (φ ∧ χ) ⇒ φ ∧ (ψ ∨ χ)

In the above diagram, every top sequent is an initial sequent of FL, and each
inference rule is defined in FL. On the other hand, we can show 6`FL φ∧ (ψ∨χ) ⇒
(φ∧ψ)∨ (φ∧χ). For any formula φ, if ⇒ φ is provable in a system S, φ is provable
in it (denoted by `S φ, if not , denoted by 6`S φ.).

Other basic sequent calculi are obtained from FL, by adding some or all of the
following rules, called structural rules.

Definition 2.4 (Structural rules)
Structural rules:

Γ, φ, φ,∆ ⇒ ϕ
(c ⇒)

Γ, φ,∆ ⇒ ϕ

Γ, φ, ψ,∆ ⇒ ϕ
(e ⇒)

Γ, ψ, φ,∆ ⇒ ϕ

Γ,∆ ⇒ ϕ
(w ⇒)

Γ, φ,∆ ⇒ ϕ
Γ ⇒ (⇒ w)

Γ ⇒ φ

The rules (c ⇒), (e ⇒), (w ⇒) and (⇒ w) are called the contraction rule, the
exchange rule, the left weakening rule and the right weakening rule, respectively.
Sometimes, we call both the left and the right weakening rule just the weakening
rules. If FL has some or all of structural rules, the rules defined in the system are
denoted by the initials as indexes. For example, FLw denotes the sequent calculus
FL having the weakening rules. Besides, it is known that each structural rule can
be replaced by the following initial sequents.

(c ⇒) : φ⇒ φ ◦ φ.

(e ⇒) : φ ◦ ψ ⇒ ψ ◦ φ.

(w ⇒) : φ⇒ 1.

(⇒ w) : 0 ⇒ φ.

We note that the intuitionistic sequent calculus LJ, introduced by Gentzen, is
FLcew, since we can consider ◦ as ∧. Besides, FLcw can prove exactly the same
sequents which are provable in FLcew, because the exchange rule can be derived in
FLcw. See below.

φ⇒ φ
(w ⇒)

ψ, φ⇒ φ

ψ ⇒ ψ
(w ⇒)

ψ, φ⇒ ψ
(⇒ ∧)

ψ, φ⇒ φ ∧ ψ

Γ, φ, ψ,∆ ⇒ ϕ
(∧1 ⇒)

Γ, φ ∧ ψ, ψ,∆ ⇒ ϕ
(∧2 ⇒)

Γ, φ ∧ ψ, φ ∧ ψ,∆ ⇒ ϕ
(c ⇒)

Γ, φ ∧ ψ,∆ ⇒ ϕ
(cut)

Γ, ψ, φ,∆ ⇒ ϕ
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Sometimes, we use sequents of the form Γ ⇒ ϕ with a set Γ of formulas, when, for
example, we introduce a sequent system for intuitionistic logic. In this formulation,
we do not need to use both the exchange and contraction rules. On the other hand,
our purpose of the present thesis is to clarify roles of each structural rule explicitly.
Therefore, we will not take such a formulation here. For example, although, as we
mentioned before, φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ) is not provable in FL, but it is
provable in LJ, as the following proof shows.

φ⇒ φ
(w ⇒)

φ, ψ ⇒ φ

ψ ⇒ ψ
(w ⇒)

φ, ψ ⇒ ψ
(⇒ ∧)

φ, ψ ⇒ φ ∧ ψ
(⇒ ∨1)

φ, ψ ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)

φ⇒ φ
(w ⇒)

φ, χ⇒ φ

χ⇒ χ
(w ⇒)

φ, χ⇒ χ
(⇒ ∧)

φ, χ⇒ φ ∧ χ
(⇒ ∨2)

φ, χ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
(∨ ⇒)

φ, ψ ∨ χ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
(∧1 ⇒)

φ ∧ (ψ ∨ χ), ψ ∨ χ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
(∧2 ⇒)

φ ∧ (ψ ∨ χ), φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
(c ⇒)

φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)

The contraction rule and the left weakening rule are essentially used in this proof.
Like this, adding structural rules may increase the number of provable sequents.

The exchange rule (e ⇒) removes the difference between \ and /, since we can
derive the inference rules for /, by using the rules for \ and the exchange rule, as
shown below.

Γ ⇒ φ Ξ, ψ,∆ ⇒ ϕ
(\ ⇒)

Ξ,Γ, φ\ψ,∆ ⇒ ϕ
(e ⇒)∗

Ξ, φ\ψ,Γ,∆ ⇒ ϕ

Γ, φ⇒ ψ
(e ⇒)∗

φ,Γ ⇒ ψ
(⇒ \)

Γ ⇒ φ\ψ
and the converse, too.

Γ ⇒ φ Ξ, ψ,∆ ⇒ ϕ
(/⇒)

Ξ, ψ/φ,Γ,∆ ⇒ ϕ
(e ⇒)∗

Ξ,Γ, ψ/φ,∆ ⇒ ϕ

φ,Γ ⇒ ψ
(e ⇒)∗

Γ, φ⇒ ψ
(⇒ /)

Γ ⇒ ψ/φ

So, as the abbreviation of both \ and /, → is used, for formulas, inference rules,
etc. Besides, we define ¬φ as an abbreviation of φ → 0. Then, the following
inference rules can be used for the sequent calculi with the exchange rule. (Of
course, they are the abbreviations of the original inference rules.)

Γ ⇒ φ Ξ, ψ,∆ ⇒ ϕ
(→⇒)

Ξ,Γ, φ→ ψ,∆ ⇒ ϕ

φ,Γ ⇒ ψ
(⇒→)

Γ ⇒ φ→ ψ

Γ ⇒ φ
(¬ ⇒)¬φ,Γ ⇒

Γ, φ⇒
(⇒ ¬)

Γ ⇒ ¬φ
It is known that the left (right) weakening rule remove the difference between

1 (0) and > (⊥). It is also known that the contraction and the left weakening
remove the difference between ◦ and ∧. Therefore, in FLcw, we can consider that
a formula are defined by

φ ::= p | > | ⊥ | ψ ∨ χ | ψ ∧ χ | ψ → χ | ¬ψ.
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By adding some initial sequents or inference rules to FL, we obtain extensions
of FL. For example, it gives us well known classical sequent calculus LK, to add
initial sequents ¬¬φ ⇒ φ, called as the involutivity, to LJ. Of course, all basic
sequent calculi are extensions of FL. In addition, we define some other extensions
of FL which are used later.

Definition 2.5 (Distributive sequent calculus)
The distributive sequent calculus DFL is obtained by adding initial sequents (Dis-
tributivity) to FL.

(Distributivity) : φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ).

Definition 2.6 (Normal modal sequent calculus)
The normal modal sequent calculus K is obtained by adding a inference rule (2)
to LK.

Γ ⇒ φ
(2)

2Γ ⇒ 2φ

Here, a sequence 2Γ denotes 2φ1,2φ2, . . . ,2φn, if Γ = φ1, φ2, . . . , φn.

2.2 Substructural logic

To define a logic, we define the following.

Definition 2.7 (Uniform substitution)
Let ρ be a function from Φ to Frm(Φ). ρ can be inductively extended from Frm(Φ)
to Frm(Φ) as follows.

1. ρ(1) := 1.

2. ρ(0) := 0.

3. ρ(>) := >.

4. ρ(⊥) := ⊥.

5. ρ(φ ∨ ψ) := ρ(φ) ∨ ρ(ψ).

6. ρ(φ ∧ ψ) := ρ(φ) ∧ ρ(ψ).

7. ρ(φ ◦ ψ) := ρ(φ) ◦ ρ(ψ).

8. ρ(φ\ψ) := ρ(φ)\ρ(ψ).

9. ρ(ψ/φ) := ρ(ψ)/ρ(φ).

10. ρ(φ→ ψ) := ρ(φ) → ρ(ψ).

11. ρ(¬φ) := ¬ρ(φ).
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12. ρ(2φ) := 2ρ(φ).

13. ρ(3φ) := 3ρ(φ).

For any formula φ, we define ρ(φ) as a uniform substitution instance of φ under
ρ.

Then, a set Σ of formulas is closed under uniform substitution, if ρ(φ) ∈ Σ for any
formula φ ∈ Σ.

We define here a logic as a set of formulas.

Definition 2.8 (Logic)
A set Γ of FL formulas is a substructural logic over FL, if Γ satisfies the following
(see also [15]).

1. Γ contains all FL formulas which are provable in FL.

2. If φ ∈ Γ and φ\ψ ∈ Γ, then ψ ∈ Γ.

3. If φ, ψ ∈ Γ, then φ ∧ ψ ∈ Γ.

4. If φ ∈ Γ, then ϕ\(φ ◦ ϕ), (ϕ ◦ φ)/ϕ ∈ Γ, for an arbitrary formula ϕ.

5. Γ is closed under uniform substitution.

A set Γ of modal formulas is a normal modal logic, if Γ satisfies the following.

1. Γ contains all modal formulas which are provable in K.

2. If φ ∈ Γ and φ→ ψ ∈ Γ, then ψ ∈ Γ.

3. Γ is closed under uniform substitution.

4. If φ ∈ Γ, then 2φ ∈ Γ.

As long as possible, we call a substructural logic and a normal modal logic just a
logic.

Based on our sequent calculi, we can show the following theorem.

Theorem 2.9
Given a sequent calculus S which is an extension of FL (K), the set S of formulas
which are provable in S is a logic. In other words, the set S is closed under all of
the conditions above.

Proof
We show only substructural logics here, since we can prove analogously about
normal modal logics. We give here a proof of the conditions 2, 3 and 4, because 1
and 5 are obvious.

9



2. Assume φ ∈ S and φ\ψ ∈ S. Then, we can draw a proof as follows.

⇒ φ

⇒ φ\ψ
φ⇒ φ ψ ⇒ ψ

(\ ⇒)
φ, φ\ψ ⇒ ψ

(cut)
φ⇒ ψ

(cut)⇒ ψ

Therefore, ψ ∈ S.

3. Assume φ ∈ S and ψ ∈ S. Then,

⇒ φ ⇒ ψ
(⇒ ∧)⇒ φ ∧ ψ

Therefore, φ ∧ ψ ∈ S.

4. Suppose that ϕ is an arbitrary formula and φ ∈ S. Then, we can prove
ϕ\(φ ◦ ϕ) and (ϕ ◦ φ)/ϕ, as follows.

⇒ φ ϕ⇒ ϕ
(⇒ ◦)

ϕ⇒ φ ◦ ϕ
(⇒ \)⇒ ϕ\(φ ◦ ϕ)

ϕ⇒ ϕ ⇒ φ
(⇒ ◦)

ϕ⇒ ϕ ◦ φ
(⇒ /)⇒ (ϕ ◦ φ)/ϕ

Therefore, ϕ\(φ ◦ ϕ) ∈ S and (ϕ ◦ φ)/ϕ ∈ S. (Q.E.D)

Thus, we have immediately the following corollary.

Corollary 2.10
The sets of formulas which are provable in FL, FLc, FLe, FLw, FLce, FLew, FLcew
and (K) are substructural (modal) logics.

In this paper, to distinguish logics from sequent calculi, logics are denoted by
boldface letters, like FLew.

Sometimes, we say ”a sequent is in a logic S”. But, this sentence makes sense
with the following two facts (see [15]).

Fact 1 The following conditions are equivalent in any extension of FL.

• `S φ⇒ ψ.

• `S φ\ψ.

• `S ψ/φ.

Fact 2 For any formula φ and a sequent calculus S which is an extension of FL,
`S φ if and only if `S 1 ⇒ φ.

To define our logics, we define the following.

10



Definition 2.11 (Extension)
Given a logic L, a logic L’ is an extension of L, if L is a subset of L’ (L ⊆ L’).

For example, FLcew is an extension of FL, because of the definition of logics.
However, FL is not an extension of FLcew, since, as we saw before, φ ∧ (ψ ∨ χ) ⇒
(φ ∧ ψ) ∨ (φ ∧ χ) is provable in FLcew but it is not provable in FL.

Another example is the following. Obviously, FLcew is an extension of FLcw.
On the other hand, FLcw is also an extension of FLcew, because, as we saw before,
the exchange rule can be derived in FLcw. Therefore, FLcew is equal to FLcw, as a
logic.

Definition 2.12 (Axiomatization)
A substructural (normal modal) logic L is axiomatized over a logic S by a set Σ
of FL (modal) formulas, if L is the smallest extension of S containing Σ.

For example, we can say that LK is axiomatized over LJ by {¬¬p→ p}.
Next, we define the distributive substructural logic, as an extension of FL.

Definition 2.13 (The distributive substructural logic DFL)
The distributive substructural logic DFL is the set of all provable formulas in the
distributive sequent calculus DFL. In other words, DFL is axiomatized over FL
by the distributivity.

A logic L is a DFL logic, if L is an extension of DFL. Besides, DFL, DFLc,
DFLe, DFLw, DFLce, DFLew and DFLcew are called basic.

The distributive law seems a strong assumption, but DFL logics include many
of nonclassical logics like relevance logics, many-valued logics and fuzzy logics.

We define the normal modal logic.

Definition 2.14 (The normal modal logic)
The set of all provable modal formulas in K is the normal modal logic K.

It is known that K is the smallest normal modal logic. So, every extension of K is
called a normal modal logic.
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3 Algebra and algebraic semantics

In this chapter, we introduce algebraic concepts and terminology, and algebraic
semantics for logics.

3.1 Algebraic preliminaries

We introduce some basic mathematical concepts (see [1], [3] or [5]).

Definition 3.1 (Lattice)
A structure A = 〈A,∨,∧〉 is a lattice, if ∨ and ∧, called join and meets, are binary
operations on A satisfying the following equations.

1. (Idempotency): a ∨ a = a, a ∧ a = a.

2. (Commutativity): a ∨ b = b ∨ a, a ∧ b = b ∧ a.
3. (Associativity): a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c.
4. (Absorption): a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

A lattice A is called distributive, if A also satisfies one of the following equations.

5. (Distributivity): a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
6. (Distributivity’): (a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c).

In fact, we can show that either of the above two conditions (5 and 6) derives
another.

It is well known that a partial order ≤ is naturally introduced in every lattice,
by defining ≤ as follows.

a ≤ b ⇐⇒ a ∧ b = a

In any lattice, a ∧ b = a is equivalent to a ∨ b = b, because b = b ∧ (a ∨ b) =
(a∨ b)∧ b = a∨ b and a = a∨ (a∧ b) = a∧ b. Therefore, a ≤ b can be also defined
by a ∨ b = b.

If a lattice A has a maximum element > and a minimum element ⊥, then it is
called bounded.

Next, we will define some basic notions for lattices.

Definition 3.2 (Filter)
Given a lattice A = 〈A,∨,∧〉, a non-empty subset F of A is a filter over A, if it
satisfies, for each a, b ∈ A,

a ∈ F and b ∈ F ⇐⇒ a ∧ b ∈ F.
Besides, if F also satisfies the following condition and F 6= A, it is called prime.
For each a, b ∈ A,

a ∈ F or b ∈ F ⇐⇒ a ∨ b ∈ F
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Given an element a ∈ A, the set ↑ a := {b ∈ A | a ≤ b} is always a filter, which is
called the principal filter generated by a.

Definition 3.3 (Ideal)
Given a lattice A = 〈A,∨,∧〉, a non-empty subset I of A is a ideal over A, if it
satisfies, for each a, b ∈ A,

a ∈ I and b ∈ I ⇐⇒ a ∨ b ∈ I.

Moreover, given an element a ∈ A, the set ↓ a := {b ∈ A | b ≤ a} is always a ideal,
which is called the principal ideal generated by a.

We can prove the following proposition.

Proposition 3.4
Given a non-empty subset S of A, the set FS := {a ∈ A | s1 ∧ · · · ∧ sn ≤
a for some s1, . . . , sn ∈ S} is the smallest filter containing S.

Proof
It is clear that FS is non-empty.

Suppose that f1, f2 ∈ FS. Then, there exist s1, . . . , sm ∈ S and t1, . . . , tn ∈ S
such that s1∧· · ·∧sm ≤ f1 and t1∧· · ·∧tn ≤ f2 hold. So, s1∧· · ·∧sm∧t1∧· · ·∧tn ≤
f1 ∧ f2 holds. Therefore, f1 ∧ f2 ∈ FS.

Suppose that f1 ∧ f2 ∈ FS. Then, by the definition, f1 ∈ FS and f2 ∈ FS
obviously hold, since f1 ∧ f2 ≤ f1, f2. (Q.E.D)

This filter FS is called the filter generated by S. As a corollary, we can show the
following.

Corollary 3.5
Given a filter F and an element a, the filter F a generated by F ∪{a} is represented
as follows.

F a := {b ∈ A | a ∧ f ≤ b for some f ∈ F}
Since Zorn’s lemma is effectively used in later, we introduce the lemma here (see

[6]).

Lemma 3.6 (Zorn)
Given a partially ordered set P , if every chain in P has an upper bound in P , then
P has a maximal element in P .

Definition 3.7 (Monoid)
A structure A = 〈A, ◦, 1〉 is a monoid, if it satisfies

1. (Associativity): For any a, b, c ∈ A, a ◦ (b ◦ c) = (a ◦ b) ◦ c.
2. (Identity): For any a ∈ A, a ◦ 1 = 1 ◦ a = a.
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Definition 3.8 (Residuated lattice)
A tuple A = 〈A,∨,∧, ◦, \, /, 1〉 is a residuated lattice, if

1. 〈A,∨,∧〉 is a lattice.

2. 〈A, ◦, 1〉 is a monoid.

3. A satisfies the residuation law.
(Residuation law): For each a, b, c ∈ A, a◦b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

If ◦ is commutative, a\b is equivalent to b/a. In this case, we use the symbol →
instead of \ and /. So, the residuation law is

(Residuation law’):
For each a, b, c ∈ A, a ◦ b ≤ c ⇐⇒ b ≤ a→ c ⇐⇒ a ≤ b→ c.

Since algebraic semantics for logics are defined on some classes of residuated
lattices, we here introduce some classes of residuated lattice (see [10]).

Definition 3.9 (FL-algebra)
A structure A = 〈A,∨,∧, ◦, \, /, 1, 0,>,⊥〉 is a FL-algebra, if 〈A,∨,∧, ◦, \, /, 1,>,⊥〉
is a bounded residuated lattice and 0 is an element of A.

We denote the class of all FL-algebras as CFL.

Definition 3.10 (DFL-algebra)
A structure A = 〈A,∨,∧, ◦, \, /, 1, 0,>,⊥〉 is a DFL-algebra, if A is a FL-algebra
and satisfies the distributivity.

We denote the class of all DFL-algebras as CDFL. To define algebras for modal
logics, we define the following.

Definition 3.11 (Boolean algebra)
A structure A = 〈A,∨,∧,¬,>,⊥〉 is a Boolean algebra, if 〈A,∨,∧,>,⊥〉 is a
bounded distributive lattice and A satisfies the following conditions.

1. (Complementation): a ∧ (¬a) = ⊥, a ∨ (¬a) = >,

2. (Boundedness): a ∨ ⊥ = a, a ∨ > = >,

We denote the class of all Boolean algebras as CB

Definition 3.12 (Modal algebra)
A structure A = 〈A,∨,∧,¬,2,>,⊥〉 is a modal algebra, if 〈A,∨,∧,¬,>,⊥〉 is a
Boolean algebra and 2 a unary operation on A satisfying the following conditions.

1. (Meet preservation): 2(a ∧ b) = 2a ∧2b.

2. (Top preservation): 2> = >.
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We denote the class of all modal algebras as C2.

Definition 3.13 (Homomorphism)
Given two algebras A = 〈A, fA1 , . . . , fAn 〉 and B = 〈B, fB1 , . . . , fBn 〉, a function h
from A to B is a homomorphism from A to B, if h satisfies, for any i and any
elements a1, . . . , am ∈ A,

h(fAi (a1, . . . , am)) = fBi (h(a1), . . . , h(am)).

If there exists a surjective homomorphism from A to B, then we say that B is
a homomorphic image of A . Beside, if there exists a bijective (injective) homo-
morphism, called isomorphism (embedding) from A to B, then we say that A is
isomorphic (embeddable) to B (denoted by A ∼= B).

3.2 Algebraic semantics and soundness

In this section, we define algebraic semantics for logics.
An assignment f on an algebra A is a function from Φ to A. We can inductively

extend f to a function from Frm(Φ) to A as follows.

For FL formulas:

• f(1) := 1.

• f(0) := 0.

• f(>) := >.

• f(⊥) := ⊥.

• f(φ ∨ ψ) := f(φ) ∨ f(ψ).

• f(φ ∧ ψ) := f(φ) ∧ f(ψ).

• f(φ ◦ ψ) := f(φ) ◦ f(ψ).

• f(φ\ψ) := f(φ)\f(ψ).

• f(ψ/φ) := f(ψ)/f(φ).

For modal formulas:

• f(>) := >.

• f(⊥) := ⊥.

• f(φ ∨ ψ) := f(φ) ∨ f(ψ).

• f(φ ∧ ψ) := f(φ) ∧ f(ψ).
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• f(φ→ ψ) := f(φ) → f(ψ).

• f(¬φ) := ¬f(φ).

• f(2φ) := 2f(φ).

• f(3φ) := ¬(2(¬f(φ))).

A formula φ is true in A under f (denoted by A, f |= φ) is defined by 1 ≤ f(φ).
If not, we denote A, f 6|= φ. For an arbitrary assignment f , if A, f |= φ, then φ
is valid on A (denoted by A |= φ). A set Γ of formulas is valid on A (denoted by
A |= Γ), if A |= φ, for any φ ∈ Γ. On a class C of algebras a formula φ is valid
(denoted by C |= φ), if A |= φ, for any A ∈ C.

It is easy to check that a sequent Γ ⇒ ϕ is true in an algebra A under f if and
only if f(Γ◦) ≤ f(ϕ), where Γ◦ is the formula φ1 ◦ · · · ◦ φn if Γ = φ1, . . . , φn, and
the left- (right-) hand side of a sequent is 1 (0), if it is empty.

We note that, for extensions of LJ (or K), Γ◦ is Γ∧, because ◦ is equal to ∧.
The following correspondence lemma can be proved (see [15]).

Lemma 3.14
Each structural rule corresponds to the following DFL-algebra conditions, respec-
tively.

(c ⇒) : a ≤ a ◦ a.
(e ⇒) : a ◦ b = b ◦ a.
(w ⇒) : a ≤ 1 for any a ∈ A.

(⇒ w) : 0 ≤ a for any a ∈ A.

Then, we can show the soundness theorem for DFL and K.

Theorem 3.15 (Soundness)
Every formula in DFL (K) is valid on the class CDFL (C2).

Proof
Since CB ⊆ CDFL, we firstly prove the soundness theorem for DFL. It suffices to
check both every initial sequent is valid and, in each of cut rule and rules for logical
connectives of DFL, if the upper sequents are valid, then the lower sequent is also
valid, on any DFL-algebra.

We check here the following. Let A be an arbitrary DFL-algebra.

φ⇒ φ : By definition.

Γ ⇒ > : Since > is the maximal element in A, f(Γ◦) ≤ f(>) for an arbitrary
assignment f on A. Therefore, Γ ⇒ > is valid on A.
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Γ,⊥,Σ ⇒ ϕ : Since ⊥ is the minimal element in A, f(⊥) ≤ f(Γ◦)\(f(ϕ)/f(Σ◦))
for an arbitrary assignment f on A. By the residuation law, f(Γ◦) ◦ f(⊥) ◦
f(Σ◦) ≤ f(ϕ). Therefore, Γ,⊥,∆ ⇒ ϕ is valid on A.

⇒ 1 : By definition.

0 ⇒ : By definition.

φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ) : For an arbitrary assignment f on A, by the
distributivity, f(φ∧(ψ∨χ)) = f(φ)∧(f(ψ)∨f(χ)) ≤ (f(φ)∧f(ψ))∨(f(φ)∧
f(χ)) = f((φ ∧ ψ) ∨ (φ ∧ χ)). Therefore, φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ) is
valid on A.

(cut) : Suppose that Γ ⇒ φ and Σ, φ,Ξ ⇒ ϕ are valid on A. For an arbitrary
assignment f on A, by the first assumption, f(Γ◦) ≤ f(φ). By the sec-
ond assumption and the residuation law, f(φ) ≤ f(Σ◦)\(f(ϕ)/f(Ξ◦)). So,
f(Γ◦) ≤ f(Σ◦)\(f(ϕ)/f(Ξ◦)). By the residuation law, f(Σ ◦ Γ ◦ Ξ) ≤ f(ϕ).
Therefore, Σ,Γ,Ξ ⇒ ϕ is valid on A.

(1 w) : Suppose that Γ,∆ ⇒ ϕ is valid on A. For an arbitrary assignment f on
A, by the assumption, f(Γ◦) ◦ f(∆◦) ≤ f(ϕ). Since 1(= f(1)) is the identity
element in A, f(Γ◦) ◦ f(1) ◦ f(∆◦) ≤ f(ϕ). Therefore, Γ, 1,∆ ⇒ ϕ is valid
on A.

(0 w) : By definition.

(∨ ⇒) : Suppose that Γ, φ,∆ ⇒ ϕ and Γ, ψ,∆ ⇒ ϕ are valid on A. For an
arbitrary assignment f on A, by the assumptions and the residuation law,
f(φ) ≤ f(Γ◦)\(f(ϕ)/f(∆◦)) and f(ψ) ≤ f(Γ◦)\(f(ϕ)/f(∆◦)). So, f(φ) ∨
f(ψ) ≤ f(Γ◦)\(f(ϕ)/f(∆◦)). By the residuation law, f(Γ◦ ◦ (φ ∨ ψ) ◦∆◦) ≤
f(ϕ). Therefore, Γ, φ ∨ ψ,∆ ⇒ ϕ is valid on A.

(⇒ ∨1) : Suppose that Γ ⇒ φ is valid on A. For an arbitrary assignment f on A,
by the assumption, f(Γ◦) ≤ f(φ) ≤ f(φ) ∨ f(ψ). Therefore, Γ ⇒ φ ∨ ψ is
valid on A.

(⇒ ∨2) : Suppose that Γ ⇒ ψ is valid on A. For an arbitrary assignment f on A,
by the assumption, f(Γ◦) ≤ f(ψ) ≤ f(φ) ∨ f(ψ). Therefore, Γ ⇒ φ ∨ ψ is
valid on A.

(∧1 ⇒) : Suppose that Γ, φ,∆ ⇒ ϕ is valid on A. For an arbitrary assignment
f on A, by the assumption, f(Γ◦ ◦ φ ◦∆◦) ≤ f(ϕ). By the residuation law,
f(φ) ∧ f(ψ) ≤ f(φ) ≤ f(Γ◦)\(f(ϕ)/f(∆◦)). So, by the residuation law,
f(Γ◦ ◦ (φ ∧ ψ) ◦∆◦) ≤ f(ϕ). Therefore, Γ, φ ∧ ψ,∆ ⇒ ϕ is valid on A.

(∧2 ⇒) : Suppose that Γ, ψ,∆ ⇒ ϕ is valid on A. For an arbitrary assignment
f on A, by the assumption, f(Γ◦ ◦ ψ ◦∆◦) ≤ f(ϕ). By the residuation law,
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f(φ) ∧ f(ψ) ≤ f(ψ) ≤ f(Γ◦)\(f(ϕ)/f(∆◦)). So, by the residuation law,
f(Γ◦ ◦ (φ ∧ ψ) ◦∆◦) ≤ f(ϕ). Therefore, Γ, φ ∧ ψ,∆ ⇒ ϕ is valid on A.

(⇒ ∧) : Suppose that Γ ⇒ φ and Γ ⇒ ψ are valid on A. For an arbitrary
assignment f on A, by the assumptions, f(Γ◦) ≤ f(φ) and f(Γ◦) ≤ f(ψ).
So, f(Γ◦) ≤ f(φ) ∧ f(ψ). Therefore, Γ ⇒ φ ∧ ψ is valid on A.

(◦ ⇒) : By definition.

(⇒ ◦) : By the monotonicity of ◦.
(\ ⇒) : Assume that Γ ⇒ φ and Ξ, ψ,∆ ⇒ ϕ are valid. For an arbitrary

assignment f on A, by the first assumption and the monotonicity of ◦,
f(Γ◦) ◦ f(φ\ψ) ≤ f(φ) ◦ f(φ\ψ) ≤ f(ψ). By the second assumption and
the residuation law, f(ψ) ≤ f(Ξ◦)\(f(ϕ)/f(∆◦)). So, by the residuation
law, f(Ξ◦) ◦ f(Γ◦) ◦ f(φ\ψ) ◦ f(∆◦) ≤ f(ϕ). Therefore, Ξ,Γ, φ\ψ,∆ ⇒ ϕ is
valid on A.

(⇒ \) : Assume that φ,Γ ⇒ ψ is valid. For an arbitrary assignment f on A, by the
assumption, f(φ)◦f(Γ◦) ≤ f(ψ). By the residuation law, f(Γ◦) ≤ f(φ)\f(ψ).
Therefore, Γ ⇒ φ\ψ is valid on A.

(/⇒) : Assume that Γ ⇒ φ and Ξ, ψ,∆ ⇒ ϕ are valid. For an arbitrary
assignment f on A, by the first assumption and the monotonicity of ◦,
f(ψ/φ) ◦ f(Γ◦) ≤ f(ψ/φ) ◦ f(φ) ≤ f(ψ). By the second assumption and
the residuation law, f(ψ) ≤ f(Ξ◦)\(f(ϕ)/f(∆◦)). So, by the residuation
law, f(Ξ◦) ◦ f(ψ/φ) ◦ f(Γ◦) ◦ f(∆◦) ≤ f(ϕ). Therefore, Ξ, ψ/φ,Γ,∆ ⇒ ϕ is
valid on A.

(⇒ /) : Assume that Γ, φ⇒ ψ is valid. For an arbitrary assignment f on A, by the
assumption, f(Γ◦)◦f(φ) ≤ f(ψ). By the residuation law, f(Γ◦) ≤ f(ψ)/f(φ).
Therefore, Γ ⇒ ψ/φ is valid on A.

Thus, CDFL |= DFL. Thanks to Lemma 3.14 (We note that any DFL-algebra
satisfying all the conditions in Lemma 3.14 validates LJ.), it suffices to check the
inference rule (2) on the class C2. Let A be an arbitrary modal algebra.

(2) : Assume that Γ ⇒ φ is valid. For an arbitrary assignment f on A, by the
assumption, f(Γ∧) ≤ f(φ). By the definition of ≤, f(Γ∧) ∧ f(φ) = f(Γ∧).
By the meet preservation, f((2Γ)∧)∧f(2φ) = 2(f(Γ∧)∧f(φ)) = 2f(Γ∧) =
f((2Γ)∧). So, f((2Γ)∧) ≤ f(2φ). Therefore, 2Γ ⇒ 2φ is valid on A.
(Q.E.D)

Given a logic L, an algebra A is a L-algebra, if A |= L. The set of all L-algebras
is denoted by CL. Because of Theorem 3.15, the name (DFL-algebra) makes sense.
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3.3 Algebraic completeness via Lindenbaum-Tarski alge-
bra

In the next section, we will show the algebraic completeness theorem for DFL
(normal modal) logics. To prove this theorem, we define some notions here. In
this section, L denotes any extension of DFL (K).

Let Frm(Φ) be the set of all formulas based on Φ. A relation ≡L on Frm(Φ) can
be defined as follows in L.

φ ≡L ψ ⇐⇒ φ\ψ ∧ ψ\φ (or, (φ→ ψ) ∧ (ψ → ψ)) ∈ L.

Then, we can easily check this relation ≡L is a equivalence relation (the equivalence
class of φ is denoted by [φ]).

We can make the quotient set Frm(Φ)/ ≡L under this relation. Then, we define
the following operations on it.

• [φ] ∨ [ψ] := [φ ∨ ψ].

• [φ] ∧ [ψ] := [φ ∧ ψ].

• [φ] ◦ [ψ] := [φ ◦ ψ].

• [φ]\[ψ] := [φ\ψ].

• [ψ]/[φ] := [ψ/φ].

• [φ] → [ψ] := [φ→ ψ].

• ¬[φ] := [¬φ].

• 2[φ] := [2φ].

Moreover, we can check that these operations are well defined. Then, we define
Lindenbaum-Tarski algebra of L.

Definition 3.16 (Lindenbaum-Tarski algebra of L)
Given a set Φ of propositional variables, the Lindenbaum-Tarski algebra L(Φ) of
L is the tuples L(Φ) = 〈Frm(Φ)/ ≡L,∨,∧, ◦, \, /, [1], [0], [>], [⊥]〉 for DFL logics,
and L(Φ) = 〈Frm(Φ)/ ≡L,∨,∧,¬,2, [>], [⊥]〉 for normal modal logics.

In the Lindenbaum-Tarski algebra of L, we can introduce the order ≤ as follows.

Lemma 3.17
In the Lindenbaum-Tarski algebra, [φ] ≤ [ψ] if and only if φ\ψ (or, φ → ψ) is in
L. In sequent calculi, this condition is equivalent to φ⇒ ψ ∈ L.
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Proof
Since [φ] ≤ [ψ] is the abbreviation of [φ]∧ [ψ] = [φ], φ∧ψ ⇒ φ and φ⇒ φ∧ψ are
in L. If φ⇒ ψ is in L, we can prove as follows.

φ⇒ φ
(∧1 ⇒)

φ ∧ ψ ⇒ φ

φ⇒ φ φ⇒ ψ
(⇒ ∧)

φ⇒ φ ∧ ψ

If [φ] ≤ [ψ], then see below.

φ⇒ φ ∧ ψ
ψ ⇒ ψ

(∧2 ⇒)
φ ∧ ψ ⇒ ψ

(cut)
φ⇒ ψ

So, [φ] ≤ [ψ] if and only if φ⇒ ψ is in L. (Q.E.D)

Then, we show the following proposition.

Proposition 3.18
The Lindenbaum-Tarski algebra L(Φ) of L is a L-algebra.

Proof
We prove first that 〈Frm(Φ)/ ≡L,∨,∧, [>], [⊥]〉 is a bounded distributive lattice
as follows.

Idempotency : φ ∨ φ⇒ φ and φ⇒ φ ∨ φ are provable.

φ⇒ φ φ⇒ φ
(∨ ⇒)

φ ∨ φ⇒ φ

φ⇒ φ
(⇒ ∨1)

φ⇒ φ ∨ φ

Therefore, [φ] ∨ [φ] = [φ]. [φ] ∧ [φ] = [φ] can be analogously proved.

Commutativity : φ ∨ ψ ⇒ ψ ∨ φ and ψ ∨ φ⇒ φ ∨ ψ are provable.

φ⇒ φ
(⇒ ∨2)

φ⇒ ψ ∨ φ
ψ ⇒ ψ

(⇒ ∨1)
ψ ⇒ ψ ∨ φ

(∨ ⇒)
φ ∨ ψ ⇒ ψ ∨ φ

ψ ⇒ ψ
(⇒ ∨2)

ψ ⇒ φ ∨ ψ
φ⇒ φ

(⇒ ∨1)
φ⇒ φ ∨ ψ

(∨ ⇒)
ψ ∨ φ⇒ φ ∨ ψ

Therefore, [φ]∨ [ψ] = [ψ]∨ [φ]. [φ]∧ [ψ] = [ψ]∧ [φ] can be analogously proved.

Associativity : φ ∨ (ψ ∨ χ) ⇒ (φ ∨ ψ) ∨ χ and (φ ∨ ψ) ∨ χ ⇒ φ ∨ (ψ ∨ χ) are
provable.

φ⇒ φ
(⇒ ∨1)

φ⇒ φ ∨ ψ
(⇒ ∨1)

φ⇒ (φ ∨ ψ) ∨ χ

ψ ⇒ ψ
(⇒ ∨2)

ψ ⇒ φ ∨ ψ
(⇒ ∨1)

ψ ⇒ (φ ∨ ψ) ∨ χ
χ⇒ χ

(⇒ ∨2)
χ⇒ (φ ∨ ψ) ∨ χ

(∨ ⇒)
ψ ∨ χ⇒ (φ ∨ ψ) ∨ χ

(∨ ⇒)
φ ∨ (ψ ∨ χ) ⇒ (φ ∨ ψ) ∨ χ

φ⇒ φ
(⇒ ∨1)

φ⇒ φ ∨ (ψ ∨ χ)

ψ ⇒ ψ
(⇒ ∨1)

ψ ⇒ ψ ∨ χ
(⇒ ∨2)

ψ ⇒ φ ∨ (ψ ∨ χ)
(∨ ⇒)

φ ∨ ψ ⇒ φ ∨ (ψ ∨ χ)

χ⇒ χ
(⇒ ∨2)

χ⇒ ψ ∨ χ
(⇒ ∨2)

χ⇒ φ ∨ (ψ ∨ χ)
(∨ ⇒)

(φ ∨ ψ) ∨ χ⇒ φ ∨ (ψ ∨ χ)
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Therefore, [φ]∨ ([ψ]∨ [χ]) = ([φ]∨ [ψ])∨ [χ]. [φ]∧ ([ψ]∧ [χ]) = ([φ]∧ [ψ])∧ [χ]
can be analogously proved.

Absorption : φ ∧ (φ ∨ ψ) ⇒ φ and φ⇒ φ ∧ (φ ∨ ψ) are provable.

φ⇒ φ
(∧1 ⇒)

φ ∧ (φ ∨ ψ) ⇒ φ
φ⇒ φ

φ⇒ φ
(⇒ ∨1)

φ⇒ φ ∨ ψ
(⇒ ∧)

φ⇒ φ ∧ (φ ∨ ψ)

Therefore, [φ] ∧ ([φ] ∨ [ψ]) = [φ]. [φ] ∨ ([φ] ∧ [ψ]) = [φ] can be analogously
proved.

Distributivity : φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ) is an initial sequent and
(φ ∧ ψ) ∨ (φ ∧ χ) ⇒ φ ∧ (ψ ∨ χ) are provable.

φ⇒ φ
(∧1 ⇒)

φ ∧ ψ ⇒ φ

ψ ⇒ ψ
(∧2 ⇒)

φ ∧ ψ ⇒ ψ
(⇒ ∨1)

φ ∧ ψ ⇒ ψ ∨ χ
(⇒ ∧)

φ ∧ ψ ⇒ φ ∧ (ψ ∨ χ)

φ⇒ φ
(∧1 ⇒)

φ ∧ χ⇒ φ

χ⇒ χ
(∧2 ⇒)

φ ∧ χ⇒ χ
(⇒ ∨2)

φ ∧ χ⇒ ψ ∨ χ
(⇒ ∧)

φ ∧ χ⇒ φ ∧ (ψ ∨ χ)
(∨ ⇒)

(φ ∧ ψ) ∨ (φ ∧ χ) ⇒ φ ∧ (ψ ∨ χ)

Therefore, [φ] ∧ ([ψ] ∨ [χ]) = ([φ] ∧ [ψ]) ∨ ([φ] ∧ [χ]).

>-, ⊥-Boundedness : φ ⇒ > and ⊥ ⇒ φ are initial sequents. Therefore, [φ] ≤
[>] and [⊥] ≤ [φ].

Next, we prove that 〈Frm(Φ)/ ≡,∨,∧, ◦, \, /, [1]〉 is a residuated lattice as follows.

Associativity : We need to prove [φ] ◦ ([ψ] ◦ [χ]) = ([φ] ◦ [ψ]) ◦ [χ]. This is that
φ ◦ (ψ ◦ χ) ⇒ (φ ◦ ψ) ◦ χ and (φ ◦ ψ) ◦ χ⇒ φ ◦ (ψ ◦ χ) are provable.

φ⇒ φ ψ ⇒ ψ
(⇒ ◦)

φ, ψ ⇒ φ ◦ ψ χ⇒ χ
(⇒ ◦)

φ, ψ, χ⇒ (φ ◦ ψ) ◦ χ
(◦ ⇒)

φ, ψ ◦ χ⇒ (φ ◦ ψ) ◦ χ
(◦ ⇒)

φ ◦ (ψ ◦ χ) ⇒ (φ ◦ ψ) ◦ χ

φ⇒ φ

ψ ⇒ ψ χ⇒ χ
(⇒ ◦)

ψ, χ⇒ ψ ◦ χ
(⇒ ◦)

φ, ψ, χ⇒ φ ◦ (ψ ◦ χ)
(◦ ⇒)

φ ◦ ψ, χ⇒ φ ◦ (ψ ◦ χ)
(◦ ⇒)

(φ ◦ ψ) ◦ χ⇒ φ ◦ (ψ ◦ χ)

Therefore, [φ] ◦ ([ψ] ◦ [χ]) = ([φ] ◦ [ψ]) ◦ [χ].

Identity : We need to prove [φ]◦[1] = [φ] and [1]◦[φ] = [φ]. This is that φ◦1 ⇒ φ,
φ⇒ φ ◦ 1, 1 ◦ φ⇒ φ and φ⇒ 1 ◦ φ are provable.

φ⇒ φ
(1 w)

φ, 1 ⇒ φ
(◦ ⇒)

φ ◦ 1 ⇒ φ

φ⇒ φ ⇒ 1
(⇒ ◦)

φ⇒ φ ◦ 1

φ⇒ φ
(1 w)

1, φ⇒ φ
(◦ ⇒)

1 ◦ φ⇒ φ

⇒ 1 φ⇒ φ
(⇒ ◦)

φ⇒ 1 ◦ φ

Therefore, [φ] ◦ [1] = [φ] and [1] ◦ [φ] = [φ] hold.

Residuation law : It is suffices to check the following.

[φ] ◦ [ψ] ≤ [χ] =⇒ [ψ] ≤ [φ]\[χ] =⇒ [φ] ≤ [χ]/[ψ] =⇒ [φ] ◦ [ψ] ≤ [χ]
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Assume [φ] ◦ [ψ] ≤ [χ].

φ⇒ φ ψ ⇒ ψ
(⇒ ◦)

φ, ψ ⇒ φ ◦ ψ φ ◦ ψ ⇒ χ
(cut)

φ, ψ ⇒ χ
(⇒ \)

ψ ⇒ φ\χ

Therefore, [φ] ◦ [ψ] ≤ [χ] =⇒ [ψ] ≤ [φ]\[χ].

Assume ψ ⇒ φ\χ.

ψ ⇒ φ\χ
φ⇒ φ ψ ⇒ ψ

(\ ⇒)
φ, φ\ψ ⇒ ψ

(cut)
φ, ψ ⇒ χ

(⇒ /)
φ⇒ χ/ψ

Therefore, [ψ] ≤ [φ]\[χ] =⇒ [φ] ≤ [χ]/[ψ].

Assume φ⇒ χ/ψ.

φ⇒ χ/ψ

χ⇒ χ ψ ⇒ ψ
(/⇒)

χ/ψ, ψ ⇒ χ
(cut)

φ, ψ ⇒ χ
(◦ ⇒)

φ ◦ ψ ⇒ χ

Therefore, [φ] ≤ [χ]/[ψ] =⇒ [φ] ◦ [ψ] ≤ [χ].

Thus, the Lindenbaum-Tarski algebra of L is at least a DFL-algebra. Next, if L is
a normal modal logic, then we can show the following.

Complementation : ⊥ ⇒ φ ∧ ¬φ is an initial sequent and φ ∧ ¬φ ⇒ ⊥ is
provable.

φ⇒ φ
(¬ ⇒)

φ,¬φ⇒
(∧1 ⇒)

φ ∧ ¬φ,¬φ⇒
(∧2 ⇒)

φ ∧ ¬φ, φ ∧ ¬φ⇒
(c ⇒)

φ ∧ ¬φ⇒
(⊥ w)

φ ∧ ¬φ⇒ ⊥

Therefore, [φ] ∧ [¬φ] = [⊥]. [φ] ∨ [¬φ] = [>] can be analogously proved.

Boundedness : φ ∨ ⊥ ⇒ φ and φ⇒ φ ∨ ⊥ are provable, as follows.

φ⇒ φ ⊥ ⇒ φ
(∨ ⇒)

φ ∨ ⊥ ⇒ φ

φ⇒ φ
(⇒ ∨1)

φ⇒ φ ∨ ⊥

Therefore, [φ] ∨ [⊥] = [φ]. [φ] ∨ [>] = [>] can be analogously proved.

Thus, 〈Frm(Φ)/ ≡L,∨,∧,¬, [>], [⊥]〉 is a Boolean algebra. Next, we prove the
following conditions of 2.
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Meet preservation : 2(φ∧ψ) ⇒ 2φ∧2ψ and 2φ∧2ψ ⇒ 2(φ∧ψ) are provable.

φ⇒ φ
(∧1 ⇒)

φ ∧ ψ ⇒ φ
(2)

2(φ ∧ ψ) ⇒ 2φ

ψ ⇒ ψ
(∧2 ⇒)

φ ∧ ψ ⇒ ψ
(2)

2(φ ∧ ψ) ⇒ 2ψ
(⇒ ∧)

2(φ ∧ ψ) ⇒ 2φ ∧ 2ψ

φ⇒ φ
(w ⇒)

φ, ψ ⇒ φ

ψ ⇒ ψ
(w ⇒)

φ, ψ ⇒ ψ
(⇒ ∧)

φ, ψ ⇒ φ ∧ ψ
(2)

2φ,2ψ ⇒ 2(φ ∧ ψ)
(∧1 ⇒)

2φ ∧ 2ψ,2ψ ⇒ 2(φ ∧ ψ)
(∧2 ⇒)

2φ ∧ 2ψ,2φ ∧ 2ψ ⇒ 2(φ ∧ ψ)
(c ⇒)

2φ ∧ 2ψ ⇒ 2(φ ∧ ψ)

Therefore, 2([φ] ∧ [ψ]) = (2[φ] ∧2[ψ]).

Top preservation : 2> ⇒ > is an initial sequent and > ⇒ 2> is provable.

⇒ > (2)⇒ 2> (w ⇒)> ⇒ 2>
Therefore, 2[>] = [>].

Thus, the Lindenbaum-Tarski algebra of L is a modal algebra. Therefore, we
have already proved that the Lindenbaum-Tarski algebra of DFL (K) is a DFL-
(K-) algebra.

It remains to show the following. Given an extension L of DFL (K), every
foruma φ in L is valid on the Lindenbaum-Tarski algebra L(Φ) of L.

Since every logic is closed under uniform substitution, if φ is in L, any uniform
substitution instance is also in L. In other words, any uniform substitution instance
is provable.

Let f be an arbitrary assignment on L(Φ). For any propositional variable p ∈ Φ,
we can take a formula ρ(p) in the equivalent class f(p) as its representative. That
is, f(p) = [ρ(p)]. Then, we can view ρ as a function from Φ to Frm(Φ). In other
words, ρ is a uniform substitution.

If φ is in L, the uniform substitution instance ρ(φ) is also in L. For any assign-
ment f on L(Φ), if we take the representation ρ(p) for any propositional variable
p ∈ Φ,

f(φ) = [ρ(φ)]

Here, ρ(φ) ∈ L. Therefore, [1] ≤ [ρ(φ)]. (Q.E.D)

Here, we define a special assignment fL for the Lindenbaum-Tarski algebra L(Φ)
of L as follows.

fL(p) := [p] for any propositional variable p ∈ Φ

Besides, the assignment can be inductively extended, as usual. Then, we can
check that f(φ) = [φ] for any formula φ ∈ Frm(Φ). Finally, we can prove the
completeness theorem of any DFL (normal modal) logic.
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Theorem 3.19 (Algebraic completeness theorem)
Given any DFL (normal modal) logic L, if a formula φ is valid on the class CL of
all L-algebras, then φ is in L.

Proof
Assume φ 6∈ L (i.e. φ is not provable in L). Then, 1 ⇒ φ is not provable. From
Lemma 3.17, in the Lindenbaum algebra L(Φ) of L, [1] ≤ [φ] does not hold. So,
L(Φ), fL 6|= φ. By Proposition 3.18, L(Φ) is a L-algebra. Therefore, φ is not valid
on the class CL. (Q.E.D)
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4 Relational semantics and canonicity

In this chapter, we introduce relational semantics for DFL (normal modal) logics
and define some concepts and terminology about them.

4.1 Relational semantics

We define the relational semantics for our logics.

Definition 4.1 (Kripke model)
A tuple M = 〈W,R2, V 〉 is a Kripke model, if W is a non-empty set, R2 is a binary
relation on W , and V is a function from Φ to W , called a valuation. The tuple
F = 〈W,R〉 is called a Kripke frame. Besides, C2 denotes the class of all Kripke
frames.

Definition 4.2 (DFL-model)
A tuple F = 〈W,O,N,R◦〉 is a DFL-frame, if W is a non-empty set, O a non-empty
subset of W , N a subset of W and R◦ a ternary relation on W , that satisfy the
following conditions.

1. (R◦-reflexivity):
For any w ∈ W , there exist o and o′ inO such thatR◦(w, o, w) andR◦(w,w, o′).

2. (R◦-transitivity):
For any w, v, u, w′, v′, u′ ∈ W ,
if R◦(w, v, u) and w ≤ w′ and v′ ≤ v and u′ ≤ u, then R◦(w′, v′, u′).

3. (R◦-associativity):
For any w, v, u, s ∈ W , there exists x ∈ W such thatR◦(w, x, s) and R◦(x, v, u),
if and only if there exists y ∈ W such that R◦(w, v, y) and R◦(y, u, s).

4. O is closed under ≤.
(That is, for each w, v ∈ W , if w ≤ v and w ∈ O, then v ∈ O.)

5. N is closed under ≤.

Here, w ≤ v is defined by the condition that there exists o ∈ O such that
R◦(v, o, w) or R◦(v, w, o). A subset W ′ of W is R◦-upward closed, if w ≤ v and
w ∈ W ′ imply v ∈ W ′ for any w, v ∈ W . Thus, the above definition of DFL-frames
says that O and N must be R◦-upward closed. Besides, CDFL denotes the class of
all DFL-frames.

The set of all R◦-upward closed sets over W is denoted by Up(W ). Moreover,
given a DFL-frame F = 〈W,O,N,R◦, V 〉, a tuple M = 〈F, V 〉 is a DFL-model,
where V is a function from Φ to Up(W ), called a valuation.
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Although we defined several relational semantics, we call just frame, model or
valuation as long as possible.

Given a model M = 〈F, V 〉 = 〈W, . . . , V 〉, an element w ∈ W (sometimes, we
say w is an element of F or M) and a formula φ, we define a relation M, w ° φ as
follows. (If M, w ° φ does not hold, then we denote M, w 6° φ.)

For FL formulas:

• M, w ° p ⇐⇒ w ∈ V (p), for an arbitrary propositional variable p ∈ Φ.

• M, w ° 1 ⇐⇒ w ∈ O.

• M, w ° 0 ⇐⇒ w ∈ N .

• M, w ° > always holds.

• M, w 6° ⊥ always holds.

• M, w ° φ ∨ ψ ⇐⇒ M, w ° φ or M, w ° ψ.

• M, w ° φ ∧ ψ ⇐⇒ M, w ° φ and M, w ° ψ.

• M, w ° φ ◦ ψ ⇐⇒
there exist v, u ∈ W such that R◦(w, v, u), M, v ° φ and M, u ° ψ.

• M, w ° φ\ψ ⇐⇒
for any v, u ∈ W , if R◦(u, v, w) and M, v ° φ, then M, u ° ψ.

• M, w ° ψ/φ ⇐⇒
for any v, u ∈ W , if R◦(u,w, v) and M, v ° φ, then M, u ° ψ.

For modal formulas:

• M, w ° p ⇐⇒ w ∈ V (p), for an arbitrary propositional variable p ∈ Φ.

• M, w ° > always holds.

• M, w 6° ⊥ always holds.

• M, w ° φ ∨ ψ ⇐⇒ M, w ° φ or M, w ° ψ.

• M, w ° φ ∧ ψ ⇐⇒ M, w ° φ and M, w ° ψ.

• M, w ° φ→ ψ ⇐⇒ if M, w ° φ, then M, w ° ψ.

• M, w ° ¬φ ⇐⇒ M, w 6° φ.

• M, w ° 2φ ⇐⇒ for any v ∈ W , if R2(w, v), then M, v ° φ.

• M, w ° 3φ ⇐⇒ there exists v ∈ W such that R2(w, v) and M, v ° φ.
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We might want to call M, w ° φ that a fomula φ is true at w in F under V ,
at first. However, for FL formulas, this relation M, w ° φ is, in fact, not enough.
With this relation °, we define truth, global truth or validity as follows. (As we
can see later, in normal modal logics, M, w ° φ is completely equivalent to the
following definition.)

• A formula φ is true at w in F under V (F, V, w °t φ), if and only if F, V, w ° φ
and w ∈ O.

• A formula φ is globally true in F under V (F, V °t φ), if and only if F, V, w °
φ, for all w ∈ O.

• A formula φ is valid on F (F °t φ), if and only if F, V °t φ, for any valuation
V .

Given a set Σ of formulas and a class C of frames, Σ is valid on C (denoted by
C °t Σ), if and only if every formula in Σ is valid on any frame in C.

Besides, by the above definition of truth, global truth and validity, we can con-
sider that a sequent is true, globally true and valid as follows.

• A sequent Γ ⇒ ϕ is true at w in F under V (denoted by F, V, w °t Γ ⇒ ϕ),
if and only if F, V, w ° Γ◦ implies F, V, w ° ϕ.

• A sequent Γ ⇒ ϕ is globally true in F under V (denoted by F, V °t Γ ⇒ ϕ),
if and only if Γ ⇒ ϕ is true for any w ∈ F.

• A sequent Γ ⇒ ϕ is valid on F (denoted by F °t Γ ⇒ ϕ), if and only if
Γ ⇒ ϕ is globally true for any valuation V .

Note that global truth and validity correspond to algebraic truth and validity,
respectively. Moreover, the following proposition for DFL-models holds.

Proposition 4.3
Let M = (F, V ) be any DFL-model, w,w′ arbitrary elements in M and φ an
arbitrary formula, if M, w ° φ and w ≤ w′, then M, w′ ° φ holds. In other words,
the relation ° is R◦-upward closed. Therefore, truth, global truth and validity also
are R◦-upward closed.

Proof
Induction on φ.

• If M, w ° p, then M, w′ ° p, because V (p) is R◦-upward closed.

• If M, w ° 1, then M, w′ ° 1, because O is R◦-upward closed.

• If M, w ° 0, then M, w′ ° 0, because N is R◦-upward closed.

• If M, w ° ψ ∨ χ, then M, w ° ψ or M, w ° χ. By the induction hypothesis,
M, w′ ° ψ or M, w′ ° χ. So, M, w′ ° ψ ∨ χ.
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• If M, w ° ψ∧χ, then M, w ° ψ and M, w ° χ. By the induction hypothesis,
M, w′ ° ψ and M, w′ ° χ. So, M, w′ ° ψ ∧ χ.

• If M, w ° ψ ◦ χ, then these exist v, u ∈ M such that R◦(w, v, u), M, v ° ψ
and M, u ° χ. Moreover, by means of R◦-transitivity and R◦-reflexivity,
R◦(w′, v, u) holds. Therefore, M, w′ ° ψ ◦ χ.

• If M, w′ 6° ψ\χ, then there exist v, u ∈ M such that R◦(u, v, w′), M, v ° ψ
but M, u 6° χ. Moreover, by means of R◦-transitivity and R◦-reflexivity,
R◦(u, v, w) holds. Therefore, M, w 6° ψ\χ.

• If M, w′ 6° χ/ψ, then there exist v, u ∈ M such that R◦(u,w′, v), M, v ° ψ
but M, u 6° χ. Moreover, by means of R◦-transitivity and R◦-reflexivity,
R◦(u,w, v) holds. Therefore, M, w 6° χ/ψ.

Since O is R◦-upward closed, truth, global truth and validity are also R◦-upward
closed. (Q.E.D)

On relational semantics, we say that an axiom (initial sequents or an inference
rule) corresponds to a frame condition, if any logic L containing the axiom if and
only if any frame satisfying the frame condition validates L. Next, we prove the
following correspondence lemma for DFL-frames.

Lemma 4.4
Each structural rule corresponds to the following DFL-frame conditions, respec-
tively.

(c ⇒) :
For any w, v ∈ W, if w ≤ v, then R◦(v, w, w).
Or, equivalently on DFL-frame, for any w ∈ W,R◦(w,w,w).

(e ⇒) : For any w, v, u ∈ W , if R◦(w, v, u), then R◦(w, u, v).

(w ⇒) : For any w ∈ W , w ∈ O. (That is, O = W )

(⇒ w) : N = ∅.
Proof
(c ⇒) : Suppose that Γ, φ, φ,∆ ⇒ ϕ is valid on F satisfying (c ⇒) DFL-frame

condition. For an arbitrary valuation V and an arbitrary w ∈ F, if M(=
F, V ), w ° Γ◦ ◦ φ ◦∆◦, then there exist v, u, x, s ∈ M such that R◦(w, x, s),
R◦(x, v, u), M, v ° Γ◦, M, u ° φ and M, s ° ∆◦. By R◦-reflexivity, u ≤ u.
So, by (c ⇒) DFL-frame condition, R◦(u, u, u) holds. Then, M, u ° φ ◦ φ.
Then, M, w ° Γ◦◦φ◦φ◦∆◦. From the first assumption, M, w ° ϕ. Therefore,
Γ, φ,∆ ⇒ ϕ is valid on A.

Let M = 〈{w, v, u}, R◦, {w, v}, ∅, V 〉 be a DFL-model, which is not satisfying,
R ◦ (u, u, u).

R◦ = {(w,w,w), (v, v, v), (u,w, u), (u, u, v)}
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V (p) = {u}
In this model, M, u ° p and M, u 6° p ◦ p. So, although p ◦ p⇒ p ◦ p is valid,
p⇒ p ◦ p is not true. Therefore, (c ⇒) is not valid.

(e ⇒) : Suppose that Γ, φ, ψ,∆ ⇒ ϕ is valid on F satisfying (e ⇒) DFL-frame
condition. For an arbitrary valuation V and an arbitrary w ∈ F, if M(=
F, V ), w ° Γ◦◦ψ◦φ◦∆◦, then there exist v, u, x, s ∈ M such that R◦(w, x, s),
R◦(x, v, u), M, v ° Γ◦, M, u ° ψ ◦ φ and M, s ° ∆◦. Moreover, from M, u °
ψ ◦ φ, there exist y, z ∈ M such that R◦(u, y, z), M, y ° ψ and M, z ° φ.
By (e ⇒) DFL-frame condition, R◦(u, z, y) holds. Also, M, u ° φ ◦ ψ holds.
Then, M, w ° Γ◦ ◦ φ ◦ ψ ◦ ∆◦. By the assumption, M, w ° ϕ. Therefore,
Γ, ψ, φ,∆ ⇒ ϕ is valid.

Let M = 〈{w, v, u}, R◦, {w, v}, ∅, V 〉 be a DFL-model, which is not satisfying
R[circ(u,w, u) implies R◦(u, u, w).

R◦ = {(w,w,w), (v, v, v), (u,w, u), (u, u, v)}

V (p) = {w}
V (q) = {u}

In this model, M, u ° p ◦ q and M, u 6° q ◦ p. So, although q ◦ p ⇒ q ◦ p is
valid, p ◦ q ⇒ q ◦ p is not true. Therefore, (e ⇒) is not valid.

(w ⇒) : Suppose that Γ,∆ ⇒ ϕ is valid on F satisfying (w ⇒) DFL-frame
condition. For an arbitrary valuation V and an arbitrary w ∈ F, if M(=
F, V ), w ° Γ◦ ◦ φ ◦∆◦, then there exist v, u, x, s ∈ M such that R◦(w, x, s),
R◦(x, v, u), M, v ° Γ◦, M, u ° φ and M, s ° ∆◦. By (w ⇒) DFL-frame
condition, u ∈ O. So, v ≤ x holds. Then, by R◦-transitivity and R◦-
reflexivity, R◦(w, v, s) holds. Therefore, M, w ° Γ◦ ◦∆◦. By the assumption,
M, w ° ϕ. Therefore, Γ, φ,∆ ⇒ ϕ is valid.

Let M = 〈{w, v}, R◦, {w}, ∅, V 〉 be a DFL-model, which is not satisfying
v ∈ O.

R◦ = {(w,w,w), (v, v, w), (v, w, v)}
V (p) = {v}

In this modes, M, v ° p and M, v 6° 1. So, although, ⇒ 1 is valid, p ⇒ 1 is
not true. Therefore, (w ⇒) is not valid.

(⇒ w) : Suppose that Γ ⇒ is valid on F satisfying (⇒ w) DFL-frame condition.
For an arbitrary valuation V , there is no element w ∈ F such that F, V, w °
Γ◦, by the assumption. Therefore, Γ ⇒ ϕ is valid.

Let M = 〈{w, v}, R◦, {w}, {v}, V 〉 be a DFL-model, which is not satisfying
w 6∈ N .

R◦ = {(w,w,w), (v, w, v), (v, v, w)}
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V (p) = {w}
In this model, M, v ° 0 and M, v 6° p. So, although, 0 ⇒ is valid, 0 ⇒ p is
not true. Therefore, (⇒ w) is not valid. (Q.E.D)

4.2 Soundness

We prove the soundness of DFL and K.

Theorem 4.5 (Soundness)
Every formula in DFL and K is valid on the classes CDFL and C2, respectively.

Proof
As in the case of algebraic semantics, we firstly prove the soundness theorem for
DFL, because C2 is a class of some DFL-frames with a binary relation.

It suffices to check both every initial sequent is valid and, in each of cut rule
and rules for logical connectives of DFL, the lower sequent is valid, if the upper
sequents are valid. Let F be an arbitrary DFL-frame.

φ⇒ φ : By definition.

Γ ⇒ > : This is immediate, because F ° > always holds.

Γ,⊥,Σ ⇒ ϕ : This is immediate, because F 6° ⊥ always holds.

⇒ 1 : By definition.

0 ⇒ : By definition.

φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ) : For an arbitrary valuation V on F and an ar-
bitrary w ∈ F, assume M = (F, V ), w ° φ ∧ (ψ ∨ χ). Then, M, w ° φ
and either M, w ° ψ or M, w ° χ. Either M, w ° φ and M, w ° ψ,
or M, w ° φ and M, w ° χ. So, M, w ° (φ ∧ ψ) ∨ (φ ∧ χ). Therefore,
φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ) is valid on F.

(cut) : Suppose that Γ ⇒ φ and Σ, φ,Ξ ⇒ ϕ are valid on F. For an arbitrary
valuation V and an arbitrary w ∈ F, if M(= F, V ), w ° Σ◦◦Γ◦◦Ξ◦, then there
exist v, u, s, x ∈ M such that R◦(w, x, s), R◦(x, v, u), M, v ° Σ◦, M, u ° Γ◦,
and M, s ° Ξ◦. By the first assumption, M, u ° φ. So, M, w ° Σ◦ ◦ φ ◦ Ξ◦.
Then, by the second assumption, M, w ° ϕ. Therefore, Σ,Γ,Ξ ⇒ ϕ is valid
on F.

(1 w) : Suppose that Γ,∆ ⇒ ϕ is valid on F. For an arbitrary valuation V and an
arbitrary w ∈ F, if M(= F, V ), w ° Γ◦ ◦1◦∆◦, then there exist v, u, s, x ∈ M

such that R◦(w, x, s), R◦(x, v, u), M, v ° Γ◦, M, u ° 1 and M, s ° ∆◦.
Since u ∈ O, v ≤ x holds. From Proposition 4.3, M, x ° Γ◦ holds. So,
M, w ° Γ◦ ◦ ∆◦. By the assumption, M, w ° ϕ. Therefore, Γ, 1,∆ ⇒ ϕ is
valid on F.
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(0 w) : By definition.

(∨ ⇒) : Suppose that Γ, φ,∆ ⇒ ϕ and Γ, ψ,∆ ⇒ ϕ are valid on F. For an
arbitrary valuation V and an arbitrary w ∈ F, if M(= F, V ), w ° Γ◦ ◦ (φ ∨
ψ)◦∆◦, then there exist v, u, x, s such that R◦(w, x, s), R◦(x, v, u), M, v ° Γ◦,
M, u ° φ ∨ ψ and M, s ° ∆◦. If M, u ° φ, then, from the first assumption,
M, w ° ϕ holds. Otherwise, M, u ° ψ, then, from the second assumption
M, w ° ϕ holds. Afterall, M, w ° ϕ. Therefore, Γ, φ ∨ ψ,∆ ⇒ ϕ is valid on
F.

(⇒ ∨1) : Suppose that Γ ⇒ φ is valid on F. For an arbitrary valuation V and an
arbitrary w ∈ F, if M(= F, V ), w ° Γ◦, then, from the assumption, M, w ° φ
holds. So, M, w ° φ ∨ ψ. Therefore, Γ ⇒ φ ∨ ψ is valid on F.

(⇒ ∨2) : Suppose that Γ ⇒ ψ is valid on F. For an arbitrary valuation V and an
arbitrary w ∈ F, if M(= F, V ), w ° Γ◦, then, from the assumption, M, w ° ψ
holds. So, M, w ° φ ∨ ψ. Therefore, Γ ⇒ φ ∨ ψ is valid on F.

(∧1 ⇒) : Suppose that Γ, φ,∆ ⇒ ϕ is valid on F. For an arbitrary valuation V
and an arbitrary w ∈ F, if M(= F, V ), w ° Γ◦ ◦ (φ∧ψ) ◦∆◦, then there exist
v, u, x, s ∈ M such that R◦(w, x, s), R◦(x, v, u), M, v ° Γ◦, M, u ° φ ∧ ψ
and M, s ° ∆◦. Then, M, u ° φ holds. So, from the assumption, M, w ° ϕ
holds. Therefore, Γ, φ ∧ ψ,∆ ⇒ ϕ is valid on F.

(∧2 ⇒) : Suppose that Γ, ψ,∆ ⇒ ϕ is valid on F. For an arbitrary valuation V
and an arbitrary w ∈ F, if M(= F, V ), w ° Γ◦ ◦ (φ∧ψ) ◦∆◦, then there exist
v, u, x, s ∈ M such that R◦(w, x, s), R◦(x, v, u), M, v ° Γ◦, M, u ° φ ∧ ψ
and M, s ° ∆◦. Then, M, u ° ψ holds. So, from the assumption, M, w ° ϕ
holds. Therefore, Γ, φ ∧ ψ,∆ ⇒ ϕ is valid on F.

(⇒ ∧) : Suppose that Γ ⇒ φ and Γ ⇒ ψ are valid on F. For an arbitrary
valuation V and an arbitrary w ∈ F, if M(= F, V ), w ° Γ◦, then, by the first
assumption, M, w ° φ, and, by the second assumption, M, w ° ψ hold. So,
M, w ° φ ∧ ψ holds. Therefore, Γ ⇒ φ ∧ ψ is valid on F.

(◦ ⇒) : By definition.

(⇒ ◦) : Suppose that Γ ⇒ φ and ∆ ⇒ ψ are valid on F. For an arbitrary
valuation V and an arbitrary w ∈ F, if M(= F, V ), w ° Γ◦ ◦∆◦, then there
exist v, u ∈ M such that R◦(w, v, u), M, v ° Γ◦ and M, u ° ∆◦. From the
first assumption, M, v ° φ, and, from the second assumption, M, u ° ψ hold.
So, M, w ° φ ◦ ψ. Therefore, Γ,∆ ⇒ φ ◦ ψ is valid on F.

(\ ⇒) : Suppose that Γ ⇒ φ and Ξ, ψ,∆ ⇒ ϕ are valid on F. For an arbitrary
valuation V and an arbitrary w ∈ F, if M(= F, V ), w ° Ξ◦ ◦ Γ◦ ◦ (φ\ψ) ◦∆◦,
then there exist v, u, x, s ∈ M such that R◦(w, x, s), R◦(x, v, u), M, v ° Ξ◦,
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M, u ° Γ◦ ◦ (φ\ψ) and M, s ° ∆◦. Moreover, from M, u ° Γ◦ ◦ (φ\ψ), there
exist y, z ∈ M such that R◦(u, y, z), M, y ° Γ◦ and M, z ° φ\ψ. By the first
assumption, M, y ° φ holds. So, M, u ° ψ holds. By the second assumption,
M, w ° ϕ holds. Therefore, Ξ,Γ, φ\ψ,∆ ⇒ ϕ is valid on F.

(⇒ \) : Assume that Γ ⇒ φ\ψ is not valid on F. Then, there exist a valuation
V ′ and an element w′ ∈ F such that M(= F, V ′), w′ ° Γ◦ but M, w′ 6° φ\ψ.
So, there exist v, u ∈ M such that R◦(u, v, w′), M, v ° φ but M, u 6° ψ.
On the other hand, since R◦(u, v, w′), M, v ° φ and M, w′ ° Γ◦ hold, then
M, u ° φ ◦ Γ◦. So, M, w′ 6° φ,Γ ⇒ ψ. Therefore, φ,Γ ⇒ ψ is not valid on F.

(/⇒) : Suppose that Γ ⇒ φ and Ξ, ψ,∆ ⇒ ϕ are valid on F. For an arbitrary
valuation V and an arbitrary w ∈ F, if M(= F, V ), w ° Ξ◦ ◦ (ψ/φ) ◦ Γ◦ ◦∆◦,
then there exist v, u, x, s ∈ M such that R◦(w, x, s), R◦(x, v, u), M, v ° Ξ◦,
M, u ° (ψ/φ) ◦ Γ◦ and M, s ° ∆◦. Moreover, from M, u ° (ψ/φ) ◦ Γ◦, there
exist y, z ∈ M such that R◦(u, y, z), M, y ° ψ/φ and M, z ° Γ◦. By the first
assumption, M, z ° φ holds. So, M, u ° ψ holds. By the second assumption,
M, w ° ϕ holds.Therefore, Ξ, ψ/φ,Γ,∆ ⇒ ϕ is valid on F.

(⇒ /) : Assume that Γ ⇒ ψ/φ is not valid on F. Then, there exist a valuation
V ′ and an element w′ ∈ F such that M(= F, V ′), w′ ° Γ◦ but M, w′ 6° ψ/φ.
So, there exist v, u ∈ M such that R◦(u,w′, v), M, v ° φ but M, u 6° ψ.
On the other hand, since R◦(u,w′, v), M, v ° φ and M, w′ ° Γ◦ hold, then
M, u ° Γ◦ ◦ φ. So, M, w′ 6° Γ, φ⇒ ψ. Therefore, Γ, φ⇒ ψ is not valid on F.

Thus, CDFL °t DFL. We only check the inference rule (2) on C2 here. Let F be
an arbitrary Kripke frame.

(2) : Suppose that Γ ⇒ φ is valid. For an arbitrary valuation V and an arbitrary
w ∈ F, if M(= F, V ), w ° (2Γ)∧, by the Meet preservation, M, w ° 2(Γ∧).
So, for any v ∈ F, if R2(w, v), then M, v ° Γ∧. By the assumption, M, v ° φ.
Then, M, w ° 2φ. Therefore, 2Γ ⇒ 2φ is valid on F. (Q.E.D)

Given a logic L, a frame F is a L-frame, if F °t L. The set of all L-frames is
denoted by CL. By Theorem 4.5, the name (DFL-frame) makes sense.

As a corollary, we can show the following.

Theorem 4.6
Any DFL (normal modal) logic L is sound for the class CL of L-frames.

4.3 Kripke completeness via canonicity

Now, we will show Kripke completeness of some DFL (normal modal) logics. As
we saw before, thanks to the Lindenbaum-Tarski algebra, any extension L of DFL
and K is algebraic complete with respect to the class CL. However, on a relational
semantics, we do not know the way we can detect every Kripke complete logic, yet.
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It is also known that there exist some non-Kripke complete logics in normal modal
logics (see e.g. chap 4.4 in [2], [4] or [9]). But, in normal modal logics, there exists
a way to check some Kripke complete logics automatically. So, we take the same
strategy for DFL logics.

Definition 4.7 (Kripke complete)
A logic L is Kripke complete with respect to the class CL of L-frames, if CL °t L.
Sometimes, we say just Kripke complete.

To define canonical models, we introduce some terminology.

Definition 4.8 (L-set)
Given a logic L, a set Σ of formulas is a L-set, if Σ satisfying the following.

1. If φ ∈ Σ and ψ ∈ Σ, then φ ∧ ψ ∈ Σ.

2. If φ ∈ Σ and φ\ψ ∈ L, then ψ ∈ Σ.

Σ is consistent, if Σ also satisfies the following.

3. ⊥ 6∈ Σ.

Σ is prime, if Σ also satisfies the following.

4. If φ ∨ ψ ∈ Σ, then φ ∈ Σ or ψ ∈ Σ.

We know that, given a logic L, the set Con(Frm(Φ)) of all L-consistent sets
is a partially ordered set under the set inclusion. Therefore, we can define the
following.

Definition 4.9 (Maximal consistent set)
Given a logic L, a set Σ of formulas is maximal, if Σ is a maximal element in the
set Con(Frm(Φ)) of all L-consistent sets.

It is known that, for any normal modal logic L, every L-prime consistent set is
maximal.

We define the canonical model here.

Definition 4.10 (Canonical model)
Given a DFL logic L, the tuple ML = 〈WL, OL, NL, RL

◦ , V
L〉 is the canonical model

of L, where

1. WL is the set of all L-prime consistent sets,

2. OL is the set of all L-prime consistent sets containing 1,

3. NL is the set of all L-prime consistent sets containing 0,

4. RL
◦ (Σ1,Σ2,Σ3) ⇐⇒

for any formulas φ, ψ, χ, if ψ ∈ Σ2, χ ∈ Σ3 and (ψ ◦ χ)\φ ∈ L, then φ ∈ Σ1,
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5. V L(p) := {Σ | p ∈ Σ}, for any propositional variable p ∈ Φ.

The condition 4 can be considered as RL
◦ (Σ1,Σ2,Σ3) ⇐⇒ Σ2 ◦Σ3 ⊆ Σ1, where

Σ2 ◦ Σ3 := {φ | there exist ψ ∈ Σ2, χ ∈ Σ3 and (ψ ◦ χ)\φ ∈ L}.
Given a normal modal logic L, the tuple ML = 〈WL, RL

2, V
L〉 is the canonical

model of L, where

1. WL is the set of all L-maximal consistent sets,

2. RL
2(Σ1,Σ2) ⇐⇒ {φ | 2φ ∈ Σ1} ⊆ Σ2,

3. V L(p) := {Σ | p ∈ Σ}, for any propositional variable p ∈ Φ.

The tuple FL deleting V L from the canonical model ML of L is called the canonical
frame of L.

A logic L is canonical, if FL ∈ CL. We claim that every canonical logic is Kripke
complete. To show this, we prove the following lemmas.

Lemma 4.11
Given a logic L, for any Σ1 ∈ WL, there exist Σ2,Σ3 ∈ WL (Σ2) such that
RL
◦ (Σ1,Σ2,Σ3), φ ∈ Σ2 and ψ ∈ Σ3 (RL

2(Σ1,Σ2) and φ ∈ Σ2), if φ ◦ ψ ∈ Σ1

(3φ ∈ Σ1).

Proof
We prove RL

◦ here, since RL
2 can be analogously proved. If φ1 ◦ φ2 ∈ Σ1, we can

define two sets of formulas as follows.

Γ1 := {φ | φ1\φ ∈ L}
Γ2 := {φ | φ2\φ ∈ L}

Then, Γ1 and Γ2 are L-consistent sets satisfying Γ1 ◦Γ2 ⊆ Σ1, φ1 ∈ Γ1 and φ2 ∈ Γ2,
because, if ⊥ ∈ Γ1(Γ2), ⊥ ∈ Σ1, a contradiction. We want to show that there
exists a L-prime consistent set Σ2 such that Σ2 ◦Γ2 ⊆ Σ1, Γ1 ⊆ Σ2. From now on,
we construct Σ2.

We define F := {Γ ∈ Con(Frm(Φ)) | Γ1 ⊆ Γ and Γ ◦ Γ2 ⊆ Σ1}. F is non-
empty and inductive. Therefore, by Lemma 3.6, there exists a maximal element
Σ2 of F . We claim Σ2 is prime. Assume ψ1 6∈ Σ2, ψ2 6∈ Σ2 but ψ1 ∨ ψ2 ∈ Σ2.
Since Σ2 is a maximal element of F , the smallest L-set containing ψ1 and Σ2 is
not in F . Therefore, there exist ψ′1, ψ

′
2 ∈ Σ2, χ1, χ2 ∈ Γ3, θ1, θ2 6∈ Σ1 such that

((ψ1 ∧ψ′1) ◦χ1)\θ1 ∈ L and ((ψ2 ∧ψ′2) ◦χ2)\θ2 ∈ L. Then ,(((ψ1 ∨ψ2)∧ψ′1 ∧ψ′2) ◦
(χ1 ∧ χ2))\(θ1 ∨ θ2) ∈ L, a contradiction. The same strategy can be useful for the
other side. (Q.E.D)

Lemma 4.12
Given a logic L, for any formula φ, M,Σ ° φ ⇐⇒ φ ∈ Σ.
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Proof
Thanks to Lemma 4.11, this is immediate by induction on φ. (Q.E.D)

Lemma 4.13
Given a logic L, if φ 6∈ L, then there exists a L-prime consistent set Σ such that
L ⊆ Σ and φ 6∈ Σ.

Proof
We define the class F := {Γ ∈ Con(Frm(Φ)) | L ⊆ Γ and φ 6∈ Γ}. Since L ∈ F ,
F is non-empty. Then, since F is an inductive set, by Lemma 3.6, there exists a
maximal element Σ in F .

We want to show that Σ is prime. Assume that ψa 6∈ Σ and ψb 6∈ Σ but
φa∨ψb ∈ Σ. Since Σ is maximal, for the smallest L-consistent set Σa (Σb) containing
Σ ∪ {ψa} (Σ ∪ {ψb}), Σa (Σb) is not in F . So, there exists χa ∈ Σ (χb) such that
(ψa∧χa)\φ ((ψb∧χb)\φ) is in L. Then, we can prove (ψa∨ψb)\φ, a contradiction.
(Q.E.D)

Then, we can prove the following theorem.

Theorem 4.14 (Kripke completeness via canonicity)
Every canonical logic L is Kripke complete.

Proof
Assume that φ 6∈ L. By Lemma 4.13, there exists a L-prime consistent set Σ such
that L ⊆ Σ and φ 6∈ Σ. Then, by Lemma 4.12, ML,Σ 6° φ. Now, since L is
canonical, FL ∈ CL. Therefore, CL 6°t φ. (Q.E.D)

Next, we show Kripke completeness of K and DFL. To prove Proposition 4.17,
we prove the following lemmas.

Lemma 4.15
Given two L-sets Σ1 and Σ2, Σ1 ◦ Σ2 is again a L-set.

Proof
We show that Σ1 ◦ Σ2 satisfies the conditions of L-sets.

If φ1 ∈ Σ1 ◦ Σ2 and φ2 ∈ Σ1 ◦ Σ2, then there exist ψ1, ψ2 ∈ Σ1, χ1, χ2 ∈ Σ2

such that (ψ1 ◦ χ1)\φ1, (ψ2 ◦ χ2)\φ2 ∈ L. Then, ((ψ1 ∧ ψ2) ◦ (χ1 ∧ χ2))\(φ1 ∧ φ2).
Therefore, φ1 ∧ φ2 ∈ Σ1 ◦ Σ2.

If φ ∈ Σ1 ◦ Σ2 and φ⇒ ψ ∈ L, then obviously ψ ∈ Σ1 ◦ Σ2. (Q.E.D)

Lemma 4.16
For any L-consistent sets Σ2,Σ3 and a L-prime consistent set Σ1, if Σ2 ◦Σ3 ⊆ Σ1,
there exist L-prime consistent sets Σ′

2 and Σ′
3 such that R(Σ1,Σ

′
2,Σ

′
3), Σ2 ⊆ Σ′

2

and Σ′
3.
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Proof
Assume Σ2 ◦ Σ3 ⊆ Σ1. We find Σ′

2 firstly. Let F be the class of all L-consisntent
sets ∆ satisfies Σ2 ⊆ ∆ and ∆ ◦ Σ3 ⊆ Σ1. Since F is an inductive set, by Lemma
3.6, there exists a maximal element Σ′

2 ∈ F .
We want to show that Σ′

2 is prime. Assume φ1 6∈ Σ′
2, φ2 6∈ Σ′

2 but φ1 ∨ φ2 ∈
Σ′. Then, in the smallest L-consistent set Σ′

2a (Σ′
2b) satisfying Σ′

2 ∪ {φ1} ⊆ Σ′
2a

(Σ′
2 ∪ {φ2} ⊆ Σ′

2b), there exist χ1, χ2 ∈ Σ1, ψ1, ψ2 ∈ Σ′
2, θ1, θ2 ∈ Σ3 such that

((φ1 ∧ ψ1) ◦ θ1)\χ1 and ((φ2 ∧ ψ2) ◦ θ2)\χ2, because Σ′
2 is maximal of F . Then, by

the distributivity, (((φ1 ∨ φ2)∧ψ1 ∧ψ2) ◦ (θ1 ∧ θ2))\(χ1 ∨χ2), a contradiction. For
Σ3, we can take the same strategy. (Q.E.D)

Then, we show the following.

Proposition 4.17
DFL and K are canonical.

Proof
We need to show that FDFL (FK) is a DFL- (Kripke) frame. But, it is obvious that
FK is Kripke frame. So, we here show that FDFL is a DFL-frame. In other words,
FDFL satisfies the conditions for DFL-frames.

RDFL
◦ -reflexivity : For any L-prime consistent set Σ, Σ ◦ L ⊆ Σ. By Lemma

4.16, there exists a L-prime consistent set Γ such that 1 ∈ L ⊆ Γ and
RDFL
◦ (Σ,Γ,Σ). The converse is analogous.

RDFL
◦ -transitivity : Assume that RDFL

◦ (Σ1,Σ2,Σ3), Σ1 ⊆ Γ1, Γ2 ⊆ Σ2 and Γ3 ⊆
Σ3. For any formula φ, φ ∈ Γ2 ◦ Γ3 ⊆ Σ2 ◦ Σ3 ⊆ Σ1 ⊆ Γ1. Therefore,
RDFL
◦ (Γ1,Γ2,Γ3).

RDFL
◦ -associativity : Assume RDFL

◦ (Σ1,Σ2,Σ3) and RDFL
◦ (Σ2,Σ4,Σ5). Then, by

the associativity of ◦, Σ4 ◦ Σ5 ◦ Σ3 ⊆ Σ1. By Lemma 4.16, there exists
a DFL-prime consistent set Γ such that RDFL

◦ (Σ1,Σ4,Γ), RDFL
◦ (Γ,Σ5,Σ3).

The converse is analogous.

ODFL is closed under ⊆ : If Σ1 ⊆ Σ2 and Σ1 ∈ ODFL, 1 ∈ Σ1 ⊆ Σ2. Therefore,
Σ2 ∈ ODFL.

NDFL is closed under ⊆ : If Σ1 ⊆ Σ2 and Σ1 ∈ NDFL, 0 ∈ Σ1 ⊆ Σ2. Therefore,
Σ2 ∈ NDFL. (Q.E.D)

Then, we can prove the following, as a corollary of Theorem 4.14.

Theorem 4.18 (Kripke completeness of DFL and K)
DFL and K are Kripke complete.

Proof
This is immediate from Proposition 4.17 and Theorem 4.14. (Q.E.D)
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Next, we prove Kripke completeness of all basic DFL logics.

Theorem 4.19 (Kripke completeness of all basic DFL logics)
Any basic DFL logic is Kripke complete.

Proof
We need to check every canonical model satisfying each rule satisfies the corre-
spondence DFL-frame condition.

(c ⇒) : If L satisfies (c ⇒), then φ\(φ ◦ φ) ∈ L for any formula φ. Therefore, if
φ ∈ Σ, then φ ◦ φ ∈ Σ.

(e ⇒) : If L satisfies (e ⇒), then (φ ◦ ψ)\(ψ ◦ φ) ∈ L for any formula φ and ψ.
Therefore, if φ ◦ ψ ∈ Σ, then ψ ◦ φ ∈ Σ.

(w ⇒) : If L satisfies (w ⇒), then φ\1 ∈ L for any formula φ. Therefore, 1 ∈ Σ
for any Σ.

(⇒ w) : If L satisfies ( ⇒ w), then 0\φ ∈ L for any formula φ. Therefore, there
is no Σ such that 0 ∈ Σ.

Therefore, every canonical model of L satisfying each rule is in CL. That is, L is
canonical. (Q.E.D)
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5 Algebraic semantics and Relational semantics

via Stone’s duality

In the previous chapter, we defined a relational semantics for DFL logics and proved
Kripke completeness of basic DFL logics and K. Here, we introduce Stone’s duality
on which our relational semantics for DFL logics are based.(see [8], [10], [12], [14],
[18], [19] or [20]).

5.1 Stone’s duality

We introduce Stone’s duality here.

Definition 5.1 (Prime filter frame)
Given a bounded distributive lattice A = 〈A,∨,∧,>,⊥〉, a tuple A− = 〈Pf(A),⊆〉
is the prime filter frame of A, where Pf(A) is the set of all prime filters over A
and ⊆ the set inclusion.

Definition 5.2 (Set algebra)
Given a poset F = 〈W,≤〉, the tuple F− = 〈Up(W ),∪,∩,W, ∅〉 is the set algebra of
F, where

1. Up(W ) is the set of all upward closed sets over W ,

2. ∪ (∩) is the set union (intersection).

Then, we can introduce the following theorem.

Theorem 5.3 (Stone)
Every bounded distributive lattice A is embeddable into (A−)−, with the following
embedding h from A to (A−)−.

h(a) := {F ∈ Pf(A) | a ∈ F}

We have separately considered algebraic semantics and relational semantics so
far. But, in modal logics, it is known that Theorem 5.3 represents a connection
between algebraic semantics and relational semantics. Since we define DFL-frames
based on this viewpoint, we will consider, in parallel with some results in modal
logics, the connection between DFL-algebras and DFL-frames.

5.2 Dual algebra

As in the case of set algebras, we introduce dual algebras.

Definition 5.4 (Dual DFL-algebra)
Given a DFL-frame F = 〈W,O,N,R◦〉, F+ = 〈Up(W ),∪,∩, ∗,%,$, O,N,W, ∅〉 is
the dual DFL-algebra of F, where
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1. Up(W ) is the set of all R◦-upward closed subsets of W ,

2. ∪ (∩) is the set theoretical union (intersection),

3. for any X,Y ∈ Up(W ),
X ∗ Y := {w ∈ W | for some v, u ∈ W,R◦(w, v, u), v ∈ X and u ∈ Y },

4. for any X,Y ∈ Up(W ),
X % Y := {w ∈ W | for all v, u ∈ W, if R◦(u, v, w) and v ∈ X, then u ∈ Y },

5. for any X,Y ∈ Up(W ),
Y $ X := {w ∈ W | for all v, u ∈ W, if R◦(u,w, v) and v ∈ X, then u ∈ Y }.

Although Definition 5.4 gives us the definition of dual DFL-algebras, we need to
make sure that the definition is well defined. The following lemma shows this.

Lemma 5.5
Given a DFL-frame F, in the dual DFL-algebra F+, X ∪ Y , X ∩ Y , X ∗ Y X % Y
and Y $ X are R◦-upward closed, for any X,Y ∈ Up(W ).

Therefore, the above definition is well defined.

Proof
For any X,Y ∈ Up(W ),

X ∪ Y :
Assume w ≤ w′ and w ∈ X ∪ Y . Then, w ∈ X or w ∈ Y . Here, both X and
Y are R◦-upward closed. Therefore, w′ ∈ X or w′ ∈ Y . So, w′ ∈ X ∪ Y .

X ∩ Y :
Assume w ≤ w′ and w ∈ X∩Y . Then, w ∈ X and w ∈ Y . Here, both X and
Y are R◦-upward closed. Therefore, w′ ∈ X and w′ ∈ Y . So, w′ ∈ X ∩ Y .

X ∗ Y :
Assume w ≤ w′ and w ∈ X ∗ Y . Then, by the definition of ∗, there exist
v, u ∈ W such that R◦(w, v, u), v ∈ X and u ∈ Y . Here, by R◦-transitivity
and R◦-reflexivity, R◦(w′, v, u) holds. Therefore, w′ ∈ X ∗ Y .

X % Y :
Assume w ≤ w′ and w′ 6∈ X % Y . Then, by the definition of %, there exist
v, u ∈ W such that R◦(u, v, w′), v ∈ X but u 6∈ Y . Here, by R◦-transitivity
and R◦-reflexivity, R◦(u, v, w) holds. Therefore, w 6∈ X % Y .

Y $ X :
Assume w ≤ w′ and w′ 6∈ Y $ X. Then, by the definition of $, there exist
v, u ∈ W such that R◦(u,w′, v), v ∈ X but u 6∈ Y . Here, by R◦-transitivity
and R◦-reflexivity, R◦(u,w, v) holds. Therefore, w 6∈ Y $ X. (Q.E.D)

Then, we prove the following.
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Theorem 5.6
Given any DFL-frame F, the dual DFL-algebra F+ is a DFL-algebra.

Proof
It suffices to show the following conditions. First, we show that〈Up(W ),∪,∩,W, ∅〉
is a bounded distributive lattice, and 〈Up(W ), ∗, O〉 is a monoid. Then, F+ satisfies
the residuation law.

〈Up(W ),∪,∩,W, ∅〉 is a bounded distributive lattice :
By Lemma 5.5, Up(W ) is closed under ∪ and ∩. Beside, by the definition
of W (∅), W (∅) is the maximum (minimum) element of Up(W ). Then,
〈Up(W ),∪,∩,W, ∅〉 is a bounded lattice.

It is suffices to prove X ∩ (Y ∪Z) ⊆ (X ∩Y )∪ (X ∩Z), for the distributivity.
For any w ∈ X ∩ (Y ∪ Z), w ∈ X and, either w ∈ Y or w ∈ Z, hold.

If w 6∈ Y , then w ∈ X ∩ Z. It derives w ∈ (X ∩ Y ) ∪ (X ∩ Z). Otherwise
w 6∈ Z, then w ∈ X ∩ Y . It also derives w ∈ (X ∩ Y ) ∪ (X ∩ Z). So,
w ∈ (X ∩ Y ) ∪ (X ∩ Z).

Therefore, 〈Up(W ),∪,∩,W, ∅〉 is a bounded distributive lattice.

〈Up(W ), ∗, O〉 is a monoid :

Associativity : Assume w ∈ X ∗ (Y ∗ Z). Then, there exist v, u, s, t ∈
W such that R◦(w, v, u), R◦(u, s, t), v ∈ X, s ∈ Y and t ∈ Z. By
means of R◦-associativity, there exists w′ ∈ W such that R◦(w,w′, t)
and R◦(w′, v, s). So, w ∈ (X∗Y )∗Z. Therefore, X∗(Y ∗Z) ⊆ (X∗Y )∗Z
holds. The converse is analogous.

〈Up(W ), ∗, O〉 satisfies the associativity.

Identity : Assume w ∈ X ∗ O. Then, there exist v, o ∈ W such that
R◦(w, v, o), v ∈ X and o ∈ O. This leads v ≤ w. Now, X is R◦-upward
closed. So, w ∈ X. Therefore, X ∗O ⊆ X.

Assume w ∈ X. By R◦-reflexivity, there exists o ∈ W such that
R◦(w,w, o) and o ∈ O. So, w ∈ X ∗O. Therefore, X ⊆ X ∗O.

O ∗X = X can be analogously proved.

F+ satisfies the residuation law :
For any X,Y, Z ∈ Up(W ), the residuation law is proved along the following
way.

X ∗ Y ≤ Z =⇒ Y ≤ X % Y =⇒ X ≤ Z $ Y =⇒ X ∗ Y ≤ Z

First implication. Assume X ∗ Y ≤ Z, w ∈ Y , v ∈ X and R◦(u, v, w).
From the latter three assumptions, u ∈ X ∗ Y holds. Besides, by the first
assumption, u ∈ Z holds. Therefore, X ∗ Y ≤ Z =⇒ Y ≤ X % Z.
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Second implication. Assume Y ≤ X % Z, w ∈ X, v ∈ Y and R◦(u,w, v). The
latter three assumptions mean v ∈ Y , w ∈ X and R◦(u,w, v). Besides, by
the first assumption, u ∈ Z holds. Therefore, Y ≤ X % Z =⇒ X ≤ Z $ Y .

The last implication. Assume X ≤ Z $ Y and w ∈ X ∗Y . w ∈ X ∗Y means
there exist v, u ∈ W such that R◦(w, v, u), v ∈ X and u ∈ Y . From the first
assumption, w ∈ Z holds. Therefore, X ≤ Z $ Y =⇒ X ∗ Y ≤ Z. (Q.E.D)

Based on this duality, we prove the following proposition for validity.

Proposition 5.7
For any formula φ, φ is valid on a DFL-frame F, if and only if φ is valid on the
dual DFL-algebra F+.

Proof
Given a DFL-model M = 〈F, V 〉, the valuation V can be inductively extended as
follows.

• V (1) = O.

• V (0) = N .

• w ∈ V (φ ∨ ψ) if and only if w ∈ V (φ) or w ∈ V (ψ).

• w ∈ V (φ ∧ ψ) if and only if w ∈ V (φ) and w ∈ V (ψ).

• w ∈ V (φ ◦ ψ) if and only if
there exist v, u ∈ W such that R◦(w, v, u), v ∈ V (φ) and u ∈ V (ψ).

• w ∈ V (φ\ψ) if and only if
for any v, u ∈ W , if R◦(u, v, w) and v ∈ V (φ), then u ∈ V (ψ).

• w ∈ V (ψ/φ) if and only if
for any v, u ∈ W , if R◦(u,w, v) and v ∈ V (φ), then u ∈ V (ψ).

From this point of view, any valuation on a DFL-frame itself is an assignment on
the dual DFL-algebra. (Q.E.D)

Definition 5.8 (Dual modal algebra)
Given a Kripke frame F = 〈W,R2〉, the tuple F+ = 〈℘(W ),∪,∩,−,2,W, ∅〉 is the
dual modal algebra of F, where

1. ℘(W ) is the power set of W ,

2. ∪ is the set union,

3. ∩ is the set intersection,

4. − is the complement operation,
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5. for any X ∈ ℘(W ),
2X := {w ∈ W | for all w′ ∈ W, if R2(w,w′), then w′ ∈ X} .

Then, we prove the following.

Theorem 5.9
Given any Kripke frame F, the dual modal algebra F+ is a modal algebra.

Proof
We check the following.

〈℘(W ),∪,∩,−,W, ∅〉 is a Boolean algebra : Thanks to Theorem 5.6, we need
to check (Complementation) and (Boundedness). But, both are obvious.

(Meet preservation) : Let X,Y be arbitrary elements of ℘(W ). If w ∈ 2X ∩
2Y , then w ∈ 2X and w ∈ 2Y . For an arbitrary element v ∈ W , if
R2(w, v), then v ∈ X and v ∈ Y . So, w ∈ 2(X ∩ Y ).

Assume w 6∈ 2X ∩ 2Y . Then, there exists an element v ∈ W such that
R2(w, v) and either v 6∈ X or v 6∈ Y . Therefore, w 6∈ 2(X ∩ Y ).

(Top preservation) : This is obvious. (Q.E.D)

Then, we can show the following propositions along with Proposition 5.7.

Proposition 5.10
For any formula φ, φ is valid on a Kripke frame F, if and only if φ is valid on the
dual modal algebra F+.

5.3 Dual frame

Next, we define the duality like prime filter frames.

Definition 5.11 (Dual DFL-frame)
Given a DFL-algebra A = 〈A,∨,∧, ◦, \, /, 1, 0,>,⊥〉, the tuple A+ = 〈Pf(A),
Pf1(A), Pf0(A), R◦〉 is the dual DFL-frame of A, where

1. Pf(A) is the set of all prime filters over A,

2. Pf1(A) is the set of all prime filters containing 1,

3. Pf0(A) is the set of all prime filters containing 0,

4. for any F1, F2, F3 ∈ Pf(A),
R◦(F1, F2, F3) iff b◦ c ≤ a, b ∈ F2 and c ∈ F3 imply a ∈ F1, for all a, b, c ∈ A.
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The last condition can be also written by R◦(F1, F2, F3) ⇐⇒ F2 ◦ F3 ⊆ F1, if we
define a binary operation ◦ on the set of filters of A, as follows.

F2 ◦ F3 := {a ∈ A | for some b, c ∈ A, b ◦ c ≤ a, b ∈ F2 and c ∈ F3}

Given an assignment f on a DFL-algebra A, the dual valuation Vf on the dual
DFL-frame A+ is defined below.

Vf (p) := {F ∈ Pf(A) | f(p) ∈ F}

To prove Theorem 5.15, we need to show several lemmas.

Lemma 5.12
Given arbitrary filters F and F ′, F ◦ F ′ is again a filter.

Proof
Since F and F ′ are filters, each filter has at least one element. So, F ◦ F ′ is
non-empty.

Assume f1, f2 ∈ F ◦ F ′. Then, there exist a, b ∈ F and a′, b′ ∈ F ′ such that
a ◦ a′ ≤ f1 and b ◦ b′ ≤ f2. By means of the monotonicity of ◦,

(a ∧ b) ◦ (a′ ∧ b′) ≤ f1 ∧ f2

f1 ∧ f2 ∈ F ◦ F ′ holds, because a ∧ b ∈ F and a′ ∧ b′ ∈ F ′.
The other direction is rather trivial. If f1 ∧ f2 ∈ F ◦ F ′, then there exist a ∈ F

and a′ ∈ F ′ such that a◦a′ ≤ f1∧f2. So, a◦a′ ≤ f1 ∈ F ◦F ′ and a◦a′ ≤ f2 ∈ F ◦F ′.
Therefore, F ◦ F ′ is a filter. (Q.E.D)

The following lemma, which is called Squeeze lemma in [7], is often used in
relevant logics (see also [18] or [20]).

Lemma 5.13 (Squeeze lemma)
Let F2, F3 be arbitrary filters and P1 a prime filter. If F2 ◦ F3 ⊆ P1 holds, there
exist two prime filters P2 and P3 such that F2 ⊆ P2, F3 ⊆ P3 and P2 ◦ P3 ⊆ P1.

Proof
Let F be the class of filters F satisfying F2 ⊆ F and F ◦ F3 ⊆ P1. Then, F is
non-empty, since F2 ∈ F . Besides, F is a poset with respect to the set inclusion
⊆. Then, F is inductive, because the infinite union of it is an element of F , for
every chain in F . By Lemma 3.6, F has a maximal element Fmax.

We claim that Fmax is prime. Assume that a 6∈ Fmax, b 6∈ Fmax but a∨ b ∈ Fmax.
Then, let F a

max be the smallest filter containing Fmax and a. Since Fmax is a
maximal element of F , F a

max ◦F3 6⊆ P1 holds. It means that there exist f1 ∈ Fmax,
g1 ∈ F3 and h1 6∈ P1 such that (f1 ∧ a) ◦ g1 ≤ h1.

Similarly, let F b
max be the smallest filter containing Fmax and b. Then, there exist

f2 ∈ Fmax, g2 ∈ F3 and h2 6∈ P1 such that (f2 ∧ b) ◦ g2 ≤ h2. By the monotonicity
of ◦, ((f1∧f2∧a)∨ (f1∧f2∧ b))◦ (g1∧g2) ≤ h1∨h2 holds. From the distributivity,
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(f1 ∧ f2 ∧ (a ∨ b)) ◦ (g1 ∧ g2) ≤ h1 ∨ h2. Therefore, h1 ∨ h2 ∈ P1. This contradicts
that P1 is prime.

Therefore, there exists a prime filter P2 such that P2 ◦ F3 ⊆ P1 and F2 ⊆ P2.
Along with the same argument, we can prove the existence of a prime filter P3 such
that P2 ◦ P3 ⊆ P1 and F3 ⊆ P3. (Q.E.D)

Lemma 5.14 (Prime filter theorem)
Given a filter F , if a 6∈ F for an element a, then there exists a prime filter P such
that F ⊆ P and a 6∈ P .

Proof
Let ↓ a be the principal ideal generated by a. Then, F and ↓ a are disjoint, because
if there exists f ∈ F∩ ↓ a then a ∈ F .

Here, let F be the class of filters F ′ satisfying F ⊆ F ′ and a 6∈ F ′. Then, F is
non-empty, because F ∈ F . Besides, F is a poset with respect to the set inclusion
⊆. Then, F is inductive, because the infinite union of it is an element of F , for
every chain in F . By Lemma 3.6, F has a maximal element Fmax.

Then, all we have to show is that Fmax is prime. Assume that b 6∈ Fmax, c 6∈ Fmax
but b∨ c ∈ Fmax. Then, let F b

max be the smallest filter containing Fmax and b, and
F c
max the smallest filter containing Fmax and c. Since Fmax is a maximal element

of F , there exist f1, f2 ∈ Fmax such that f1 ∧ f2 ∧ b ≤ a and f1 ∧ f2 ∧ c ≤ a. Then,
(f1 ∧ f2 ∧ b) ∨ (f1 ∧ f2 ∧ c) ≤ a ∨ a = a holds. By means of the distributivity,
f1 ∧ f2 ∧ (b ∨ c) ≤ a. Therefore, a ∈ Fmax. It contradicts a 6∈ Fmax. (Q.E.D)

The above lemmas are very helpful in the following proof.

Theorem 5.15
Given any DFL-algebra A, the dual DFL-frame A+ is a DFL-frame.

Proof
We show that A+ = 〈Pf(A), Pf1(A), Pf0(A), R◦〉 satisfies all conditions for DFL-
frames.

(R◦-reflexivity) :
For any prime filter F , both F◦ ↑ 1 ⊆ F and ↑ 1 ◦ F ⊆ F hold, where ↑ 1
is the principal filter generated by 1. By the prime filter theorem (Theorem
5.14), there exist prime filters P1 and P2 such that F ◦ P1 ⊆ F , 1 ∈ P1,
P2 ◦ F ⊆ F and 1 ∈ P2.

Therefore, for all prime filter F , there exist prime filters P1 and P2 containing
1 such that R◦(F, F, P1) and R◦(F, P2, F ).

(R◦-transitivity) :
Suppose R◦(F1, F2, F3), F1 ≤ F ′1, F

′
2 ≤ F2 and F ′3 ≤ F3. Generally, in the

dual DFL-frame, F ≤ F ′ means that every element of F is included in F ′.

So, if b ∈ F ′2, c ∈ F ′3 and b ◦ c ≤ a, then b ∈ F2, c ∈ F3 and b ◦ c ≤ a. By the
first assumption, a ∈ F1. So, a ∈ F ′1. Therefore, R◦(F ′1, F

′
2, F

′
3) holds.
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(R◦-associativity) :
Assume R◦(F1, X, F4) and R◦(X,F2, F3). Then, (F2 ◦ F3) ◦ F4 ⊆ F1. By the
associativity of ◦, (F2 ◦ F3) ◦ F4 = F2 ◦ (F3 ◦ F4). Here, from Lemma 5.12,
F3 ◦ F4 is also a filter satisfying F2 ◦ (F3 ◦ F4) ⊆ F1.

So, by the Squeeze lemma (Lemma 5.13), there exists a prime filter Y such
that R◦(F1, F2, Y ) and R◦(Y, F3, F4). The converse is analogous.

(R◦-upward closed property of Pf1(A)) :
Assume F1 ∈ Pf1(A) and F1 ≤ F2. From the definition of Pf1(A), 1 ∈ F1

holds. Then, for each element of F1 is included in F2, by F1 ≤ F2. So, 1 ∈ F2.
Therefore, F2 ∈ Pf1(A).

(R◦-upward closed property of Pf0(A)) :
Assume F1 ∈ Pf0(A) and F1 ≤ F2. From the definition of Pf0(A), 0 ∈ F1

holds. Then, for each element of F1 is included in F2, by F1 ≤ F2. So, 0 ∈ F2.
Therefore, F2 ∈ Pf0(A). (Q.E.D)

Based on this duality, we prove the following proposition for validity.

Proposition 5.16
For any formula φ, φ is valid on a DFL-algebra A, if it is valid on the dual DFL-
frame A+.

Proof
Assume a formula φ is not valid on a DFL-algebra A. Then, there exists a assign-
ment f satisfying A, f 6|= φ, which means 1 6≤ f(φ). Now, let ↑ 1 be the principal
filter generated by 1. From 1 6≤ f(φ), f(φ) 6∈↑ 1 holds.

By the prime filter theorem (Lemma 5.14), there exists a prime filter P such
that ↑ 1 ⊆ P and f(φ) 6∈ P . So, on the dual DFL-frame, A+, Vf , P 6° φ holds.
Besides, P ∈ Pf1(A). Therefore, A+ 6°t φ. (Q.E.D)

However, it is known that the converse does not generally hold.

Definition 5.17 (Dual Kripke frame)
Given a modal algebra A = 〈A,∨,∧,¬,2,>,⊥〉, the tuple A+ = 〈Pf(A), R2〉 is
the dual Kripke frame of A, where

1. Pf(A) is the set of all prime filters over A,

2. for any F1, F2 ∈ Pf(A), R2(F1, F2) if and only if {a | 2a ∈ F1} ⊆ F2.

Given an assignment f on a modal algebra A, the dual valuation Vf on the dual
Kripke frame A+ is defined below.

Vf (p) := {F ∈ Pf(A) | f(p) ∈ F}
Then, we can show the following propositions along with Proposition 5.16.

Proposition 5.18
For any formula φ, φ is valid on a modal algebra A, if φ is valid on the dual Kripke
frame A+.
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5.4 Canonicity via canonical extension

Through Stone’s duality, we introduce the following.

Definition 5.19 (Canonical extension)
Given an algebra A, a bidual algebra (A+)+ is the canonical extension of A.

To state something about the connection between models (frames), we define a
morphism.

Definition 5.20 (Bounded morphism)
Given two models M = 〈W,O,N,R◦, V 〉,M′ = 〈W ′, O′, N ′, R′◦, V

′〉, a function h
from W to W ′ is a bounded morphism, if it satisfies the following.

1. For any w ∈ W and p ∈ Φ, w ∈ V (p) if and only if h(w) ∈ V ′(p).

2. For any w0, . . . , wn ∈ W , if R◦(w0, . . . , wn), then R′◦(h(w0), . . . , h(wn)).

3. If R′◦(h(w), v′1, . . . , v
′
n), there exists v1, . . . , vn ∈ W such that, for all i (1 ≤

i ≤ n), h(vi) = v′i and R◦(w, v1, . . . , vn).

In addition, h is called isomorphism, if h is bijecive. If there exists a isomorphism
from M to M′, then M is isomorphic to M′ (denoted by M ∼= M′).

We introduce a relation between canonicity and canonical extension here.

Theorem 5.21
Given a logic L, the dual frame L(Φ)+ of the Lindenbaum-Tarski algebra L(Φ) of
L is isomorphic to the canonical frame FL of L.

Proof
Let h be a homomorphism from FL = 〈WL, OL, NL, RL

◦ 〉 to L(Φ)+ = 〈WL, OL, NL, RL

defined by the following.
h(Σ) := {[φ] | φ ∈ Σ}

Then, we need to check h is a well defined isomorphism.

Well defined : Given a L-prime consistent set Σ, h(Σ) = {[φ] | φ ∈ Σ} is a prime
filter over L(Φ). It is obvious, because every point in L(Φ) is closed under
≡L.

Homomorphism : h(WL) ⊆ WL, h(OL) ⊆ OL and h(NL) ⊆ NL are rather
obvious. Assume RL

◦ (Σ1,Σ2,Σ3). If [ψ] ∈ h(Σ2), [χ] ∈ h(Σ3) and (ψ ◦χ)\φ ∈
L, then, by the assumption, φ ∈ Σ1. That is, [φ] ∈ h(Σ1). Therefore,
RL(h(Σ1), h(Σ2), h(Σ3)). The converse is analogous.

Injective : Assume Σ1 6= Σ2. There exists a formula φ such that φ ∈ Σ1 but
φ 6∈ Σ2. If h(Σ1) = h(Σ2), there exists ψ ∈ Σ2 such that [φ] = [ψ]. Then,
ψ\φ ∈ L and ψ ∈ Σ2, a contradiction.
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Surjective : Let F be an arbitrary prime filter over L(Φ). We want to show that
Σ′ := {φ | [ψ] ∈ F} is a L-prime consistent set. ⊥ 6∈ Σ′ is obvious. If φ ∈ Σ′

and ψ ∈ Σ′, then [φ], [ψ] ∈ F ⇐⇒ [φ] ∧ [ψ] ∈ F . Therefore, φ ∧ ψ ∈ Σ′. If
φ ∈ Σ′ and φ\ψ ∈ L, then [φ] ∈ F and [φ] ≤ [ψ]. So, [ψ] ∈ F . Therefore,
ψ ∈ Σ′. If φ ∨ ψ ∈ Σ′, then [φ ∨ ψ] = [φ] ∨ [ψ] ∈ F . So, [φ] ∈ F or [ψ] ∈ F .
Therefore, φ ∈ Σ′ or ψ ∈ Σ′. (Q.E.D)

Then, we can prove the following.

Theorem 5.22
For any logic L, L is canonical, if CL is closed under canonical extension.

Proof
If CL is closed under canonical extension, the bidual algebra (L(Φ)+)+ of the
Lindenbaum-Tarski algebra L(Φ) of L is also in CL. By Propositions 5.7 or 5.10,
L(Φ)+ ∈ CL. Here, by Theorem 5.21, L is canonical. (Q.E.D)

We mention here that the converse direction of Theorem 5.22 for countably many
propositional variables is still an open problem.

We can prove a main theorem.

Theorem 5.23
Every canonical logic is Kripke complete.

Proof
We will show two things. First, we show that, if the class CL is closed under
canonical extension, the dual DFL-frames validates every formula in L. Then, we
prove that L is Kripke complete.

If the class CL is closed under canonical extension, then, for any L-algebra A,
the bidual algebra (A+)+ is again a L-algebra. So, by the definition of L-algebras,
(A+)+ |= φ, for any formula φ ∈ L. From Proposition 5.7, we conclude A+ |= φ.

Next, if φ is not in L, then, by Theorem 3.19, L(Φ) 6|= φ. By Proposition 3.18,
L(Φ) ∈ CL. Besides, by Proposition 5.16, L(Φ)+ 6°t φ. Since L(Φ) ∈ CL, L(Φ)+ is
an element of the class CL. Therefore, CL 6°t φ. (Q.E.D)

We can also prove Kripke completeness of basic DFL logics via canonical exten-
sion.

Theorem 5.24 (Kripke completeness theorem for basic DFL logics)
Each basic DFL logics (DFL, DFLc, DFLe, DFLw, DFLce, DFLew and DFLcew)
is Kripke complete.

Proof
Thanks to Proposition 5.7 and Theorem 5.23, we only check that, if any DFL-
algebra A satisfies the condition which validates each structural rule, then the dual
DFL-frame A+ is satisfying the correspondence condition.
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(c ⇒) : Assume that a ≤ a ◦ a for any a ∈ A and F1 ⊆ F2. If b, c ∈ F1, then
b ∧ c ∈ F1. Here, by the first assumption, b ∧ c ≤ (b ∧ c) ◦ (b ∧ c). Then,
by the monotonicity of ◦, b ∧ c ≤ (b ∧ c) ◦ (b ∧ c) ≤ b ◦ c. So, by the second
assumption, b ◦ c ∈ F2. Therefore, F1 ◦ F1 ⊆ F2.

(e ⇒) : Assume that a ◦ b = b ◦ a for any a, b ∈ A and F2 ◦ F3 ⊆ F1. If a ∈ F2

and b ∈ F3, then, by the second assumption, a ◦ b ∈ F1. Therefore, by the
first assumption, b ◦ a ∈ F1.

(w ⇒) : Assume that a ≤ 1 for any a ∈ A. If F ∈ Pf(A), then F is non-empty.
So, there exists a ∈ F . By the assumption, 1 ∈ F . Therefore, F ∈ Pf1(A).

(⇒ w) : Assume that 0 ≤ a for any a ∈ A. If F ∈ Pf(A), then 0 6∈ F , because,
if 0 ∈ F , then F = A. It contradicts F ∈ Pf(A). Therefore, Pf0(A) = ∅.
(Q.E.D)

5.5 Canonicity via general frame

To research canonicity via canonical extension, as in the case of modal logics, we
define general frames for DFL logics.

Definition 5.25 (General DFL-frame)
A tuple G = 〈F, P 〉 is a general DFL-frame, if F is a DFL-frame and P is a subset
of Up(W ) satisfying the following.

1. O,N,W, ∅ ∈ P .

2. P is closed under ∪, ∩, ∗, % and $ (these operations are in Definition 5.4).

We also define an admissible valuation V on a general DFL-frame G = 〈F, P 〉, as
a function from Φ to P .

Moreover, we can see DFL-frames as a special case of general DFL-frame which
P is the set of all R◦-upward closed sets.

Then, we introduce the duality.

Definition 5.26 (Dual general DFL-frame)
Given a DFL-algebra A = 〈A,∨,∧, ◦, \, /, 1, 0,>,⊥〉, a tuple A∗ = 〈A+, Â〉 is the

dual general DFL-frame, if A+ is the dual DFL-frame and Â is defined by the
following.

Â := {â ⊆ Pf(A) | a ∈ A}
â := {F ∈ Pf(A) | a ∈ F}

Definition 5.27 (Dual DFL-algebra)
Given a DFL-frame G = 〈F, P 〉, a tuple G∗ = 〈P,∪,∩, ∗,%,$, O,N,W, ∅〉 is the
dual DFL-algebra.
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To consider canonicity, we here prove the following propositions.

Proposition 5.28
For any formula φ, φ is valid on a DFL-algebra A, if and only if φ is valid on the
dual general DFL-frame A∗.

Proof
We need firstly to prove that every admissible valuation V on the dual general
DFL-frame A∗ is a dual valuation of an assignment on A.

Let V be an arbitrary admissible valuation on A∗. If V (p) := â for any proposi-
tional variable p ∈ Φ, then â is an element of Â. So, by the definition of Â, there
exists an element a ∈ A such that â = {F ∈ Pf(A) | a ∈ F}. Therefore, we can
define an assignment fV corresponding to V as fV (p) = a. Then, V is also the
dual valuation of fV , conversely.

Assume that φ is not valid on a DFL-algebra A. Then, there exists an assignment
f such that 1 6≤ f(φ). By the dual valuation Vf (1) 6⊆ Vf (φ), A∗, Vf 6°t φ. So,
A∗ 6°t φ.

Assume that φ is not valid on a dual general DFL-frame A∗. Then, there exists
an admissible valuation V such that A∗, V 6°t φ. By the above assignment fV ,
1 6≤ fV (φ). So, A 6|= φ. (Q.E.D)

Proposition 5.29
For any formula φ, φ is valid on a general DFL-frame G, if and only if φ is valid
on the dual DFL-algebra G∗.

Proof
Since P is both the range of admissible valuations and the underlying set of the
dual algebra, we can take the same strategy with Proposition 5.7. (Q.E.D)

Although these propositions are like Proposition 5.7 and Proposition 5.16, there
are some difference. We, especially, note that ”only if” part of Proposition 5.16.

These propositions guarantee that any class of algebras is closed under this
restricted canonical extension. That is, for any algebra A, the bidual algebra (A∗)∗

is also in the same class of algebras.
Again, this does not mean that any class of algebras is closed under canonical

extension. However, with the following definitions, we can discuss more concretely.

Definition 5.30 (Descriptive DFL-frame)
Given a general DFL-frame G, it is descriptive, if G ∼= (G∗)∗.

Definition 5.31 (D-persistency)
For any formula φ, the formula φ is D-persistent, if φ satisfies the following.

For any descriptive DFL-frame G = 〈F, P 〉, if G ° φ, then F ° φ.

Then, we can prove the following.
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Proposition 5.32
For any DFL logic L, the class CL of L-algebras is closed under canonical extension,
if L is axiomatized only by D-persistent formulas.

Proof
We need to check that every D-persistent formula φ in L is valid on the dual
DFL-frame.

Let A be a L-algebra. Then, for any formula φ in L, A |= φ. By Proposition
5.28, A∗ °t φ. Here, since φ is D-persistent, A+ °t φ. (Q.E.D)

By Theorem 5.23 and Proposition 5.32, we can conclude that every DFL logic
L is Kripke complete with respect to the class CL of L-frames if L is axiomatized
only by D-persistent formulas. Moreover, we can show the following.

Theorem 5.33
Every logic L is complete with respect to the class of all descriptive L-frames.
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6 Conclusion

This paper has defined DFL-frames and general DFL-frames. The main results we
obtained can be summed up as follows:

• For all basic extensions of DFL, we identified corresponding frame conditions
and proved completeness results.

• We extended Stone duality to duality between DFL algebras and DFL frames.

• Finally, we have obtained general completeness result: every DFL logic is
complete with respect to a class of descriptive frames.

A natural question is how our semantics is related to existing semantics for
distributive substructural logics, in particular intuitionistic Kripke frames and
Routley-Meyer semantics. Kripke frames for LJ are partially ordered sets. It
is easy to see that in DFLcew-frames, R◦(w, v, u) ⇐⇒ v ≤ w, where ≤ is defined
as in Definition 4.2. Hence, Kripke frames for LJ and DFLcew frames in the sense
of present paper are in fact equivalent. As for Routley-Meyer semantics, a technical
problem is posed by the fact that the interpretation of negation in these semantics
is provided by unary function called the Routley star. However, it is possible to
relate our treatment of negation to that of relevant logicians. This subject is out-
side the scope of the present thesis, but we have already obtained results in this
direction which are currently prepared for publication.

In the course of our research, we identified the following open problems.

• Can we adapt the filtration technique for DFL logics? That would lead to
straightforward finite model property and decidability results.

• What types of FL formulas are D-persistent? In particular, is there and
equivalent of Sahlqvist theorem for DFL logics?

• Which classes of DFL frames are definable? Is it possible to develop rich
correspondence theory for DFL logics? Our main goal here is a variant of
Goldblatt-Thomason theorem.

• Characterize along the lines of [17] and [22] those general frames which are
duals of subdirectly irreducible algebras.

• Finally, can we extend this semantics to modal logics based on DFL?
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