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Chapter 1. Introduction 
 

1.1  Data mining and association rule mining 
 
Knowledge Discovery in Database (KDD) the rapidly growing interdisciplinary 
field that merges together database, statistics and machine learning-aims to 
extract useful and understandable knowledge from large volumes of data. Data 
mining is the main step of the KDD process that performs the extraction of 
unknown knowledge in data. 
 
Association rule mining finds interesting associations and correlation 
relationships among a large set of items. With massive amounts of data 
continuously being collected and stored, many industries are becoming interested 
in mining association rules from their databases. The discovery of interesting 
association relationships among huge amounts of business transaction records 
can help in many business decision making process, such as catalog design, 
cross-marketing, and loss-leader analysis. 

 
A typical example of association rule mining is market basket analysis. This process analyzes 
customer-buying habits by finding associations between the different items that customer 
place in their “shopping baskets”. The discovery of such association can helps retailers 
develop marketing strategies by gaining insight into which items are frequency purchased 
together by customers. 
 

The purpose of association rule extraction, introduced [1], is to discover significant relations 
between binary attributes extracted from databases. An example of association rules extracted 
from a database of supermarket sales is: “cereal ∧ sugar → milk (support 7%, confidence 
50%)”. This rule states that the customer who buy cereals and sugar also tend to buy milk.  
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The support defines the range of the rule, i.e. the proportion of customers who bought the 
three items among all customers, and the confidence defines the precision of the rule, i.e. the 
proportion of customers who bought milk among those who bought cereals and sugar. An 
association rule is considered relevant for decision making if it has support and confidence at 
least equal to some minimal support and minimal confidence thresholds, min_support and 
min_confidence, defined by user. 
 
 

1.2 Research objectives 

 
Association rule mining produced many rules. Therefore we have two problems: 
 
� First: the cost of calculation to find association rules is high. 
� Second: evaluate of association rules is difficult. 

  
Many researchers consider some kinds of solutions to above problems. We divide 
three categories of these researches.  
 
Category 1: Efficient algorithm for mining frequent itemsets [5]. This category’s 
research objects to enumerate all frequent itemsets.  
 
Category 2: Mining interesting association rules [2]. This category’s research 
objects to incorporates user-specified constrains on the kind of rules generated or 
to define objects metrics of interesting. 
 
 Category 3: Non-redundant association rules by Zaki [7], Lakhal [4]. This 
category’s research objects to generate non-redundant association rules.  
 
We focus on non-redundant association rules, because association rules are 
evaluated by users, if we have many rules; The cost of evaluating them will be 
very high. So we try to reduce the non-informative association rules, by 
generating only non-redundant association rules.  
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We have three objectives in trying to reduce the non-informative association 
rules. 

1. To investigate the problem of non-redundant association rules. 
2. To try to formulate another form of non-redundant association rules. 
3. To develop an algorithm that finds non-redundant association rules. 
4. To try to improve the algorithm. 

 
 

1.3 Contribution of the work 
 
In the rest of paper, two kind of association rules are distinguished: 
� 100% confidence rules 
� under 100% confidence rules 

 
 
The solution proposed in this paper consists of generating bases, or reduced 
covers for association rules. These bases contain non-redundant rules, being thus 
of smaller size. Our goal is to limit the extraction to the most informative 
association rules from the point of view of the user with respect to strong 
association rules. 
 
Using the semantic for the extraction of association rules based on the closure of 
the Galois connection [10], the generic bases for 100% confidence association 
rules and the informative basis for under 100% confidence association rules are 
defined. Rules are constructed using the frequent closed itemsets and their 
generators, and they minimize the number of association rules generated while 
maximizing the quality of the information conveyed. They allow us to do  
 
1. The generation of only the most informative non-redundant association rules, 

i.e. of the most useful and relevant rules: those having a minimal antecedent 
and maximal consequent. Thus redundant rules, which represent in certain 
databases the majority of extracted rules, particularly in the case of deuce or 
correlated data for which the total number of valid rules is very large, will be 
pruned. 
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2. The presentation to the user of a set of rules conveying all the attributes of 
the databases, i.e. containing rules where the union of the antecedents is 
equal to the unions of the antecedents of all the association rules valid in the 
context. This is necessary in order to discover rules that are “surprising” to 
the user, which constitute important information that it is necessary to 
consider [11, 12, 13]. 

 
3. The extraction of a set of rules without any loss of information, i.e. conveying 

all the information conveyed by the set of all valid association rules. It is 
possible to deduce efficiently, without access to the datasets, all valid 
association rules with their supports and confidence from databases.  
 

The union of these two bases thus constitutes a small non-redundant generating 
set for all valid association rules, their supports and confidences. 
 
 

1.4 Organization 
 
In section 2, we recall the basic notions in association rule mining. In section 3, 
we present frequent closed itemsets that is key concept of our research. In section 
4, we try to develop a new definition on non-redundant association rules. In 
section 5 we improve the algorithm given Zaki. Chapter 6 we present datasets 
and our experiments for evaluation, and section 7 concludes this paper. 
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Chapter 2. Association rule mining 
 
In this chapter we present a framework of association rule mining and the most 
popular and traditional algorithm “apriori”. 
 
 

2.1 A framework of association rule mining 
 
The association rule extraction is performed from a data-mining context. This 
framework of association rule mining has two steps, to find frequency items, to 
generate rules based on frequency items. 
 
 
Definition 1 (Data mining context) 
A data-mining context is defined as ),,( δITD = , where T  and I  are finite sets 
of transactions and items, respectively, and IT ×⊆δ is a binary relation. Each 
couple ( ) δ∈it,  denotes the fact that transaction t T∈  is related to the item 

. Ii∈
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Example 1. A data-mining context  constructed of six transactions (each one 
identified by its ) and five items is represented in the fig. 1. This context is 
used as support for the example in the rest of the paper. 

D
TID

TID Item
1 ACTW
2 CDW
3 ACTW
4 ACDW
5 ACDTW
6 CDT

 
Table 2.1. Data mining context  D
 
 

2.1.1 Find frequency items in data-mining context 
 
In this part, we present how to discover the frequency items in data mining 
context. 
 
Definition 2 (Galois connection) 

Let ),,( δITD =  be a data-mining context, the set of subsets of T, the set of 

subsets of I, and 

T2 I2

 

( ){ } TOitTtIiOIT ⊆∈∈∀∈=→ ,,,|)(,22: δφφ  

φ  associates withO items common to all transactions Tt∈  

( ){ } IAitIiTtATI ⊆∈∈∀∈=→ ,,,|)(,22: δϕϕ  

ϕ  associates with an itemset A the transactions related to all items  li∈
 
The couple of applications ( ),ϕφ  is a Galois connection between the power set of T 

( 2 ) and power set of I ( 2 ). The following properties hold for all  and 

: 

T

TT 1,

I IIII ⊆21,,

TT ⊆2,
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(1) )()( 2121 IIII ϕϕ ⊆⇒⊆  
(2) )()( 2121 TTTT φφ ⊆⇒⊆  
(3) )()( TIIT φϕ ⊆⇔⊆  

 
Definition 3 (frequent itemsets) 
A set of items l  is called an itemset. The support of an itemset l  is the 
percentage of transactions in  containing l :  

I⊆

D
 Support ( ||/|)(| ) Oll ϕ=  

 l is a frequent itemset if support ( min_support. ≥)l
 
 
 
Lattice structure  
The set of all itemsets has the lattice structure. It is easy to represent the 

itemsets to use lattice. A lattice has two features: kL

1. There exist a partial order on the lattice elements. 

2. All subsets of  have one greatest lower bound, the join element and one 

lowest upper bound, the meet element. 

kL

  

Given || = m, there are possibly  frequent itemsets, which form a lattice of 

subsets over 

I m2

I with height equal to m. 
 
Consider this example, m = 5, we can calculate the possibly 32 itemsets and the lattice 
with height 5 as shown in Figure 1. 
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A DC T W

ACDTW

TWDWDTCWCTCDAWATADAC

ACDW CDTWADTWACTWACDT

ADT CTWCDTATWADWACWACTACD DTWCDW

０

A DC T W

ACDTW

TWDWDTCWCTCDAWATADAC

ACDW CDTWADTWACTWACDT

ADT CTWCDTATWADWACWACTACD DTWCDW

０  

Figure 2.1. Lattice structure 
 
 

2.1.2 Generate the rules based on frequency items 
 
In this part, we present how to generate the rules based on frequency itemsets. 
 
Once the frequent itemsets from transaction database D have been found, it is 
straightforward to generate strong association rules from them. This can be done 
using the following equation for confidence, where the conditional probably is 
expressed in terms of itemset support count; 
 

( )
)Isup_count(

IIsup_
)I|I()I(IConfidence

1

112
112121

∪−
=−=−→

Icount
IPI  

Where  is the number of transaction containing the 
itemsets  and  is the number of transaction containing 
the itemsets . Based on this equation, association rules can be generated as 
follows. 

( 112 IIsup_ ∪−Icount
( )112 II ∪−I

)(I1

)
)Isup_count( 1
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-For each frequent itemsets , generated nonempty subsets of . l l
-For every nonempty subsets of , out put the rule “ ” if this rule’s 
confidence satisfy the minimum confidence, minimum confidence is a threshold 
defined by user. 

l )\( 121 lll →

 
Definition 5 (association rules) 
An association rule r is an implication between two frequent itemsets , l  
of the form  where l . The support and the confidence of 

1l 2 I⊆
)\( 21 ll → 1l 21 l⊂ r  are 

defined as: support ( =support (  and confidence  = support ( /support ( . 
If association rules satisfy the min_support and min_confidence, then we called 
theses association rules “Strong”. 

)r )2l )(r )2l )1l

 
 

Example2 
These examples are association rules based on Fig1 dataset. We called itemsets 
on the left side “antecedent”, right side “consequent”. 
 
1) ( support = 4, confidence = 100%  CWA→
2)  ( support = 4, confidence = 100% ) CD →
3)  ( support = 5, confidence = 75.0% ) WC →
4)  ( support = 3, confidence = 83.3% ) TAW →
 
These rules means if we find antecedent, we can find consequent on confidence 
percentage, and these rules occur support count in the analyzing database. 
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2.2 Apriori Algorithm  
 
Apriori is an influential algorithm for mining frequent itemsets for Boolean 
association rules. The name of the algorithm is based on the fact that algorithm 
uses priori knowledge of frequent itemset property. Apriori employs an iterative 
approach known as a level-wise search, where k-itemsets are used to explore 
(k+1)-itemsets. First, the set of frequent 1-itemsets is found. This set is denoted 

.  is used to find , the set of frequent 2-itemsets, which is used to find , 

and so on, until no more frequent itemsets can be found. The finding of each  

requires one full scan of the database. 

1L 1L 2L 3L

kL

 
The Apriori algorithm has two steps. 1st is join step and 2nd is prune step.  
 
 

2.2.1 Join step in Apriori algorithm  
 

To find  a set C  of candidates k-itemsets is generating by joining  with 

itself. This set of candidates is denoted . Let  and l  be itemsets in . 

The notation l  refer to the  item in l . By convention, Apriori assumes 

that items within a transaction or itemset are sorted in lexicographic order. The 

join , is performed, where members of  are joinable if their first 

(k-2) items are in common.  

kL

1 ><

k

]

1−kL

kC 1l

L

2 1−kL

[ ji

1−

thj i

− kk LL 1−k

That is, members l  and  of  are joined 

if

1 2l 1−kL

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )1222211 21212121 −1... <−∧−=−∧∧=∧= kkllklllll
[ ] [ ]11 21 −<− klkl

1l

lk

2

. The 
condition  simply ensure that no duplicates are generated. The 
resulting itemset formed by joining  and l  is [ ] [ ] [ ] [ 11...21 211 − ]1 − klll kl . 
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2.2.2 Prune step in Apriori algorithm 
 

kC  is superset of , that is, its member may or may not be frequent, but all 

frequent k-itemsets are include in . A scan of the database to determine the 

count of each candidate in C  would result in the determination of . , 

however, can be huge, and so this could involve heavy computation. To reduce the 

size of , the Apriori property is used as follows. Any (k-1)-itemset that is not 

frequent cannot be a subset of a frequent k-itemset. Hence, if any(k-1)-subset of a 

candidate k-itemset is not in , then the candidate cannot be frequent either 

and so can be removed from C . This subset testing can be done quickly by 

maintaining a hash tree of all frequent itemsets. 

kL

kC

k

kL

kL kC

kC

1−

k
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2.2.3 Algorithm of Apriori 
Apriori algorithm 
Input:   Database D of transactions, minimum support threshold min_sup 
Output: L, frequent itemsets in D 
1.L1 = find_frequent_1-itemsets(D); 
2.for (k=2; Lk-1¹ Æ; k++) { 
3.    Ck = apriori_gen(Lk-1, min_sup) ; 
4.    for each transaction t Î D { /* scan D for count */ 
5.         Ct = subset(Ck,t) ; /* get subsets of t that are candidate */ 
6.         for each candidate c Î Ct 
7.              c.count++ ; } 
8.    Lk = {c Î Ck | c.count ³ min_sup} 
9.} 
10.return L = Èk LkProcedure apriori_gen(Lk-1: frequent (k-1) itemsets; 
min_sup) 
1.  for each itemset l1 Î Lk-12.    for each itemset l2 Î Lk-13.      if (l1[1]= 
l2[1]) Ù (l1[2]= l2[2])Ù..Ù (l1[k-2]= l2[k-2]) Ù (l1[k-1]<l2[k-1]) then { 
4.           c = l1 z l2 /* join step: generate candidates */ 
5.    if has_infrequent_subset(c, Lk-1) then 
6.       delete c; /* prune step: remove unfruitful  candidate */ 
7.    else add c to Ck; } 
8.  return Ck; 
 
 
 
 

 12



Procedure has_infrequent_subset(c: candidate k-itemset; Lk-1: frequent (k-1) 
itemsets) 
1.  for each (k-1)-subset s of c 
2.     if s Ï Lk-1 then 
3.          return TRUE 
4.  return FALSE 

Step1 of Apriori finds the frequent 1-itemsets, . In step 2 to 10,  is used to 

generate candidate  in order to find . The apriori_gen procedure generate 
candidate and then uses the Apriori property to eliminate those having a subsets 
that is not frequent (step3). This procedure is described below. Once all the 
candidates have been generated, the database scanned (step4). For each 
transaction, a subset function is used to find all subsets of the transaction that 
are candidates (step5). And the count for each of these candidates is accumulated 
(step6 and 7). Finally, all those candidates satisfying minimum support form the 
set of frequent itemsets, . A procedure can then be called to generate 
association rules from the frequent itemsets.  

1L 1−kL

Ck Lk

L

 
The apriori_gen procedure performs two kinds of actions, namely, join and prune, 

as described above. In the join component  is joined with  to generate 

potential candidates (step1 to 4). The prune component (step 5 to7) employs the 
Aprioiri property to remove candidates that have subsets that is not frequent. 
The test for infrequent subsets in shown in procedure has_infrequent_subsets. 

1−kL 1−kL

 
We show the road map of to discover the frequent itemsets by Aprioir algorithm. 
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items supp_cnt items supp_cnt
A 4 A 4
C 6 C 6
D 4 D 4
T 4 T 4
W 5 W 5

items supp_cnt items supp_cnt
AC 4 AC 4
AD 2 AT 3
AT 3 AW 4
AW 4 CD 4
CD 4 CT 4
CT 4 CW 5
CW 5 DW 3
DT 2 TW 3
DW 3
TW 3

items supp_cnt items supp_cnt
ACT 3 ACT 3
ACW 4 ACW 4
ATW 3 ATW 3
CDT 2 CDW 3
CDW 3 CTW 3
CTW 3
DTW 1

items supp_cnt items supp_cnt
ACTW 3 ACTW 3
CDTW 1

items supp_cnt items supp_cnt
ACDTW 1 - -

C1 L1

C2

C3

C4

C5

L2

L3

L4

L5

suppressing
infrequent
itemsets

Scan D

Scan D

Scan D

Scan D

Scan D

suppressing
infrequent
itemsets

suppressing
infrequent
itemsets

suppressing
infrequent
itemsets

suppressing
infrequent
itemsets

 
Figure.2.2 Extracting frequent itemset from D by Apriori algorithm.  

With min_sup = 2 
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2.3  Problems of Redundant rules in association 

rules 
 
This part, we present problem of redundant rules in association rule. It is widely 
recognized that the set of association rules can rapidly grow to be unwieldy, 
especially as we lower the frequency requirements. The larger set of frequent 
itemsets the number of rules presented to the user, many of which are redundant. 
This is true even for sparse datasets, but for dense datasets it is simply not 
fesible to mine all possible frequent itemsets, let alone to generate rules between 
itemsets. In such datasets one typically finds an exponential number of frequent 
itemsets. 
 
In generating non-redundant association rules research, there are two definitions 
of non-redundant association rules, now we introduce two concepts. 
One concept is minimal antecedent and maximal consequent rules with same 
support and same consequent. This concept indicates to generate only most 
informative rules. The other concept is minimal antecedent and minimal 
consequent with same support and same confidence. This concept indicates to 
generate minimal rules. Therefore we can easily understand rules, later 
selectively derive other rules of interest. 
 
We discuss carefully after that chapter. About first concept in chapter 4, second 
concept in chapter 5. 
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Chapter 3. Frequent closed itemsets 
 
In this chapter we describe the frequent closed itemsets, and show that these sets 
are necessary and sufficient to capture all the information about frequent 
itemsets, and has a small cardinality for the set of all frequent itemsets. 
 

3.1 Frequent closed itemsets 

3.1.1 Frequent closed itemsets thesis 
 
The closure operator γ of the Galois connection [14] is the composition of the 
application φ , that associates with the item common to all transactions 

, and the application
TO ⊆

Tt ⊆ ϕ , that associates with an itemset the transaction 
related to all items  (the transaction “containing” ). 

Il ⊆
li∈ l

 
The closure operator ϕφγ ο=  associates with an itemset the maximal set of 
items common to all transactions containing , i.e. the intersection of these 
transactions. Using this closure operator, we define the frequent closed itemsets 
that constitute a minimal non-redundant generating set for all frequent itemsets 
and their supports, and thus for all association rules, their supports and their 
confidences. This property comes from the facts that the supports of a frequent 
itemsets is equal to the support of its closure and that the maximal frequent 
itemsets are maximal frequent closed itemsets [10]. 

l
l

 
Definition 6 (Frequent closed itemsets) 
A frequent itemset is a frequent closed itemset, iff Il ⊆ )(lγ  = l , and It’s satisfy 
the min_supp. The smallest (minimal) closed itemset containing an itemset is l

)(lγ , i.e. the closure of . l
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Lemma 1 
The set of maximal frequent itemsets { }''| ILwhereIILIM ⊂∈¬∃∈=  is initical to 
the set of maximal frequent closed itemsets { }'I⊂'| FCwhereIIFCIMC ∈¬∃∈= .  
 
 

3.1.2 Algorithm Deriving Frequent Closed Itemsets from 

frequent itemsets  

 
We show algorithm that objects to find frequent closed itemsets based on 
frequent itemsets. 
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Algorithm 2  Deriving Frequent Closed Itemsets from frequent itemsets 
Input: frequent itemsets 
Output: frequent closed itemsets 
1)  KFC ← KL
2)  For ( )  do begin −−≠−← iiki ;0;1

3)   iFC ← { }

4) forall itemsets Ll∈  do begin i

5)   isclosed ←  true; 

6)   forall itemsets Ll  do begin 1' +∈ i

7)      if  and (( 'll ⊂ ) )sup'.sup. portlportl =  then isclosed  false; ←

8)    end 

9)   if (isclosed = true)  then { }lFCFC ii ∪← ; 

10)   end 

11) end 

12) ; { }00 ←FC

13) forall itemsets Ll∈  do begin 1

14)   if  then ( )||||sup. Oportl = { }←0FC ; 

15) end 

 

First, the set of  is initialized with the set of largest frequent itemsets  

(step1). Then, the algorithm iteratively determines which -itemsets in  are 

closed from  to (step2 to 11). At the beginning of the  iteration the set 

 of frequent closed itemsets is empty (step3). In steps 4 to 10, for each 

frequent itemset  in . We verify that  has the same support as a frequent 

kFC

L

l

kL

i

i

iL

1−kL 1
th

iFC

iL l
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( 1+i

(lfl ≠

sup p

)

)

-itemset  in  in which it is includes. If so, we have  and then 

:  is not closed (step7). Otherwise, is a frequent closed itemset and 

inserted in  (step9). During the last phase, the algorithm determines if the 

empty itemset is closed by initializing  with the empty itemset (step12) and 

then considering all frequent 1-itemsets in (step13 to 15). If a 1-itemset has 
a support equal to the number of transactions in the context, meaning that  is 
common to all transactions, then the itemset ０ cannot be closed (we have 

) and is removed from  (step14). Thus, at the end of 

the algorithm, each set  contains all frequent closed -itemsets. 

'l

i

sup

1+iL

)l

( )lhl ⊆'

)

{ }0

l

||=

l

1

FC

( ||=

0FC

L l
l

(po 0FC

iFC i
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Example 3 

I S I∧S
items supp_cnt items supp_cnt L4's itemsets⊂L3's itemsets L4's supp_cnt=L3's supp_cnt FALSE closed itemsets supp_cnt
ACTW 3 ACT 3 ACTW 3

ACW 4
ATW 3
CDW 3
CTW 3

I S I∧S closed itemsets supp_cnt
items supp_cnt items supp_cnt L3's itemsets⊂L2's itemsets L3's supp_cnt=L2's supp_cnt FALSE ACW 4
ACT 3 AC 4 CDW 3
ACW 4 AT 3
ATW 3 AW 4
CDW 3 CD 4
CTW 3 CT 4

CW 5
DW 3
TW 3

I S I∧S closed itemsets supp_cnt
items supp_cnt items supp_cnt L2's itemsets⊂L1's itemsets L2's supp_cnt=L1's supp_cnt FALSE CD 4
AC 4 A 4 CT 4
AT 3 C 6 CW 5
AW 4 D 4
CD 4 T 4
CT 4 W 5
CW 5
DW 3
TW 3

closed itemsets supp_cnt
items supp_cnt supp_cnt = ¦¦T¦¦ = 6 C 6
A 4
C 6
D 4
T 4
W 5

L2

L3

L3

L1

L4

L1L2

  

Figure 3.1 Deriving frequent closed itemsets from frequent otemsets 
 
 
Correctness 
Since all maximal frequent itemsets are maximal frequent closed 

itemsets(Lemma 1), the computation of the set  containing the largest 

frequent closed itemsets is correct. The correctness of the computation of sets 

 for i  relies on proposition1. this proposition enables to determine if a 

kFC

iFC k<

 20



frequent -itemsets  is closed by comparing its support and the supports of the 
frequent ( +1)-itemsets in which l  is included. If one of them has the same 
support as , then  cannot be closed. 

i
i

generator
generator

l

port

l

g

l

g

 
 

3.2 Generate generators based on frequent 

closed itemsets 
 
In this chapter we show how to generate the generators. Generators can generate 
the frequent closed itemsets.  
 
Basically, generators has two properties 

tsoseditemseFrequentCl⊂   
porttoseditemseFrequentCl sup.sup. =  

 
Definition 7 (generators) 
An itemset is a generator of a closed itemset  iff I⊆ l ( ) lg =γ  and ¬∃ . 
With  such that 

Ig ⊆'
g ⊂' ( ) lg ='γ . A generator of cardinality k is a k-generator. 
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Algorithm3.  To generate generator by frequent closed itemsets 
Input: FI: frequent itemsets, FCI: frequent closed itemsets.  
Output: generator 
 

1) For all  and  kFI kFCI

2) For ( )++≤← ikii ;;0  do begin 

3)  Forall itemsets  iFCIl∈

4)  For ( )++≤← jkjj ;;0  

5)   Forall itemsets jFIl ∈'  

6)   if (  and ()ll ⊂' )sup'.sup. portlportl =  

   then _ gCan 'li ∪←  

7)  and 

8) end 
9) For ( )++≤← ikii ;;0  

10) For ( )++>≤← lcountgCanll ;_;0  

11)  forall item a  jigCan _∈

for ( )++>≤+← mcountgCanllm ;_;1  

12)   forall item a jigCan _'∈  

13) if ( )aa ⊃' and )sup'.sup'.( portaporta =  

14)  then delete 
15) else generatori ← }{i agenerator ∪  
16)  end 
17) end 
18) end 
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3.3 Frequent itemsets vs. frequent closed itemsets 
 
We show that how effective we use frequent closed itemsets. For example, Figure 
4 describes all frequent itemsets and frequent closed itemsets on the lattice 
structure in this paper’s instance. If we focus on the item “A”, including “A” 
frequent itemsets are {A}, {AC}, {AT}, {AW}, {ACW}, {ACT}. {ATW}, {ACTW}, the 
total number of frequent itemsets containing “A” is 8. But frequent closed 
itemsets are only two {ACW}, {ACTW} The meaning of this fact is that if A exists 
in database and min_supp = 3, if we find transactions {1, 3, 4, 5}, we can discover 
the frequent closed itemsets “ACW”. Therefore we can obtain “ACW” all together 
with support count 4, i.e. maximal set of transaction {1, 3, 4, 5} is “ACW”. And we 
can find other items “CTW”. if we check transactions {1, 3, 5}, we can find the 
frequent closed itemsets “ACTW”. Therefore we can obtain “ACTW” with support 
count 3, i.e. maximal set of transaction {1, 3, 5} is “ACTW”. Totally apriori 
algorithm produced 19 itemsets, but if we use frequent closed itemsets only 7 
itemsets. Therefore, We can reduce the number of frequency itemsets and we 
don’t lose frequency information in their datasets. 
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０

CTWCDWATWACWACT

TWDWCWCTCDAWATAC

WTDCA

ACTW

０

CTWCDWATWACWACT

TWDWCWCTCDAWATAC

WTDCA

ACTW

 
 

Frequent itemsets □; 
Frequent closed itemsets □; 

Figure3.2.Frequent itemsets VS Frequent closed itemsets on the lattice structure. 
 
condition frequent itemsets support_count frequent closed itemsets support_count
itemsets {A} 4

{C} 6 {C}
{D} 4
{T} 4
{W} 5
{AC} 4
{AT} 3
{AW} 4
{CD} 4 {CD} 4
{CT} 4 {CT} 4
{CW} 5 {CW} 5
{DW} 3
{TW} 3
{ACW} 4 {ACW} 4
{CDW} 3 {CDW} 3
{ACT} 3
{ATW} 3
{CTW} 3
{ACTW} 3 {ACTW} 3

total itemsets 19 itemsets 7 itemsets  
 

Table 3.1 frequent itemsets vs. frequent closed itmsets 
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Chapter 4. Strong non-redundant association 
rules 
 
In this chapter we analyze definition of non-redundant association rules given by Lakhal, 
and based on this analysis we try to propose another form definition of non-redundant 
association rules. This definition called “strong non-redundant association rules”. Recall 
non-redundant association rules. As pointed out in example 4.1, it is desirable that only 
the non-redundant association rules with minimal antecedent and maximal consequent, 
i.e. the most useful and relevant rules, are extracted and presented to the user. Such 
rules are called non-redundant association rules.  
 

4.1 Lakhal’s definition vs. Strong definition 
 
Lakhal [4] considered, an association rule is redundant if it conveys the same 
information or less general information – than the information conveyed by 
another rule of the same usefulness and the same relevance. An association rule 

Er∈  is non-redundant and minimal if there is no other association rule Er ∈'  
having the same support and same confidence, of which the antecedent is a 
subset of the antecedent of r  and the consequent is a superset of the consequent 
of r . 
 
Definition 8 (Lakhal’s definition of non-redundant association rules) 
An association rule  is a non-redundant rule, iff there does not exist an 

association rule  with support(r) = support (r’), confidence(r) = 

confidence (r’), and ,  

21: llr →

'
2

'
1: ll →

' ll ⊆ l

'r

11 22
'l⊆

 

 25



Example 4.1 
We present an example of non-redundant association rules based on Lakhal’s 
definition [4]. Because our new definition basis his definition, so we present our 
basic concept of non-redundant association rules. This example extracted from 
UCI KDD’s archive’s datasets Mushroom [4]. These 9 rules have same support 
and same confidence. 
 
1) Free gills →eatable 
2) Free gills →eatable, partial veil 
3) Free gills →eatable, white veil 
4) Free gills, white veil →eatable 
5) Free gills, partial veil →eatable 
6) Free gills →eatable, partial veil, white veil 
7) Free gills, partial veil →eatable, white veil 
8) Free gills, white veil →eatable, partial veil 
9) Free gills, partial veil, white veil →eatable 
 
Obviously, give rule 6, rule 1 to 5 and 7 to 9 are redundant, since they do not 
convey any additional information to the user. Rule 6 has minimal antecedent 
and maximal consequent and it is the most informative among these nine rules. 
 
But, our idea of non-redundant association rule is: “strong non-redundant 
association rules”. This leads to a definition of non-redundant association rules in 
strong, i.e. those satisfy the min_supp and min_conf. This definition says, 
“Compare all strong rules”. Noticing that Lakhal’s definition uses same support 
and same confidence, but our definition do not use same support and same 
confidence, we consider those with large or small support and confidence. 
Therefore our definition is  
 
Definition 9 (Strong non-redundant association rules) 
An association rule  is a non-redundant rule, iff there does not exist an 

association rule  with support(r) ≦ support(r’), confidence(r) ≦

confidence(r’), and , l  

21: llr →

'
2

'
1

' : ll →

' l⊆ ⊆

r

l 11 22
'l
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The meaning of this definition, we consider that why people decrease min_supp, 
so we think everyone want to discover other rules. Therefore if we want to know 
the new rules in the strong space, then we do not need same information rules, in 
the strong space. So our new definition helps to discover other rules in the strong 
space. 
Our new definition can reduce non-informative rules, i.e. to reduce the 
non-informative rules in strong. 
 
 

4.2 Rules with confidence 100%  
 
The rules with confidence 100% of the form ), are rules between two 
frequent itemsets l  and l  whose closures are identical: 

21 (: llr → \ 1l

1 2 )()( 21 ll γγ = . Indeed, 
from )()( 21 ll γγ =  we deduced that l  and support ( ) = support ( l ), and 
thus confidence (

21 l⊂ 1l 2

r ) = 1. Since the maximum itemset among these itemsets is the 
itemset )( 2lγ , all supersets of  that are subsets of 1l )2l(γ  have same support, 
and the rules between these two itemsets are rules with confidence 100%. 
 
Definition 10 (confidence with 100% rules based on Lakhal) 
Let  be the set of frequent closed itemsets extracted from the context and, for 

each frequent closed itemset , let denote  the set of generators of .  

FC

f fG f

Confidence with 100% rules = ( ){ }fgGgFCfgfgr f ≠∧∈∧∈→ |\:  

 
 
Definition 11 (confidence with 100% rules based on strong)  
Let  be the set of frequent closed itemsets extracted from the context and, for 

each frequent closed itemset , let denote  the set of generators of .  

FC

f fG f

Confidence with 100% rules = 

( ){ }fgGgFCfgfgr f ≠∧∈∧∈→ |\:  

( ) ( ) }sup'.sup.'\\'|' havenot  does { portfportfgfgfggrr >∧⊆∧⊇  
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The condition ensures that rules of the form , which are non-informative, 
are discarded. The following proposition states that this definition. 

fg ≠ 0→g

 
 
Proposition 1.  
(i) All valid confidence with 100% association rules, their supports and their 

confidences (that are equals to 100%) can be deduced from the rules of the 
generator, frequent closed itemsets and theirs supports.  

(ii) The generator and frequent closed itemsets basis for exact association 
rules contains only minimal non-redundant rules.  

 
Proof･ 
Let ) be a valid confidence with 100% association rule between two 
frequent itemsets with . Since confidence(r) = 100% we have support ( l ) = 
support ( l ) . Given the property that the support of an itemset is equal to the 
support of its closure, we deduce that support (

21 (: llr →

2

\ 1l

21 ll ⊂ 1

)( 1lγ ) = support 
( )( 2lγ )→ )( 1lγ → )( 2lγ =  f
 
The itemset  is a frequent closed itemset f FCf ∈  and, obviously, there exists a 
rule  such that ( f \ )ggr :' → g  is a generator of  for which  and . 
We show that the rule 

f 1lg ⊂ 2lg ⊂

r  and its support can be deduced from the rule 'r  and its 
support. Since  and , the rule 1lg ⊂ 2g l⊂ r can be derived from the rule 'r . 
From fl(l == ))( 21 γγ , we deduce that support ( r ) = support ( l ) = support 2 )( 2lγ = 
support ( ) = support (f 'r ).                     
� 
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Algorithm for constructing the generator and frequent closed itemsets basis   
 
Algorithm 4. Constructing the generator and frequent closed itemsets basis.  
 
Input: sets FCk  of k-groups of frequent k-generators;  
Output: set GB of confidence with 100% association rules. 
1)  GB ~ {}  
2)  forall set FCk∈FC do begin  
3)  forall k-generator g∈FCk such that g ≠ γ (g) do begin  
4)  GB ~ GB U {(r : g → (,γ (g) g), \ γ  (g)･support)};  
5)  end  
6)  end  
7)  return GB; __________Lakhal’s definition stop 
8)  forall itemsets g GB∈  and γ (g) g)\ GB∈  
9) If { ¬∃ (g g’) ((⊇ ∧ ¬∃ γ (g) g) (\ ⊆ γ (g’) g’)) \

∧ support (γ (g) g)  support (\ ≥ γ (g’) g’)} \
then Strong{}  g and (← γ (g) g) \

11)  end _____________Strong definition stop 
 
The algorithm starts by initializing the set  as the empty set (step 1). Each 

set  of frequent k-groups is then examined successively (steps 2 to 6). For 

each k-generator  of the frequent closed itemset 

GB

kFC

kFCg∈ ( )gγ  for which g is 

different from its closure ( )gγ  (steps 3 to 5), the rule ( )( ggr \: )g γ⇒ , whose 
support is equal to the support of g and ( )gγ , is inserted into  (step 4). The 
algorithm returns the set GB containing non-redundant confidence with 100% 
association rules between generators and their closures in Lakhal’s definition 
(step 7). For all frequent itemsets generator and frequent closed itemsets in GB 
(step8). Step (9), if antecedent g does not have subset g’ in GB and consequent 
does not have superset 

BG

( )( gg \ )γ ’ in GB and these itemsets support are larger, 
input g and ( )gγ  to Strong {}. 
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Example 4. Rules based on Lakhal’s definition 
Confidence with 100% association rules extracted from the context D for a 
minimal support threshold of 3/6 is presented in Table 1. It contains 8 rules 
whereas 18 confidence with 100% association rules are valid on the whole.  

C

CTCD

ACTW

CW

CDWACW

Supp=4Supp=4Supp=5

Supp=6

Supp=4

Supp=3

Supp=3

g; AT,TW

g; DW

g; D

g; A

g; Tg; W

g; C

C

CTCD

ACTW

CW

CDWACW

Supp=4Supp=4Supp=5

Supp=6

Supp=4

Supp=3

Supp=3

g; AT,TW

g; DW

g; D

g; A

g; Tg; W

g; C
 

Figure4.1 generate rules on the lattice 
 
 

FC1

FC2

generator closure Sup_count
{A} {ACW} 4
{C} {C} 6
{D} {CD} 4
{T} {CT} 4
{W} {CW} 5

generator closure Sup_count
{AT} {ACTW} 3
{DW} {CDW} 3
{TW} {ACTW} 3

generator closure rules on definition3
{A} {ACW} A→CW
{C} {C}
{D} {CD} D→Ｃ
{T} {CT} T→C
{W} {CW} W→C
{AT} {ACTW} AT→CW
{DW} {CDW} DW→C
{TW} {ACTW} TW→AC

 

generator closure Lakhal's definition support_count
A ACW A→CW 4
C C
D CD D→C 4
T CT T→C 4
W CW W→C 5
AT ACTW AT→CW 3
DW CDW DW→C 3
TW ACTW TW→AC 3

Figure.4.2 Rules based on Lakhal’s definition 
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Example 5. Strong definition 
Our definition recalculate the rules about antecedent and consequent, Lakhal’s 
definition produced 8 rules, but our Strong definition contain 5 rules. 
 
 

generator closure Lakhal's definition support_count
A ACW A→CW 4
C C
D CD D→C 4
T CT T→C 4
W CW W→C 5
AT ACTW AT→CW 3
DW CDW DW→C 3
TW ACTW TW→AC 3

Strong definition support_count
A→CW 4

D→C 4
T→C 4
W→C 5

TW→AC 3

Figure.4.3 lakhal definition vs. strong definition 
 
 
For example, DW→C in Lakhal’s definition, our definition does not produce it. 
Because compare to D→C, DW has subset D and C is equal to C and support 
count is lower, so our definition delete this rule.  
 
 

4.3 confidence with lower than 100% rules 
 
Each confidence with under100% association rule , is a rule 
between two frequent itemsets and  such that the closure of  is a subset of 
the closure of : 

)\(: 121 lllr →

1l1l 2l

2l )()( 21 ll γγ ⊂ . The non-redundant confidence with under 100% 
association rules with minimal antecedent l  and maximal consequent 

are deduced from this characterization.  
1

)\( 12 ll
 
Let  be the frequent closed itemset which is the closure of l  and  a 
generator of  such as . Let  be the frequent closed itemset which 
is the closure of  and  a generator of  such as .The rule 

between the generator and the frequent closed itemset is the 
non-redundant rule among the rules between an itemset of the interval* [ ] 
and an itemset of the interval [ , ]. Indeed, the generator is the minimal 

1f

( f

1

f⊂

1g

1g

1f 111 flg ⊂⊂

2g

2g

2f

2l 2f 222 lg ⊂

1g

)\ 121 gg → 1g

2f

2f

1f
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itemset whose closure is  which means that the antecedent is minimal and 
that the consequent  is maximal since is the maximal itemset of the 
interval [ , ]'. The generalization of this property to the set of all rules 
between two itemsets and defines the informative basis which thus consists 
of all the non-redundant confidence with under 100% association rules of 
minimal antecedents and maximal consequents characterized.  

1f
\ 1g

| f

1g

G

)( 2f

1l

)\ gf

2f

}f

2g

{

2f

2l

: g

2l

FC∈=

)\ 1l(l→

)2 2l
)( 1g( 1l1l γγ⊂ 2l⊂

2l⊂ (1l γ⊆ :' gr

)(g( 1g 22lg γ⊂⊂

 
*The interval [ ] contains all the supersets of that are subsets of . 1l 1l 2l
 
 
Definition 12 (Informative basis for confidence with under100% association 
rules).  
Let  be the set of frequent closed itemsets and let denote  the set of their 
generators extracted from the context. The informative basis for confidence with 
under100% association rules is 

FC

 
)(( gGgrIB ⊂∧∈∧→ γ .  

 
Proposition 2.  
(i) All valid confidence with under 100% association rules, their supports 

and confidences, can be deduced from the rules of the informative basis, 
their supports and theirs confidences. 

(ii) All rules in the informative basis are non-redundant confidence with 
under 100% association rules.  

 
 
Proof.  
Let be a valid confidence with under100% association rule between 
two frequent itemsets with l . Since confidence(r) < 1 we also have 

: 21lr

(l
21 l⊂

)( 1l γγ ⊂
)1g

. For any frequent itemsets and , there is a generator such 
that 

1l 1g
=⊂  and a generator  such that 2g ))( 222 glg (γγ =⊂ . 

Since , we have 1l )2(g)1 lg 2 γ⊆⊂  and the rule )\(( 11 g)2gγ→  
belongs to the informative basis IB . We show that the rule r, its support and its 
confidence can be deduced from the rule r', its support and its confidence. Since 

) 21l1g γ ⊂⊂⊂ , the antecedent and the consequent of r can be 
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rebuilt starting from the rule r'. Moreover, we have )()( 22 gl γγ =  and thus 
support(r) = support ( l ) = support (2 )( 2gγ ) = support ( 'r r'). Since )( 11 gl1g γ⊂⊂ , 
we have support ( ) = support ( ) and we thus deduce that: confidence(r) = 
support ( l ) / support ( l ) = support (

1g 1l

2 1 )( 2gγ ) / support ( ) = confidence ( '1g r ) .  

1l 2l

3l

1l

¬∃ 231 ll ⊂⊂

)\ g(: fgr →
g f⊂)g(γ

f<¬)(γ

\ g
f

G

{ }fgFCfRI <∧→ (

G

> fport sup'.sup 



port∧∧ fg \'∧G
|→

FC
g

f .g(γ

 
From the definition of the informative basis we deduce the definition of the 
transitive reduction of the informative basis that is itself a basis for all 
confidence with under 100% association rules. We note <  if the itemset  

is an immediate predecessor of the itemset , i.e. 2l  such that l  

The transitive rules of the informative basis are of the form  for a 
frequent closed itemset and a frequent generator f  such that  and 

)(gγ  is not an immediate predecessor of fin FC: FC g . The transitive 
reduction of the informative basis thus contains the rules with the form 

 for a frequent closed itemset  and a frequent generator )( gf→: gr f  such 
as g <)(γ .  
 
Definition 14 (Transitive reduction of the informative basis based on Lakhal).  
Let be the set of frequent closed itemsets and let denote  the set of their 
generators extracted from the context. The transitive reduction of the informative 
basis for confidence with under 100% association rules is:  

FC

gGfggr ∧∈∈= )(|)\: γ  

 
Definition 15 (Informative basis based on Strong).  
Let be the set of frequent closed itemsets and let denote  the set of their 
generators extracted from the context. The transitive reduction of the informative 
basis for confidence with under 100% association rules is:  

FC

( ) ( )



⊆⊇∧<∈∧∈
=

gfggfgf
gfr

RI
'\)

)\(:
 

 
Obviously, it is possible to deduce all the association rules of the informative 
basis with their supports and their confidences, and thus all the valid confidence 
with under100% rules, from the rules of this transitive reduction, their supports 
and their confidences. This reduction makes it possible to decrease the number of 
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confidence with under 100% rules extracted by preserving the rules which 
confidences are the highest (since the transitive rules have confidences lower 
than the non-transitive rules by construction) without losing any information. 
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Algorithm 5. Generating the transitive reduction of the informative basis.  
Input: sets FCk  of k-groups of frequent k-generators;  

min_confidence threshold 
Output: Transitive reduction of the informative RI  
1) RI ~ {}  
2) for ( )++−≤← kkk ;1;1 µ  do begin 
3)     forall k-generator g∈  do begin  G

4)   Succ  {};←g

5)    for ( )++≤= jjgj ;|;)(| µγ  do begin 

6)  };||)(|{ jfgfFCfS j =∧⊃∈← γ   

7)   end  
8)       for ( ) );;)(| ++≤= jjgj µγ  do begin 

9)           forall frequent closed itemsets jSf ∈  do begin 

10)                if (  then begin )| fsSuccs g ⊂∈¬∃

11)                  ;fSuccSucc gg ∪←

12)                 ;sup./sup.. portgportfconfidencer ←  
13)                 if (  );min_. confidenceconfidencer ≥
14)                 then { };sup.,.),\(: portfconfidencergfgrRIRI →∪←  
15)              endif 
16)           end 
17)        end 
18)     end 
19)  end 
20)  return ________________________________ Lakhal’s definition stop ;RI
21) forall itemsets g RI∈  and γ (g) g) \ RI∈  
21)       If { ¬∃ (g ⊇g’)  ((∧ ¬∃ γ (g) g) (\ ⊆ γ (g’) g’)) \

∧ support (γ (g) g)  support (\ ≥ γ (g’) g’)} \
then Strong{}  g and (← γ (g) g) \

22) end _______________________________________Strong definition stop 
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The pseudo code of the Gen-RI algorithm for constructing the transitive reduction 
of the informative basis for the confidence with under 100% association rules 
using the set of frequent closed itemsets and their generators is presented in 
algorithm 5.  
 

Each element of a set  consists of three fields: generator, closure and 

support. The algorithm constructs for each generator g considered a set 
containing the frequent closed itemsets that are immediate successors of 

the closure of g. 

kFC

Succg

 
 
The algorithm starts by initializing the set RI with the empty set (step l). Each 

set of frequent k-groups is then examined successively in the increasing 

order of the values of k (steps 2 to 14). For each k-generator  of the 

frequent closed itemset 

kFC

kFCg∈

)(gγ . (steps 3 to 18), the set of the successors of 

the closure of 

Succg

)(gγ  is initialized with the empty set (step 4) and the sets  of 

frequent closed j-itemsets that are supersets of 

jS

)(gγ  for µγ << j|)g(| *3 are 

constructed (steps 5 to 7). The sets are then considered in the ascending order 

of the values of j (steps 8 to 17). For each itemset 

jS

jSf ∈  that is not a superset of 

an immediate successor of )g(γ  in Succg (step 10),  is inserted in (step 
11) and the confidence of the rule  is computed (step 12). If the 
confidence of 

f Succg
)( gg → \f:r

r  is greater or equal to the minimal confidence threshold 
minconfidence, the rule r  is inserted in RI  (steps 13 to 15). When all the 
generators of size lower than µ  have been considered, the algorithm returns the 
set RI (step 20). 
 
*3 We denote,µ  the size of the longest maximal frequent closed itemsets. 
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Figure 4.4 generate rules confidence with lower than 100% 
 
 

generator closure closed superset rules support confidence

A ACW ACTW A→CTW 75 75

A ACW ACDW A→CDW 33.3 50

C C CD C→D 66.7 66.7

C C CT C→T 66.7 66.7

C C CW C→W 83.3 83.3

C C CDW

C C ACW

C C ACTW

D CD CDW D→CW 50 75

D CD CDT D→CT 33.3 50

T CT ACTW T→ACW 50

T CT CDT T→CD 33.3

W CW CDW W→CD 50

W CW CWA W→AC 66.7 80

W CW ACTW

AT ACTW ACDTW AT→CDW 16.7 33.3

AD ACDW ACDTW AD→CTW 16.7 50

DW CDW ACDW DW→AC 33.3 66.7

DT CDT ACDTW DT→ACW 16.7 50

TW ACTW ACDTW TW→ACD 16.7 33.3

75

50

60

 
Table 4.1 generated rules confidence with lower than 100% 
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Example 7 To compare Lakhal’s definition vs. Strong definition 
 

rules support confidence rules support confidence
A→CTW 75 75 A→CTW 75 75
A→CDW 33.3 50 A→CDW 33.3 50
C→D 66.7 66.7 C→D 66.7 66.7
C→T 66.7 66.7 C→T 66.7 66.7
C→W 83.3 83.3 C→W 83.3 83.3
D→CW 50 75 D→CW 50 75
D→CT 33.3 50 D→CT 33.3 5
T→ACW 50 75 T→ACW 50 75
T→CD 33.3 50 T→CD 33.3 5
W→CD 50 60 W→CD 50 60
W→AC 66.7 80 W→AC 66.7 8
AT→CDW 16.7 33.3
AD→CTW 16.7 50
DW→AC 33.3 66.7
DT→ACW 16.7 50
TW→ACD 16.7 33.3 TW→ACD 16.7 33.3

total number of rules = 16 total number of rules = 12

Lakhal definition Strong definition

0

0

0

 
 

Figure4.5 Lakhal’s definition vs. strong definition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 38



 
 
Chapter5 Efficient algorithm to generate 
non-redundant association rules 
 
 
In this chapter we investigate the definition of non-redundant association rules 
given by Zaki. We present an efficient algorithm to generate non-redundant 
association rules that definition.  
 

5.1 Minimal antecedent and minimal consequent 
An association rule is form of the l , where 21 l→ Ill ∈21 , . Its support equals 

)( 21 ll ∪γ , and its confidence is given as |)(|/|)|( 121 llllP (|) 12 lconf γγ Υ== . We are 
interested in finding all high support and confidence rules, i.e. rules satisfy the 
min_supp and min_conf. 
 
It is widely recognized that the set of such association rules can rapidly grow to e 
unwieldy. In this chapter we will show the frequent closed itemsets help us form 
a generating set of rules, from which all other association rules can be inferred. 
Thus, only a small and understandable set of rules can be presented user, who 
can later selettively derive other rules of interest. 
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Definition (Zaki’s definition of non-redundant association rules) 
An association rule , We say that a rule r is more general than a rule 

, denoted 

21: llr →

''
2

'
1

' : llr → rr ≤  provided that r’ can be generated by additional items to 

either the antecedent or consequent of r. Let },{ 1 nRRR Λ= be a set of rules, such 

that all their confidence are equal. Then the non-redundant rules in the collection 
R  are those that are most general, with support(r) = support (r’), confidence(r) = 

confidence (r’), and ,  11 22
' ll ⊆ l ⊆ 'l

 
This definition indicates that minimal antecedent and minimal consequent 
association rules are non-redundant association rules.  
 
 

C
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CW
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Figure 5.1 frequent closed itemsets lattice 
 
We show how to eliminate the redundant association rules, i.e. rules having the 
same support and confidence as some more general rules. In this section, we 

showed that the support of an itemsets equals the support of its closure l )(lγ . 

Thus it suffices to consider rules only among the frequent closure itemsets. In 
other words the rule  is exactly the same as rule 21: llr → )()(: 21 llr γγ → . 
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Another observation that follows from the frequent closed itemsets lattice is that 
sufficient to consider rules among adjacent frequent closed itemsets, since other 
rules can be inferred be transitivity, that is 
 
Lemma transitivity 

Let be frequent closed itemsets, with .  1l 2l 3l 321 lll ⊆⊆

If and),(21 pconfll =→ )(32 qconfll =→  then )*(31 qpconfll =→  

 
 

5.2 Rules with confidence 100%  
In this section, we consider the how to generate confidence with 100% rules. 
 
Lemma (confidence with 100% rule) 
An association rule confidence =100%, if and only if 21 ll → )()( 21 ll γγ ⊆ . 
 
This theorem says that all 100% confidence rules are those that are directed from 
super frequent closed itemsets to a sub frequent closed itemsets. 
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Figure 5.2 rules based on original theorem 
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For example frequent closed itemsets CW and C, the rule W→C is a 100% 
confidence rule. Note that if we take the closure on both sides of rule, we obtain 
CW→C, i.e. a rule between closed itemsets, but since the antecedent and 
consequent are not disjoint in this case, we prefer to write the rule as W→C, 
although both  
 
Theorem 1 

Let be a set of rules with 100% confidence rules, such that },{ 1 nRRR Λ=

)( 21 ll Υ1I γ=  and )( 22 lI γ=  for all the rules Ii RR ≠  are more special than , 

and thus are redundant.  

IR

 
But we noticed what mean of this theorem, in chapter 3, we showed that the support of 
an itemset  equals to the support of its closure 1l )( 1lγ  and its generator g. 
Therefore it suffices to consider rules only among the frequent closed itemsets. 
 
Thus most minimal itemsets is generator, so we can generate rules directly 
generator to generator, instead of closure items. 
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Figure 5.3 rules based generator 

 42



5.3 confidence with lower than 100% rules 
We now turn to problem of finding a generating set for association rules with 
confidence less than 100%. As befor, we need to consider only the rules between 
adjacent frequent closed itemsets. 
 
 
Theorem  

Let be a set of rules with confidence },{ 1 nRRR Λ= 0.1<p , such that )( 11 lI γ=  

and )( 212 llI Υγ=

Ii RR ≠

 for all rules . Let  denote the rule . Then all the 

rules  are more specific than , and thus are redundant. 

iR IR 21 II →

IR

 
This theorem differs from that of the 100% confidence rules to account for the up 
arc.  
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Figure 5.4 Rules based on original theorem 
 
For example frequent closed itemsets C and CW, the rule C→W is a rule with less 
than 100% confidence. Note that if we take the closure on both sides of rule, we 
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obtain CW→C, i.e. a rule between closed itemsets,  
 
But we noticed what mean of this theorem, in chapter 3, we showed that the support of 
an itemset  equals to the support of its closure 1l )( 1lγ  and its generator g. 
Therefore it suffices to consider rules only among the frequent closed itemsets. 
 
Thus most minimal itemsets is generator, so we can generate rules directly 
generator to generator, instead of closure items. In this case, i.e. confidence less 
than 100% we can generate the rules, generator W comes from frequent closed 
itemsets CW to generator C comes from frequent closed itemsets C. 
 
So we can generate rule directly. Thus our method is effective. 
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Figure 5.5 Rules based generator 
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Chapter 6 Experimentals 
 
In this section we describe experimental environments and results. So we try to 
visualize my definition of non-redundant association rule is more effective. 
 

6.1 Experimental design 
 
Our experiments are three categories. First we try to compare how effective 
Lakhal’s definition, so we try to compare Apriori vs. Lakhal’s algorithm. Second 
we try to how effective our new definition, so we try to compare Lakhal’s 
algorithm vs. Strong algorithm. Finally we compare three algorithms. 
 
Datasets 
We used the 10 datasets during these experiments comes from UCI datasets.  

name number of items number of transactions

1 sample 5 6

2 corral 7 31

3 muxf6 7 63

4 party 11 101

5 tutrial 11 10

6 lenses 12 16

7 golf 14 14

8 Co2 14 31

9 mux 14 63

10 led7 16 200

11 hungarian 17 196

12 Monk1 19 124

13 monk2 21 169  
Table 6.1 datasets 
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6.2 Experimental results 
6.2.1 apriori vs. Lakhal’s algorithm 
 
In this part we present the result of experimental to compare Apriori to Lakhal’s 
definition. Generated rules of Lakhal’s definition are all times smaller than 
Arioiri. Specially if threshold of support i.e. min_supp is small, then generated 
rules are very small, Lakhal’s definition is more effective in this case, i.e. if 
min_supp is small then Apriori produced many redundant rules.  
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Figure 6.1 Apriori vs. Lakhal algorithm 
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6.2.2  Lakhal’s algorithm vs. strong algorithm. 
 
In this part, we present the result of experimental to compare Lakhal’s definition 
to new definition “Strong non-redundant association rule”. We present two cases 
result, our new definition is more effective case and the other is same result of 
total number of generated rules. 
 
Almost experiments, our strong definition can reduced the number of rules, but some time 
the result is equal to previous work.. 
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Figure 6.2 Lakhal vs. strong 
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Chapter 7 Conclusion  
 
Finally we conclude this paper. 
 
Recall, Our research has four objectives. 

1. To investigate the problem of non-redundant association rules. 
2. To try to formulate another form of non-redundant association rules. 
3. To develop an algorithm that finds non-redundant association rules. 
4. To try to improve the algorithm. 

 
The frequent closed itemsets helps us to produce non-redundant association rules 
in chapter 3. If we use frequent closed itemsets, so we can reduce redundant 
itemsets. 
 
About first objective, We discus chapter 3,4 and 5, two definition exist in previous 
works, to generate minimal antecedent and maximal consequent rules can 
deduce the other rules. 
 
About second objective and third objective, we try to develop new definition of 
non-redundant association rule in chapter4. We experiments in chapter6This 
definition generate smaller size rules than Lakhal’s definition; we do some 
experiments in chapter 6. 
 
About fourth objective, we did not experiment, but obviously my algorithm is 
efficiently, because Zaki, produced all candidate rules, the after to select most 
general rule, but my algorithm can generate most general rule directly. So it may 
the cost of calculation is lower than original algorithm. 
 
Finally we cannot say when or which time to use which algorithm. But we 
investigate all definition of previous and our non-redundant association rules, so 
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if we analyze some datasets, our research help people who want to discover new 
knowledge by association rule mining. 
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