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Abstract

Continuous advances in technology have made possible the use of several robots in

order to carry out a large variety of cooperative tasks that are dangerous or undesirable

for humans to complete. These tasks include, surveillance, inspection of sites that are

inaccessible to humans, e.g., tight spaces, hazardous environments or remote sites, and

search and rescue tasks, such as rescuing human beings trapped under piles of debris

in an earthquake disaster or searching for victims of a flood. Following this idea, we

are interested in systems with no prior infrastructure (e.g., unlike Global Positioning

System), where robots are deployed in adverse environments, and where they are required

to cooperate and self-organize to build such an initial infrastructure. For instance, robots

may need to exchange information on their states (positions, trajectories, orientation, etc.)

to construct a complete configuration of the team in order to cooperate. However, robots

may not initially agree on a common coordinate system. Therefore, providing a way

for robots to agree on a common coordinate system is useful in exchanging geographical

information, for instance. Subsequently, reaching agreement among these robots is one of

the most essential issues in distributed robotic systems. Besides, as the number of robots

increases in the system, the issue of resilience to failure becomes prominent.

In this dissertation, we consider a system that consists of a group of mobile robots

roaming in the two-dimensional plane. Each robot occupies a point in the plane, and is

equipped with sensors to observe the positions of the other robots. Each robot proceeds

by repeatedly (1) observing the environment, (2) computing a destination based on the

observed positions of robots, and (3) moving toward the computed destination. Also,

robots are unable to communicate directly, and can only interact by observing each others’

positions. Finally, all robots execute the same deterministic algorithm, and they are

oblivious (i.e., stateless), meaning that they can not remember their previous states, their

previous actions or the previous positions of the other robots.

In this model, we address the problem of coordination between these robots from a

computational viewpoint, aiming to identify the fundamental limits of what autonomous

mobile robots can do in the presence of unreliable sensors. In particular, we focus on

a basic coordination problem, namely the gathering problem, where robots must self-

organize, and meet at some location not determined in advance, and without the help

of some global coordinate system. While being very simple to express, this problem has

the advantage of retaining the inherent difficulty of agreement, namely the question of

breaking symmetry between robots. Among other things, solving the gathering problem

is interesting because it provides a way for robots to agree on a common origin.

Prior work has shown that gathering oblivious mobile robots in the plane cannot be

achieved deterministically without additional assumptions. More specifically, if robots can

detect multiplicity (i.e., count robots that share the same location), gathering is possible
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for three or more robots. Alternatively, prior work has also shown that gathering can be

achieved with any number of robots if they share the knowledge of a common direction

(e.g., north as given by some compass). However, that result holds only if all compasses

are perfect, in the sense that they all agree perfectly on a common direction.

In this dissertation, we define a model in which compasses may be unreliable, and

we study the solvability of gathering oblivious mobile robots using different classes of

unreliable compasses, and under different models of synchrony. More specifically, we

describe two classes of unreliable compasses, namely the class of eventually consistent

compasses, and the class of compasses with bounded errors. Then, we present several

results of possibility and impossibility for solving the gathering problem deterministically

under these classes.

This dissertation makes four major contributions:

In the first contribution, we address the problem of gathering with eventually con-

sistent compasses, that is compasses that are unstable for some unknown periods, with

the guarantee that they stabilize eventually to show the correct direction. However, the

time of stabilization is unknown to robots. In particular, we address the problem in

the semi-synchronous model, where robots are oblivious and they have limited visibility.

Especially, we provide an algorithm that solves the problem, in finite time, in a system

where compasses are unstable for some arbitrary long periods, provided that they stabilize

eventually.

The algorithm can solve gathering probabilistically when the compasses are inconsis-

tent, and deterministically after compasses have stabilized for a sufficiently long period.

Our algorithm is guaranteed to recover from any arbitrary configuration when the com-

passes of robots eventually stabilize. We can argue that our algorithm is intrinsically

self-stabilizing and offers protection against any number of transient failures in the com-

passes.

In the second contribution, we study the solvability of gathering in the asynchronous

model under eventually consistent compasses, where robots are oblivious and have limited

visibility. In particular, we propose an algorithm that gathers up to four robots, in finite

time, relying on eventually stabilizing compasses. In addition, we show that our gathering

algorithm developed for the semi-synchronous model solves gathering for up to three

robots, when they are equipped with eventually consistent compasses.

Alternatively, we show that it is impossible to achieve the gathering of a large number

of asynchronous mobile robots, when they are equipped with compasses that are unstable

for some arbitrary periods, they are oblivious and have limited visibility. In particular,

we show that there exists no oblivious algorithm that solves the gathering problem for

nine or more robots.

In the third contribution, we focus on the solvability of the gathering of autonomous

mobile robots with inaccurate compasses. In particular, we provide a self-stabilizing
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algorithm to gather, in finite time, two asynchronous oblivious robots equipped with

compasses that can differ by as much as 45◦. In addition, we argue that our algorithm

is also correct if we consider robots with volume, that is, robots are not represented by

points, but they occupy some space in the plane.

In the fourth contribution, we extend our work on gathering with inaccurate compasses

by proving a tight bound on the degree of divergence of robots’ compasses for solving the

gathering problem. More specifically, we present a self-stabilizing algorithm to gather, in

a finite time, two oblivious robots equipped with compasses that can differ by an angle

strictly less than 180◦, and this is obviously a tight bound, since two compasses that can

differ by an angle of up to 180◦ provide no information at all.

Finally, as a secondary contribution, we have completed a prior work on the circle

formation problem by developing complete and rigorous proofs of correctness of a previous

distributed circle formation algorithm. In particular, we studied the problem when robots

are disoriented, i.e., share no knowledge of a common coordinate system, and they are

oblivious. The algorithm allows a group of mobile robots to self-organize and move to

form a circle in the semi-synchronous model. The proposed algorithm ensures that robots

deterministically form a circle in a finite number of steps, and converges to a situation in

which all robots are located evenly on the boundary of the circle. Among other things,

the ability to form a circle means that the robots are able to agree on an origin and unit

distance.

Keywords: Distributed computing, Mobile computing, Autonomous robots, Distributed

algorithms, Cooperation, Control, Implicit communication, Gathering, Point formation,

Rendez-vous, Circle formation, Fault-tolerance, Unreliable compasses, Unstable com-

passes, Eventually consistent compasses, Inaccurate compasses, Bounded error compasses,

Self-stabilization.
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Résumé

L’évolution continue de la technologie a fait possible l’utilisation de plusieurs robots

pour effectuer une grande variété de tâches coopératives qui sont dangereux ou indésir-

ables aux humains pour les faire. Ces tâches incluent, la surveillance, l’inspection des sites

qui sont inaccessibles aux humains tels que, les espaces serrés, et des tâches de sauvetage,

telles que secourir des humains piégé sous des piles de débris à cause d’une catastrophe du

tremblement de terre ou chercher des victimes d’une inondation. En suivant cette idée,

nous nous intéressons aux systèmes sans infrastructure initiale (contrairement au Système

du Positionnement Global), où les robots sont déployés dans des environnements adver-

saires, et ils doivent coopérer et s’organiser pour construire une telle infrastructure initiale.

Par exemple, les robots ont besoin d’échanger d’information sur leurs états (places, tra-

jectoires, orientation, etc.) pour construire une configuration complète de l’équipe afin

de coopérer. Cependant, les robots ne peuvent pas initialement se mettre d’accord sur

un référentiel commun de coordonnées. Par conséquent, fournir un moyen pour que ces

robots puissent se mettre d’accord sur un référentiel commun de coordonnées est utile

pour échanger de l’information géographique, par exemple. Donc, aboutir à un accord

entre les robots est une des questions les plus essentielles dans les systèmes de robotique

distribués. De plus, la question de résilience aux pannes devient proéminente lorsque le

nombre de robots dans le système augmente.

Dans cette thèse, nous considérons un système qui consiste d’un groupe de robots

mobiles qui peuvent se déplacer dans le plan. Un robot est considéré comme un point dans

le plan, et il est équipé par des détecteurs pour observer les positions des autres robots.

Chaque robot procède en répétant les étapes suivantes: (1) observer l’environnement,

(2) calculer une destination basé sur les positions observées des autres robots, et (3) se

déplacer vers la destination calculée. De plus, les robots sont incapables de communiquer

directement, et ils peuvent interagir seulement en observant les positions des autres robots.

Finalement, tous les robots exécutent le même algorithme d’une façon déterministe, et ils

sont oublieux (c-à-d., sans-états), cela veut dire qu’ils ne peuvent pas se souvenir de leurs

états précédents, leurs actions antérieures ou les positions précédentes des autres robots.

Dans ce modèle, nous abordons le problème de coordination entre ces robots de point

de vue calculatrice, dans le but d’identifier les limites fondamentales de coopération entre

les robots mobiles autonomes en présence de détecteurs incertains. En particulier, nous

focalisons sur un problème de coordination de base, qui est le problème de rassemblement,

où les robots doivent s’organiser pour se réunir finalement à un emplacement arbitraire qui

n’est pas déterminé à priori, sans accord sur un système de coordonnées global. Bien que

ce problème aie l’avantage d’être très simple à exprimer, il retient néanmoins la difficulté

inhérente aux problèmes d’accord repartis, à savoir, le problème de briser la symétrie

entre les robots. De plus, résoudre le problème de rassemblement est intéressant parce
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qu’il permet aux robots de se mettre d’accord sur une origine commune.

Dans les travaux précédents, il a été prouvé que le problème du rassemblement de

robots ne peut pas être résolu d’une façon déterministe sans hypothèses supplémentaires.

En particulier, si les robots peuvent détecter la multiplicité (c-à-d., compter le nombre

de robots partageant le même endroit), le problème du rassemblement est résolu pour au

moins trois robots.

De la même façon, le problème peut être résolu de façon déterministe dans un modèle

asynchrone avec des robots possédant une visibilité limitée, s’ils partagent la connaissance

d’une direction de référence, (par exemple, le nord fournie par une boussole). Cependant,

le résultat est correct seulement si tous les compas sont parfaits, dans le sens qu’ils sont

tous d’accord parfaitement sur une direction commune.

Dans cette thèse, nous définissons un modèle dans lequel les boussoles peuvent être

incertaines, et nous étudions la solvabilité du problème de rassemblement des robots mo-

biles oublieux dans différentes classes de compas incertains, et sous des modèles différents

de synchronie. Plus précisément, nous décrivons deux classes de boussoles incohérentes,

la classe des boussoles instables, et la classe des boussoles avec des erreurs bornées. Alors,

nous présentons plusieurs résultats de possibilité et d’impossibilité pour résoudre le prob-

lème de rassemblement d’une façon déterministe dans ces classes de boussoles.

Cette thèse a quatre contributions essentielles:

Dans une première contribution, nous adressons le problème de rassemblement avec des

boussoles instables, dans le modèle semi-synchrone avec des robots oublieux et possédant

une visibilité limitée. En particulier, nous donnons un algorithme qui fonctionne avec

des boussoles instables, pour autant que celles-ci passent de temps en temps par des

périodes de stabilité. La difficulté réside dans le fait qu’il est impossible pour les robots

de déterminer si les boussoles sont dans des états stables.

L’algorithme peut résoudre le problème du rassemblement d’une manière probabiliste

quand les boussoles sont inconsistantes et d’une manière déterministe après que les bous-

soles se stabilisent pour assez longtemps. Notre algorithme garantit le rétablissement à

partir d’une configuration arbitraire quand les boussoles des robots se stabilisent après un

certain temps. Nous pouvons monter que notre algorithme est intrinsèquement auto-stable

et qu’il offre une protection contre les pannes transitoires des boussoles.

Dans une deuxième contribution, nous étudions la solvabilité du problème de rassem-

blement dans le modèle asynchrone avec des robots oublieux et possédant des boussoles

instables et une visibilité limitée. En particulier, nous proposons un algorithme qui rassem-

ble, dans un temps fini, au plus quatre robots qui sont équipés par des boussoles qui se

stabilisent après un certain temps. Nous montrons aussi que notre algorithme de rassem-

blement développé pour le modèle semi-synchrone résout le problème de rassemblement

pour trois robots au plus, dans le modèle asynchrone, quand les robots sont équipés par

des boussoles instables et qui seront consistantes après un certain temps. Par contre, nous
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montrons que c’est impossible de résoudre le problème de rassemblement pour neuf ou

plus de robots mobiles asynchrones, quand ils sont équipés par des boussoles instables

pendant certaines périodes arbitraires.

Dans une troisième contribution, nous abordons la solvabilité du problème de rassem-

blement de robots mobiles autonomes avec les boussoles inexactes. En particulier, nous

donnons un algorithme auto-stable qui permet de rassembler, dans un temps fini, deux

robots oublieux asynchrones qui sont équipés par des boussoles décalées de 45◦. De plus,

nous montrons que notre algorithme est aussi correct si nous considérons les volumes des

robots, c.-à-d., les robots ne sont pas représentés par des points, mais ils occupent un

espace dans le plan.

Dans une quatrième contribution, nous étendons notre travail concernant le problème

de rassemblement avec des boussoles inexactes en déterminant une borne stricte sur le

degré de divergence de boussoles des robots pour résoudre le problème de rassemblement.

Plus spécifiquement, nous présentons un algorithme auto-stable pour rassembler, dans

un temps fini, deux robots oublieux qui sont équipés par des boussoles décalées par un

angle strictement inférieur à 180◦, qui représente une borne stricte puisque deux boussoles

décalées par un angle de 180◦ ne donnent pas d’information.

Finalement, nous avons complété un travail antérieur sur le problème de la forma-

tion d’un cercle, en développant des preuves complètes et rigoureuses d’exactitude d’un

algorithme antérieur de formation de cercle comme étant une contribution secondaire.

En particulier, nous avons étudié le problème quand les robots n’ont pas un référentiel

commun de coordonnées, et ils sont oublieux. L’algorithme permet à un groupe de robots

mobiles de se déplacer pour former un cercle dans le modèle semi-synchrone. L’algorithme

proposé assure que les robots forment un cercle dans un temps fini, et converge vers une

situation dans laquelle tous les robots sont distribués uniformément sur la circonférence

du cercle. Un des avantages de la formation d’un cercle, c’est qu’elle permet aux robots

de se mettre d’accord sur une origine et sur une unité de distance.

Les Mots Clés: Calcul distribué, Calcul mobile, Robots autonomes, Algorithmes dis-

tribués, Coopération, Contrôle, Communication implicite, Tolérance aux pannes, Prob-

lème d’assemblement, Formation d’un point, Rendez-vous, Formation d’un cercle, Bous-

soles non fiables, Boussoles instables, Boussoles inexactes, Algorithmes auto-stables.
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Résumé v
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Chapter 1

Introduction

A single arrow is easily broken,

but not ten in a bundle.

(Japanese proverb)

1.1 Motivation

Nowadays, the variety of robotic applications is growing at a tremendous rate, and the

trend will continue in the future as progress in technology opens new possibilities in

applications. Recently, robotic design has been focused on making systems involving a

large number of robots working together. More specifically, interest has shifted from the

design and deployment of few, rather complex and expensive robots towards the design

and use of a large number of robots, which are simple, relatively inexpensive, but capable

of collaborating to perform complex tasks. Several reasons motivate this shift, including

reduced costs, faster computation, more potential for fault tolerance, the possibility of

extendability of the system and the reusability of the robots in different applications.

A large range of applications benefit from this shift, particularly applications in dan-

gerous environments, where human lives would be jeopardized, and applications in remote

places, either inaccessible to humans or where communication delays render remote con-

trolled robot missions unfeasible. Examples include planetary rover missions [72], Mars

ground preparation [63], surveillance and inspection of remote sites [44], such as tight

spaces, deep sea, hazardous and hostile environments, search and rescue missions [40],

such as rescuing people trapped under piles of debris in an earthquake diaster, or search-

ing for victims of a flood, exploration of unknown environments [11, 61], cooperating

autonomous vehicles [6], etc.

Distributing these robots raises a range of issues, such as how to efficiently and ro-

bustly coordinate their activities in a distributed fashion so that they can cooperate.

Consequently, part of the focus of the research community has been on how to coordinate

such simple mobile robots so that they can together perform some given common task.

Studies can be found in different disciplines, from artificial intelligence to engineering
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(e.g., [5, 7, 43, 50]; see detailed discussion in Section 2.1).

One common feature of the majority of these studies has been the development of

algorithms based on heuristics, such as from studying how a complex global behavior

can emerge from the interactions of many robots exhibiting a simple local behavior [5,

9, 45, 47]. Although attractive for the average case, the proposed approaches have not

proved correct in all possible situations. In contrast, we approach the problem from an

algorithmic perspective, and we aim to explore the limits of provably correct algorithmic

solutions in this field. For instance, being able to reach an agreement between a group of

mobile robots (e.g., agreement on a common coordinate system) is a key to ensure their

cohesion. To understand these issues properly, they must be studied rigorously, from the

perspective of distributed algorithms. This is motivated by the needs of systems that can

be justifiably trusted to correctly perform what they were intended to do (dependable

systems).

Recently, this approach is gaining momentum (e.g., [32, 33, 54, 69, 82]), however

many interesting questions remain. In particular, in a distributed system, as the number

of robots increases, different types of faults can occur in the system. However, the issue of

resilience to failure in multiple robot systems is still a largely unexplored direction, which

our research aims at investigating.

For instance, a fault can occur due to the crash or a temporary misbehavior of a robot,

due to some external factors, or due to the unreliability of its sensors. Also, the failure

can be due to malicious intruders. Consequently, algorithms must be designed so as to

deal properly with such failures.

Surprisingly, in the literature, most of the algorithmic results we are aware of rely on

the assumption that robots function properly, that their sensors provide perfect informa-

tion, and they are accurate. Nevertheless, in practise, sensors in general are prone to

failures and are subject to instabilities and inaccuracies. For instance, a compass sensor

is sensitive to magnetic interference.

Consequently, the main motivation of this work is to systematically investigate the

fundamental limits of coordination between multiple mobile robots, and to provide robust

distributed algorithms for reaching agreement among a group of mobile robots when their

sensors exhibit faulty behavior.

1.2 Problem Statement

In this dissertation, we study the problem of coordination of a group of weak mobile

robots in a totally distributed fashion, where their sensors are unreliable, and from an

algorithmic perspective. In particular, we investigate the impact of the unreliability of

sensors on the solvability of coordination problems by multiple mobile robots.

The system consists of a group of mobile robots roaming in the two-dimensional plane.
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Each robot occupies a point in the plane, and it is equipped with sensors to observe

the positions of the other robots. In particular, each robot proceeds by repeatedly (1)

observing the environment, (2) computing a destination based on the observed positions

of robots, and (3) moving toward the computed destination. Also, robots are unable to

communicate directly, and can only interact by observing each others’ positions. Finally,

all robots execute the same deterministic algorithm, and they are oblivious (or memory-

less), meaning that they cannot remember their previous states, their previous actions

or the previous positions of the other robots. While this is a somewhat over-restrictive

assumption, developing algorithms in this model is useful both for memory management,

and because any algorithm that works correctly for oblivious robots is intrinsically self-

stabilizing [69].1 Also, robots are equipped with compass sensors that can be subject to

instabilities and inaccuracies.

Unlike most work that has been done in the literature, we address the problem of

coordination between robots when they are equipped with sensors that are unreliable.

That is, robots’ sensors are liable to be erroneous or misleading, and can not be trusted.

In particular, we focus on an agreement problem called gathering (also known as

rendez-vous or point formation) in a system with no agreement on a global coordinate

system, and in the absence of any landmarks in the environment. In short, the problem

requires that the robots, initially located at random locations, move in such a way that

they eventually end up at the exact same location, not determined a priori. The algorithm

must ensure that the final configuration is obtained within a finite number of steps, from

any initial situation and in every possible execution. Solving the gathering problem means

that the robots have the inherent ability to agree on a common origin.

Prior work has shown that gathering oblivious mobile robots in the plane cannot

be achieved deterministically without additional assumptions [59]. More specifically, if

robots can detect multiplicity (i.e., count robots that share the same location), gathering

is possible for three or more robots [17]. Alternatively, prior work has also shown that

gathering can be achieved with any number of robots if the robots share the knowledge

of a common direction (e.g, North as given by some compass) [34]. However, the result

holds only if all compasses are perfect, in the sense that they all agree perfectly on a

common direction. Yet, in practice, sensors are error-prone and sensitive to magnetic

interferences. Consequently, in this thesis, we concentrate on the gathering of oblivious

mobile robots when their compasses are subject to instabilities and inaccuracies. Our

work is motivated by the facts that: (1) in practice, compasses are rather inaccurate

sensors. For example, the accuracy of compasses typically varies from 1 degree to over 10

degrees, depending on sensor quality (cost) and environment conditions. (2) compasses are

sensitive to magnetic interferences, such as metal objects, belt buckles, boats, automobiles,

1Self-stabilization is the property of a system which, starting in an arbitrary state, always converges
toward a desired behavior [27, 62].
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etc. (3) with multiplicity detection, the gathering is solvable only for more than two

robots.

Particularly, we define a model in which compasses may be unreliable, and we study

the solvability of gathering oblivious mobile robots with different classes of unreliable

compasses, and under different models of synchrony. More specifically, we describe two

classes of unreliable compasses, namely the class of eventually consistent compass, and

the class of compasses with bounded errors. Then, we present several results of possibility

and impossibility for solving the gathering problem deterministically under these classes.

1.3 Research Contributions

The main contribution of this thesis is to systematically investigate the fundamental

limits of coordination and agreement of a group of autonomous mobile robots when their

sensors can possibly be subject to failures and inaccuracies. Specifically, we define different

classes of unreliable compasses, and we study the solvability of the gathering problem

deterministically in the face of different variants of unreliable compasses, under different

models of synchrony, and when robots are oblivious. Consequently, this work has ushered

in four major contributions to the field of cooperative mobile robotics:

• In the first contribution, we provide a distributed algorithm that solves the gather-

ing problem in the oblivious and limited visibility settings in the semi-synchronous

model [69] (refereed as SYm model), when robots are equipped with compasses that

are unstable for some periods, called eventually consistent compasses. In particu-

lar, the proposed solution guarantees that the robots gather at a single point in

finite time, if their compasses provide correct output after some unknown period of

instability, during which our algorithm can tolerate any number of transient fail-

ures of the compasses. The algorithm can solve gathering probabilistically when the

compasses are inconsistent, and deterministically after compasses have stabilized for

sufficiently long. Besides, our algorithm is intrinsically self-stabilizing (Chapter 4).

• In the second contribution, we propose a distributed algorithm that solves the gath-

ering problem for up to four robots in the asynchronous model Corda [56], when

robots are oblivious, they have limited visibility, and assuming eventually consistent

compasses. The algorithm guarantees that the robots gather at a single point in

finite time when the compasses of the robots eventually stabilize, and probabilisti-

cally when the compasses are inconsistent. In addition, we show that our algorithm

proposed for the SYm model can solve the gathering of at most three robots in

the Corda model, when robots are equipped with eventually consistent compasses,

they are oblivious and have limited visibility (Chapter 5).
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In contrast, we show that there exists no oblivious algorithm that solves the gath-

ering problem in the Corda model for a large number of robots when robots are

equipped with eventually consistent compasses. In particular, we show that the

gathering has no solution for nine or more robots when their compasses are unsta-

ble for some arbitrary periods, and they have limited visibility (Chapter 6).

• In the third contribution, we focus on the solvability of the gathering of autonomous

mobile robots in the face of compass inaccuracies. In particular, we provide a self-

stabilizing algorithm to gather, in finite time, two asynchronous oblivious robots

equipped with compasses that can differ by as much as 45◦. Besides, we argue that

our algorithm is still correct if we consider robots with volume, that is, robots are

not represented by points, but they occupy some space in the plane (Chapter 7).

• In the fourth contribution, we extend our work on the gathering with inaccurate

compasses, and we present a tight bound on the degree of divergence of robots’

compasses in solving the gathering of two asynchronous oblivious mobile robots. In

particular, we present an algorithm that solves the problem, in finite time, when

robots’ compasses are inconsistent by an angle which is strictly less than 180◦, and

we show that it is a tight bound (Chapter 8).

In addition to the contributions mentioned above, we have also developed complete

proofs of correctness for a distributed circle formation algorithm outlined in prior work [64].

The algorithm allows a group of mobile robots to self-organize and position themselves

into forming a circle (circle formation problem) in the semi-synchronous model (SYm).

In particular, we studied the problem when robots are disoriented, i.e., share no knowl-

edge of a common coordinate system, and they are oblivious. The proposed algorithm

ensures that the robots deterministically form a circle in a finite number of steps, and

converges to a situation in which all robots are located evenly on the boundary of the

circle (Chapter 10).

1.4 Thesis Organization

The thesis is organized as follows:

• Chapter 2 gives a short survey of the relevant related work in the field of distributed

and cooperative robotics, and describes the system models, definitions, notations

and geometric properties used throughout this thesis.

• Chapter 3 defines different classes of unreliable compasses.

• Chapter 4 presents our gathering algorithm in the SYm model, when robots are

equipped with eventually consistent compasses, they are oblivious and have limited

visibility.
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• Chapter 5 presents an algorithm that solves the gathering problem in the Corda

model for up to four robots relying on eventually consistent compasses, oblivious

computations and limited visibility.

• Chapter 6 presents an impossibility proof of gathering a large number of robots in

the Corda model, when robots are equipped with eventually consistent compasses,

they are oblivious and have limited visibility.

• Chapter 7 gives an algorithm for solving the gathering of two asynchronous mobile

robots when their compasses can diverge by as much 45◦.

• Chapter 8 extends the work in the previous chapter by proving a tight bound on the

degree of divergence of robots’ compasses for solving the gathering problem. More

specifically, it presents an algorithm that gathers, in a finite time, two oblivious

robots equipped with compasses that can differ by an angle strictly less than 180◦.

• Chapter 9 discusses how our results on the gathering with unreliable compasses can

be useful in practise.

• Chapter 10 presents a complete and rigorous proof of correctness of a prior circle

formation algorithm. The algorithm allows a group of oblivious mobile robots to

form a circle in a finite number of steps, and converge toward a configuration, where

the robots are placed at regular intervals on the boundary of the circle.

• Chapter 11 presents a discussion on the gathering of robots with volume.

• Chapter 12 summarizes the major results of this work, and outlines future research

directions.
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Chapter 2

Background

A theory is something nobody believes,

except the person who made it.

An experiment is something everybody

believes, except the person who made it.

Albert Einstein

This chapter presents a survey of the current state-of-the-art in the field of distributed

and cooperative robotics. The chapter is divided in five sections. Section 2.1 presents

a general overview of the area of multi-robot motion coordination. Section 2.2 presents

in particular the computational approach, and work related to the circle formation and

gathering problems. Section 2.3 describes the system models used in this thesis. Finally,

Section 2.4 introduces some notations and definitions that are used in the remainder of

the thesis.

2.1 Multi-robot Cooperation Approaches

There are several approaches to multi-robot motion coordination and control reported in

the literature, including centralized and decentralized ones. Uny Cao et al. [70] provided

a wide survey of research in this field. Decentralized approaches can be categorized to

heuristic approaches, also called the emergent behavior, or the behavior-based approaches,

engineering approaches, and computational approaches.

2.1.1 Emergent Behavior Approach

In emergent behavior approach, the goal is to predict what complex global behavior can

emerge from the interaction of many agents exhibiting a very simple local behavior, for

instance, inspired by the behavior of social insects [12, 39, 45, 47].

With this approach, some behaviors are prescribed for each agent, and the final control

is derived by weighting the importance of each behavior. Algorithms are designed using

mainly heuristics, and the behaviors are programmed in the robots with no explicit goal
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programmed in. The cooperation and the goals emerge from the interactions between the

robots and the environment. The main problem with this approach is the lack of formal

proofs of correctness and guarantees of completeness and stability.

An emergent behavior approach, is also refereed in the literature as swarm intelligence,

which is an artificial intelligence technique based on the study of collective behavior in

self-organized systems.

A noteworthy study in this field is by Matarić [49, 50], who analyzes how biologically-

inspired behaviors can serve as an effective substrate for control, representation, and learn-

ing in multi-robot systems, in order to generate adaptive individual and group behavior.

Beni and Wang [8] introduced the expression swarm intelligence in the context of cel-

lular robotic systems, which consists of collection of autonomous, non intelligent robots

cooperating in n-dimensional cellular space under distributed control. Limited communi-

cation exists only between adjacent robots, which operate autonomously and cooperate

with others to accomplish predefined global tasks.

Bonabeau et al. [7, 9] extended the restrictive context of this early work to include

any attempt to design algorithms or distributed problem solving devices inspired by the

collective behavior of social insect colonies, such as ants, termites, bees, wasps, and other

animal societies.

Another study in this area by Brooks [10], examined the relationship of traditional aca-

demic robotics and traditional artificial intelligence. The behavior based control strategy

has been applied to collections of simple independent robots, usually for simple tasks.

Matarić [48] describes experiments with a homogenous population of robots acting

under different communication constraints. The robots either act in ignorance of one

another, are informed by one another, or intelligently cooperate with one another. As

inter-robot communication improves, more and more complex behaviors are possible.

Dudek et al. [28] presented a swarm-robot taxonomy of the different ways in which

swarm robots can be characterized. The dimensions of the taxonomic axes are swarm

size, communication range, topology, bandwidth, swarm reconfigurability, unit processing

ability, and composition.

Parker [53], defined a behavior-based architecture, called ALLIANCE, which allows

teams of robots, each of which possesses a variety of high-level functions that it can

perform during a mission, to individually select appropriate actions throughout the mis-

sion based on the requirements of the mission, the activities of other robots, the current

environmental conditions, and the robot’s own internal states. The feasibility of this ar-

chitecture is demonstrated in an implementation on a team of mobile robots performing

a laboratory version of hazardous waste cleanup.

Balch and Arkin [5] studied formation and navigation problems in multi-robot teams.

In particular, they presented some formation behaviors that they integrated with other

navigational behaviors to enable a robotic team to reach navigational goals, avoid hazards,
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and simultaneously remain in formation. The behaviors were implemented in computer

simulation, and also on Unmanned Ground Vehicles.

Chen and Luh [15] also studied the coordination of robots in formation, by imposing

constraint conditions to coordinate and control the formation. In particular, they de-

composed the task of coordinating and controlling a group of small mobile robots into

different subtasks: formation of geometric pattern, alignment of each robot’s orientation,

coordination of the robots in the group, motion realization and stability of the formation

in motion.

Saber and Murray [60], studied the flocking problem, where robots are asked to move in

formation. In particular, they addressed the problem in the presence of multiple obstacles,

and they provided formal definitions of nets and flocks as spatially induced graphs. The

task of flocking is based on an automatic construction of an energy function for the groups

of robots, and it is achieved via dissipation of this energy according to a protocol that

only requires the use of local information.

2.1.2 Engineering Approach

Another kind of approach to the problem of studying multi-robot systems, is that of

Kawauchi, Inaba, and Fukuda [43] who have studied a dynamically reconfigurable robotic

system, consisting of several cells that can physically detach and combine autonomously

according to the assigned task.

In the same perspective is the work of Dumitrescu et al. [29], which examined the

problem of dynamic self-reconfiguration of a modular robotic system, to a formation aimed

at reaching a specified target position with one of the modules as quickly as possible.

Later in their recent work [29], they addressed a number of issues related to motion

planning and analysis of rectangular metamorphic robotic systems. In particular, they

have shown whether a given set of motion rules maintains connectivity, and whether a

goal configuration is reachable from a given initial configuration at specified locations.

Another study that explores this idea of metamorphic robot system is that of Walter

et al. [78], which presented a distributed algorithm for reconfiguring a straight chain of

hexagonal modules at one location to any intersecting straight chain configuration at some

other location in the plane.

2.1.3 Other Approaches

The coordination between multiple robots has been also seen as an optimization problem,

and addressed by metaphors such as a free market optimization [24]. Other studies ad-

dressed the problem of coordination in networked robotics (e.g., [52]), and the problem

is sometimes expressed as a global control system that relies on tight real-time network

guarantees. Also, in distributed systems by Yared et al. [81], the support for coordination
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is provided by agreement and distributed locking protocols, but relies on the accuracy of

a global positioning system.

Recently, the problem of coordination of multiple mobile robots was approached from

an algorithmic or computational standpoint (e.g., [56], [69]), in which we find our interest

(a detailed survey of the works in this area is provided in the next section). With this

approach, the question can be as follows: given a desired global behavior, what local

control behavior shall we give to robots so that they can coordinate their actions (a

survey on the works in this direction is provided in the next section).

At the moment, mobile robotics is an empirical discipline. Control programs are

designed through trial-and-error, and have to be refined through experimentation with

the robots in the target environment.

Nehmzow [51] discusses some of the future challenges of mobile robotics research, in-

cluding applying quantitative methods in mobile robotics, in order to change the discipline

from an empirical one to a more precise science.

2.2 Computational Approach

With the computational approach [32, 33, 68, 69], the aim is to identify the algorithmic

limitations of what distributed autonomous mobile robots can do, and to provide a for-

mal representation of multi-robot systems and coordination problems, in which provably

correct solutions can be developed and verified. In particular, two main computational

models were proposed in the literature [56, 69], and some studies attempted to character-

ize the influence of the models on the ability of a group of robots to perform certain basic

tasks under several assumptions [55, 57].

Prencipe [55, 58] has studied the minimal requirements and capabilities that the robots

must have in order to achieve their goals in an asynchronous environment. In his study,

the author compared his Corda model [56], with the SYm [69]. In the Corda model,

the activities of the robots (wait-observe-compute-move) operate in a fully asynchronous

way, however, the robots must share a common coordinate system, which is not the case

in the SYm model. He also studied the relationship between the classes of problems

solvable in the two models, and he has proved that the instantaneous action of the SYm

model is at least as powerful as the full asynchrony of Corda.

Typical problems that have been studied in this perspective are the arbitrary pattern

formation problem, where the robots are asked to form a pattern (e.g., a circle, a polygon)

given in input, in finite time [32, 69]; the gathering problem, where the robots are asked

to gather at some location, not determined in advance [1, 34, 59, 66]; and the flocking

problem, where the robots are required to keep a formation while moving [35].

Very few studies have considered failure in multiple robot systems. An attempt by

Yoshida et al. [83], considered initial crash faults of robots, and proposed an algorithm for
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the Active Robot Selection Problem (ARSP). The ARSP creates a sub-group of non-faulty

robots from a group that includes also initially crashed robots, and makes the robots in

that subgroup recognize one another.

2.2.1 Gathering Problem

The gathering problem (also known as rendez-vous or point formation) is defined as fol-

lows. Given a group of robots, initially located at random locations, these robots are

required to move in such a way that they eventually end up at the exact same location,

not determined a priori. An algorithm that solves the gathering problem must ensure

that the final configuration is obtained within a finite number of steps, from any initial

situation and in every possible execution.

Despite its apparent simplicity, the problem of gathering robots at a single point is

surprisingly difficult, and has been studied extensively in the literature, in different models

and under various assumptions. In fact, several factors render this problem difficult to

solve [16, 34, 59, 69]. In particular, in these studies, the problem has been solved only

by making some additional assumptions regarding the capabilities of the robots. This

problem has also interesting applications. For instance, the ability to gather at a single

point means that the robots can reach an agreement on a common origin.

Earlier studies of the gathering problem include the work of Suzuki and Yamashita [69].

In their model, they proposed an algorithm to solve the gathering problem determinis-

tically for three or more robots, in the case where robots have unlimited visibility and

they are oblivious. Using the same model, Ando et al. [2] have proposed an algorithm

to address the gathering problem in systems wherein robots have limited visibility. Their

algorithm converges toward a solution to the problem, but it does not solve it within a

finite time.

In the Corda model [56], Cieliebak et al. [17] have proposed a deterministic algo-

rithm that gathers the robots at a point, in systems in which robots have unlimited

visibility. Among other things, one feature the robots must have in order to solve this

problem is the ability to detect multiple robots at a single point. Using the same model,

Flocchini et al. [34] proposed a deterministic algorithm for the gathering problem, where

robots have limited visibility, and are oblivious. However, their algorithm requires that

robots share a common sense of direction as given by compasses.

Later on, Prencipe [59] proved that in general, it is impossible to solve the gathering

problem deterministically in both SYm and Corda models when robots are oblivious,

they do not share a compass and they are unable to detect multiplicity (i.e., whether there

is more than one robot at one point).

Other studies of the gathering problem have been devoted to providing solutions for

eventual convergence at a point [18].

The gathering problem has been also studied for faulty robots by Agmon and Peleg [1]
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in synchronous and asynchronous settings. In particular, they proposed an algorithm

that tolerates one crash-faulty robot in a system of three or more robots, and they show

the impossibility of tolerating Byzantine1 robots. Later on, Défago et al. [22] strengthen

this impossibility by showing that it still holds in stronger models. They also show the

existence of randomized solutions for systems with Byzantine-prone robots.

Recently, Cohen and Peleg [19] also addressed the issue of analyzing the effect of errors

in solving gathering and convergence problems. In particular, they studied imperfections

in robot measurements, calculations and movements. They showed that gathering cannot

be guaranteed in environments with errors, and illustrated how certain existing geometric

algorithms, including ones designed for fault-tolerance, fail to guarantee even convergence

in the presence of small errors. One of their main positive results is an algorithm for

convergence under bounded measurement, movement and calculation errors.

Among our recent work, we have studied the gathering of asynchronous mobile robots

when they are equipped with inaccurate compasses [65]. In particular, we have provided

an algorithm to gather, in a finite time, two oblivious robots equipped with compasses

that can differ by as much as π/4. A similar result has been presented by Imasu et al. [38]

at a domestic workshop in Japan.

Katayama et al. [41] has extended our work on gathering with inaccurate compasses [65]

by defining two different models of compasses; fixed compass model and semi-dynamic

compass model. In the fixed compass model, they proposed an algorithm that tolerates

π/3 errors of compasses, and in the semi-dynamic compass model, they proposed an algo-

rithm that solves the problem when robot’s compasses can differ by as much as π/4, and

the direction of the compass may vary between two different cycles, but it never changes

within a cycle.

Finally, a recent study on the gathering of fat robots was done by Czyzowicz et al. [20],

in which they represented robots by unit discs, and they proposed an algorithm to gather

at most four robots in the plane under the Corda model.

2.2.2 Circle Formation Problem

The problem of forming a circle by a group of mobile robots has interesting applications.

For instance, consider the context of space exploration and the initial preparation of a

zone. A group of robots could be sent, and after landing at random locations, would self-

organize to form the initial infrastructure for later expeditions. Also, pattern formation

problems in general provide a first step toward flocking, i.e., allowing a group to move in

formation [35]. From a conceptual standpoint, forming a circle provides a way for robots

to agree on both a common origin and a common unit distance [69].

Debest [21] briefly discussed the formation of a circle by a group of mobile robots as

1A robot is said to be Byzantine if it executes arbitrary steps that are not in accordance with its local
algorithm [46].
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an illustration of self-stabilizing distributed algorithms. He discussed the problem, but

did not provide an algorithm.

Sugihara and Suzuki [67] proposed several algorithms for the formation of various

geometrical patterns. They proposed a simple heuristic algorithm for the formation of an

approximation of a circle in the limited visibility setting. Their solution does not always

reach a desirable configuration, and sometimes it brings the robots to form a Reuleaux

triangle.2

Later on, Suzuki and Yamashita [69] proposed in their model a non-oblivious algorithm

for the formation of a regular polygon. To achieve this, robots must be able to remember

all past actions and observations. The existence of an oblivious, and thus self-stabilizing

solution was, however, left as an open question.

In the same model, the circle formation problem was studied by Défago and Kona-

gaya [23], who proposed an oblivious algorithm for the circle formation problem. With

that algorithm, robots deterministically make a circle, albeit not uniformly, and converges

asymptotically toward a solution whereby robots are uniformly distributed along the circle

boundary. Unfortunately, that algorithm was unnecessarily complex, and relied on the

computation of Voronoi diagrams.3

Recently, several studies address the same problem, relying on particular configurations

of the robots [13, 26, 42]. Chatzigiannakis et al. [13] proposed a partial solution to the

circle formation problem. Unfortunately, their solution relies on a simplifying assumption

that completely removes the difficulty of the problem (in particular the robots must not

be located on the same radius).

Later on, Katreniak [42] proposed, in the Corda model [56], an algorithm that solves

a slightly simpler problem, called biangular circle.4

Another recent study on circle formation was by Dieudonné et al. [25], in which they

proposed a deterministic solution to the problem, combined with the work of Katre-

niak [42]. In particular, their algorithm does not solve the problem in the case of n = 4,

6 and 8. Finally, Dieudonné and Petit [26] proposed an algorithm to solve the circle

formation problem for a prime number of robots, which is based on Lyndon words.5

2A Reuleaux triangle is a curve of constant width constructed by drawing arcs from each polygon
vertex of an equilateral triangle between the other two vertices [79].

3The Voronoi diagram Voronoi(P ) of a set of points P = {p1, p2, . . . , pn} is a subdivision of the plane
into n cells, one for each point in P . The cells have the property that a point q belongs to the Voronoi
cell of point pi, denoted Vcellpi

(P ), if and only if, for any other point pj ∈ P , dist(q, pi) < dist(q, pj),
where dist(p, q) is the Euclidean distance between p and q. In particular, the strict inequality means that
points located on the boundary of the Voronoi diagram do not belong to any Voronoi cell. Significantly
more details about Voronoi diagrams and their principal applications are surveyed by Aurenhammer [4].

4In a biangular circle, there is a center and two nonzero angles α and β, such that the center of the
circle between each two adjacent points is either α or β, and these angles alternate.

5A Lyndon word is a certain type of string over an alphabet, and it has the property that, whenever
it is split into two substrings, it is always lexicographically less than the right substring [77].
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2.2.3 Pattern Formation Problem

Flocchini et al. [32] discussed the problem of arbitrary pattern formation, of which they

give an informal definition. They show several important results about this problem,

depending on what common knowledge the robots are assumed to share about the coor-

dinate system. The authors give a more formal definition of the problem in their later

work [33].

Ando et al. [3] discussed fundamental formation and location agreement problems for

synchronous robots with limited visibility.

Suzuki and Yamashita [69] studied the formation of geometric patterns in the plane.

They proposed a non-oblivious algorithm for the circle formation problem. They showed

that asymmetric patterns cannot be formed in their model. Also, Sugihara and Suzuki [69]

proposed algorithms for different geometric patterns. In particular, they proposed an

algorithm for the formation of an approximation of a circle, a simple polygon and a line

segment in the plane.

The flocking problem, where robots are required to move in formation like a flock

of birds, has been expressed in the literature in a ”leader-followers” model [35, 37, 56].

One robot (the leader) is chased by the other robots (the followers). The robot leader

determines the path that the group must follow. In contrast, the followers must follow the

leader in such a way that the relative positions of the robots always form a given shape. In

his Corda model, Prencipe [56] presented an oblivious algorithm that allows the robots

to keep formations that are symmetric with respect to the direction of movement of the

leader. Gervasi and Prencipe [36] simulate the algorithm and present interesting results.

The formation of geometrical patterns and flocking are both useful, for instance, for the

self-positioning of mobile base stations in a mobile ad hoc network, e.g., as considered by

Chatziagiannakis et al. [14], and for the self-deployment of sensors in a network ring [31].

In addition, solutions to the flocking problem are useful primitives for larger tasks, for

instance, box pushing or cooperative manipulation, where robots can be asked to move

heavy loads.

2.3 System Models

In this dissertation, we consider two system models that differ by the degree of syn-

chrony between the robots. The first model, called SYm and proposed by Suzuki and

Yamashita [69] is semi-synchronous. The second one, called Corda, and proposed by

Prencipe [56] is fully asynchronous.
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2.3.1 The SYm Model [69]

The system consists of a set of autonomous mobile robots R = {r1, · · · , rn} roaming on

a two-dimensional plane. Each robot is modelled and viewed as a point in the plane, and

is equipped with sensors to observe the positions of the other robots. In particular, each

robot is able to sense its surroundings, perform computations on the sensed data, and

move toward the computed destination. This behavior constitutes its cycle of sensing,

computing, moving and being inactive. The sequence Look -Compute-Move-Wait is called

the cycle of a robot. The SYm model assumes that activations (look, compute, move)

occur instantaneously, resulting in a form of implicit synchronization. The model is called

semi-synchronous model for this reason.

The robots are anonymous, in the sense that they can not be distinguished by their

appearance, and they do not have any kind of identifiers that can be used during the

computation. In addition, there is no direct means of communication among them. Hence,

the only way for robots to acquire information is by observing each other’s positions.

In the SYm model, time is represented as an infinite sequence of discrete time instants

t0, t1, t2, . . ., during which each robot can be either active or inactive. When a robot

becomes active, it observes the environment, computes a new location, and moves to it.

In particular, the activities of observation, computation and movement are instantaneous,

and thus, a robot observes other robots only when a cycle begins (i.e., when the robots

are stationary).

The cycle of a robot is finite, and the activation of robots is determined by an activation

schedule, which is unpredictable and unknown to the robots. At each time instant, a

subset of the robots becomes active, with the guarantees that: (1) Every robot becomes

active at infinitely many time instants, (2) At least one robot is active during each time

instant,6 and (3) The time between two consecutive activations is not infinite.

In every single activation, the distance that robot r can travel in one cycle is bounded

by δri > 0. Specifically, if the destination point computed at a given cycle by robot r is

farther than δri , then the algorithm returns a point of at most δri . This distance may be

different for different robots.

In the SYm model, each robot uses its own local x-y coordinate system, which includes

an origin, a unit distance, and the directions of the two x and y axes, together with their

orientations. However, the robots share neither knowledge of the coordinate systems of

the other robots, nor of a global coordinate system.

2.3.2 The Corda Model [56]

The Corda model [56] is similar to the SYm model except in the way the time of the

operations executed by a robot during its cycle is modelled. In particular, in the Corda

6As the duration of the interval between two time instants is by no means fixed, the second condition
incurs no loss of generality. It is in fact only required for convenience.
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model, the robots are asynchronous, in the sense that the amount of time spent in obser-

vation, computation, movement and inaction is finite, but otherwise unpredictable. That

is, each robot executes its computation cycle as follows: a robot is initially in a waiting

state (Wait), asynchronously and independently from the other robots, it observes the

environment (Look) by taking a snapshot of the positions of the robots. Then, it com-

putes a destination point based on the observed positions (Compute). Finally, the robot

moves (Move) toward the computed destination, but the distance it moves is unmeasured;

neither infinite, nor infinitesimally small (see Assumption 2.3.1). Hence, the robot can

only go toward its goal, but the move can end anywhere before the destination.

In the Corda model, the (global) time that passes between two successive states of

the same robot is finite, but unpredictable. In addition, no time assumption within a

state is made. This implies that the time that passes after the robot starts observing the

positions of all others and before it starts moving is arbitrary, but finite. That is, the

actual movement of a robot may be based on a situation that was observed arbitrarily far

in the past, and therefore it may be totally different from the current situation.

The robots can be partitioned into sets depending on their state at some time t:

• W(t) is the set of all robots that are in Wait state at time t.

• L(t) is the set of all robots that are in Look state at time t.

• C(t) is the set of all robots in the state Compute at time t; the subset C∅(t) contains

the robots whose computation results in executing a null move.

• M(t) is the set of all the robots that are executing a movement at time t; the subset

M∅(t) contains the robots executing a null move.

In this model, the cycle of a robot is finite. In addition, there are the following two

assumptions related to the distance travelled by a robot in one cycle, and the time required

for the completion of a cycle.

Assumption 2.3.1 It is assumed that the distance travelled by a robot r in a move is not

infinite. Furthermore, it is not infinitesimally small: there exists a constant ∆r > 0, such

that, if the target point is closer than ∆r, r will reach it; otherwise, r will move toward it

by at least ∆r.

Note that without this assumption, it would be impossible for any algorithm to terminate

in a finite time.

Assumption 2.3.2 The amount of time required by a robot r to complete a cycle (look-

compute-move-wait) is not infinite. Furthermore, it is not infinitesimally small; there

exists a constant τr > 0, such that the cycle will require at least τr time.
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2.3.3 Further Assumptions

In this thesis, we further make the following assumptions, in addition to the assumptions

made in the above described models:

1. We assume that the robots have limited visibility, in the sense that each robot can

sense only up to a distance VR > 0 from it. In other words, each robot can see only

the robots which are within its visibility radius VR.

2. We assume that the robots are oblivious or memory-less, which implies that they

are unable to remember past actions and observations, and thus, their computations

can not be based on previous observations. This last assumption is useful both

for memory management and because an algorithm designed for such robots in

inherently self-stabilizing.

3. We assume that the robots are unable to detect the presence of multiple robots at

a single point (i.e., robots are unable to detect multiplicity).

2.3.4 Difficulty of Coordination

To illustrate the difficulty of gathering the models described above, consider simply two

identical robots, say ra and rb that initially occupy distinct positions, consider the problem

of having them eventually move to the same location (gathering). We can see the dilemma

that ra faces (and also rb by symmetry) by considering the naive solution that follows.

Consider a stricter, more synchronized, model in which the robots can only be activated

either simultaneously (i.e., robots observe same environment and move simultaneously)

or sequentially (i.e., second observation made only after first move is completed).

Consider the viewpoint of one of the two robots, say ra, when it is activated during

some arbitrary step. Obviously, ra can select one of two different points as its destination

for the step, namely, the other robot’s location (rb), or the midpoint between ra and rb.

With the first choice, the robots gather at the end of the step if rb is not activated.

However, if rb happens to be active simultaneously, it takes the same action as ra, and

hence moves to occupy the position that ra has just left. Consequently, if the activation

schedule is such that the two robots are always activated at the same time, the system

remains caught in a cycle with the two robots endlessly swapping positions. As a result,

the robots never gather in the worst case.

With the second choice, ra selects the midpoint, and the two robots gather in one

single step if they are activated simultaneously. Unfortunately, if the two robots end up

being always activated sequentially, then they will converge towards each other, but it

will still take an infinite number of steps to gather in the worst case.
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2.3.5 Convergence versus Formation

Convergence to a point is the property of approaching or getting closer to a point. The

point convergence problem is trivial to achieve by a set of robots modelled as points on

the plane. A simple algorithm can make the robots move to the centroid forming the

visible robots. However, the convergence algorithm takes an infinite number of steps to

terminate. In other words, robots converge asymptotically toward the formation of a

point.

The point formation (or gathering) problem requires that all robots move and end

up at the exact same point in a finite number of steps. The point formation problem is

difficult to achieve in the models described above, in particular, robots need to break the

symmetry between each other in order to terminate in finite time. That is, robots need to

agree which robot moves, and which robot remains stationary. In other words, formation

can be also seen as a decision problem.

One of the main advantages of forming a point in finite time is the inherent ability to

agree between robots on a common origin.

The convergence to a point can also provides a way to agree on a common origin, but

with certain error. This depends in error measurements and considerations in practise.

Practically speaking, convergence and formation can be seen as the same problem.

However, mathematically speaking they are different.

2.4 Notations and Geometric Properties

2.4.1 Notations

We denote by U = {r1, · · · , rn} the set of all the robots in the system. Given some robot

r, r(t) is the position of r at time t. The circle Cr(t), centered at r, and with visibility

radius VR, denotes the circle of visibility of r at time t. Rr(t) is the region enclosed by

Cr(t).
Let A and B be two points, with AB, we will indicate the segment starting at A and

terminating at B, and dist(A,B) is the length of such a segment. By (AB), we denote

the line passing through points A and B.

C(o,R)(t), denotes the circle centered at o, with radius R at time t. Let θ be a central

angle with endpoints A and B located on the circumference of C, then �(AoB), denotes

the circular sector at the central angle θ. Finally, we denote by C(AB), the circle with

diameter AB.

Given three distinct points A, B, and C, we denote by �(A,B,C), the triangle having

them as corners, and by B̂AC, the angle formed by A, B and C, and centered at A.

Finally, given a region X (t) at time t, we denote by |X (t)|, the number of robots in

that region at time t. The parameter t is omitted whenever clear from the context. Let
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S be a set of robots, then |S| indicates the number of robots in the set S.

2.4.2 Definitions

Definition 2.4.1 (Local convex hull) The local convex hull of robot r at time t, de-

noted by LC(r, t) is the convex hull of robots’ positions which are within visibility radius

VR from robot r at time t. When all robots visible to r are collinear, the local convex hull

of r represents a line.

Definition 2.4.2 (Diameter of convex hull) The diameter of a convex hull for n ≥ 3

points (a convex polygon) is a local maximum for two of its vertices. That is the maximum

distance between two of its vertices. When all points are collinear, we mean by the diameter

of the convex hull, the distance between the two extreme points on the line.

We introduce the following definitions due to Flocchini et al. [34].

Definition 2.4.3 (Distance graph) Let G(0) = (N,E(0)) indicate the initial distance

graph of the robots, whose node set N is the set of input robots, and ∀r, s ∈ N , (r, s) ∈ E(0)

if and only if r and s are at a distance no greater than the visibility radius VR.

Definition 2.4.4 (Mutual visibility) Two robots r and r′ are mutually visible at time

t, if both robots include each other in their computations. Formally, r and r′ are mutually

visible at time t, if and only if both conditions hold:

1. 0 < dist(r, r′) ≤ VR,

2. r, r′ ∈ L(t) ∪ C∅(t) ∪ M∅(t) ∪ W(t).

Note that mutual visibility does not include robots with the same location.

We also introduce the following definition of gathering robots with volume (represented

by unit discs in the plane) due to Czyzowicz et al. [20].

Definition 2.4.5 (Gathering Robots with Volume) Gathering robots with volume means

forming a configuration for which the union of all discs representing them is connected.

Moreover, all robots must have full visibility to be aware that gathering is accomplished.

2.4.3 Geometric Properties

We now introduce some geometric properties used later in this dissertation.

Lemma 2.4.6 Every internal chord of a triangle has a length less than the longest side

of the triangle.

Lemma 2.4.7 In an obtuse triangle, the side opposite the obtuse angle (angle greater

than π/2 and less than π) is the longest side in the triangle.
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Lemma 2.4.8 In a triangle, the side opposite to the largest angle in the triangle is the

longest side in the triangle.

Lemma 2.4.9 Every internal chord of a circle has a length less than or equal to the

diameter. That is, the distance between any two points that belong to a circle is less than

or equal to the diameter.
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Chapter 3

Unreliable Compasses

Truth lies within a little and certain compass,

but error is immense.

William Blake

In this chapter, we give formal and informal definitions to different classes of unreliable

compasses.

A compass is a navigational instrument for finding directions on the earth. More

technically, a compass is a magnetic device using a needle to indicate the direction of the

magnetic north of a planet’s magnetosphere. The cardinal points are north, south, east

and west [76].

However, these devices in general have limited accuracy. Besides, they are subject to

instabilities because of magnetic interference, and they are error-prone devices. Therefore,

it is very important to consider the unreliability of compasses when designing algorithms.

3.1 Definition of Compass

Before we proceed to the definition of a compass, we introduce the following definitions.

Definition 3.1.1 (Absolute north) An absolute north
−→N is a vector that indicates a

fixed north direction.

Definition 3.1.2 (Relative north) The relative north
−→
NA(t) of some robot A is a func-

tion of time that returns a vector that indicates the north direction for robot A at some

time t.

Definition 3.1.3 (Compass) A compass is a function of time and robots. The function

outputs a relative north direction
−→
Nr(r, t) for some robot r at time t. By compassr(t), we

denote the relative north of the compass of robot r at time t.
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Figure 3.1: Eventually consistent compasses.

3.2 Perfect Compass

With a perfect compass, the robots always agree on the same north direction at any time

t. In other words, the robots agree on the directions and orientations of both x and y

axes at any time t. Formally, the robots in the system share a perfect compass if and only

if the agreement and invariance properties are satisfied:

Definition 3.2.1 (Perfect compass) A perfect compass is defined as follows:

1. Agreement: ∀r, r′ ∈ U ,∀t, compassr(t) = compassr′(t)

2. Invariance: ∀r ∈ U ,∀t, t′, compassr(t) = compassr(t
′)

3.3 Unreliable Compasses

In this section, we define different classes of unreliable compasses for robots.

3.3.1 Eventually Consistent Compass (EVC)

With an eventually consistent compass, there exists a time after which all the robots

agree on the same north direction. The agreement holds after some time GST (Global

Stabilization Time) unknown to the robots. In other words, it is only guaranteed that

the agreement on the north direction will hold, but the time for which the agreement

holds is unknown to the robots. More precisely, an eventually consistent compass has the

following properties: (1) The north direction of a robot’s compass can change with time.

(2) At a given time, the compasses of any two robots may disagree. (3) There exists some

time GST after which, the compasses of all the robots agree for a sufficiently long period.

Yet, the robots do not know when the time GST will occur. An eventually consistent

compass is depicted in Figure 3.1.
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Figure 3.2: γ∗-Inaccurate compasses.

Formally, the robots in the system share an eventually consistent compass if and only

if the eventual agreement and eventual invariance properties hold:

Definition 3.3.1 (Eventually consistent compass) is a compass with the following

properties:

1. Eventual agreement: ∃GST ,∀r, r′ ∈ U ,∀t≥GST , compassr(t)=compassr′(t)

2. Eventual invariance: ∀r ∈ U ,∀t, t′ ≥ GST , compassr(t) = compassr(t
′)

We sometimes refer to eventually consistent compasses as unstable compasses.

3.3.2 Inaccurate Compass

Informally, we say that compasses are γ∗-Inaccurate if and only if, for every robot r, the

absolute difference between the relative north indicated by the compass of robot r and the

absolute north
−→N is at most γ∗ at any time t (also referred to as error of the compasses).

In addition, for every robot r, the error of its compass is consistent or invariant over time,

that is, the relative north of each robot does not fluctuate over time.

In other words, a pair of γ∗-Inaccurate compasses can differ by as much as 2γ∗ at any

time t, and the difference is invariant. The special case when γ∗ = 0 represents perfect

compasses.

Definition 3.3.2 (γ∗-Inaccurate compasses) Formally, compasses are γ∗-Inaccurate

if, the following two properties are satisfied:

1. γ∗-Inaccuracy: ∀r ∈ R,∀t, |�−→N−→
N (r, t)| ≤ γ∗,

2. Invariance: ∀r,∀t, t′,−→N (r, t) =
−→
N (r, t′).

An inaccurate compass, also called error bounded compass, is depicted in Figure 3.2.
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3.3.3 Eventually Bounded Error Compass (EBC)

The definition of eventually bounded error compass (EBC), derives from the definitions

of an eventually consistent compass, and an inaccurate compass.

With an eventually bounded error compass (EBC), there exists a time after which the

divergence error between the compasses of robots is bounded, and this happens after some

time GST (Global Stabilization Time) unknown to the robots.

In other words, an eventually bounded error compass has the following two properties:

(1) At a given time, the compasses of any two robots may disagree by any angle. (2)

There exists some time GST , after which, the compasses of all the robots are inaccurate

by a certain known value. However, the robots do not know when the time GST will

occur.

Formally, the robots in the system share an eventually consistent compass if and only

if the Eventually γ∗-Inaccuracy and eventual invariance properties hold:

Definition 3.3.3 (Eventually Bounded Error Compass (EBC)) is a compass with

the following properties:

1. Eventually γ∗-Inaccuracy: ∃GST ,∀r ∈ U ,∀t≥GST , |�−→N−→
N (r, t)| ≤ γ∗

2. Eventual invariance: ∀r ∈ U ,∀t, t′ ≥ GST ,
−→
N (r, t) =

−→
N (r, t′).

3.3.4 Other Inaccurate Compasses

In this section, we introduce some definitions of inaccurate compasses that come from

Katayama et al. [41]. The authors seem to work on these definitions in parallel to our

work, and they have defined a richer model of inaccurate compasses in which they have

introduced the notion of dynamism in compasses.

Definition 3.3.4 (Full-Dynamic Compass, FDC) The full dynamic compass (FDC)

is a compass whose indicated north may vary at any time during the execution.

Definition 3.3.5 (Semi-Dynamic Compass, SDC) The semi dynamic compass (SDC)

is a compass whose indicated north may vary at the time between any two cycles, but it

never changes during one cycle.

Definition 3.3.6 (Fixed Compass, FXC) The fixed compass (FXC) is a compass whose

indicated north direction never varies during the execution of the algorithm.

A fixed compass is equivalent to our definition of γ∗-Inaccurate compass.

Definition 3.3.7 (Eventually Fixed Compass, EFC) The eventually fixed compass

(EFC) is a compass whose indicated north direction is fixed after some point of time, but

it may vary before that time.
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An eventually consistent compass (EVC) is weaker than a perfect compass. In the

case of full visibility, an EVC compass is equivalent to a perfect compass.

In the inaccurate compass class, the full dynamic compass (FDC) is the weakest model,

and the fixed compass class (FXC) or γ∗-Inaccurate compass is the strongest model.

In the case of full visibility, an eventually bounded error compass (EBC) is equivalent

to γ∗-Inaccurate compass.

In this dissertation, we do not consider the models with dynamic compasses.
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Chapter 4

Gathering with EVC Compasses in
the SYm Model

Keep within compass and you may be sure,

that you will not suffer what others endure.

German proverb

Flocchini et al. [34] have proved that gathering is solvable in the asynchronous model

Corda with oblivious robots and limited visibility, as long as robots share compasses

that provide perfect information on direction. However, these components are in general

subject to instabilities and errors. Subsequently, the question that arises is, can we solve

the same problem with weaker compasses?

In this chapter, we revise the practical significance of this assumption, and we study

the solvability of the gathering problem in the face of instability of the compasses for some

arbitrary periods, with the guarantee that compasses stabilize eventually. However, the

time when the stabilization occurs is unknown to the robots.

Since the gathering problem is solvable with perfect compasses, one might argue that

the problem would be easy, since eventually the compasses show the correct direction, and

hence, the problem has almost the same complexity as in the case of a perfect compass.

However, this is not true, as the robots do not know when the stabilization time will

occur. Therefore, the algorithm designed for the case must guarantee that the robots

do not lose sight of each other when their compasses are inconsistent (safety condition),

and that when their compasses eventually become consistent, the algorithm must allow

the robots to progress and gather at a single point in a finite number of steps (liveness

condition). This is where the difficulty of the problem comes from, as one algorithm

might be designed satisfying, for instance, the safety condition, but may not let the

robots progress to gathering when their compasses eventually stabilize, and vice versa.

In this chapter, we study the solvability of the gathering problem, relying on eventually

consistent compasses in the Suzuki and Yamashita model [69], referred to as a semi-

synchronous model, by providing a deterministic solution to the problem. Our algorithm



4.1. SOLVABILITY OF GATHERING 27

Table 4.1: Solvability of the gathering problem deterministically with oblivious robots
and limited visibility for n ≥ 2 with no multiplicity detection.

Compasses
Perfect Eventually None

Model consistent
Asynchronous Solvable1 Solvable for n ≤ 4 (Chapter 5) Impossible3

(Corda) Impossible for some n ≥ 5 (Chapter 6)
Semi-synchronous Solvable2 Solvable Impossible4

(SYm) Chapter 4

1: Proved in [34]
2: Deduction from [34]
3,4: Proved in [59] for n ≥ 2
4: Proved in [69] for n = 2

is guaranteed to recover from any arbitrary configuration when the compasses of the robots

eventually stabilize. We can argue that our algorithm is intrinsically self-stabilizing1 [69]

and offers protection against any number of transient failures in the compasses.

We also show that the gathering algorithm proposed by Flocchini et al. [34] cannot

cope with instabilities in the compasses in both SYm and Corda models.

4.1 Solvability of Gathering

In this section, we discuss the solvability of the gathering problem in finite time in both

SYm and Corda models in the case of oblivious and limited visibility settings, where

robots cannot detect multiplicity. Flocchini et al. [34] proved that the gathering problem

is solvable deterministically when robots share perfect compasses by providing a solution

to the problem. It is easy to see that the gathering problem is also solvable in the SYm

model, when robots are equipped with perfect compasses, since all the possible executions

in the SYm model are a subset of the possible executions in the Corda model.

In the SYm model, Suzuki and Yamashita [69] showed that there is no oblivious

algorithm for solving the gathering problem for the case of two robots. At a more general

level, Prencipe [59] showed that without a compass and without multiplicity detection,

there exists no deterministic oblivious algorithm that solves the gathering problem in

finite time for n ≥ 2 robots in both SYm and Corda models. Table 4.1 summarizes

these results.

In Section 4.3, we show that gathering is solvable deterministically in the SYm model

relying on eventually consistent compasses, by providing a solution to the problem.

1Self-stabilization is the property of a system which, starting in an arbitrary state, always converges
toward a desired behavior [27, 62].
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Figure 4.1: Flocchini et al. [34] algorithm in the face of eventually consistent compasses.

In Chapter 5, we show that gathering is also solvable deterministically in the Corda

model, when robots are equipped with eventually consistent compasses, for up to four

robots.

Finally, in Chapter 6, we show that gathering has no solution in the Corda model

for a certain number of robots when compasses are unstable for some arbitrary periods.

4.2 Algorithm of Flocchini et al. [34] in the Face of

EVC Compasses

In this section, we show that the algorithm proposed by Flocchini et al. [34] does not

solve the gathering problem in either SYm or Corda if we assume eventually consis-

tent compasses. The proof is simply based on a counter example, combined with some

activation schedule of the robots which leads to a configuration where the vision graph

between robots will be partitioned, thus making the problem impossible, because robots

are oblivious, and they are unable to remember their past observations and computations.

The Flocchini et al. [34] algorithm is described briefly as follows: depending on the

positions of the robots in its circle of visibility, robot r computes its destination point as

follows:

• Null move: if r sees robots to its left or above on its vertical axis, it does not move.

• Vertical move: if r sees robots only below it on its vertical axis, it moves down
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toward the nearest robot.

• Horizontal move: if r sees robots only to its right, it moves horizontally toward the

vertical axis of the nearest robot.

• Diagonal move: if r sees robots both below on its vertical axis and on its right, then

it considers the nearest one below it, and the nearest one to its right, and performs a

diagonal move as illustrated in Figure 4.1(a). In this move, the destination point of

r is always computed in such a way so as to remain inside its circle of visibility. That

is, r forms an angle 2β with its two mutually visible robots. Then, this move ensures

that the destination point is always computed based on an angle 60 ≤ β ≤ 90, so

that robot r remains visible to the robots in its visibility range.

Recall that the initial distance graph G(0) is connected. Assume now that the robots

will execute the algorithm of Flocchini et al. [34], and that they are equipped with even-

tually consistent compasses. As a result, we will show that the distance graph will be

disconnected. The proof is by a counter example. We will assume the SYm model. Then,

the same proof is valid in the Corda model.

Lemma 4.2.1 In a system in which robots have eventually consistent compasses, the

algorithm of Flocchini et al. [34] results in a disconnection of the initial distance graph

G(0) in the SYm model.

Proof. Let us consider the example illustrated in Figure 4.1(b). Assume that robot

r performs a look operation at time t. Then, according to its compass, r sees robot r′

below it on its vertical axis and r′′ to its right2 . By the algorithm, r will perform a

diagonal move. Let H be its destination, such that H ∈ Cr(t), i.e., β = 60◦. Assume also

that r′ performs a look operation at the same time t. According to its compass, robot

r′ sees robot r to its right. Consequently, r′ will perform a horizontal move. Let H ′ be

the destination of r′ such that, dist(r,H ′) = dist(r′, H ′), as illustrated in Figure 4.1(b).

By considering this simple example, we will show that the movement of r to H, and the

movement of r′ to H ′, will lead to a situation wherein r and r′ are at a distance greater

than the visibility radius VR; i.e, dist(H,H ′) > VR.

Let us denote by C(rr′), the circle with diameter rr′, and by o its center. H ′ ∈ C(rr′)

because rH ′ ⊥ r′H ′ by the algorithm. We also have H ∈ Cr(t) because β = 60◦ by

construction. Hence, the triangle �(r, r′, H) is equilateral. As a result, the perpendicular

on rr′ passing throughH passes by o. In addition, the perpendicular to rr′ passing through

H ′, passes by o because the triangle �(r, r′, H ′) is isosceles by construction (dist(r,H ′) =

2The right direction for a robot is the same as the East direction indicated by its compass, which is
represented by the x-axis.
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dist(r′, H ′)). We thus, compute the distance dist(H,H ′) as follows:

dist(H,H ′) = dist(o,H) + dist(o,H ′)

=
√

dist(r,H)2 − dist(o, r)2 + dist(o,H ′)

=

√
VR2 − (VR/2)2 + VR/2

=

√
3

2
VR + VR/2 > VR

We conclude that dist(H,H ′) > VR. Consequently, r and r′ are unable to see each other

any more. This results in a disconnection of the distance graph. �Lemma 4.2.1

Theorem 4.2.2 In a system in which robots have eventually consistent compasses, the

algorithm of Flocchini et al. [34] does not solve the robots’s gathering problem in any of

the models; SYm or Corda.

Proof. From Lemma 4.3.1, we have gathering is unsolvable if the distance graph is

disconnected. Also, from Lemma 4.2.1, we conclude that the algorithm of Flocchini et

al. [34] leads to a disconnection of the distance graph under eventually consistent com-

passes. Thus, the theorem holds. �Theorem 4.2.2

4.3 Gathering with EVC in the SYm Model

In this section, we present a deterministic algorithm for solving the gathering problem in

the SYm model, when robots are oblivious, have limited visibility, and are equipped with

eventually consistent compasses. Before we proceed to the description of the algorithm,

we recall an important lemma due to Flocchini et al. [34].

Lemma 4.3.1 If the initial distance graph G(0) is disconnected, the gathering problem is

unsolvable.

The idea of the algorithm is to solve the problem by achieving the following two sub-

goals at every time instant t:

1. Robots that are visible at time t must remain visible at time t + 1, in spite of the

inconsistencies in their compasses;

2. Robots located on the leftmost side at time t move toward the visible robots on their

right side at time t + 1, and eventually gather at the rightmost and bottommost

robot in the system after GST .
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Figure 4.2: Principle of the algorithm.

The gathering algorithm in the SYm model is depicted in Algorithm 1, where the

functions Activation Step(Rr, compassr), Do nothing(), and Move to(Goal) are as follows:

the function Activation Step(Rr, compassr) is executed by robot r when it becomes active,

and it takes as input the parameters of the visibility region Rr and compassr of robot

r. The function Do nothing() is executed by r when it stays still. Finally, the function

Move to(Goal) terminates the computation of robot r and moves it toward Goal .

Before we proceed to the description of the algorithm in more detail, we further in-

troduce the following notations. Let Ψr be the vertical axis passing through robot r

according to its compass at time t. Ψr is collocated with the north direction indicated by

the compass of r at time t. We denote by Leftr(t) and Rightr(t), the regions, respectively,

to the left and to the right of Ψr, excluding Ψr. Let also Φr, be the perpendicular axis

to Ψr passing by r. Then, we denote Topr(t) and Bottomr(t) as the regions respectively,

above and below Φr excluding Φr. When no ambiguity arises, we shall omit the temporal

indication. Finally, Ψ+
r and Ψ−

r denote the intersections of Topr and Ψr, and of Bottomr

and Ψr, respectively.

Algorithm 1 is described informally as follows. First, at every time instant t where

some robot r becomes active, r queries its compass, considers all the robots in its visibility

region Rr(t), and then decides its movement as follows:

• If r sees robots on its left side Leftr, or on Ψ+
r (above it on Ψr), then, r does not

move (line 13).

• If r is collinear with all robots in Rr(t) , then r moves linearly to the nearest robot

to it (robot r2 in Figure 4.2(c)). In this case, r must be the topmost or leftmost

robot in the line (line 16).

• If r sees some robots on Rightr or on Rightr and some robots on Ψ−
r , then r computes
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Algorithm 1 Gathering with EVC Compasses in the SYm Model

1: Activation Step(Rr, compassr)
2: if (|Rr| = 1) then {Gathering terminated; r sees only itself.}
3: Do nothing();
4: else
5: Ψr:= vertical axis passing through robot r according to compassr;
6: Φr:= perpendicular to Ψr passing by r;
7: Leftr := any robot in Rr to the left of Ψr, but not on Ψr;
8: Topr := any robot in Rr above Φr;
9: Bottomr := any robot in Rr below Φr;

10: Ψ+
r := Topr ∩ Ψr;

11: Ψ−
r := Bottomr ∩ Ψr;

12: if (|Leftr| > 0 ∨ |Ψ+
r | > 0) then {r sees robots on its left side or on Ψ+

r .}
13: Do nothing();
14: else
15: if (r is collinear with all robots in Rr) then
16: Goal := nearest robot to r;
17: else {r computes two outermost robots s1 and s2.}
18: ÂrB: biggest central angle of Cr with endpoints A and B;
19: s1 := farthest robot from r on the segment rA;
20: s2 := farthest robot from r on the segment rB;
21: H := foot of the perpendicular dropped from r to the side s1s2 in �(r, s1, s2);
22: end if
23: if (H ∈ �(r, s1, s2) ) then
24: Goal := H;
25: else {H is outside the triangle �(r, s1, s2).}
26: s := nearest robot to r among s1 and s2;
27: Goal := s;
28: end if
29: Move to(Goal);
30: end if
31: end if
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the positions of the two outermost robots. The two outermost robots are computed

as follows: First, r selects each pair of robots that form the biggest central angle

with r in its circle of visibility Cr, and that contains all robots visible to r. Second,

if there are more than one pair of such robots, the robots at the maximum distance

from r are selected (e.g., r1 and r3 in Figure 4.2(a)).

In other words, the two outermost robots are first, the two robots that form the

biggest central angle with r and second, they are at the greatest distance from r.

Afterwards, r computes the height of the triangle that it forms with the two out-

ermost robots, say s1 and s2, and having a base segment s1s2. Let H be the foot

of a perpendicular starting at r. Then, r moves to H if H is inside the triangle

�(r, s1, s2) (see Figure 4.2(a)). Otherwise, if H is outside �(r, s1, s2), then r moves

to the closest robot to it among s1 and s2 (see Figure 4.2(b)).

4.4 Correctness of the Algorithm

In this section, we prove the correctness of our algorithm in two steps. In the first step, we

show that the connectivity of the distance graph is preserved before and after GST . That

is, the robots that are initially visible remain always visible during the entire execution

of the algorithm. In a second step, we show that all the robots will gather at one point

in a finite number of steps. Before proceeding, let us recall an important lemma proved

by Flocchini et al. [34]; if the initial distance graph G(0) is disconnected, the gathering

problem is unsolvable. Hence, throughout we will always assume that the initial distance

graph is connected.

4.4.1 Safety: Preserved Connectivity

We now prove that the connectivity of the distance graph is preserved during the entire

execution of the algorithm. Recall that the compasses of the robots may be inconsistent,

including those of the robots that are located at the same location. From the algorithm,

trivially, we derive the following lemma:

Lemma 4.4.1 Let r1 and r2 be the two outermost robots for some robot r, and ÂrB, the

central angle whose sides pass by r1 and r2, and with endpoints A and B located on the

circumference of Cr. Let G be the destination of r. Then, G ∈ �(ArB).

Lemma 4.4.2 Let robot r be active at time t, and Leftr = ∅ and Ψ+
r = ∅. Let r1 and r2

be its two outermost robots, and ÂrB, the central angle whose sides pass by r1 and r2, and

with endpoints A and B located on the circumference of Cr. Let also G be the destination

of r. Then, for any point p in �(ArB), we have dist(p,G) < VR.



4.4. CORRECTNESS OF THE ALGORITHM 34

Proof. Let H be the foot of the height of the triangle �(r, r1, r2) starting at r, and G

be the destination of r.

By the algorithm, G = H if H ∈ �(r, r1, r2); otherwise G = r1 or G = r2. Then, two

cases follow, depending on whether H is inside or outside the triangle �(r, r1, r2):

1. H belongs to �(r, r1, r2) (see Figure 4.3(a)).

Consider the triangle �(r, r1, H), by Lemma 2.4.6, for every point p in triangle

�(r, r1, H), we have dist(p,H) < dist(r, r1) ≤ VR. Similarly, ∀p ∈ �(r, r2, H),

dist(p,H) < dist(r, r2) ≤ VR. Consider now the subregion P(r1, r2, A,B) of the

circular sector �(ArB) delimited by r1, r2, A, and B, then ∀p ∈ P(r1, r2, A,B), the

triangle that p forms with r and H is an obtuse triangle at H since r̂Hr1 = 90◦.

Consequently, by Lemma 2.4.7, ∀p ∈ �(ArB), dist(p,H) < dist(p, r) ≤ VR. Hence,

∀p ∈ �(ArB), dist(p,G) < VR.

2. H does not belong to �(r, r1, r2) (see Figure 4.3(b)).

In this case, G = r1 (nearest to r among r1 and r2). Since H is outside the triangle

�(r, r1, r2), then �(r, r1, r2) is an obtuse triangle at r1. By Lemma 2.4.7, the

segment rr2 is the longest side of the triangle. Thus, ∀p ∈ �(r, r1, r2), dist(p, r1) <

dist(r, r2) ≤ VR.

Consider now the subregion P(r1, r2, A,B) of the circular sector �(ArB) excluding

the point B, then ∀p ∈ P(r1, r2, A,B), the triangle that forms p with r and r1

is an obtuse triangle at r1, since r̂r1r2 > 90◦. Consequently, by Lemma 2.4.7,

∀p ∈ P(r1, r2, A,B), dist(r1, p) < dist(r, p) ≤ VR. Let us now consider the point B,

by hypothesis, dist(r, B) = VR and r1 ∈ rB, then dist(r1, B) < VR. Consequently,

∀p ∈ �(ArB), dist(r1, p) < VR. Hence, for all points p in �(ArB), we have

dist(p,G) < VR.

In both cases, ∀p ∈ �(ArB), dist(p,G) < VR. This completes the proof. �Lemma 4.4.2

Lemma 4.4.3 Let S be the set of robots visible to r at some time t. Then, at any time

t′ > t, r is at a distance of at most VR from all robots in S.

Proof. The proof consists of showing that the distance between the destination of r,

and the destination of any robot in S at time t+ 1 is less than or equal to VR. Trivially,

the case of two robots holds, since one robot must move toward the other one. Thus, in

the following, we assume that the number of robots in S is greater than one. Let robot r

be active at time t. We distinguish the following cases, depending on the movement of r

and whether the robots in S are active or not:

1. Robot r is active at time t; all robots in S are inactive at time t.

We distinguish the following cases depending on the movement of robot r.
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the triangle �(r, r1, r2) that r
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(b) Case where H is outside the
triangle �(r, r1, r2) that r forms
with the two outermost robots r1

and r2.

Figure 4.3: The destination of r is within distance VR from all robots in �(ArB).

(a) Robot r executes a null move.

If r has robots on Leftr or Ψ+
r then it does not move. In addition, by hypothesis,

∀s ∈ S, s is inactive at time t. This means that at time t+ 1, r remains at the

original distance from all robots in S, and such distance is less than or equal

to VR by hypothesis.

(b) Robot r is collinear with all robots in S.

Two possibilities follow: (1) Robot r can be in case (a) above (i.e., it executes

a null move), so the lemma holds for case (1). (2) robot r can be the leftmost

or topmost robot, then it performs a real move. Let r1 be the robot farthest

away from r on the line. By hypothesis, dist(r, r1) ≤ VR and by the algorithm,

r moves on the segment rr1. Thus, at time t + 1, r gets closer in distance to

all robots in S.

(c) Robot r computes the positions of the two outermost robots.

Let r1 and r2 denote the two outermost robots of r at time t, and let �(ArB)

be the circular sector enclosing all the robots in S such that dist(r, A) =

dist(r, B) = VR, and r1 ∈ rA and r2 ∈ rB (see Figure 4.3(a)).

We denote by G the destination of r. Then, by Lemma 4.4.2, for every point p

in �(ArB), we have dist(p,G) < VR. Thus, ∀ri ∈ S, dist(ri, G) < VR.

2. Robot r is active at time t; some or all robots in S are also active at time t.

We consider r′ ∈ S to be active at time t. Let G′ be its destination, and S ′ be

the set of robots visible to r′ at time t. Let also G be the destination of r. In the

following, we will show that at time t + 1, dist(G,G′) ≤ VR. We only prove the

case for r′, and the same argument can be applied to the other robots in S.

(a) Robot r executes a null move; Robot r′ executes a null move.
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(a) r′ has the robots r
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(b) r′ has the robots r
and r8 as outermost robots,
and computes G′ as destina-
tion. Then, dist(G,G′) ≤
dist(r, e) ≤ VR.

Figure 4.4: The destination of r and r′ are within distance VR from each other.

By hypothesis, dist(r, r′) ≤ VR, thus the case holds trivially.

(b) Robot r executes a null move; Robot r′ is collinear with all robots in S ′.

This case is similar to case 1(b). above, since r stays still at time t.

(c) Robot r executes a null move; Robot r′ computes the positions of its two out-

ermost robots.

This case holds by case 1(c). above, since r stays still at time t.

(d) Robot r is collinear with all robots in S; Robot r′ computes the positions of its

two outermost robots.

Let �(A′r′B′) be the circular sector of robot r′ at time t. By Lemma 4.4.1,

G′ ∈ �(A′r′B′). In addition, r ∈ �(A′r′B′), and by the algorithm, G ∈ rr′ (r

moves on rr′). Consequently, G ∈ �(A′r′B′), and by Lemma 4.4.2, the proof

holds for this case.

(e) Robot r computes the positions of its two outermost robots; Robot r′ computes

the positions of its two outermost robots.

Depending on where robot r′ is located in the circular sector �(ArB), and

where its visible robots (other than robot r) are located, its destination G′ can

either be within �(ArB) or outside it. We thus, distinguish the following cases:

• The destinationG′ of r′ belongs to �(ArB) (r can be an outermost robot of r′ or

not): In all cases whereG′ ∈ �(ArB), by Lemma 4.4.2, ∀p ∈ �(ArB), dist(p,G) <

VR. Therefore, dist(G′, G) < VR. This completes the proof for this case.

• The destination G′ of r′ does not belong to �(ArB) (r can be an outermost

robot of r′ or not):



4.4. CORRECTNESS OF THE ALGORITHM 37

Let r1 and r2 denote the two outermost robots of r at time t. In this case,

we assume that the destination G of r is the foot of the perpendicular to the

segment r1r2 dropped from r. The case when the destination of r is the location

of one of its two outermost robots can be adapted easily. We assume the same

for the destination G′ of r′ (i.e., G′ is the foot of the perpendicular to the

segment defined by its two outermost robots).

(a) ∃s ∈ S ′ such that s does not belong to �(ArB); and r′ is one of the

outermost robots of r (see Figure 4.4(a)).

In this case, assume that r′ is the robot r2, and its two outermost robots

are r and r7. We will show that dist(G,G′) ≤ VR. Consider the circle

C(rr′) with diameter rr′, we have G ∈ C(rr′) because r̂Gr′ is a right angle

by construction (see Algorithm 1). Similarly, G′ ∈ C(rr′). Consequently,

by Lemma 2.4.9, dist(G,G′) ≤ dist(r, r′) ≤ VR.

(b) ∃s ∈ S ′ such that s does not belong to �(ArB); and r′ is not an outermost

robot for r (see Figure 4.4(b)).

In this case, assume that r′ is the robot r5, and its two outermost robots

are r and r8. We will show that dist(G,G′) ≤ VR.

Let e = (r′G′) ∩ r1r2. Consider the circle C(re) with diameter re, we

have G ∈ C(re) because r̂Gr1 is a right angle by construction. Similarly,

G′ ∈ C(re). Consequently, by Lemma 2.4.9, dist(G,G′) ≤ dist(r, e) ≤ VR.

This completes the proof.

In all cases, r remains within distance VR from all robots in S at time t+ 1, and the rest

follows by induction. �Lemma 4.4.3

From Lemma 4.4.3, we conclude that:

Theorem 4.4.4 Algorithm 1 preserves the connectivity of the distance graph.

4.4.2 Liveness: Termination of the Algorithm

In this section, we show that Algorithm 1 solves the gathering problem deterministically.

Thus, in the following, we consider the system after time GST has been reached. Thus,

all robots agree on the direction of their compasses.

Lemma 4.4.5 In any collinear configuration of robots, all robots will gather in a finite

time at the rightmost or bottommost robot.

Proof. In a configuration where robots are collinear, there exist two cases; either all the

robots are located on the same vertical axis Ψ, or they are collinear, but not on the same

Ψ. Consider the first case, where all robots are located on the same Ψ. By assumption,
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the activation schedule is fair. Then, whenever the topmost robot becomes active, it will

move to the nearest one below it. Since, the cycle of a robot is finite, and the number of

robots is finite, then recursively, all robots in Ψ will gather at the bottommost robot in

finite time. Similarly, in the second case, the leftmost robot will reach the nearest one to

its right in a finite time. Thus, by using the same arguments, all robots will gather at the

rightmost robot in a finite time, and the lemma holds. �Lemma 4.4.5

Lemma 4.4.6 In any configuration with three or more robots, all robots will gather in a

finite time at the rightmost and bottommost robot.

Proof. We recall that the robots reach the time GST . The proof is a simple adaptation

of the proof of the Flocchini et al [34] algorithm.

Let Ψleft be the leftmost vertical axis that passes by the leftmost robot (one or many

robots) at time t. Let also Ψright be the rightmost vertical axis that passes by the rightmost

robot at time t. Let D be the horizontal distance between Ψleft and Ψright . If D = 0, this

means that all the robots in the system are located on the same vertical axis. Then, by

Lemma 4.4.5, they will gather at the bottommost robot in a finite time.

We now consider the case when D �= 0. Assume by contradiction that some robots

never reach Ψright . This means that there are some axes that will not be passed by all

the robots that were to the left of the robots at the beginning of the algorithm: we call

them limit axes. Let Ψ be the leftmost such axis. Let A be the sets of robots, initially to

the left of Ψ, that will become arbitrarily close to Ψ but never reach it. Let B be the sets

of robots, initially to the left of Ψ, that will pass Ψ within finite time. Finally, let C be

the sets of robots, initially to the left of Ψ, that will reach Ψ without ever moving to the

right of Ψ.

First observe that since the robots reach the time GST , then they will move toward

the right. Second, if some robot r leaves its vertical axis Ψr, then by Assumption 2.3.1, it

will progress toward Ψright by some distance d > 0, with d = δr sin βr, where δr �= 0 is the

distance between r and its target on the right, and 0 < βr ≤ 90◦ is a non-null angle that

r forms with Ψr and its destination. Let β > 0 be the minimal angle that some robot can

form with its vertical axis and its destination to the right, and δ be the minimal distance

travelled by any robot toward its target.

Let t′ be a time when all robots in B have passed Ψ, and those in C have reached Ψ.

That is at time t′, the only robots to the left of Ψ are those in A.

Consider first the case when A = ∅. In this case, by Lemma 4.4.5, after a finite number

of moves, one of the robots in C will leave Ψ. A contradiction.

Now we assume that A �= ∅. Consider a vertical axis Ψ′ to the left of Ψ, at distance

d′ < δ sin β from Ψ. Since Ψ is the leftmost limit axis, each r ∈ A arrives at the right of

Ψ′ within finite time. Observe that, once to the right of Ψ′, r must stop at least once,
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since by definition, it does not reach Ψ. Let t′′ > t′ be a time when all robots in A have

stopped at least once to the right of Ψ′. Let also Ψ′′ be an axis between Ψ′ and Ψ, such

that at time t′′ no robot in A is to its right. Since Ψ′′ is not a limit axis, the robots of A

will pass Ψ′′ within finite time. Since at time t′′ there are no robots between Ψ′′ and Ψ,

the first robot r ∈ A that passes Ψ′′ must have as destination a point to the right of Ψ

or on Ψ. According to the Algorithm, r will move on a straight line at an angle β′, with

β ≤ β′ ≤ 90◦; such a line intersects Ψ at a point H. Since this move by r is started from

a point S to the right of Ψ′, then dist(S,H) < d′
sinβ′ <

sinβ
sinβ′ .δ ≤ δ. Thus, in this move r

will reach Ψ. A contradiction. Consequently, no limit axis Ψ exists, and all robots reach

the rightmost axis Ψright in finite time. �Lemma 4.4.6

Lemma 4.4.7 Under Algorithm 1, all the configurations in which all the robots gather at

one point are stable.

Proof. Assume that at some time t, all the robots gather at one point. In such a

configuration, none of the robots see other robots in their visibility regions. Thus, by the

algorithm, none of the robots will ever move. Consequently, such a configuration is stable

by the algorithm. �Lemma 4.4.7

Theorem 4.4.8 Under Algorithm 1, all robots gather at one point in finite time.

Proof. By Lemma 4.4.5 and Lemma 4.4.6, any configuration of robots is transformed

to gathering in a finite time. Moreover, by Lemma 4.4.7, the gathering configuration is

stable. This completes the proof. �Theorem 4.4.8

From Theorem 4.4.4 and Theorem 4.4.8, it follows that:

Theorem 4.4.9 In a system, with n anonymous, oblivious mobile robots, with limited

visibility, and eventually consistent compasses, the gathering problem is solvable deter-

ministically in the SYm model.

4.5 Complexity Analysis

In this section, we give an analytic analysis of the complexity of the algorithm, and the

number of steps of its termination.

Complexity of the algorithm.

• The verification of robots that are on Leftr or on Ψ+
r (line 12 in Algorithm 1) takes

O(n).
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Figure 4.5: The coordinates of the portion of the plane occupied by the robots.

• The verification of robots that are collinear (line 15 in Algorithm 1) takes O(n).

• For the computation of the two outermost robots, there are three steps:

1. The algorithm needs to compute the different angles that each pair of robots

makes with robot r. In the worst case, robot r is visible to all the robots in the

system. Suppose that the coordinates of these robots that are visible to robot

r are stored in an array. Then, the algorithm takes O(n2) to browse the array,

and compute all the different angles that robot r forms with each different pair

of robots.

2. The algorithm needs to sort these angles in order to find the biggest angle.

This will take O(n log n) using the QuickSort algorithm.

3. Finally, in the case where there are several pairs of robots with the biggest

central angle with robot r, the algorithm takes O(n) in order to find the pair

of distant robots among them.

• In conclusion, the complexity of the algorithm in one step is: n2 + n log n + 3n,

which is O(n2).

Number of steps of termination of the algorithm. First, assume that robots oc-

cupy the portion of the plane as depicted in Figure 4.5. The maximum x coordinates of

is X, and the maximum y coordinates is Y .

By assumption in the SYm model, the distance that a robot r can travel in one cycle

is bounded by δri > 0, and this distance is different between robots. We assume that the

average distance travelled by a robot in one cycle is bounded by δavg.

To make the analysis of the algorithm, we assume that the compasses of robots are in

the stabilization period. That is, robots has reached the time GST .

Note that, the extreme case is when all robots are collinear and placed on the diagonal

of the portion of the plane occupied by the robots.
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For the sake of analysis, we also consider a stricter model where robots are fully

synchronized. That is, at each time instant, all robots are activated. Then, the number

of steps of termination of the algorithm is given by the following equation:

S = �
√
X2 + Y 2

δavg
�

Now if we consider a strict activation schedule, where robots are activated in mutual

exclusion, i.e., at each time instant exactly one robot is activated at each time instant,

then the maximum number of steps of termination of the algorithm is:

MaxS = �n
√
X2 + Y 2

δavg
�

with n is the number of robots in the system.

4.6 Summary

In this chapter, we took a new look at the gathering of a group of oblivious mobile robots

with limited visibility and no multiplicity detection. In particular, we have studied the

solvability of gathering when robots are equipped with unstable compasses, and found that

gathering can nevertheless be solved with such compasses in the semi-synchronous model

SYm by providing a solution to the problem. Our algorithm can solve the gathering

probabilistically when the compasses are unstable, and in finite time when compasses

stabilize eventually for sufficiently long periods.

We have also shown that the algorithm of Flocchini et al. [34] based on perfect com-

passes cannot cope with instabilities of compasses in either SYm and Corda models.

The main benefit of our approach is its practical value. In particular, eventually

consistent compasses allow the algorithm to tolerate transient faults, and also gives the

algorithm the nice property of self-stabilization.

In the next chapter, we will investigate the solvability of the gathering problem in the

asynchronous model Corda, relying on compasses that are eventually consistent, in a

system where robots have limited visibility, and they are oblivious.
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Chapter 5

Gathering with EVC Compasses in
Corda Model for Four Robots

In this chapter, we investigate the solvability of the gathering problem in the Corda

model, relying on eventually consistent compasses when robots are oblivious, and they

have limited visibility. We first show that our gathering algorithm proposed for the SYm

model with eventually consistent compasses (Chapter 4, Algorithm 1) solves the problem

in the Corda model for up to three robots in finite time. Then, we present a deterministic

algorithm for solving the gathering problem in the Corda model for a maximum of four

robots.

5.1 Gathering with EVC Compasses in the Corda

Model for Three Robots

In this section, we show that Algorithm 1 (presented in Chapter 4) solves the gathering

problem in the Corda model for at most three robots. We first show that the connectivity

of the distance graph is preserved during the entire execution of the algorithm. Second,

we show that all robots gather in a finite time.

5.1.1 Safety: Preserved Connectivity

Lemma 5.1.1 Let U be composed of two robots r and r′ that are mutually visible at time

t, and execute Algorithm 1. Then, at any time t̄ > t, r and r′ are mutually visible or

gather at the same point.

Proof. Recall that the compasses of the robots may disagree. Then, we consider three

cases depending on the robots’ movements.

In the first case, r and r′ do not move if each of them sees the other robot to its left

or above it. Thus, r and r′ remain at the initial distance from each other, which is less

than or equal to VR by the hypothesis.
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In the second case, only one robot decides to move, say r. Then, by the algorithm, r

moves on the segment rr′ toward r′. Hence, ∀p ∈ rr′, dist(p, r′) ≤ VR.

In the third case, both r and r′ decide to move. Then, each robot will move toward

the position of the other one. As a result, r and r′ may swap positions, or stop anywhere

before reaching their respective destinations, hence they remain within distance VR from

each other.

In all three cases, both r and r′ remain at a distance of at most VR from each other

at any time t̄ > t, and the lemma holds. �Lemma 5.1.1

Lemma 5.1.2 Let each pair of robots, (r, r′) and (r, r′′) be mutually visible at time t,

and execute Algorithm 1. Then, at any time t̄ > t, r and r′, and r and r′′, are mutually

visible or gather at the same point.

Proof.

The proof is straightforward. First, if all robots r, r′ and r′′ are collinear, then the

proof holds by Lemma 5.1.1.

Second, if r, r′ and r′′ are non collinear, the proof derives from Lemma 4.4.3. �Lemma 5.1.2

The above two lemmas show that if two robots are mutually visible, they will continue

to be so at future times. Consequently, we conclude that:

Theorem 5.1.3 Under Algorithm 1, the distance graph is connected during the entire

execution of the algorithm.

5.1.2 Liveness: Termination of the Algorithm

In the following, we assume that the robots reach the time GST .

Lemma 5.1.4 Let U be composed of two robots r and r′ that are mutually visible at time

t, and execute Algorithm 1. Then, r and r′ will gather at the rightmost or bottommost

robot in finite time.

Proof.

Assume without loss of generality that r is located on Leftr′ or on Ψ+
r′ . Then, by the

algorithm, r′ is prevented from moving because of r, and r will move toward r′.

First, assume r is located on Leftr′ . Let r perform a look operation at time t, and

let t′ be the time when r finishes its move. Between time t and t′, r′ is prevented from

moving because it sees r to its left. Hence, r′ will stay still.

By Assumption 2.3.1, in one cycle, r moves by at least ∆r, so the number of steps

performed by r to reach r′ is at most dist(r, r′)/∆r, which is finite. Thus, r reaches r′ in

a finite number of steps.
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Similarly, if r lies on Ψ+
r′ , then by the algorithm, r′ can not move because it sees r

above it. Then, by using the same arguments, r will reach r′ in a finite number of steps,

and the lemma holds. �Lemma 5.1.4

Lemma 5.1.5 Let the pairs of robots (r, r′) and (r, r′′) be mutually visible at time t, and

execute Algorithm 1. Then, all three robots will gather at the rightmost and bottommost

robot in finite time.

The proof is a direct consequence from Lemma 4.4.5 and Lemma 4.4.6.

Theorem 5.1.6 Algorithm 1 solves the gathering problem deterministically for at most

three robots in the Corda model, assuming eventually consistent compasses in the obliv-

ious and limited visibility settings.

Proof. From Theorem 5.1.3, the distance graph is connected during the entire execu-

tion of the algorithm. Moreover, by Lemma 5.1.4 and Lemma 5.1.5, all robots will gather

in a finite time. This terminates the proof. �Theorem 5.1.6

5.2 Gathering with EVC Compasses in the Corda

Model for Four Robots

In this section, we present a deterministic algorithm for solving the gathering problem for

a maximum of four robots in the asynchronous model Corda, where robots are oblivious,

they have limited visibility, and they are equipped with eventually consistent compasses.

The algorithm is a simple adaptation of our algorithm proposed for the SYm model,

which was presented in the previous chapter.

5.2.1 Algorithm Description

The intuition behind the algorithm is as follows: First, we let all the robots move in such

a way as to achieve the following subgoals: (1) Robots that are mutually visible at time

t remain mutually visible at time t′ > t. (2) The global convex hull including all of the

robots shrinks, until all of them become mutually visible. (3) When all robots in the

system become mutually visible, only robots on the left side move toward the ones on the

right side until they gather at the leftmost and bottommost robot when their compasses

stabilize eventually. This algorithm is an adaptation of our algorithm proposed for the

SYm model in Chapter 4. Note that our algorithm presented in Chapter 4 does not

solve the gathering for four robots in the Corda model assuming eventually consistent

compasses. That algorithm can satisfy the safety property, by preserving the connectivity
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Figure 5.1: The diameter of the convex hull of robot r is greater than VR/10.

of the distance graph between the four robots. However, it only converges toward the

gathering, but it does not guarantee termination in a finite number of steps.

The gathering algorithm is depicted in Algorithm 2, where the functions Activation Step(Rr,

compassr), Do nothing(), and Move to(Goal) are as described in the previous chapter.

Algorithm 2 is described informally as follows. First, at every time instant t, where

some robot r becomes active, it queries its compass and then, it considers all the robots

in its visibility region Rr(t). As long as the diameter of the local convex hull of robot r,

denoted by LC(r, t) is greater than VR/10,1 then r decides its movement as follows:

1. If r is not a vertex of LC(r, t), then r does nothing. i.e., r stays still.

2. If r is collinear with all robots in Rr(t) and r is in the middle of the line, then r does

nothing. Otherwise, if r is at an end of the line, then it moves toward the nearest

robot to it, and stops at a distance of VR/10 from it (see Figure 5.1(a)).

3. If r is a vertex of LC(r, t) and r is not collinear with all robots on Rr(t) then, r

computes the positions of the two outermost robots as described in the previous

chapter.

Recall that, the two outermost robots are first the two robots that form the biggest

central angle with r and then, they are at the largest distance from r.

After computing the two outermost robots, robot r finds itself in one of the following

two cases:
1The choice of this value is arbitrary, however it should be any value that is less than or equal to

VR/4.
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(a) If r is at distance less than or equal to VR/10 from one of the two outermost

robots, say r1, and r is at distance greater than 9VR/10 from the other robot

r2, and the angle r̂1rr2 is right or obtuse, then r moves to the point K on the

segment r1r2, which is at distance VR/4 from r1 if the distance from K to

every robot in Rr is less than or equal to VR (refer to Figure 5.1(b)).

Else, r moves to the point H on the segment r1K, such that H is at a distance

less than or equal to VR from every robot in Rr.

(b) Otherwise, r computes the height of the triangle that it forms with the two

outermost robots, say r1 and r2, and having a base segment r1r2. Let H be

the foot of a perpendicular starting at r. Then, r moves to H, if H is inside

the triangle �(r, r1, r2). Otherwise, if H is outside �(r, r1, r2), then r moves

to the closest robot to it, among r1 and r2.

When the diameter of the local convex hull of robots becomes less than VR/10, we

allow only robots which are at the leftmost and topmost locations with respect to their

local compasses to move. More specifically, if the diameter of LC(r, t) is less than or equal

to VR/10, then robot r decides its movement as follows:

1. No move: if r sees robots on its left side Leftr, or on Ψ+
r , then r does not move

(Algorithm 2, line 29).

2. Vertical move: if r sees robots below it (Ψ−
r ), then r moves toward the nearest robot

below it (Algorithm 2, line 31).

3. Right move: If r sees robots on its right side Rightr, then, it moves to the nearest

robot on Rightr (Algorithm 2, line 33).

5.2.2 Correctness of the Algorithm

In this section, we prove the correctness of our algorithm in two steps. In the first step, we

show that the connectivity of the distance graph is preserved during the entire execution

of the algorithm. In the second step, we show that all robots will gather at one point in

a finite number of steps. Before proceeding, let us recall an important lemma proved by

Flocchini et al. [34]; if the initial distance graph is disconnected, the gathering problem is

unsolvable. Hence, we assume that the initial distance graph is connected.

5.2.2.1 Safety: Preserved Connectivity

Trivially, the following lemma holds:

Lemma 5.2.1 If the diameter of the local convex hull of each robot in the system is less

than or equal to VR/10. Then, the diameter of the global convex hull forming the four

robots is less than VR, and thus all robots are visible.
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Algorithm 2 Gathering with EVC Compasses in the Corda Model for n ≤ 4

Algorithm:

1: Activation Step(Rr, compassr)
2: if (|Rr| = 1) then {Gathering terminated; r sees only itself.}
3: Do nothing();
4: else
5: if ((∃s ∈ Rr, dist(r, s) > VR/10) ∨ (∃s, s′ ∈ Rr, dist(s, s

′) > VR/10)) then {The
local convex hull of r is greater than VR/10.}

6: ÂrB: biggest central angle of Cr with endpoints A and B;

7: if (ÂrB = π) then {robots are collinear and r is in the middle of the line.}
8: Do nothing();

9: else if (ÂrB = 0) then {r is on the extreme of the line.}
10: s := nearest robot to r;
11: Goal := the point on the segment rs at distance VR/10 from s (Figure 5.1(a));
12: else {r computes two outermost robots s1 and s2.}
13: s1 := farthest robot from r on the segment rA;
14: s2 := farthest robot from r on the segment rB;
15: if (dist(r, s1) ≤ VR/10 ∧ dist(r, s2) > 9VR/10 ∧ ŝ1rs2 ≥ 90◦) then
16: K := point on the segment s1s2 at distance VR/4 from s1;
17: Goal := farthest point H from s1 on the segment s1K, such that ∀s ∈ Rr,

dist(s,H) ≤ VR (Figure 5.1(b));
18: else
19: H := foot of the height of the triangle �(r, s1, s2) starting from r;
20: if (H ∈ �(r, s1, s2) ) then
21: Goal := H;
22: else {H is outside the triangle �(r, s1, s2)}
23: Goal := nearest robot to r among s1 and s2;
24: end if
25: end if
26: end if
27: else {the local convex hull of r is less than or equal to VR/10}
28: if (|Leftr| > 0 ∨ |Ψ+

r | > 0) then {r sees robots on its left side or on Ψ+
r }

29: Do nothing();
30: else if |Ψ−

r | > 0 then {r sees robots on its bottom side}
31: Goal := nearest robot to r on Ψ−

r ;
32: else {r sees robots on its right side }
33: Goal := nearest robot to r on Rightr;
34: end if
35: end if
36: Move to(Goal);
37: end if
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When the diameter of the global convex hull including all robots is less than or equal to

VR. Obviously, the connectivity of the distance graph is preserved during the execution

of Algorithm 2, because each robot tries to move toward another robot in the system,

thus shrinking the distance between them. We thus, establish the following lemma:

Lemma 5.2.2 The connectivity of the distance graph is preserved during the execution of

Algorithm 2 when the global convex hull including all robots is less than or equal to VR.

Lemma 5.2.3 Let a pair of robots r1 and r2 be mutually visible at time t, such that

dist(r1, r2) ≤ VR/10. Then, by Algorithm 2, r1 and r2 can get farther away, up to a

distance of less than VR/2 from each other.

Proof. The proof consists of showing the following cases:

• Neither r1 nor r2 sees an other robot in the system. Then, by the algorithm, either

r1 or r2 moves to the other one, and thus they remain within the initial distance

from each other.

• Both r1 and r2 see an other robot in the system (as depicted in Figure 5.2).

We have r1 and r2 mutually visible at time t. Let also the pair of robots r1 and r3

be mutually visible, and r2 and r4 be mutually visible at time t.

Observe that, the extreme case is when dist(r1, r3) = VR, and r̂2r1r3 ≥ 90◦. In

addition, dist(r2, r4) = VR, and r̂1r2r4 ≥ 90◦. Then, by the algorithm, r1 moves

to the point K on the segment r2r3, which is at distance VR/4 from r2. Similarly,

r2 moves to the point K ′ on the segment r1r4, which is at distance VR/4 from r1.

Since, r1, r2, r3 and r4 are not collinear by hypothesis, then r1 and r2 get away from

each other by at most a distance less than two VR/4, that is by a distance up to

less than VR/2.

Trivially, the case also holds, when one robot, say r1, gets farther away from r2 by

VR/4, and r2 moves to the height of the triangle �(r2, r1, r4) because r2 will get

farther away from its location by a distance less than dist(r1, r2), which is equal to

VR/10 .

• Only robot r1 sees other robots in the system. By the algorithm, r2 moves toward

r1 or it does not move. Besides, r1 can get farther away from r2 by a maximum of

VR/4, by the algorithm. Then, r1 and r2 remain within distance less than VR/2

from each other.

�Lemma 5.2.3

Lemma 5.2.4 Let S(t0) be the set of robots visible to r at initial time t0. Then, by

Algorithm 2, at any time t > t0, r is within distance VR from all robots in S(t0).



5.2. GATHERING WITH EVC COMPASSES IN THE CORDA MODEL FOR FOUR ROBOTS 49

δr

r3

r2

r1

r4

VR/4

VR/4

K

K

Figure 5.2: r1 and r2 can get farther away from each other up to a distance less than
VR/2.

Proof. Let t ≥ t0 be the time when r performs a look operation, and t̄ be the time

when the last robot in S(t0) finishes its move. Then, the proof consists of showing that

S(t0) ⊆ S(t̄).

Trivially, the case of two robots holds, since one robot must move toward the other

one. Then, both robots will remain at distance VR from each other.

In the following, we assume that the number of robots in S(t0) is greater than one.

Let robot r be active at time t, and let t′ be the time when r finishes its move. We

distinguish the following cases depending on the movement of r and the movements of

robots in S(t0).

1. Robot r performs a look operation at time t; none of robots in S(t0) perform a look

operation between t and t′.

The following cases arise:

(a) Robot r executes a null move.

If the destination computed by r at time t results in a null move, then r stays

still. In addition, by hypothesis, ∀s ∈ S(t0), s is idle between t and t′. This

means that at time t′ = t̄, r remains at the original distance from all robots in

S(t0), which is by hypothesis less than or equal to VR.

(b) Robot r is collinear with all robots in S(t0) (i.e., ÂrB = {0, π}).
Two possibilities follow: (1) Robot r can be in case (a) above (i.e., it executes

a null move), so the lemma holds for this case. (2) robot r performs a real

move. Let r1 be the robot farthest away from r on the line. By hypothesis,

dist(r, r1) ≤ VR, and by the algorithm, r moves on the segment rr1. Thus, at

time t′ = t̄, r gets closer in distance to all robots in S(t0).

(c) The diameter of LC(r, t) is less than or equal to VR/10; r moves to the nearest

robot to it.
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The diameter of LC(r, t) is less than or equal to VR/10, this means that all

robots in S(t0) are visible. By the algorithm, r moves to the nearest robot to

it, and thus it remains visible to all robots in S(t0).

(d) Robot r computes the positions of the two outermost robots.

Let r1 and r2 denote the positions of the two outermost robots of r at time

t, and let �(ArB) be the circular sector enclosing all the robots in S(t0) such

that dist(r, A) = dist(r, B) = VR, and r1 ∈ rA and r2 ∈ rB.

Let I be the destination of r. If I is the foot of triangle �(r, r1, r2) or the

position of r1 or r2. Then, the case holds by Lemma 4.4.2, where for every

point p in �(ArB), dist(p, I) < VR.

In the case where I is a point on the segment r1r2, such that, ∀ri ∈ Rr),

dist(ri, I) < VR, then the lemma holds for this case by definition of the algo-

rithm, and ∀ri ∈ S(t0)), dist(ri, I) < VR. This terminates the proof.

2. Robot r performs a look operation at time t; some or all robots in S(t0) perform a

look operation between t and t′.

Assume that r′ ∈ S(t0) performs a look operation at time t ≤ t′′ ≤ t′. Let I ′ be its

destination, and S ′(t′′) be the set of robots visible to r′ at time t′′. Assume without

loss of generality that r′ is the last robot to finish its move at time t̄. Let also

I be the destination of r. Thus, in the following, we will show that at any time

t ≤ t′′′ ≤ t̄, ∀p ∈ rI, ∀p′ ∈ r′I ′ dist(p, p′) ≤ VR.

We will only show the proof for the case of r′, however the same arguments hold for

the other robots in S(t0).

(a) Robot r executes a null move; Robot r′ executes any kind of move allowed by

the algorithm

This case is similar to case 1. above, thus omitted here.

(b) Robot r is collinear with all robots in S(t), and executes real move; Robot r′

computes the positions of the two outermost robots s1 and s2.

Let �(A′r′B′) be the circular sector of robot r′ at time t′′.

If the destination I ′ of r′ is the height of the triangle �(r′, s1, s2) or s1 or s2.

Then, by Lemma 4.4.2, I ′ ∈ �(A′r′B′), and for every point q ∈ �(A′r′B′), we

have, dist(q, I ′) < VR.

Since, r ∈ �(A′r′B′), and by the algorithm, I ∈ rr′ (r moves on rr′). Conse-

quently, rI ⊂ �(A′r′B′). Hence, by Lemma 4.4.2, ∀p ∈ rI, dist(p, I ′) ≤ VR,

and ∀p′ ∈ r′I ′, dist(p, p′) ≤ VR.
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In the case where I ′ is a point on the segment s1s2 that satisfies ∀s′ ∈ S ′(t′′),

dist(s′, I ′) ≤ VR, we have robot r is getting closer to r′. By hypothesis, we have

dist(r, r′) ≤ VR, and by the algorithm dist(r, I ′) ≤ VR, and dist(r′, I ′) ≤ VR.

Thus, by Lemma 2.4.6 in triangle �(r, r′, I ′), ∀p ∈ rr′, ∀p′ ∈ r′I ′, dist(p, p′) ≤
VR.

(c) Both robot r and r′ compute the positions of the two outermost robots.

We distinguish the following two cases:

First, each robot move to the height of triangle that it forms with its outermost

robots, or to one of the two outermost robots. Let r and r′ be at the maximum

distance VR from each other. Then, by the algorithm, I and I ′ belong to the

circle with diameter rr′. Consequently, ∀p ∈ rI, ∀p′ ∈ r′I ′, dist(p, p′) ≤ VR

Second, both robots r and r′ are at distance less than or equal to VR/10. By

Lemma 5.2.3, r and r′ get farther away from each other by up to a distance

less than VR/2. Thus, ∀p ∈ rI, ∀p′ ∈ r′I ′, dist(p, p′) ≤ VR.

(d) The local convex hull of r and r′ is less than VR/10

In this case, obviously, the robots that are visible to r are also visible to r′,

and vise versa. By the algorithm, robot r (respectively, r′) tries to go toward

the nearest robot visible to it. Thus, they remain visible to each other during

and after finishing their move. Hence, ∀p ∈ rI, ∀p′ ∈ r′I ′, dist(p, p′) ≤ VR.

In all cases, at time t̄, ∀p ∈ rI, ∀p′ ∈ r′I ′, dist(p, p′) ≤ VR, and the rest follows by

induction. This terminates the proof. �Lemma 5.2.4

From Lemma 5.2.4, we deduce the following theorem:

Theorem 5.2.5 Algorithm 2 guarantees that the distance graph remains connected during

the entire execution of the algorithm.

5.2.2.2 Liveness: Termination of the Algorithm

We assume that the robots reach the global stabilization time GST .

Lemma 5.2.6 Let CH(t0) be the global convex hull of all the robots at time t0. Then, by

Algorithm 2, at any time t ≥ t0, CH(t) ⊆ CH(t0).

Proof. From Theorem 5.2.5, robots that are mutually visible at time t0 remain vis-

ible at any time t ≥ t0. Moreover, each robot moves inside its local convex hull, thus

shrinking it. Also, robots that are vertices of CH(t0) will shrink the global convex hull by

reducing their local convex hull. Consequently, the global convex hull shrinks, and then

CH(t) ⊆ CH(t0). �Lemma 5.2.6
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Lemma 5.2.7 By Algorithm 2, there is a finite time after which all robots become mutu-

ally visible. In other words, there is a finite time, after which the diameter of the global

convex hull including all robots is less than or equal to VR.

Proof. In the case, when the robots form a line, the proof is straightforward, because

always the robot located at the extreme of the line, will move toward the one located in

the middle of the line, thus shrinking the total distance between the two robots located

at the end of the line. Since by Assumption 2.3.1, each robot moves by at least ∆r > 0.

Then, the distance between the two robots at the end of the line can be reduced within

VR in a finite number of steps.

In the case when robots form a convex polygon. By Lemma 5.2.6, the global convex

hull including all robots shrinks over time. However, this is not enough to prove that the

diameter of the global convex hull can become less than or equal to VR in finite number

of steps.

Assume by contradiction that the diameter of the global convex hull including all

robots cannot become less than or equal to VR in a finite number of steps. This means

that robots that are vertices cannot shorten the diameter of the convex hull.

There are three cases to consider.

• Robot r is a vertex robot, and is visible to only one robot in the system, say r′.

By the algorithm, if r is at distance greater than VR/10, then r can shorten this

distance up to VR/10. Thus, obviously r reduces the diameter of the global convex

hull including all robots. A contradiction.

• Robots r and r′ are both vertices, and are mutually visible. If r and r′ are at distance

greater than 9VR/10, and are visible to other robots in the system, then the proof

consists of showing that the distance between r and r′ will be shortened to at least

4VR/5 in a finite number of steps. A contradiction.

�Lemma 5.2.7

Lemma 5.2.8 Any configuration of four robots is transformed to the gathering, in finite

time, by Algorithm 2.

Proof. By Lemma 5.2.7, there is a finite time after which all robots become mutually

visible. By assumption, the robots have reached the time GST , and then their compasses

become perfect. By the algorithm, robots on the left move to the robots on their right,

and robots on top move toward the robots below. By assumption, the cycle of a robot is

finite, then all robots gather at the rightmost and bottommost robot in finite time, and

the lemma holds. �Lemma 5.2.8

We thus conclude the following theorem:
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Theorem 5.2.9 In a system, with four anonymous, oblivious mobile robots, with limited

visibility, and equipped with eventually consistent compasses, the gathering problem is

solvable deterministically in the Corda model.

5.3 Summary

In this chapter, we have shown that the gathering problem is solvable in the Corda

model for four robots when robots are equipped with eventually consistent compasses.

In particular, we give an algorithm that gathers up to four robots at a single point if

their compasses provide correct output after some unknown period of instability. The

algorithm can solve gathering probabilistically when the compasses are inconsistent, and

deterministically after compasses have stabilized for sufficiently long.

In addition, we have shown that our gathering algorithm proposed for the SYm model

solves the gathering for up to three robots in the Corda model, when robots are equipped

with eventually consistent compasses. Thus, we can argue that eventually consistent com-

passes have the same computational power as perfect compasses for solving the gathering

problem of up to three robots.

In the next chapter, we show that the problem is nevertheless impossible for a large

number of robots, when they are equipped with unstable compasses.
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Chapter 6

Impossibility of Gathering with EVC
Compasses in Corda Model for
Large Number of Robots

The difficult is done at once;

the impossible takes a little longer.

Charles Alexandre de Calonne

In the previous chapter, we presented an algorithm that gathers up to four robots in

finite time in the Corda model when robots share eventually consistent compasses, they

are oblivious, and they have limited visibility. However, in this chapter, we show that

the gathering problem has no solution in the Corda model for nine or more robots when

they are equipped with compasses that are unstable for some arbitrary periods.

Theorem 6.0.1 In the Corda model, there exists no oblivious algorithm that solves the

gathering problem for any value n of robots (n ≥ 9), when robots are equipped with even-

tually consistent compasses, have limited visibility and are unable to detect multiplicity.

6.1 The Proof: General Idea

Recall that robots’ compasses can be inconsistent before the Global Stabilization Time

GST , and that the time GST is unknown to the robots. First, we want to stress that

preserving the connectivity of the distance graph is a necessary condition to solve the

problem. We recall Lemma 4.3.1, which states that if the initial distance graph G(0) is

disconnected, the gathering problem is unsolvable. This result holds also if initially the

graph G(0) is connected, and then it becomes disconnected at some time t; since the

robots are oblivious, then G(t) can be regarded as an initial distance graph.

To show that the problem is impossible to solve, we need to show that: (1) any

algorithm satisfying the safety condition by preserving the connectivity of the distance

graph, implies no liveness, that is no achievement of the gathering. (2) any algorithm
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(a) Configuration E1: the robots do not form a
cycle; each pair of visible robots are at distance
VR from each other.
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(b) Configuration E2: all robots form a cycle with side’s
length VR.

Figure 6.1: Impossibility of gathering in the Corda model for n ≥ 9 with EVC compasses.

satisfying the liveness condition by achieving the gathering, implies no safety, that is

the disconnection of the distance graph between the robots. In other words, liveness

and safety conditions are mutually exclusive; if the algorithm is live, then there exists

a situation in which the safety is violated, and if the algorithm is safe, there exists a

situation in which liveness is violated.

In particular, we will show that before GST , robots are unable to keep the distance

graph G(0) connected because of the inconsistencies of their compasses. Specifically, we

define two configurations, E1 and E2, that we will use to defeat any possible algorithm

A. These two configurations are indistinguishable by some robots because of the limited

visibility. Therefore, we will show that any algorithm that can be designed for one con-

figuration will either lead to a deadlock situation (i,e. no progress toward gathering) or

to a disconnection of the distance graph G(0) in the other configuration (before GST ).

In particular, we will show that starting from nine or more robots, there exists no

oblivious algorithm that makes the robots keep the distance graph G(0) connected while

progressing toward gathering.

Before we proceed to the description of the proof in more detail, we establish the

following lemmas.

Lemma 6.1.1 The maximum distance travelled by a robot in one move must be less than

VR in order to keep the distance graph connected.
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Figure 6.2: The destination of robot r1 should be in the intersection of the two circles
C(r1r2) and C(r1r3) in order to keep the vision connection with r2 and r3 if both of them
move at the same time as r1.

Proof. The proof is trivial. Let r1 and r2 be two robots that are mutually visible at

some time t, and are at distance δ > 0. Assume by contradiction that r1 and r2 can move

by distance VR in one cycle.

Consider robot r1 and r2 in the situation, where they did not reach yet the time GST ,

and they are activated simultaneously. Then, they can move in a completely opposite

direction of each other because of the inconsistency of their compasses, and because they

may see some other robots in the system. Consequently, r1 and r2 can get farther away

from each other by a distance greater than VR, which results on a disconnection of the

graph between r1 and r2. This terminates the proof. �Lemma 6.1.1

Lemma 6.1.2 Given three robots r1, r2 and r3 that are aligned, and are at distance VR

from each other at time t, then any non null move executed by the robot in the middle of

the line, say r2, at time t will disconnect the distance graph (between r1 and r2 or between

r2 and r3, or both r2 and r3) if neither r1 nor r3 move at time t.

Proof. Let Φ be the perpendicular to r1r3 passing through r2. Let p be any point that

belongs to Φ, such that dist(p, r2) > 0.

First, assume that r2 moves to p ∈ Φ at some time t. By hypothesis, dist(r1, r2) = VR,

and r1 does not move at time t. Then, by Lemma 2.4.8, dist(p, r1) > dist(r1, r2) = VR.

The same arguments holds for robot r2.

Now, assume that r2 moves to any point q that is to the left, or to the right of Φ at

some time t, such that dist(r2, q) > 0. Then, the triangle formed by r2(t), q, and either r1

or r3 is an obtuse angle at r2(t). Thus, by Lemma 2.4.7, dist(r1, q) or dist(r3, q) is larger

than dist(r1, r2) (i.e., larger than VR). This terminates the proof. �Lemma 6.1.2
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Lemma 6.1.3 Given a pair of robots r1 and r2 that are mutually visible at time t (time

of the look operation performed by r1), then the only way for r1 to gather with r2 is to

move toward r2 by a non null distance, or vise versa.

The proof is trivial, thus omitted here.

Lemma 6.1.4 Let three robots r1, r2 and r3 be non collinear at some time t, with r̂2r1r3 ≥
π/2, let H be the destination point computed by r1, with H �= r1. Then, if H preserves

the distance graph between r2 and r3, then H must belong to the triangle �(r1, r2, r3) if

both r2 and r3 move at time t.

Proof. Consider, the situation depicted in Figure 6.2, where each two visible robots

are at distance VR from each other. Let r1 perform a look operation at time t, and let H

be its destination. Assume also that r2 and r3 perform a look operation at the same time

t. Then, H must belong to the intersection of the two circles C(r1r2) and C(r1r3) in order

to keep the vision connection with r2 and r3 if both of them move at the same time t.

Consequently, H belongs to triangle �(r1, r2, r3). This terminates the proof. �Lemma 6.1.4

6.2 The Impossibility Proof

As we stated above, the proof consists of showing that there is no oblivious algorithm

A that starting from some configuration E, lets the robots keep the distance graph G(0)

connected while progressing toward gathering. The proof is by contradiction. That is, we

will assume that algorithm A exists and A is live, and then deduce that A is not safe.

Assume that A is an oblivious algorithm that starting from any configuration E,

preserves the connectivity of the distance graph before GST , and gathers the robots at

one point in finite time after GST .

In the following, we assume that the system did not reach yet the time GST . Con-

sider the two configurations E1 and E2 depicted in Figure 6.1, where each pair of robots

connected with a line segment in the figure are mutually visible (i.e., they are at distance

VR from each other). In particular, in configuration E1, robot r1 and robot r4 are not

initially mutually visible. Also, robot r1 and robot r5 are not initially mutually visible.

We will show that there is no algorithm that can cope with these two configurations

at the same time. For instance, these two configurations are indistinguishable by robot

r2 because of the limited visibility (r2 can not know if the graph is a cycle or not).

Note that, since the algorithm A is oblivious, the computations done by the robots are

based only on their current observations. Also, observe that algorithm A can not rely on

the direction of the compasses to ensure safety, that is preserving the connectivity of the

distance graph because compasses can point to any direction before GST .
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We first give a lemma that states the different possible choices that algorithm A can

make on the movements of robots in order to preserve the connectivity of the distance

graph, and to gather them in finite time in configurations E1 and E2.

Lemma 6.2.1 Given the robots in configurations E1 and E2, and an algorithm A for

gathering these robots, then the only possible movements allowed by A are the following:

1. Algorithm A prevents all robots from moving.

2. Algorithm A allows robots to move according to some criteria.

We will prove that for each case in the above lemma, we reach a contradiction.

• Case 1: Algorithm A prevents all robots from moving.

In this case, obviously, the robots will remain in the initial configuration E1, or E2

forever. Thus, A does not solve the gathering. A contradiction.

• Case 2: Algorithm A allows robots to move.

Assume that algorithm A is designed in a way that robots that can see exactly one

robot at the time of their look operation can move, and others are prevented from

moving. Then, it is easy to design an algorithm A that preserves the connectivity of

the distance graph, and also it solves the gathering in configuration E1. However, if

we consider configuration E2 (Figure 6.1(b)), where the robots form a polygon with

sides’ length VR, then algorithm A prevents all robots in configuration E2 from

making any progress, which results in a global deadlock, since all the robots execute

the same algorithm A by hypothesis. A contradiction.

Now, we will consider that algorithm A allows robots that can see one or more

robots at the time of their look operation to move, and the movements are devised

by algorithm A according to some criteria in such away that they satisfy both

preserving the connectivity of distance graph (safety) and progress toward gathering

(liveness). We will show by contradiction that algorithm A is not safe.

Todo so, we assume that A is safe. We also assume that there is an adversary in

the system that plays against algorithm A. The adversary can control: (1) the

activation schedule; that is which robots in the system are activated at some time

t. (2) the directions of compasses before GST . (3) initial configurations.

In this case, in particular, we will consider mainly the behavior of r1 and r2 in

configuration E1, and show that r1 and r2 can not make an appropriate decision to

keep sight of each other while performing the gathering by any possible algorithm

A given a specified scenario.
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Figure 6.3: r1 performs several activation cycles, and reaches the point G, while r2 per-
forms only one activation cycle, and moves to F .

In particular, we will show that the distance of the segment connecting robots r1

and r2, which is initially equal to VR, will become greater than VR given a specific

scenario by any possible algorithm A.

Since algorithm A needs to preserve the vision connectivity between r1 and r2, then,

without loss of generality, it is reasonable to make the following assumption:

Assumption 6.2.2 We assume that the destination point computed by robot r1

always makes r1 gets closer to r2, while it preserves the vision connectivity with the

other robots visible to r1 at the time of the look operation. In other words, robot r1

chooses the worst point for the adversary.

If given the above assumption, we show that algorithm A fails to keep the vision

connectivity between r1 and r2, then obviously A fails also to preserve the connec-

tivity between these two robots if the destination of r1 makes it move farther away

from r2. Now, consider the following scenario constructed by the adversary on con-

figuration E1. The complete scenario is also depicted from Figure 6.5 to Figure 6.9

Recall that r1 and r4 are not mutually visible initially. Also, r1 and r5 are not

mutually visible initially.

1. Each time robot r1 performs a look operation, it will see two robots (although

initially r1 sees only r2) because robots can see each other while moving by

assumption in the Corda model.

2. Robot r1 will perform many activation cycles, while robot r2 will perform only

one activation cycle.
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3. Let r4 perform a look operation at time t0. By Lemma 6.1.3, algorithm A
makes r4 move toward r5. Let t2 be the time when r4 passes by the point p1

(see Figure 6.3).

4. Now, let r1 perform a look operation at time t2, and sees r4 at point p1. Also,

r1 sees robot r2. Let G1 be the destination of robot r1 given by algorithm A.

G1 needs to preserve the connectivity of the graph between r4 (at point p1)

and r2. Then, by Lemma 6.1.4, G1 ∈ �(r1, r2, p1).

5. Let also t2 be the time when r2 performs a look operation, and computes as

destination F by algorithm A. Similarly, by Lemma 6.1.4, F ∈ �(r1, r2, r3).

6. Let t3 be the time when r4 reaches r5. Assume that ∀t > t3, r4 and r5 are

always activated together (we shall refer them by r5 starting from time t3).

7. At the point G1, the distance dist(G1, r5) = VR.

8. The adversary sets an activation schedule, such that at time t4 > t3, r5 (also r4)

is activated before robot r1 reaches G1, and thus, r5 computes as destination

r6 by algorithm A.

9. The adversary makes robot r2 stay in an idle state for some finite time (during

which robot r1 performs n > 1 activation cycles) before it starts moving toward

its destination F .

10. The adversary sets an activation schedule, such that when robot r1 reaches G1

(at time t5 > t4), it gets activated again and sees r5 before it starts moving to r6.

Also r1 sees r2 since r2 did not start moving yet. Let G2 be the new destination

computed by robot r1 according to algorithm A. Then, by Lemma 6.1.4,

G2 ∈ �(G1, r2, r5).

11. The adversary sets an activation schedule, such that when r1 reaches G2, say

at time t6 > t5, it gets activated again, and sees r5 (while r5 is moving toward

r6) at some point, say p2 at distance VR from it. Then, r1 computes its new

destination point G according to algorithm A, which belongs to the triangle

�(G2, p2, r2) by Lemma 6.1.4.

12. The adversary sets the initial configuration E1, such that when r1 reaches G,

it can not see the other robots in the system (for instance, r6, r7, r8, r9, r3).

Let t̄ be the time when r1 reaches the point G.

13. The adversary sets an activation schedule such that robots r6, r7, r8, r9, and

r3 are not activated between t0 and t̄.

14. The adversary sets the activation schedule such that, r2 starts its move at time

t7 > t6, and finishes moving toward its destination F at time t̄.



6.2. THE IMPOSSIBILITY PROOF 61

F r2

G

y

x

θ

Figure 6.4: Illustration of the situation of r1 and r2 at time t̄.

If algorithm A exists, it must guarantee that the distance graph remains connected

between r1 and r2 at time t̄, given the scenario described above. We will show that

any algorithm A fails to deal with this scenario.

Before we proceed, we state the following lemma:

Lemma 6.2.3 Given the scenario above, where F is the destination of robot r2,

and G is the destination of robot r1 after performing n ≥ 3 activation cycles, then

in finite number of steps, F̂ r2G ≥ π/2.

Proof. Let C(r2r3) the circle with diameter r2r3. Let also Ψ, the line tangent to

C(r2r3) passing through r2. By construction, we can have the segment r5r2 perpen-

dicular to Ψ. By Lemma 6.1.4, F ∈ C(r2r3). Then, F is below Ψ. Consequently,

F̂ r2r5 > π/2.

Now, the proof consists of showing that the point G computed by robot r1 is beyond

the segment r2r5, and that this point G can be reached by robot r1 in finite number

of steps.

Given the scenario described above, when r1 reaches the point G2, it can be acti-

vated many times as long as r5 is moving toward r6. Then, robot r1 can compute a

destination G which is beyond the line segment r4r2 in a finite time. Thus, in finite

number of steps, F̂ r2G is greater or equal to π/2. �Lemma 6.2.3

Let x be the distance travelled by robot r2 in order to reach the point F at time t̄.

That is, x = dist(r2(t2), F ). Let also y be the distance between r1 at time t̄ and r2

at time t2. That is y = dist(r2(t2), G)) (refer to Figure 6.4).

Assume by contradiction that there exists A that preserves the connectivity of the

distance graph between r1 and r2, assuming the above scenario. This means that

the following lemma must be satisfied:
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Lemma 6.2.4 For each distance x travelled by robot r2 (to reach F ), there exists

y, such that the distance between F and G is less than or equal to VR.

In the following, we will show that Lemma 6.2.4 does not hold. To do so, we will

show the following:

∀x,∃y such that, y > VR − x , and (6.1)

y < VR (6.2)

Condition 6.2 means that, although by algorithm A, r1 is getting closer to r2 (As-

sumption 6.2.2), A fails to satisfy Lemma 6.2.4. Obviously, the lemma does not

hold also if A makes r1 move farther away from r2.

By Lemma 6.1.1, we have x < VR. Then, in the following, we will assume that:

x = VR/K, with K > 1. Consider the triangle �(F, r2, G) (depicted in Figure 6.4).

Let θ = F̂ r2G, then:

dist(F,G)2 = x2 + y2 − 2.x.y cos θ

dist(F,G)2 = (
VR

K
)2 + y2 − 2

VR

K
.y cos θ

dist(F,G)2 =
VR2

K2
+ y2 − 2

VR

K
.y cos θ

Assume that: dist(F,G) = δ.VR, with δ > 0. Then:

dist(F,G)2 =
VR2

K2
+ y2 − 2

VR

K
.y cos θ (6.3)

δ2.VR2 =
VR2

K2
+ y2 − 2

VR

K
.y cos θ (6.4)

By Lemma 6.2.3, θ ≥ π/2. We take the example where θ = π/2. Then, cos θ = 0.

By replacing cos θ in Equation 6.4, we get:

δ2.VR2 =
VR2

K2
+ y2 − 2

VR

K
.y cos θ

δ2.VR2 =
VR2

K2
+ y2 , this implies that:

y2 = δ2.VR2 − VR2

K2
,

y2 =
K2.δ2.VR2 − VR2

K2
,

y2 =
VR2(K2.δ2 − 1)

K2

Since the distance y is greater than zero, then:

y =
VR

√
K2.δ2 − 1

K
(6.5)
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It follows that,

VR
√
K2.δ2 − 1

K
> 0 (6.6)

K2.δ2 − 1 > 0 (6.7)

δ >
1

K
(6.8)

By assumption K > 1, and δ > 0, then Equation 6.8 is true. Consequently, y >

VR − x exists, and Equation 6.1 is true.

Now, we will show that Equation 6.2 is also true.

Assume that y < VR, then from Equation 6.5, we get:

VR
√
K2δ2 − 1

K
< VR (6.9)

√
K2δ2 − 1 < K (6.10)

δ2 <
K2 + 1

K2
(6.11)

δ <

√
K2 + 1

K
(6.12)

By assumption, K > 1 and δ > 0, then Equation 6.12 is true. So, Equation 6.2 is

also true.

As a result, we conclude that Equation 6.1, and Equation 6.2 are true when θ = π/2.

Therefore, Lemma 6.2.4 does not hold. In other words, algorithm A is not safe

because it fails to keep the vision connectivity between r1 and r2 given the scenario

described earlier. A contradiction.

Lemma 6.2.1 covers every possible case that algorithm A can make on the movements of

robots in order to gather them in configuration E1 and E2. However, in each case, we

have shown a contradiction, where algorithm A fails to keep the distance graph connected

between the robots. Thus, by Lemma 4.3.1, algorithm A does not solve the gathering

problem. Consequently, algorithm A does not exist.

We have proved the case for nine robots, where nine robots are required to construct

a distance graph connected in such away that when robot r1 disconnect from robot r2,

it does not reconnect (see) with any of the other robots in the system. The same proof

holds for ten or more robots. This terminates the proof.

6.3 Summary

In this chapter, we have shown that there are a certain number of robots from which

it is impossible to achieve the gathering of asynchronous mobile robots when they are

equipped with compasses that are unstable for some arbitrary periods, they are oblivious

and they have limited visibility.
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Figure 6.5: Scenario described in the proof.
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Figure 6.6: Continuation (1) of the scenario.
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Figure 6.7: Continuation (2) of the scenario.
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Figure 6.8: Continuation (3) of the scenario.
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Figure 6.9: Continuation (4) of the scenario.
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Chapter 7

Gathering Two Mobile Robots with
45◦ Inaccurate Compasses

A little inaccuracy sometimes

saves tons of explanation.

Hector Hugh Munro

In the two previous chapters, we concentrated on the gathering of oblivious mobile

robots when they share compasses that are subject to instabilities in both SYm and

Corda models. In this chapter, we look at the solvability of the gathering problem with

another kind of unreliable compasses, called inaccurate compasses, in which compasses

can be subject to inaccuracies and errors.

Prencipe [59] has shown that gathering stateless robots cannot be done deterministi-

cally without some additional assumptions. For instance, gathering is possible if robots

share a common direction, as given by perfect compasses. Similarly, if robots can detect

multiplicity (i.e., count robots that share the same location) gathering is possible for three

or more robots.

This work is motivated by the pragmatic considerations that (1) compasses are error-

prone devices in reality, and (2) multiplicity detection, while being easy to achieve, allows

for gathering in situations with more than two robots.

Therefore, in this chapter we focus on the gathering of two asynchronous mobile robots

equipped with inaccurate compasses. In particular, we provide a self-stabilizing algorithm

to gather, in a finite time, two oblivious robots equipped with compasses that can differ

by as much as π/4 assuming the Corda model.

7.1 Difficulty of Gathering with Inaccurate Compasses

In the Corda model, it is difficult to gather two robots or compare them in a consistent

manner when they are equipped with inaccurate compasses. This is mainly due to the issue

of breaking the symmetry between these robots. Let us illustrate this point using a simple
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Figure 7.1: Difficulty of gathering with inaccurate compasses.

example. Assume that there exists a naive algorithm for comparing two asynchronous

robots A and B in a consistent manner when their compasses are inaccurate. First,

consider that A and B are equipped with accurate compasses, and place them at the two

endpoints of a horizontal diameter of a unit circle. Then, a naive algorithm can be based

on the comparison of the angles that A and B form respectively with some global North−→
N (i.e., they share the same north) and the segment AB in clockwise direction. For

instance, if the angle is less than or equal to π/2, the robot moves. Otherwise, if the angle

is greater than π/2, the robot stays still. Then, a robot, say A, moves (see Figure 7.1(a)).

Then, we rotate the diameter to exchange the positions of A and B. Now B moves. We

thus color the perimeter of the circle Move and Do not move, where at any point which

is colored Move or Do not move, A moves or stays still. Then, there is a point p that is

a boundary between a Move and a Do not move segment. By introducing error to their

compasses, at p, we can derive a contradiction. That is, we can not decide which robot

moves, and which one stays still (see Figure 7.1(b)).1

7.2 Gathering Algorithm

The basic intuition behind the algorithm is to break the symmetry between two robots,

that is, to forbid symmetric configurations of two robots. More precisely, with a perfect

compass, it is easy to break the symmetry between two robots, for instance, by making

one robot move and the other remain stationary. However, with inaccurate compasses, it

is difficult to design an algorithm that breaks the symmetry between the two, as they can

end up in a situation in which neither moves, which results in a deadlock situation, or in

a situation in which both move in such a way that they continue moving forever. In order

to avoid such situations, it is first necessary to ensure that the two robots do not see each

other in the same zone.

1The argument is similar to the bi-valent argument in the impossibility result of the consensus prob-
lem [30].
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Figure 7.2: The four sectors North, South, East and West for robot r.

The main idea of our algorithm is to make each robot partition the plane into four

different zones, so that two similar zones for two different robots should not overlap.

Then, depending on the different possible configurations (resulting from the partitions)

of the two robots, we design their movements such that a configuration is transformed to

gathering, or to an intermediate configuration leading to gathering, without introducing

cycles between configurations or deadlock situations.

Before we describe the algorithm in more detail, we will first explain how robots divide

the plane.

7.2.1 Partitions

First, a robot needs to partition the plane into four sectors that do not overlap, namely

the North, South, East and West sectors. Let αN , αS, αE and αW be the respective

angular measurements of these sectors. Also, by ΛN , ΛS, ΛE and ΛW , we denote the rays

delimiting these sectors, respectively (refer to Figure 7.2).

Now, let us assume there exits a constant γ∗ ≥ 0 that represents the maximum angle

inaccuracy between the relative north
−→
Nr of some robot r and the absolute north

−→N .

Then, the following conditions must be satisfied in order to avoid a situation in which

both robots see each other in the same sector because of compass inconsistencies.

αN ≤ π − 2γ∗ (7.1)

αS ≤ π − 2γ∗ (7.2)

αE ≤ π − 2γ∗ (7.3)

αW ≤ π − 2γ∗ (7.4)

We further set the following conditions on the sectors. These conditions will help to avoid

the occurrence of infinite executions, i.e., having robots looping in the same configuration.

αE + αS ≤ π (7.5)

αN + αW ≤ π (7.6)
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By summation of Equation (7.1) and Equation (7.5), we get:

αN + αE + αS ≤ 2π − 2γ∗ then,

αN + αE + αS + αW ≤ 2π − 2γ∗ + αW

2π ≤ 2π − 2γ∗ + αW

2γ∗ ≤ αW

After finding the condition in the West sector, we choose the minimal value for αW . That

is, αW = 2γ∗. Then, by summation of Equation (7.1), and Equation (7.2), we get:

αN + αS ≤ 2π − 4γ∗ then,

αN + αS + αE ≤ 2π − 4γ∗ + αE

By hypothesis, αN + αS + αE ≤ 2π then, by subtraction, we get:

0 ≤ −4γ∗ + αE then,

4γ∗ ≤ αE

Thus, we choose αE = 4γ∗ = αS = π/2 (From Equation (7.5)). This means that

γ∗ = π/8. It follows that, αW = 2γ∗ = π/4. Finally, from Equation (7.1), and the fact

that the sum of the four sectors is equal to 2π, we get, αN = π − 2γ∗ = 3π/4. We have

derived the condition that γ∗ ≤ π/8. Thus, in the remainder of the paper, we consider

the largest inaccuracy value of γ∗, i.e., γ∗ = π/8.

We now describe in more detail the features of each sector, as follows:

• East(r) sector: it is centered at r, has the East direction (indicated by its compass)−→
Er as bisector, and its angular sector αE is equal to 4γ∗, which is π/2. Note that

East(r) is delimited by ΛN(r) and ΛE(r). However, only ΛE(r) is a part of East(r).

• South(r) sector: it is adjacent to East(r) in clockwise direction, and its angular

sector αS is equal to αE, which is equal to 4γ∗ (i.e., π/2). Note that South(r) is

delimited by ΛE(r) and ΛS(r). However, only ΛS(r) is included in South(r).

• West(r) sector: it is adjacent to South(r) in clockwise direction and its angular

sector αW is equal to 2γ∗, that is π/4. Note that West(r) is delimited by ΛW (r)

and ΛN(r). However, only ΛW (r) is a part of West(r) sector.

• North(r) sector: this is the remaining sector, and its angular sector αN is equal to

6γ∗, that is 3π/4. Note that North(r) is delimited by ΛN(r) and ΛW (r). However,

only ΛN(r) is included in North(r) sector.

In the following, we will describe the possible configurations of the two robots, given

the above partitions.
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Table 7.1: Different configurations and movements of robot r and r′ (γ∗ = π/8).

Robot r
North South East West

Robot r′ (no movement) (direct move) (side move up) (side move down)
North no © © ©
(no movement)
South © no © no
(direct move)
East © © no ©
(side move up)
West © no © no
(side move down)

7.2.2 Valid Configurations

We consider two robots r and r′ that are equipped with compasses that can diverge by

as much as 2γ∗, that is π/4. Let r and r′ divide the plane as described in Section 7.2.1.

Then, r and r′ can only be in one of the following valid configurations, or a symmetric

configuration:

1. Configuration North/South: r′ ∈ South(r) (i.e., robot r sees r′ in its South sector)

and r ∈ North(r′), or vice versa.

2. Configuration North/East : r′ ∈ East(r) and r ∈ North(r′), or vice versa.

3. Configuration North/West : r′ ∈ West(r) and r ∈ North(r′), or vice versa.

4. Configuration East/West : r′ ∈ West(r) and r ∈ East(r′), or vice versa.

5. Configuration East/South: r′ ∈ South(r) and r ∈ East(r′), or vice versa.

Based on the partitions described in Section 7.2.1, Table 7.1 summarizes possible and

impossible configurations when robots’s compasses are inaccurate by at most γ∗ = π/8,

with respect to some global north. By design, the partitions prevent the occurrence of

some undesirable configurations, such as North/North, that could lead to a deadlock

situation by using the algorithm 2 (see Section 7.2.3).

7.2.3 Movements

The algorithm is given in Algorithm 3, and Table 7.1 summarizes the different movements

of robot r and r′ (the table is symmetrical). Let us consider the movement of robot r.

First, robot r creates the four sectors, and then it decides its movement based on the

sector in which it has located robot r′, as follows:

2It is important to mention that when γ∗ is equal to zero, i.e., when the compasses of r and r′ are
consistent, the configurations East/South and North/West are impossible.
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Algorithm 3 Gathering Two Robots with π/8-Inaccurate Compasses

1: Robot r divides the plane into four sectors: North, South, East and West (see Sec-
tion 7.2.1);

2: r′ := the other robot visible to r at some time t;
3: if (r sees only itself) then {gathering terminated}
4: Do nothing();
5: else
6: if (|South(r)| > 0) then {r′ is to the South: direct move}
7: Move(r′);
8: else if (|East(r)| > 0) then {r′ is to the East : side move up}
9: ΨE(r) := the parallel axis to ΛE(r) passing through r′;

10: H := ΛN(r) ∩ ΨE(r) (see Figure 7.3);

11: Goal := p ∈ ΛN(r) such that dist(r,Goal) > dist(r,H) and ̂rGoalr′ ≥ ̂rr′Goal ;
12: Move(Goal);
13: else if (|West(r)| > 0) then {r′ is to the West : side move down}
14: ΨW (r) := the parallel axis to ΛW (r) passing through r′;
15: H ′ := ΛS(r) ∩ ΨW (r) (see Figure 7.4);

16: Goal := p ∈ ΛS(r) such that dist(r,Goal) > dist(r,H ′) and ̂rGoalr′ ≥ ̂rr′Goal ;
17: Move(Goal);
18: else {r′ is to the North: no movement.}
19: Do nothing();
20: end if
21: end if

• No movement (Algorithm3:line 18): If r′ ∈ North(r), then r does not move. That

is, if r sees r′ in its North sector, it remains stationary.

• Direct move (Algorithm3:line 6): If r′ ∈ South(r), then r moves directly in a linear

movement to r′.

• Side move up (Algorithm3:line 8): If r′ ∈ East(r), then r performs a side move

up. The need for such a move is explained as follows: given the valid configurations

described in Section 7.2.2, if r′ ∈ East(r), then r ∈ South(r′) or r ∈ North(r′) or

r ∈ West(r′). Robot r (also r′) cannot figure out in which configuration they are, for

instance the East/South or North/East configuration. Then, if we let robot r make

a direct move toward r′, then in the case when both robots are in the configuration

East/South, they will swap their positions endlessly. Also, if we make robot r stay

still, then, if both robots are in the configuration North/East , none of the robots

will ever move and they will always remain in a deadlock situation. Therefore, the

aim of this side move up is to bring both robots eventually into the configuration

North/South, where one robot can move and the other remains stationary, which

can lead to gathering by our algorithm.

A side move up is computed by robot r as follows: let H be the intersection of ΛN(r)
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and the axis ΨE(r), with ΨE(r) parallel to ΛE(r) passing through robot r′. Then,

the destination Goal of robot r is any point that belongs to ΛN(r), such that the

distance dist(r,Goal) > dist(r,H), and the angle ̂rGoalr′ is greater than or equal

to the angle ̂rr′Goal (refer to Figure 7.3).

• Side move down (Algorithm3:line 13): If r′ ∈ West(r), then r performs a side move

down. The aim of this move is similar to the side move up, and it is computed

by robot r as follows: let H ′ be the intersection of ΛS(r) and the axis ΨW (r),

with ΨW (r) parallel to ΛW (r) passing through robot r′ (refer to Figure 7.4). Then,

the destination Goal of robot r is any point that belongs to ΛS(r), such that the

distance dist(r,Goal) > dist(r,H ′), and the angle ̂rGoalr′ is greater than or equal

to the angle ̂rr′Goal (refer to Figure 7.4).

7.3 Correctness

In this section, we will prove that our algorithm solves the problem of gathering two robots

in a finite time, assuming π/8-Inaccurate compasses.

We first state some lemmas, to illustrate that some incompatible configurations are

ruled out by the algorithm. Second, we show how any possible configuration by the algo-
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Figure 7.5: Different configurations allowed by Algorithm 3, and their transformation to
gathering.

rithm is transformed into gathering in a finite time. Figure 7.5 summarizes the different

possible configurations, and their transformation to gathering.

Under the partitions described in Section 7.2.1 and by considering γ∗ = π/8, trivially,

we derive the following two lemmas:

Lemma 7.3.1 Under the partitions, and assuming π/8-Inaccurate compasses, the system

can not be in the configuration North/North or East/East or South/South or West/West

at any time t.

Lemma 7.3.2 Under the partitions, and assuming π/8-Inaccurate compasses, the system

can not be in the configuration West/South at any time t.

From the above two lemmas, we derive the following theorem:

Theorem 7.3.3 By the algorithm, the possible configurations are North/South, North/East,

North/West, East/West and East/South, and their symmetric ones (i,e. South/North,

East/North, West/North, West/East and South/East).

Lemma 7.3.4 Given a robot r and its target point H with r �= H, r reaches its target in

a finite number of steps.

Proof. The proof derives from Assumption 2.3.1. In one cycle, r travels at least

δr > 0 of the desired distance. Besides, by Assumption 2.3.2, the cycle of a robot is

finite. Thus, the number of steps required for robot r to reach its destination H is at

most �dist(r,H)/δr�, which is finite, and the lemma holds. �Lemma 7.3.4
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Lemma 7.3.5 Given two robots r and r′ that are in the configuration North/East or

East/West or East/South at some time t0, with r′ ∈ East(r) and r either in North(r′)

or West(r′) or South(r′), then the destination Goal computed by robot r (resulting from

its side move up) is in the North(r′).

Proof.

We will prove the North/East configuration only. The East/West and East/South

configurations can be proved in a similar way.

Assume that r′ ∈ East(r) and r ∈ North(r′) at time t0. First, observe that if ΛN(r)∩
ΛN(r′) = ∅ (i.e., ΛN(r) and ΛN(r′) are parallel or do not intersect), then Goal ∈ North(r′)

because r ∈ North(r′), and Goal ∈ ΛN(r).

Now assume that, ΛN(r)∩ΛN(r′) = M . Let H = ΨE(r)∩ΛN(r) (refer to Figure 7.6).

To show that Goal ∈ North(r′), we will show that, always, Goal ∈ �(r, r′,M). In other

words, we need to show that H ∈ �(r, r′,M) and the distance dist(H,M) �= 0.

Consider the triangle �(r, r′,M). Let α, β, and µ denote the angles at r, r′ and

M that are within the triangle �(r, r′,M), respectively. First, if all three angles α, β,

and µ are acute, then obviously the foot H of the perpendicular starting from r′ is inside

�(r, r′,M), and dist(H,M) �= 0. Second, if the angle β at r′ is obtuse, then again the foot

H of the perpendicular starting from r′ is inside �(r, r′,M), and dist(H,M) �= 0. Now

consider the angle α at r. By hypothesis, αE is equal to π/2. This means that α cannot be

an obtuse angle, and it is at most π/2. In this later case where α = π/2, we have the foot

H of the perpendicular starting from r′ equal to r (in this case ΛE(r) passes by r′), and

the triangle �(r′, r,M) has a right angle at r. Consequently, dist(r,M) = dist(H,M) �= 0

and Goal ∈ �(r, r′,M).

Now, we will prove that the angle µ at M cannot be an obtuse angle (because if µ is an

obtuse angle, H is outside �(r, r′,M)). Let K = ΛE(r)∩ΛW (r′) and κ be the angle at K.
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We also denote by β′ the angle at r′ formed by ΨE(r) and ΛW (r′). Consider the quadrilat-

eral formed by r, H, r′ and K. Then, we have: (1) κ+ β′ = π since the respective angles

at r and H are equal to π/2. Consider now the quadrilateral formed by r, K, r′ and M .

Then, we have: (2) κ+µ = 3π/4 since αE(r) is equal to π/2, and αN(r′) is equal to 3π/4

by hypothesis. By subtraction of (1) from (2), we get: (3) β′ − µ = π/4. By assumption,

β′ < 3π/4 because ΨE(r) can not be equal to ΛN(r′) as ΛN(r′) can not be perpendicular

to ΛN(r) by the partitions described in Section 7.2.1. Consequently, the angle µ at M is

less than π/2. Thus, µ can not be an obtuse angle. As a result, in all cases the foot H of

the perpendicular starting from r′ is inside the triangle �(r, r′,M), and dist(H,M) �= 0.

Then, ∀p ∈ HM , p ∈ North(r′). We have by the algorithm, ̂rGoalr′ ≥ ̂rr′Goal . Since µ

is not an obtuse angle and r̂r′M can be an obtuse angle, then the triangle �(r, r′,Goal) is

included in �(r, r′,M). This proves that Goal ∈ �(r, r′,M), and thus Goal ∈ North(r′).

This completes the proof. �Lemma 7.3.5

In the following, we will show the different possible transitions that each valid config-

uration can take, in order to reach gathering in a finite time. The impossible transitions

can be derived implicitly, so we do not prove them explicitly.

7.3.1 Transition of North/South Configuration to Gathering

Lemma 7.3.6 Let r and r′ be two robots that are in the configuration North/South with

r′ ∈ South(r) at some time t0. Then, there is a time t̄ > t0 when r and r′ gather at the

same point. Moreover, r and r′ can not shift to any other configuration except gathering.

Proof. By the algorithm, r will perform a direct move toward r′. Also, during the

movement of r, r′ is unable to move. Consequently, by Lemma 7.3.4, r reaches r′ in a

finite time. This terminates the proof. �Lemma 7.3.6

7.3.2 Transition of North/East Configuration to Gathering

Lemma 7.3.7 Let r and r′ be two robots that are in the configuration North/East with

r′ ∈ East(r), and r ∈ North(r′) at some time t0. Then, there is a finite time t̄ at which this

configuration is transformed into North/South configuration with r′ ∈ South(r). More-

over, r and r′ can not shift to any other configuration except the North/South configura-

tion.

Proof. The proof is a direct consequence from Lemma 7.3.5. Let Goal be the destina-

tion of r. Initially, r ∈ North(r′). Besides, by Lemma 7.3.5, ∀p ∈ rGoal , p ∈ North(r′).

Then, r′ is unable to move during the movement of r to Goal . When r reaches its des-

tination Goal , ΛE(r) is above r′, thus r′ ∈ South(r). Consequently, r and r′ enter the



7.3. CORRECTNESS 77

configuration North/South in a finite time. �Lemma 7.3.7

From Lemma 7.3.6 and Lemma 7.3.7, we conclude that:

Theorem 7.3.8 Any North/East configuration of two robots equipped with π/8-Inaccurate

compasses is transformed after a finite time to gathering.

7.3.3 Transition of East/West Configuration to Gathering

Lemma 7.3.9 Given two robots r and r′ at some time t0, where r and r′ are in the

configuration East/West, with r ∈ West(r′) and r′ ∈ East(r), then the destination Goal ′

of r′ (resulting from its side move down) belongs to East(r) or South(r).

Proof. Let H ′ = ΨW (r′) ∩ ΛS(r
′). Consider the triangle �(r, r′,Goal ′), and let α, α′

and β be the angles at r, r′ and Goal ′, respectively. By hypothesis, α′ ≤ αW = π/4. Then,

α+β ≤ 3π/4. By the algorithm, α ≤ β. Thus, α ≤ 3π/8 < π/2. Let M = ΛE(r)∩ΛS(r
′).

Then, the angle r̂′rM ≤ π/4 since r and r′ are in the configuration East/West . It follows

that if Goal ′ ∈ H ′M , then Goal ′ ∈ East(r). Otherwise, Goal ′ ∈ South(r). �Lemma 7.3.9

Lemma 7.3.10 Let r and r′ be two robots that are in the configuration East/West, with

r′ ∈ East(r), and r ∈ West(r′) at some time t0. Then, there is a finite time t̄ in which this

configuration is transformed into North/East or North/South configuration. Moreover,

r and r′ cannot enter any other configuration except the North/East or North/South

configuration.

Proof. We distinguish several cases depending on the movement of each robot. We

assume that both r and r′ always reach their final destinations. All other cases where r

or r′ end their moves before destination are easy to deduce from previous lemmas.

1. r moves/ r′ does not move: By the algorithm, r will perform a side move up.

Let Goal be the destination of r and t̄ be the time when r reaches its target. At t̄,

we have r′ ∈ South(r) (since at t̄, r′ is below ΛE(r)). In addition, by Lemma 7.3.5,

Goal ∈ North(r′). Then, at t̄, r ∈ North(r′). Consequently, r and r′ enter the

configuration North/South in a finite time.

2. r′ moves/ r does not move: By the algorithm, r′ will perform a side move down.

Let Goal ′ be its destination and t̄′ be the time when r′ reaches Goal ′.

At time t̄′, r is above ΛW (r′), thus r ∈ North(r′). In addition, by Lemma 7.3.9,

r′ ∈ East(r) or r′ ∈ South(r) at t̄′. Consequently, r and r′ leave the configuration

East/West in a finite number of steps, and enter the configuration East/North or

North/South.
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3. both r and r′ move: By the algorithm, r will perform a side move up and r′

will perform a side move down. Let Goal and Goal ′ be their respective destinations

and t̄ and t̄′ be the times when they end their moves, respectively. At t̄, ∀p that

is below ΛE(r(t̄)), p ∈ South(r). Since, at t̄, r′ ∈ r′Goal ′, and by Lemma 7.3.9,

Goal ′ ∈ East(r(t0)) or Goal ′ ∈ South(r(t0)), thus, r′ ∈ South(r) at t̄ because

ΛE(r(t̄)) is above Goal ′ and r′.

When r′ reaches Goal ′, r is above ΛW (r′). Consequently, at t̄′, r ∈ North(r′). Since,

r and r′ reach their respective targets in a finite time, we hence conclude that they

enter the configuration North/South in a finite time.

�Lemma 7.3.10

From Lemma 7.3.10, Lemma 7.3.6 and Theorem 7.3.8, we conclude:

Theorem 7.3.11 Any East/West configuration of two robots equipped with π/8-Inaccurate

compasses is transformed after a finite time to gathering.

7.3.4 Transition of North/West Configuration to Gathering

Lemma 7.3.12 Given two robots r and r′ at some time t0, where r and r′ are in the

configuration North/West, with r ∈ West(r′) and r′ ∈ North(r), then the destination

Goal ′ of r′ (resulting from its side move down) belongs to East(r).

The proof is very similar to the proof of Lemma 7.3.9, and thus omitted here.

Lemma 7.3.13 Let r and r′ be two robots that are in the configuration North/West, with

r ∈ West(r′), and r′ ∈ North(r) at some time t0. Then, there is a finite time t̄ in which

this configuration is transformed into North/East or East/West or North/South config-

uration. Moreover, r and r′ can not enter any other configuration except the North/East

or East/West or North/South configuration.

Proof.

By the algorithm, r′ will make a side move down. Let Goal ′ be its destination. Then,

by Lemma 7.3.12, Goal ′ ∈ East(r). As long as r′ ∈ North(r), r remains stationary.

While r′ is moving toward its target, it crosses East(r) sector. Then, r and r′ enter the

configuration East/West if ΛW (r′) is still above r. Otherwise, they enter the configuration

North/East , with r ∈ North(r′) if r′ reaches Goal ′ and r still did not move. Finally, r and

r′ enter the configuration North/South if r performs a look operation when r′ ∈ East(r),

and moves to it destination. From Lemma 7.3.4, these transformations are done in a finite

time, and the lemma holds. �Lemma 7.3.13

From Lemma 7.3.13, Theorem 7.3.8 and Theorem 7.3.11, we conclude:

Theorem 7.3.14 Any North/West configuration of two robots equipped with π/8-Inaccurate

compasses is transformed after a finite time to gathering.
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7.3.5 Transition of East/South Configuration to Gathering

Lemma 7.3.15 Let r and r′ be two robots that are in the configuration East/South at

some time t0, with r′ ∈ East(r) and r ∈ South(r′) Then, there is a finite time t in

which this configuration is transformed into North/South or North/East or East/West

or gathering.

Proof. By the algorithm, r′ will make a direct move toward r, and r will make a side

move up. Then, we distinguish several cases, depending on where each robot sees the

other one, and where it ends its move. By using similar arguments as in previous lemmas,

it is easy to show that r and r′ shift to the North/South or North/East or East/West

configuration, or gathering in a finite time. �Lemma 7.3.15

From Lemma 7.3.6, Lemma 7.3.15, Theorem 7.3.8 and Theorem 7.3.11, we conclude that:

Theorem 7.3.16 Any East/South configuration of two robots equipped with π/8-Inaccurate

compasses is transformed in a finite time to gathering.

Theorem 7.3.17 In a system, with 2 anonymous, oblivious mobile robots relying on

inaccurate compasses, the gathering problem is solvable in a finite time for π/8-Inaccurate

compasses.

Proof.

Theorem 7.3.3 states the different valid configurations under the algorithm. Also, from

Lemma 7.3.6, Theorem 7.3.8, Theorem 7.3.11, Theorem 7.3.14 and Theorem 7.3.16, any

valid configuration is transformed into gathering in a finite time (see Figure 7.5), thus the

theorem holds. �Theorem 7.3.17

7.4 Gathering Robots with Volume

In this section, we show that Algorithm 3 solves also the problem if we consider robots are

not represented by points in the plane, but they have a volume, and occupy some space

in the plane.

Adding the realistic aspect of volume to the robots makes the problem more complex.

In particular, robots need to avoid collisions, and also they should solve the problem of

partial visibility, that is some robots should not obstruct vision of others. In the case of

two robots, the problem of partial visibility does not exist, however, robots need to avoid

collisions between each other.

We will show that Algorithm 3 solves the gathering of two fat robots that are repre-

sented by unit discs in the plane, and are equipped with π/8-Inaccurate compasses. The

two robots achieve the gathering, if one robot touches the other robot, that is, the circles

representing these robots become tangent, and both robots stop.
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Theorem 7.4.1 Algorithm 3 is a correct gathering algorithm for two robots with volume,

and equipped with π/8-Inaccurate compasses.

Proof. The proof consists of showing that the trajectory of the two robots does not

intersect during the entire execution of the algorithm. Since, there is only two robots in

the system, then the two robots are always visible because there is no other robot that

obstructs their sight.

We will show that the different movements allowed by the algorithm for the two robots

do not bring them in a situation, where their line of moves intersect.

From Table 7.1, the different combinations of movements of robots r and r′ are ana-

lyzed as follow:

• No movement/Direct move: in this case, obviously the line of moves of the two

robots do not intersect since only one robot is allowed to move, and the other robot

is unable to move during the entire execution of the algorithm.

• No movement/Side move up and No movement/Side move down: the same argu-

ments holds for this case as one robot is able to move and the other one stays.

• Direct move/Side move up: Let robot r be the robot executing the direct move, and

robot r′ be the robot executing the side move up. Let also, H ′ be the destination of

r′. By the algorithm, H ′ �= r. Then, the trajectory of robot r′ is the segment r′H ′.

For robot r, its destination is any point p ∈ r′H ′, in which r′ is occupying at the

time when robot r performed its look operation or a point that is already passed by

r′. Consequently, robot r does not interfere on the trajectory of r′, and vise versa.

• Side move up/Side move down: Let robot r be the robot executing the side move

up, and robot r′ be the robot executing the side move down. Let H and H ′ be the

destinations of r and r′, respectively. By the algorithm, H is above the segment

rr′ because H ∈ ΛN(r). Also, H ′ is below the segment rr′ because H ′ ∈ ΛS(r
′).

Consequently, r and r′ are moving on opposite directions, and hence they will never

intersect their lines of move.

�Theorem 7.4.1

7.5 Complexity Analysis

In this section, we give an analytic analysis of the complexity of the algorithm, and the

time of its termination.

Complexity of the algorithm. The complexity of Algorithm 3 is a constant because

all computations can be done in a constant time.
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Number of steps of termination of the algorithm. Recall Assumption 2.3.1 in the

Corda model, which states that the minimum distance travelled by one robot in one

move is at least ∆r. Assume that the distance between robots r1 and r2 is equal to D.

To compute the number of steps required by the algorithm in order to terminate, we

will first compute the number of steps that each configuration takes in order to reach the

gathering configuration. For the sake of analysis, we assume that robots r1 and r2 are

always activated simultaneously.

• Let robots r1 and r2 be in the configuration North/South. Then, one of these robots

will make a direct move to the other one, while the other robot remains stationary.

Thus, the maximum number of steps required to reach the gathering configuration

is: S1 = D/∆r.

• Let robots r1 and r2 be in the configuration North/East with r2 to the east of r1, then

this configuration is transformed by Lemma 7.3.7 to the configuration North/South.

This transformation takes also D/∆r because r1 travels on ΛN au maximum the

distance dist(r1, r2) = D by the algorithm. Thus, the maximum number of steps

required to reach the gathering configuration is: S2 = S1 +D/∆r = 2D/∆r.

• Let robots r1 and r2 be in the configuration East/West . By Lemma 7.3.10, this

configuration is transformed to the North/East configuration. Then, the maximum

number of steps required to reach the gathering configuration is: S3 = S2+D/∆r =

3D/∆r.

• Let robots r1 and r2 be in the configuration North/West . By Lemma 7.3.13, this

configuration is transformed to the East/West configuration. Then, the maximum

number of steps required to reach the gathering configuration is: S4 = S3+D/∆r =

4D/∆r.

• Let robots r1 and r2 be in the configuration East/South. By Lemma 7.3.15, this

configuration is transformed to the East/West configuration. Then, the maximum

number of steps required to reach the gathering configuration is: S5 = S3+D/∆r =

4D/∆r.

In conclusion, the maximum number of steps of termination of Algorithm 3 is: 4D/∆r.

7.6 Summary

In this chapter, we have proposed a self-stabilizing algorithm with which two asynchronous

robots can gather in finite time using inaccurate compasses with a divergence of as much as

45◦, and relying on oblivious computations. Our algorithm is self-stabilizing, and tolerates

any number of transient errors. We can also argue that even with weaker compasses that
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fluctuate for some arbitrary periods, if eventually they stabilize to some bounded errors

that are less than or equal to 45◦ (eventually bounded error compass), our algorithm

is still valid and solves the problem in a finite time. Finally, we have proved that our

algorithm still works if we consider robots with dimension.

In the next chapter, we further extend this work by proving a tight bound on the degree

of divergence of robots’ compasses for solving the gathering problem for two robots.
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Chapter 8

Tight Bound on the Gathering of
Two Robots with Inaccurate
Compasses

To be is to be the value

of a bound variable.

Willard Van Quine

In the previous chapter, we have proposed an algorithm that gathers two oblivious

mobile robots in finite time provided that the divergence between their compasses is at

most 45◦. The question remained open, however, as to whether the problem could still be

solved with a larger divergence.

In this chapter, we propose a distributed algorithm that solves the gathering problem

with two asynchronous robots, when their compasses can differ by any angle less than

180◦, which is obviously the largest divergence for which the compasses can still provide

any useful information.

8.1 Gathering with Inaccurate Compasses for θ < π

In this section, we provide an algorithm for solving the gathering of two asynchronous

oblivious mobile robots when their compasses diverge by an angle θ < π. 1

8.1.1 Algorithm Overview

The algorithm is described informally as follows. Consider a local x-y coordinate system

where the positive y-axis points North, and hence the positive x-axis points East. Let

also the location of the robot be the origin of its local coordinate system.

Let A be some robot, and let B be the position at which the other robot is located.

We denote by α the angle between the y-axis of robot A, namely yA and the segment AB.

1θ is equal to 2γ∗-Inaccurate compasses.
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That is, α = 0 when B is on the positive yA axis and α = π/2 when B is on the positive

x-axis of robot A. Finally, let θ be the difference in north direction indicated by the two

local coordinate systems of robots A and B. In our algorithm, we assume that 0 ≤ θ < π.

Then, robot A decides its movement as follows:

• If the angle α between yA and AB in clockwise direction is strictly greater than 0

and smaller than or equal to π, then robot A moves directly on the segment AB to

B. We refer to this move as direct move .

• If the angle α is strictly greater than π and smaller than π+ θ, then robot A moves

towards its south by the distance dist(A,B). We will refer to this move as side

move south .

• If the angle α is strictly greater than π + θ and smaller than or equal to 2π, then

robot A does not move. We refer to this move as no move .

The algorithm is given in Algorithm 4, and Table 8.1 summarizes the different movements

of robots A and B (the table is symmetrical).

Algorithm 4 Gathering two asynchronous robots, when compass divergence θ < π.

1: if (r sees only itself) then {gathering terminated}
2: Do nothing();
3: else
4: B := position of the other robot B;
5: yA := y-axis of robot A;
6: α := angle between yA and AB in clockwise direction;
7: if (0 < α ≤ π) then {direct move}
8: robot A moves to robot B;
9: else if (π < α < π + θ) then {side move south}

10: robot A moves toward its south by distance dist(A,B);
11: else if (π + θ < α ≤ 2π) then {no move}
12: Do nothing();
13: end if
14: end if

8.1.2 Description of Situations

In this section, we define the different possible situations of robots A and B, when their

compasses are inconsistent by 0 ≤ θ < π. Without loss of generality, we consider that the

north of robot B, denoted by yB is always on the right hand side of the north of robot A,

denoted by yA. Thus, we define the following 10 situations:2

2If the north of robot B is on the left hand side of the north of robot A, then by symmetry we will
have the same 10 situations.
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Table 8.1: Combination of movements of robots A and B allowed by the algorithm (θ < π).

Robot A
0 < α ≤ π π < α < π + θ π + θ < α ≤ 2π

Robot B (direct move) (side move south) (no move)
0 < α ≤ π © © ©
(direct move)
π < α < π + θ © © ©
(side move south)
π + θ < α ≤ 2π © © not applicable
(no move)

δr

A

B

yA  yB 

α<π

(a) 0 < α ≤ π, then
A moves directly to B.
:Direct move

δr

A

B

yA  yB 

π<α<2π

A

(b) π < α < π + θ,
then A moves by
distance dist(A,B)
to A′: Side move
south.

δr

B

yA  yB 

α=2π
A

(c) π + θ < α ≤
2π, then A does not
move: No move.

Figure 8.1: Principle of the algorithm.

1. Situation (1): the yA axis of robot A and yB of robot B are equal (yA = yB), and

A and B are located on the same y-axis (refer to Figure 8.2(a)).

2. Situation (2): the yA axis of robot A and yB of robot B are parallel. That is, A

and B are not located on the same y-axis (refer to Figure 8.2(b)).

Situations (1) and (2) refer to cases when θ is equal to zero. In the following cases,

we consider that θ is other than zero. Let I be the intersection of yA and yB. Then,

four cases arise when both A and B are not at I.

3. Situation (3): in this situation, A is below I, and B is above I (see Figure 8.3(a)).

4. Situation (4): in this situation, both A and B are above I (see Figure 8.3(b)).

5. Situation (5): in this situation, A is above I, and B is below I (see Figure 8.3(c)).

6. Situation (6): in this situation, both A and B are below I (see Figure 8.3(d)).

Finally, we distinguish the following four cases (refer to Figure 8.4) when either

robot A or B is at I.
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A

B

yA=yB 

(a) Situation (1).

A

yA 

B

yB 

(b) Situation (2).

Figure 8.2: Situations of robots A and B where θ = 0.

δr

A

B

yA  yB 

I

θ

(a) Situation (3).

δr

A B

yA  yB 

I

(b) Situation (4).

δr

A

B

yA  yB 

I

(c) Situation (5).

δr

AB

yA  yB 

I

(d) Situation (6).

Figure 8.3: Situations of A and B where θ �= 0 and both A and B are not at I.

7. Situation (7): in this situation, A is at I and B is above I.

8. Situation (8): in this situation, A is above I and B is at I.

9. Situation (9): in this situation, A is at I, and B is below I.

10. Situation (10): in this situation, A is below I, and B is at I.

8.2 Correctness

In this section, we will prove that our algorithm solves the problem of gathering two robots

in a finite time, when their compasses diverge by an angle that is strictly smaller than

π. To do so, we show how any possible situation is transformed into gathering in a finite

δr

A

B

yA  yB 

I

(a) Situation (7).

δr

B

A

yA  yB 

I

(b) Situation (8).

δr

A

B

yA  yB 

I

(c) Situation (9).

δr

B

A

yA  yB 

I

(d) Situation (10).

Figure 8.4: Situations of A and B where θ �= 0 and either A or B is at I.



8.2. CORRECTNESS 87

Gathering

Lemma 8.2.4Lemma 8.2.3Lemma 8.2.5Lemma 8.2.6

Lemma 8.2.9

Lemma 8.2.8

Lemma 8.2.7

Lemma 8.2.10Lemma 8.2.11

Situation (2)
Situation (3) Situation (6)

Situation (10)Situation (5)

Situation (9)

Situation (1)

Situation (7)

Situation (4)

Situation (8)

Lemma 8.2.3

Figure 8.5: Diagram of possible transitions between situations.

time. Figure 8.5 shows a diagram of all possible transitions between situations. Assume

without loss of generality that yB is to the right of yA, and 0 ≤ θ < π, then trivially, we

derive the following lemmas:

Lemma 8.2.1 The situations 1 − 10 (Sec. 8.1.2) form a list of all possible positions of

robots A and B.

Lemma 8.2.2 Under Algorithm 4, there exists no situation where both robots A and B

perform no move.

In the remainder of the text, we denote by αA the angle from yA to robot B in clockwise

direction with respect to the local coordinate system of A, and by αB the angle from yB

to robot A in clockwise direction with respect to the local coordinate system of B. We

also denote by I, the intersection of yA and yB.

Lemma 8.2.3 In a finite number of cycles, Situation (1) and Situation (10) are trans-

formed into gathering.

Proof. Let two robots A and B be in Situation (1). Without loss of generality, let A

be above B. According to the algorithm, as long as A is above B, B performs no move

because αB = 2π. Consider now the movement of robot A. We have αA = π. Then, A

performs a direct move to B. By Assumption 2.3.1, in one cycle, A travels at least ∆r.

Consequently, A reaches B in a finite number of steps.

The proof of transformation of Situation (10) to gathering is similar to the proof of

Situation (1), and thus omitted here. �Lemma 8.2.3

Lemma 8.2.4 In a finite number of cycles, Situation (2) is transformed into Situation

(1) or to gathering.
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A

yA 

B

yB 

B1

∆r

B2

β

∆r

β1

β2

Bn

βn

(a) Initially, β is equal to π/2.

A

yA 

B1

yB 

∆r

Bβ

B2

β1

β2

Bn

βn

(b) Initially, β is an obtuse
angle.

Figure 8.6: Robot B stops (forever) at Bn in finite number of steps.

Proof. By the algorithm, B moves on yB by the distance dist(A,B) toward its south,

and A performs a direct move to B. First, it is easy to see that if A moves to the position

of B, and B has already left its position (by moving on yB toward its south), then, since

the cycle of A and B is finite, they will reach Situation (1) in finite time.

Assume now the worst case, where B is activated infinitely many times, however A

is not. Since, by the algorithm B moves on yB toward its south by dist(A,B), then, we

need to show that there will be a time after which B stops (forever) moving toward its

south, and this happens in finite time.

Let β be the angle between the segment AB and yB in clockwise direction. The proof

consists of showing that: (1) β is monotonically decreasing when B moves, and (2) β

becomes less than π − θ in a finite number of steps.

Consider first the situation in Figure 8.6(a), where AB is perpendicular to yB.

Assume that B is activated at time t, while A is not. By Assumption 2.3.1, in the worst

case, B moves toward its destination on yB by ∆r > 0. Let B1 be the new destination of

B. Consider the triangle �(A,B,B1), then it is easy to see that the angle at B1 is less

than the angle at B. Let B2 be a new destination of B, which is at distance ∆r from B1.

Then, it is also easy to observe that the angle at B2 is less than the angle at B1. We thus,

conclude that β is monotonically decreasing when B moves on yB toward the south.

Now we will show that β becomes less than π− θ in a finite number of steps. Let n be

the maximal number of steps that robot B takes in order for β to become less than π− θ.

We assume the worst case where in every step (cycle), B moves on yB by ∆r. Let Bn

be the position at which robot B stops after n cycles. This means that, at Bn, β < π− θ.

Then, we get:
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tan(π − θ) = dist(A,B)/dist(B,Bn)

= dist(A,B)/n.∆r

Thus:

n = dist(A,B). cot(π − θ)/∆r (8.1)

We have, the distance ‖AB‖ > 0 by hypothesis, and it is a constant. Also, ∆r is a

constant. By definition, π − θ is a strictly positive value. Consequently, cot(π − θ) > 0,

and n is finite.

Now consider the situation in Figure 8.6(b), where the angle formed by AB and yB is

an obtuse angle (π/2 < β < π). Let B1 be the perpendicular to yB starting at A.

In this case, from above, we can conclude that from B1 to Bn, β is monotonically

decreasing, and β takes n finite steps to become smaller than π−θ. Besides, by considering

the triangle �(A,B,B1), it is easy to show that β is monotonically decreasing while B

is moving toward B1. In addition, robot B takes a finite number of steps to reach B1

because dist(B,B1) is less than dist(A,B), which is finite, and B travels at least ∆r in

one cycle. Consequently, from B to Bn, β is monotonically decreasing and, β becomes

less than π − θ in a finite number of steps.

Now since B has stopped moving in a finite number of steps at Bn, eventually A will

do a direct move to B. Since the distance dist(A,B) is finite, and by Assumption 2.3.1,

A travels at least ∆r > 0 in one cycle, thus, A reaches B in a finite number of cycles.

�Lemma 8.2.4

Lemma 8.2.5 In a finite number of cycles, Situation (6) is transformed into Situation

(10) or to gathering.

The proof of this lemma is similar to the proof of Lemma 8.2.4, and thus omitted.

Lemma 8.2.6 In a finite number of cycles, Situation (3) is transformed into Situation

(5) or to gathering.

Proof.

Let A and B be in Situation (3). By the algorithm, A performs a direct move to B,

and B performs a direct move to A. Assume first that A performs a look operation at

time t, while B does not. Subsequently, if B does not perform any look operation while

A is moving toward it, then, A will gather with B at position B in finite time. Similarly,

both robots gather at A in finite time if B is activated while A is not.
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Now we will show how Situation (3) can be transformed to Situation (5). The proof

consists of showing that there will be a finite time, where A is to the left of yB, and B is

to the left of yA.

Let y′A be the parallel to yA passing through B. Let also y′B be the parallel to yB

passing through A.

Assume that A performs a look operation at time t, and B also performs a look op-

eration at time t′ ≥ t. Then, by the algorithm, A moves to B(t), and B moves to A(t′).

By Assumption 2.3.2, the cycle of a robot is finite, and the distance dist(A,B) is finite.

Then, in a finite number of steps, A and B exchange positions on the segment AB. Let

t′′ be the time when this happens. Then, at time t′′, B is to the left of y′A, and also A is

to the left of y′B. Let also I ′ = yA(t′′) ∩ yB(t′′), thus at time t′′, A is above I ′, and B is

below I ′. This terminates the proof. �Lemma 8.2.6

Lemma 8.2.7 In a finite number of cycles, Situation (4) is transformed into Situation

(5) or Situation (8) or Situation (9) or to gathering.

Proof.

By the algorithm, A executes a direct move to B, and B performs a side move to

south. We distinguish the following cases depending on the activation of A and B:

• Transformation to Situation (5) or (8): Let B perform a look operation at time t,

while A remains inactive. Assume also that dist(A,B) > dist(I, B), where I = yA∩
yB. Then, first, if B stops at I, then A and B enter Situation (8), where B is at I and

A above I. Trivially, this transformation is done in finite time by Assumption 2.3.2.

Now, if B stops after the point I, then B is below I. Subsequently, A and B enter

Situation (5), where A is above I, and B is below I. This transformation is also

done in finite time by the same argument.

• Transformation to Situation (9): Let B perform a look operation at time t. Then, B

executes a side move south. Let t′ be the time when robot B passes by I. Suppose

that A also performs a look operation at time t′ and sees B at position I. Then,

A performs a direct move to I (since at t′, αA = π). Let t′′ be the time when A

finishes its move to I. Consequently, at time t′′, A and B enter Situation (9), where

A is at I, and B is below I.

• Transformation to gathering : This case is trivial. A and B gather in finite time

at B by Assumption 2.3.1 if A performs a look operation before B, and during the

movement of A to B, robot B does not perform any look operation.

�Lemma 8.2.7
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Lemma 8.2.8 In a finite number of cycles, Situation (8) is transformed into Situation

(5) or Situation (9) or to gathering.

The proof of this lemma is similar to the proof of Lemma 8.2.7, and thus omitted here.

Lemma 8.2.9 In a finite number of cycles, Situation (5) is transformed into Situation

(6) or Situation (9).

Proof. Let A and B be in Situation (5). Then, by the algorithm, both A and B

execute a side move south. The proof is straightforward. If A stops at I, then we get

A and B in Situation (9) because B remains below I. This transformation is done in a

finite number of steps by Assumption 2.3.1. If A stops after I, then A is below I. Since

B is also below I, then A and B reach Situation (6) in a finite number of steps by similar

arguments. �Lemma 8.2.9

Lemma 8.2.10 In a finite number of cycles, Situation (7) is transformed into Situa-

tion (9) or to gathering.

Proof.

Let A and B be in Situation (7), where B is to the right of yA, and A is on yB. By the

algorithm, A performs a direct move to B, and B performs a direct move to A. Trivially,

if one robot, say A, is activated and moves to the position of B, while B does not perform

any look operation during the movement of A toward it, then both A and B gather at B

in finite time by Assumption 2.3.2.

Now consider that both A and B are activated simultaneously. We will show that they

will reach Situation (9) in finite time. The proof consists of showing that there will be a

finite time, where B arrives at the left of yA.

Assume that A performs a look operation at time t, and B also performs a look op-

eration at time t′ ≥ t. Then, by the algorithm, A moves to B(t), and B moves to A(t′).

By Assumption 2.3.2, the cycle of a robot is finite, and the distance dist(A,B) is finite.

Then, in a finite number of steps, A and B exchange positions on the segment AB. Let

t′′ be the time when this happens, and let I ′ = yA(t′′) ∩ yB(t′′). Then, at time t′′, B is to

the left of yA(t′′). Since A ∈ yB, then A(t′′) = I(t′′). Thus, at time t′′, B is below I ′, and

A is at I ′, which represents Situation (9). This terminates the proof. �Lemma 8.2.10

Lemma 8.2.11 In a finite number of cycles, Situation (9) is transformed into Situa-

tion (6) or Situation (10).

Proof. Let A perform a look operation at time t. Then, A performs a side move south.

Let t′ be the time when A finishes its move. At time t′, A is below I because A must
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move at least by ∆r toward its target, according to Assumption 2.3.1. Then, if B does

not perform any look operation between t and t′, A and B enter Situation (6) (both below

I).

Now, assume that B performs a look operation at time t′′ > t, and that at t′′, A

already has left I. Then, by the algorithm B executes a direct move to A(t′′). Let tf be

the time when B finishes its move. Consequently, at time tf , B is at I, and A is below I,

which represents Situation (10). Since this transition is done in a finite number of steps,

the lemma holds. �Lemma 8.2.11

Theorem 8.2.12 Algorithm 4 correctly solves the gathering of two asynchronous mobile

robots in finite time as long as their compasses diverge by θ < π.

Proof. Lemma 8.2.1 states the different situations of robot A and B when 0 ≤ θ < π.

From Lemma 8.2.3 to Lemma 8.2.11, we show that every situation is transformed to

gathering in finite time. Also, the diagram of all possible transitions between situations

depicted in Figure 8.5 shows no cycles. Thus, the theorem holds. �Theorem 8.2.12

Now, we can directly derive the following corollary from Theorem 8.2.12, and the fact

that the problem is impossible when θ is equal to π because it is as if robots do not have

compasses.

Corollary 8.2.13 θ < π is a tight bound on solving the gathering of two oblivious mobile

robots with inaccurate compasses.

8.3 Complexity Analysis

In this section, we give an analytic analysis of the complexity of the algorithm, and the

number of steps of its termination.

Complexity of the algorithm. The complexity of Algorithm 4 is a constant because

all computations can be done in a constant time.

Number of steps of termination of the algorithm. For the sake of analysis, we

consider a strict model, where robots A and B are fully synchronized. That is, at each

time instant, both A and B are activated.

In order to analyze the number of steps of convergence of the algorithm toward the

gathering, we will consider first robots in situation 2, where they share the same north

(y − axis), and they are not aligned. Then, we will consider robots in situation 3 where

they do not share the same north.
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Recall Assumption 2.3.1 in the Corda model, which states that the minimum distance

travelled by one robot in one move is at least ∆r.

Let robots A and B be in one of the following situations:

• Robots A and B share the same north; Situation 2: Let robots A and B be in

situation 2 as depicted in Figure 8.6(b). The worst case is when robot B moves to

Bn, and then after robot B has already finishes moving, robot A starts to move to

robot B at position Bn. Then, the maximum number of steps S2 required by A to

reach B is equal to the number of steps that B takes to reach Bn in addition to the

number of steps that A takes to move to Bn. Thus, S2 is given by the following

formula:

S2 = dist(B,Bn)/∆r + dist(A,Bn)/∆r

= dist(B,B1)/∆r + dist(B1, Bn)/∆r + dist(A,Bn)/∆r

Let h be the distance between yA and yB. Then, dist(B,B1) =
√

dist(A,B)2 − h2.

Let βn be the angle from the segment ABn to yB in clockwise direction.

Since robots are in situation 2, then βn < π. From Lemma 8.2.4, we know that

βn > 0.

We have sin βn = h
dist(A,Bn)

, with βn > 0. Then:

dist(A,Bn) =
h

sin βn
(8.2)

Also, tan(βn) = h
dist(B1,Bn)

. Then:

dist(B1, Bn) = h× cot βn (8.3)

Consequently,

S2 = dist(B,B1)/∆r + dist(B1, Bn)/∆r + dist(A,Bn)/∆r

=

√
dist(A,B)2 − h2 + h× cot βn + h

sinβn

∆r

=

√
dist(A,B)2 − h2 + h(cos(βn)+1)

sinβn

∆r

• Robots A and B does not share the same north. Let A and B in Situation 3 for

instance. For this configuration, the longest steps that this configuration takes in

order to reach the gathering is to pass through situation 5, then situation 9, and

then situation 10 (or situation 6).
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The maximum number of steps required for situation 3 to be transformed to situation

5 is: S3 = dist(A,B)
∆r

.

Now, let robots A and B be in situation 5, then this configuration requires S5 =
dist(I,A)

∆r
to be transformed to situation 9.

dist(A,B)2 = dist(I, A)2 + dist(I, B)2 − 2dist(I, A) × dist(I, B) cos(π − θ) (8.4)

dist(I, A)2 − 2dist(I, A) × dist(I, B) + dist(I, B)2 − dist(A,B)2 = 0 (8.5)

Then,

∆ = 4dist(I, B)2 cos2 θ − 4(dist(I, B)2 − dist(A,B)2)

= 4dist(I, B)2(cos2 θ − 1) + 4dist(A,B)2

= 4(dist(I, B)2 sin2 θ + dist(A,B)2)

Thus,

dist(I, A) =
−2dist(I, B) cos θ + 2

√
dist(I, B)2 sin2 θ + dist(A,B)2

2

= −dist(I, B) cos θ +
√

dist(I, B)2 sin2 θ + dist(A,B)2

Consequently,

S5 =
−dist(I, B) cos θ +

√
dist(I, B)2 sin2 θ + dist(A,B)2

∆r

(8.6)

Now, let robots A and B be in situation 9, then this configuration requires S9 =
dist(A,B)

∆r
to be transformed to situation 10.

Finally, let robots A and B be in situation 10, then this configuration requires

S10 = dist(A,B)
∆r

in order for A and B to gather.

Consequently, the maximum number of steps S required by situation 3 to be trans-

formed to the gathering is:

S = S3 + S5 + S9 + S10

= 3
dist(A,B)

∆r

+
−dist(I, B) cos θ +

√
dist(I, B)2 sin2 θ + dist(A,B)2

∆r

=
3dist(A,B) − dist(I, B) cos θ +

√
dist(I, B)2 sin2 θ + dist(A,B)2

∆r

For the other configurations, the number of steps they require to reach the gathering

configuration is less than or equal to S, and the analysis can be done in the same way.
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Table 8.2: Solvability of the gathering deterministically for two robots.

Compasses
Inaccurate Semi-dynamic None

Model (Fixed-compass)
Corda/SYm Solvable for θ < π Solvable for θ ≤ π/4 Impossible

(Proved in Chapter 8) (Proved in [41]) (Proved in [59, 69])

8.4 Summary

In this chapter, we presented a tight bound on the degree of divergence of robots’ com-

passes for solving the gathering of two asynchronous oblivious mobile robots. In particular,

we gave an algorithm that solves the problem in finite time when compasses can diverge

by an angle strictly less than 180◦, which represents a tight bound, since it is obviously

impossible to do better than this. Also, our algorithm is self-stabilizing.

It is arguable, that Algorithm 8 does not solve the gathering of robots with volume

because the algorithm allows the robots to pass through each other, which is not the case

in reality.

Table 8.2 summarizes the solvability of gathering deterministically for two oblivious

robots.
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Chapter 9

Compasses: Practical Issues

Scientists investigate that which already is;

Engineers create that which has never been.

Albert Einstein

In this chapter, we discuss practical issues related to compasses, and the implication

of our results in practise. In Section 9.1, we explain the basic principle of compasses. In

Section 9.2, Section 9.3, and Section 9.4, we give some examples of compasses used in

robotic applications. Finally, in Section 9.5, we analyze the effectiveness of our results

with respect to real compasses, and their practical applications.

9.1 Basic Principle of a Compass

A compass is the basic direction-finding device in terrestrial navigation. There are three

categories of compasses: magnetic compasses depend on the earth’s magnetic field, gyro-

compasses (Gyro-Magnetic compasses) rely on the rotation of the earth, and solar com-

passes use the location of the sun and stars.

Magnetic compasses are commonly used for navigation and localization purposes.

Since these two tasks are almost required in all mobile robot projects, magnetic com-

passes are used in several applications. Examples of such uses are in maze navigation,

RoboSoccer competition, marine navigation, etc.

Manufacturing has made available different types of magnetic compasses that differ

by their degree of accuracy and their cost. In general, the accuracy of compasses typi-

cally varies within 1 degree to within 10 degrees, depending on sensor quality (cost) and

environment conditions.

In the following, we give a short description of the different types of magnetic com-

passes that are usually used in robotics applications.



9.2. MAGNETIC COMPASSES 97

Figure 9.1: The Devantech Magnetic Compass CMPS03.

9.2 Magnetic Compasses

The magnetic compass works on the principle that the earth is a giant magnet and gen-

erates a magnetic field running north and south exactly like a bar magnet. A freely

suspended iron needle will align itself with the lines of magnetic force of the earth.

The magnetic compass has two important advantages:

1. It is simple.

2. It requires no power.

However, there are several difficulties with the use of a magnetic compass:

1. The earth’s magnetic field does not coincide exactly with its polar axis. Thus, the

magnetic north pole and the true north pole are some distance apart.

2. Metal objects, such as belt buckles, boats, automobiles, or even large iron ore de-

posits in the earth, can cause a compass to give misleading information. The metal

interferes with the compass needle’s response to the magnetic north pole.

3. The robot can create interference for its own sensor.

9.2.1 Examples of Magnetic Compasses

Devantech Magnetic Compass CMPS03:

The Devantech Magnetic Compass CMPS03 [71], is manufactured by Robot Electronics,

and used for robots for navigation purposes. It uses the Philips KMZ51 magnetic field

sensor, which is sensitive enough to detect the earth’s magnetic field. The output from

two of them mounted at right angles to each other is used to compute the direction of the

horizontal component of the Earths magnetic field.

The CMPS03 compass, shown in Figure 9.1 is accurate to within 3 or 4 degrees (after

calibration), and it costs about 50 US dollars.
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Figure 9.2: The Hitachi HM55B Compass.

Figure 9.3: The RDCM-802 Compass.

The Hitachi HM55B Compass:

The Hitachi HM55B compass [73], shown in Figure 9.2 is made by Parallax. It is a

dual-axis magnetic field sensor built around the Hitachi HM55B IC. The Hitachi HM55B

compass is sensitive to microtesla (µT ) variations in magnetic field strength. The degree of

accuracy of the Hitachi HM55B compass varies within 6 to 11 degrees (after calibration),

and it costs about 30 US dollars.

The RDCM-802 Compass:

The RDCM-802 compass [74], depicted in Figure 9.3 is another example of digital compass

commercially available. It has +/− 10 degrees of accuracy, and it also costs about 30 US

dollars.

9.3 Gyrocompasses (Gyro-Magnetic Compasses)

To overcome the disadvantages of the magnetic compass, the gyrocompass was introduced

(see Figure 9.4). A gyrocompass is a compass which finds true north by using an (elec-

trically powered) fast spinning wheel and friction forces in order to exploit the rotation

of the earth. It uses a spinning gyroscope which keeps the compass pointing not to the

magnetic north, but to earth’s true north. A rapidly spinning gyroscope 1 is at the heart

of the gyrocompass. Gyrocompasses are widely used on ships.

1A gyroscope is a disk mounted on a base in such a way that the disk can spin freely on its X and Y
axes; that is, the disk will remain in a fixed position in whatever directions the base is moved.
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Figure 9.4: The Gyrocompasses.

Figure 9.5: The HMR3600 Digital Magnetic Compass.

Gyrocompasses have two main advantages over magnetic compasses:

1. They find true north, i.e. the direction of earth’s rotational axis, as opposed to

magnetic north.

2. They are not sensitive to short term transient magnetic disturbances.

3. They are not affected by metals.

However, a gyrocompass presents the following disadvantages:

1. It constantly requires electric power.

2. It must be calibrated.

3. It is more expensive than a magnetic compass.

9.3.1 Examples of Gyrocompasses

The HMR3600 Digital Magnetic Compass:

The HMR3600 digital magnetic compass [75] is a new generation sensor that combines

the gyro technology with digital magnetic compass hardware and software. Its accuracy

is within 0.5 degree. The inclination range is +/− 80◦. The gyro compensates for short
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term transient magnetic disturbances, keeping the heading output accurate, even in the

presence of unexpected magnetic fields. The HMR3600 compass is depicted in Figure 9.5.

9.4 GS: Global Positioning System

Global Positioning Satellites (GS) offer the latest method of high accuracy navigation

by using a constellation of 24 satellites orbiting the earth and transmitting microwave

band radio frequencies across the globe. The location accuracy is anywhere from within

100 meters to within 10 meters for most equipments. GS receivers capture at least 4 of

the satellite transmissions, and use difference in signal arrival times to triangulate the

receiver’s location. This location information is provided in the classic latitude (north-

south) and longitude (east-west) coordinates given in degrees, minutes and seconds.

9.5 Implication of Results on Robotic Engineering

As we mentioned above, compasses have some limitations. In general, they are error-prone

devices. Also, magnetic compasses are sensitive to magnetic interferences, and unable to

tolerate short interferences. Gyrocompasses, are considered a new technology to overcome

the disadvantages of magnetic compasses, are expensive, and also have some degree of

inaccuracy. For these reasons, reliable software solutions are needed to circumvent these

disadvantages.

Our work with eventually consistent compasses is useful in the sense that it provides

a way to tolerate short interferences, and also transient failures of compasses. This means

that we can equip robots with cheaper compasses (for instance magnetic compasses), and

by providing algorithms based on eventually consistent compasses, we can provide more

reliable solutions that overcome the disadvantages of magnetic compasses. This means

that, we have made an improvement in terms of cost, and guaranteed reliability.

With gyrocompasses, although the north is fixed, there is still a divergence error.

This means that, our work on inaccurate compasses (or fixed compass) is useful to over-

come the limitation of the gyrocompass. In other words, robots can be equipped with

gyrocompasses, but still their compasses have some divergence error. By combining, gy-

rocompasses and algorithmic solutions based on inaccurate compasses, we can provide

robust solutions, and overcome the disadvantages of gyrocompasses.
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Chapter 10

Algorithm for Circle Formation by
Oblivious Robots

A circle is a round straight line

with a hole in the middle.

Online Math Learning

In this chapter, we present the complete proofs of correctness of a distributed circle

formation algorithm presented within my master thesis research [64]. The algorithm allows

a group of mobile robots to self-organize and position themselves into forming a circle in

the SYm [69] model.

In particular, we studied the problem when robots are anonymous, oblivious, unable

to communicate directly, and share no common coordinate system. More precisely, the

proposed algorithm ensures that the robots deterministically form a circle, in a finite

number of steps, and converges to a situation in which all robots are located evenly on

the boundary of the circle. In addition, thanks to the nature of the assumed model

(i.e., oblivious robots), the algorithm is also self-stabilizing. Among other things, the

ability to form a circle means that the robots are spontaneously able to reach an agreement

on an origin, and unit distance, albeit not on a complete coordinate system.

10.1 Problem Definition

We decompose the question of circle formation into two parts: (1) forming a circle (pos-

sibly an irregular one), and (2) positioning the robots evenly along the boundary of the

circle. More rigorously, the problem is defined as follows.

Problem 10.1.1 (Uniform Circle Formation) Given a group of n robots r1, r2, . . . , rn

with distinct positions and located arbitrarily on the plane, eventually arrange them at reg-

ular intervals on the boundary of some non-degenerate circle (i.e., with finite radius greater

than zero).
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We also consider a weaker problem that requires the robots to form a circle, but not

necessarily to be positioned at regular intervals. This weaker problem is expressed more

rigorously as follows.

Problem 10.1.2 (Circle Formation) Given a group of n robots r1, r2, . . . , rn with

distinct positions and located arbitrarily on the plane, arrange them to eventually form a

non-degenerate circle.

In terms of reaching agreement, it must be obvious that the weaker problem also

provides an agrement on an origin and a unit distance. At the same time, while it is con-

jectured that Problem 10.1.1 cannot be solved deterministically with oblivious robots, we

show that Problem 10.1.2 can. In fact, we show that our algorithm solves Problem 10.1.2

within a finite number of steps, and converges toward a uniform solution (Prob. 10.1.1).

Before we proceed to the description of the algorithm, we introduce the following

definitions:

Smallest enclosing circle. The smallest enclosing circle of a set of points P is denoted

by C, and its center is called o. It can be defined by either two opposite points, or by at

least three points. The smallest enclosing circle is unique, and can be computed in O(n)

time [80]. We shall denote by R, the radius of C.

Position. Given a robot ri, ri(t) denotes its position at time t, according to some global

x-y coordinate system, and ri(0) is its initial position. P (t) = {ri(t)|1 ≤ i ≤ n} denotes

the multiset of the positions of all robots at time t.

We sometimes express positions according to a polar coordinate system, with the

center of the smallest enclosing circle as origin. Given a point p, we denote its polar

coordinates by ρp and θp, where ρp is the length of the segment op, and θp is the angle

that the segment op makes with the x positive axis (in trigonometric orientation).

Alignment with the origin. Two robots are said to be aligned with the origin if they

both have the same angular position (according to the polar coordinates). In other words,

two robots are considered to be aligned with the origin only if they are located on the

same radius (i.e, between the center and the boundary of the circle). In particular, two

robots that lie on the same diameter, but on opposite sides with respect to the center, are

not together aligned with the origin. This is because their respective angular positions

differ by π.

Virtual ring. The robots form a virtual ring according to their respective positions.

The ring is defined by looking at the angular part of the polar coordinates of the robots.

Given a robot ri, robot prev ri is its direct neighbor clockwise, and robot nextri is its
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direct neighbor counterclockwise. In the case when robots are aligned with the origin, the

distance from the origin is used to define the sequence. In other words, when the angle

of two robots is the same, a shorter distance is regarded as being a null angle clockwise

(and counterclockwise for a longer distance).

10.2 Circle Formation Algorithm

10.2.1 Algorithm Intuition

Given the SYm model [69] with oblivious robots, and an initial configuration in which

a collection of robots are located arbitrarily on the plane, the algorithm ensures that

the system (1) solves the Circle Formation problem (Prob. 10.1.2) deterministically, and

(2) converges toward a solution to the Uniform Circle Formation problem (Prob. 10.1.1).

Informally, the algorithm relies on the fact that the smallest circle enclosing all robots

is unique, and depends only on the relative positions of the robots. So, the algorithm

makes sure that the smallest enclosing circle remains invariant, and uses it as a common

reference. The invariance is ensured by self-imposing some constraints on the movements

of the robots (Section 10.2.2). Then, robots that are in the interior of the circle are made

to move toward its boundary, while the robots that are already on the boundary are made

to move along the circumference.

In order to prevent the situation of inseparable robots discussed earlier, the algorithm

must guarantee that no two robots move to the same location. To do so, the algorithm

defines an exclusive zone for each robot, and for each activation step within which the

robot must make its movement. Doing so ensures that no two robots can be at the same

place at the same time. Our algorithm must rely on the fact that activations are atomic,

and thus two robots activated simultaneously observe the exact same configuration (albeit

according to their respective coordinate systems).1

10.2.2 Restrictions on Movement

We first present two restrictions imposed on the movement of robots that are located on

the boundary of the smallest enclosing circle. The aim of these restrictions is to preserve

the invariance of the smallest enclosing circle, that is, to prevent the robots from making

movements that may lead to breaking this circle. For the sake of clarity, these restrictions

do not appear explicitly in the algorithm, but must be enforced nevertheless.

Restriction 10.2.1 Robots located on the circumference of the smallest enclosing circle

do not move unless there are at least three such robots with distinct positions.

1It is not difficult to extend the algorithm to work in a more loosely synchronized model in which
some ”fast” robots may be activated up to k-times during a single activation of the ”slowest” robot, where
k is a known bound.
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If the smallest enclosing circle is defined by only two points, these points define a

diameter of the circle. Thus, if one of the robots moves, the circle is broken.

Restriction 10.2.2 Let Pc(t) be the set of robots on the boundary of C at time t, and ri be

one such robot. Let prev ri(t) (resp., nextri(t)) denote the direct clockwise (resp., counter-

clockwise) neighbor of ri on Pc(t). Let also αprevri
(t) and αnextri

(t) be the angular distance

from ri to prev ri(t) and nextri(t), respectively. Then, the angular movement of ri at time

t+ 1, denoted by αm(t+ 1) is restricted as follows:

αprevri
(t) − π

2
≤ αm(t+ 1) ≤ π − αnextri

(t)

2

The above restriction ensures that the movement of robots located on the smallest

enclosing circle does not leave an empty angle greater than π, or else C would no longer

be the smallest circle enclosing all robots.

10.2.3 Algorithm Description

We now describe the algorithm in more detail, and give a pseudo-code description (see

Algorithm 5).2 As already mentioned, the robots use the smallest circle enclosing all

robots C as the target circle for solving the problem. Starting from any configuration

in which the robots are located arbitrarily on the plane (but with distinct locations),

the algorithm ensures that robots located in the interior of C reach its boundary in a

finite number of activations (Prob. 10.1.2), and that the robots located on the boundary

converge to a situation where they are evenly spread on this boundary (Prob. 10.1.1). In

fact, the algorithm can be seen as a combination of two algorithms that solve the two

problems simultaneously.

The algorithm works as follows: when a robot ri becomes active, it executes the

following steps.

1. ri computes the smallest enclosing circle C, based on the observed position of the

robots (Alg. 5, line 1), and changes its coordinate system to a polar one, with the

origin located at point o; the center of C.

2. If ri happens to be located at o, then ri moves out of the center (in any arbitrary

direction) by a distance smaller than the minimal radial position of all other robots

(Alg. 5, line 3). End.

3. Otherwise, ri locates two robots prev ri and nextri , according to the description of

the virtual ring (Alg. 5, line 5).

2The problem is trivially solved by doing nothing for cases where there are only one or two robots.
Therefore, in the rest of the section we consider the cases with three or more robots.
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Algorithm 5 Circle Formation Algorithm for Oblivious Robots

function ϕcircle uniform(P, ri)

1: C:= smallest circle enclosing all points in P ;
2: if (ri = center of C(P )) then
3: ri moves to an arbitrary location by some radius ρri less than the minimum radius

of all other robots;
4: else
5: Compute prev ri and nextri (see Sect. 10.1)
6: if (prev ri , ri, nextri) are aligned with the origin then
7: stay still;
8: else
9: αprevri

:= angular distance between ri and prev ri in clockwise orientation;
10: αnextri

:= angular distance between ri and nextri in counterclockwise orientation;
11: Ψ−

ri
:= bisector of the angle αprevri

;

12: Ψ+
ri
:= bisector of the angle αnextri

;
13: Γri := bisector of the angle formed by Ψ−

ri
and Ψ+

ri
;

14: targetri := Γri ∩ C;
15: Compute path Pri from ri to targetri (Eq. (10.2));
16: if dist(ri, C) ≤ δri then
17: Move to C;
18: else
19: Move along Pri toward targetri by δri ;
20: end if
21: end if
22: end if
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4. If prev ri , ri, and nextri are together aligned with the origin, then ri does nothing

(Alg. 5, line 7). End.

5. If not, then ri computes three rays starting from o, called Ψ−
ri
, Ψ+

ri
, and Γri (see

Figure 10.1). Ψ−
ri

is defined as the bisector of the angle αprevri
= ∠rioprev ri , and

Ψ+
ri

is defined similarly for nextri . Γri is the bisector of the angle formed by Ψ−
ri

and

Ψ+
ri

(Alg. 5, line 13).

The algorithm must prevent two robots activated simultaneously from moving to the

same location because, otherwise, it may become impossible to separate them (i.e., there

exists an activation schedule whereby the robots always move together). To prevent this

situation from occurring, we define a zone in which ri alone is allowed to move during

that activation. We call such a zone the exclusive zone of robot ri for activation time t,

denoted Zri(t), and defined as follows:

Zri(t) = {ri(t)} ∪
{
p ∈ R2 | (ρri(t) ≤ ρp ≤ R) ∧ (αΨ−

ri
(t) < αp < αΨ+

ri
(t))

}
(10.1)

The zone is depicted as a gray area in Figure 10.1. It is important to stress that the

bisectors Ψ−
ri

and Ψ+
ri

do not belong to the exclusive zone of ri. In fact, when the three

robots prev ri , ri, and nextri are aligned with the origin, Ψ+
ri

and Ψ−
ri

are coincident, and

thus Zri includes only the current position of ri. We now resume the description of the

algorithm.

6. Based on Γri , ri computes a target location targetri , as the intersection of Γri with

C. Notice that, by definition, targetri is always located in Zri (Alg. 5, line 14).

7. If ri can reach targetri directly, then it moves there. End.

8. If ri cannot reach targetri directly, but can reach C, then it moves3 to the reachable

point on C that is nearest to targetri (see Figure 10.3). Note that this point must

be within Zri of ri. (Alg. 5, line 17) End.

9. Otherwise, ri computes a parametric path Pri from ri to targetri , as a linear motion

in the polar space (see definition of Pri below). ri moves as far as possible (i.e,

maximum is δri) along this path (see Figure 10.2). End.

The parametric path Pri computed by a robot ri at time t is defined by the following

equations:

Pri(t) =

⎧⎨
⎩

θ(u) = θri(t) + u(θtargetri
(t) − θri(t))

ρ(u) = ρri(t) + u(R− ρri(t))
0 ≤ u ≤ 1

(10.2)

3The movement of Step 8 may seem surprising at first. This movement is used to compute an upper
bound on the number of activations necessary for robot ri to reach the boundary of C (see Lemma 10.3.13).
Without this movement, some situation may occur when targetri

remains out of reach at every activation
(because it rotates), and robot ri is unable to reach C in finite time due to the Zeno paradox.
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10.3 Correctness

In this section, we prove the correctness of our algorithm by first showing that no two

robots ever move to the same location (Theorem 10.3.5). Second, we prove that the

smallest enclosing circle remains invariant (Theorem 10.3.6). Then, we show that all

robots reach the boundary of the circle in finite time (Theorem 10.3.15). Finally, we

prove that the algorithm converges toward a configuration wherein all robots are located

at regular intervals on the circle (Theorem 10.3.22).

We first state two lemmas that derive trivially from Algorithm 5.

Lemma 10.3.1 No robot ever moves beyond the boundary of the smallest circle enclosing

all robots.

Lemma 10.3.2 All robots located on the boundary of the smallest enclosing circle remain

on that boundary.

10.3.1 Non-overlapping Zones

We begin by establishing the common context in which we prove several lemmas.

Let us consider some arbitrary time t, and an arbitrary pair of robots ra and rb, such

that rb = nextra at time t (i.e., ra and rb are consecutive at t) and no two robots are

located at the same position. The rest of the argument can be repeated for any time and

any pair of consecutive robots.

We consider the four robots prev ra , ra, rb, and nextrb and their relative angles at time t.

We set the reference angle of our polar coordinate system to be the angular position of

robot prev ra (see Figure 10.4). Let θ1, θ2, and θ3 denote the angles of robots ra, rb, and

nextrb , respectively. We also consider the bisectors Ψ−
ra , Ψ+

ra , Ψ+
rb

, used in the definition

of the movement. Notice that Ψ−
rb
≡ Ψ+

ra because ra = prev rb . Let ψ1, ψ2, and ψ3 denote

the angles of Ψ−
ra , Ψ+

ra , and Ψ+
rb

, respectively. Finally, we consider the two second-order

bisectors Γra and Γrb , and let γa and γb denote their respective angles. Remember that

the respective targets of ra and rb are located on Γra and Γrb .
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From this, we obtain the following relations between those angles.

0 ≤ ψ1 ≤ θ1 ≤ ψ2 ≤ θ2 ≤ ψ3 ≤ θ3

= = =

ψ1 ≤ γa ≤ ψ2 ≤ γb ≤ ψ3

(10.3)

Lemma 10.3.3 There is no overlap between the exclusive zones of any two consecutive

robots.

Proof. We consider the situation above and reason about the angles. The exclusive

zone of robot ra consists of the position of ra and a zone included in the open angular

interval (ψ1;ψ2). Note that, because it is open, the interval can possibly be empty (when

ψ1 = ψ2). Similarly, the zone of rb consists of the position of rb and a zone included in

the interval (ψ2;ψ3).

1. The locations of ra and rb are distinct by hypothesis.

2. The intervals do not intersect. The intervals are open, which means that the points

on the rays do not belong to the zones. We simply need to show that ψ1 < ψ3, but

this is already obvious from Relation (10.3).

3. The location of one of the two robots (say ra) does not belong to the interval of the

other robot (say rb). Consider the angular position of ra, θ1, and the interval of rb,

(ψ2;ψ3). By Relation (10.3), we have that θ1 ≤ ψ2 ≤ ψ3. Since the rays do not

belong to the interval, ra is not in the interval of rb, even when θ1 = ψ2.

�Lemma 10.3.3

Lemma 10.3.4 There is no overlap between the exclusive zones of any two robots.

Proof. The proof is a generalization of Lemma 10.3.3, by a simple induction on a

string of consecutive robots.

A special case occurs when a robot is located at the center of the smallest enclosing

circle. This is treated separately. Let ro be that robot. It must be unique by hypoth-

esis. The zone of ro is defined by the circle centered at o and with radius r, such that

r < min
r∈R\{ro}

ρr. Since the points in the zone of any other robot r must have a radial

position of at least ρr, there can be no intersection with the zone of ro. �Lemma 10.3.4

Theorem 10.3.5 Under Algorithm 5, no two robots ever move to the same location.

Proof. We show that a robot ri always moves to a location within its own exclusive

zone Zri , and the rest follows from the fact that the zones of two robots do not intersect

(Lemma 10.3.4). Let us consider a robot ri and its new location r′i. There are two cases.
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In the first case, prev ri , ri, and nextri are aligned together with the origin. The location

of ri belongs to the zone (Zri is equal to the location of ri), and ri does not move.

In the second case, prev ri and nextri are not aligned. Then, Γri is located between

Ψ−
ri

and Ψ+
ri
, and all three are distinct. It follows that targetri is strictly between Ψ−

ri
and

Ψ+
ri

(and thus lies in Zri). ri is also between Ψ−
ri

and Ψ+
ri
, but not strictly (i.e., ri can be

on either one of the two axes). Because ri belongs to its zone, and because the angle of

points in the path are defined linearly, all points between ri and targetri must be in Zri .

�Theorem 10.3.5

10.3.2 Invariance of the Smallest Enclosing Circle

From Lemma 10.3.1, Lemma 10.3.2, Restriction 10.2.1-10.2.2 and Theorem 10.3.5, we

obtain the following theorem:

Theorem 10.3.6 The smallest enclosing circle C is invariant.

Proof. Let C(t) and C(t+1) denote the smallest enclosing circle at time instants t and

t+ 1 respectively. We prove that, regardless of the activation schedule, C(t) and C(t+ 1)

must be identical, and the rest follows by induction.

Assume, by contradiction, that there is a time instant t for which C(t) and C(t+1) are

different. First, we observe that this cannot be caused by the movement of a robot located

at the interior of C(t). Indeed, such a robot could change the smallest enclosing circle

only by moving outside of it, (a contradiction with Lemma 10.3.1). Therefore C(t + 1)

must be defined by the movement of robots located at the boundary of C(t). There are

four cases left to consider, depending on the number of robots at the boundary of C(t),

and their respective positions:

1. (2 robots) The smallest enclosing circle C(t) is defined by only two robots. Those

robots cannot move by Restriction 10.2.1 and hence C(t+ 1) = C(t).

2. (3 robots; one quits the circle) The smallest enclosing circle C(t) is defined by three

robots, one of which moves outside the boundary of C(t). This is a contradiction of

Lemma 10.3.1.

3. (3 robots; two distinct points) The smallest enclosing circle C(t) is defined by three

robots, two of which move to the same location. This is in contradiction of Theo-

rem 10.3.5.

4. (3 robots; angular distance greater than diameter) If the angular distance between

two of the three robots is larger than the diameter, then the circle defined by the

three robots and the smallest enclosing circle for the two robots are different. Since

C(t) is the smallest enclosing circle at time t, the angular distance between any two
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of the three robots must be not greater than the diameter. By Restriction 10.2.2,

the movement of two consecutive robots cannot lead them further away from each

other than π, regardless of their activation schedule.

When there are more than three robots on the boundary of C(t), the situation can always

be reduced to one of the four cases mentioned above. It follows that C(t) and C(t + 1)

cannot be different; a contradiction. �Theorem 10.3.6

The following lemma is obtained easily from the algorithm.

Lemma 10.3.7 For any robot ri, its radial position ρri(t) is nondecreasing.

Lemma 10.3.8 There is a time since after which no robot is at the center of C.

Proof. Let ro be a robot located at the center of C. By the fairness of the activation,

there is a time t when it becomes active. From line 3 of Algorithm 5, ro is no longer at

the center at time t + 1. From Lemma 10.3.7, the radial position is nondecreasing, and

thus no robot can be located at the center of C after time t. �Lemma 10.3.8

10.3.3 Invariance of the Virtual Ring

Theorem 10.3.9 From the time when no robot is located at the center of C, the virtual

ring remains invariant.

Proof. We consider again the situation of Section 10.3.1, and we must show that, at

time t + 1, ra must be before rb, and the rest follows by applying the same argument to

all pairs of consecutive robots.

The position of ra at time t + 1 must be between the axes of ra and Γra (i.e., the

hatched zone in Figure 10.4). This means that the angular position must be in the

angular interval Ia = [min(θ1, γa); max(θ1, γa)]. Similarly, the new position of rb must be

in the interval Ib = [min(θ2, γb); max(θ2, γb)].

By definition, the position that ra will take at time t+ 1 must also be located within

the zone of ra at time t.

Then, we need to distinguish two cases.

1. θ1 < θ2. From this and the fact that most angles are defined as bisectors, we can

refine Relation (10.3) as follows.

0 ≤ ψ1 ≤ θ1 < ψ2 < θ2 ≤ ψ3 ≤ θ3

= = =

ψ1 < γa < ψ2 < γb < ψ3
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From the above relation, we can directly derive.

max(θ1, γa) < min(θ2, γb)

Thus, the order between ra and rb is preserved.

2. θ1 = θ2. The two robots ra and rb are aligned with the origin. The only points of

that ray that belong to their zone are their respective locations. In this case, the

order is defined by the distance from the origin, which cannot change at time t+ 1

because of the invariance of the smallest enclosing circle (Theorem 10.3.6). Since

all other points in the zone of ra, if they exist, have an angle strictly smaller than

θ1 = θ2, and strictly greater for rb, the order between ra and rb is preserved.

�Theorem 10.3.9

10.3.4 Circle Formation

In the following, we will show that all robots located in the interior of C reach its boundary

after a finite number of activation steps.

We have observed that, at each time instant a robot ri becomes active, it computes a

new target (the target is dynamic). Depending on the activation of the neighbors of ri,

its target at time t+ 1 can be closer or farther than at time t. However, we also observed

that the maximum angle that can separate a robot from its target is π
4
. Then, before

proceeding, we establish the following lemma.

Lemma 10.3.10 The angle that separates a robot ri from its target targetri is at most π
4
.

Proof. By Restriction 10.2.2, the maximum angular distance that can separate any

two consecutive robots is π. Consider some robot ri, the extreme case occurs where ri

forms a minimal angle with one of its neighbors, say prev ri , and a maximal angle with

its other neighbor, say nextri . Let us thus consider the situation where ri and prev ri are

aligned with the origin at angle 0, and where the angular distance between ri and nextri
is π.

It follows that Ψ−
ri

is at a null angle with respect to ri, while Ψ+
ri

is at angle π
2
. Being

the bisector of Ψ−
ri

and Ψ+
ri
, Γri is at angle π

4
. Since targetri is located on Γri , this proves

the lemma. �Lemma 10.3.10

Lemma 10.3.11 For any robot ri that is not aligned with the origin, and with its previous

and next neighbors, there exists a minimum distance dmin,ri > 0 that ri can progress toward

the boundary of the circle.
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Figure 10.6: String of robots aligned with the origin.

Proof. To prove the lemma, we consider the situation where ri can progress the least.

It is easy to see that this situation occurs when the angular distance with the target is

maximal (i.e., π
4

by Lemma 10.3.10) and ri is as close as possible to C without being able

to reach it (see Figure 10.5).

Observe that ri can progress away from the center of C by at least dmin,ri when moving

toward targetri . In this situation, the range of ri (δri) is just too short to reach C. Thus,

ri will move to location r′i. dmin,ri is equal to the difference between ρr′i and ρri , and it is

positive. Thus, dmin,ri > 0 represents the minimum distance that ri can move away from

the center of C, and the lemma holds. �Lemma 10.3.11

Lemma 10.3.12 By the algorithm, starting from any configuration in which some robots

are aligned with the origin, there is a time after which no two robots are aligned with the

origin.

Proof. We consider an arbitrary string of x robots σx = r1, · · · , rx with increasing

distance from the origin, and aligned together with the origin (see Figure 10.6). First, it

is easy to see that no new robot joins σx (see proof of Theorem 10.3.5), and then the rest

of the proof is by induction on x, the number of robots at σx.

Basis: (x = 1). The lemma holds trivially.
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Induction Step: Assume that the lemma holds for any string σy shorter than x (y < x),

and let us prove that the lemma holds for a string σx of length x. Let us consider one of

the two robots at the extremity of the string, say r1 (the argument is the same for rx).

By assumption, the scheduler is fair, hence eventually r1 becomes active. Since r1 is

at the extremity of the string, r1 and prev r1 cannot be aligned together with the origin,

and thus the test on line 6 in the algorithm results in false. So, r1 computes a path Pr1
at line 15.

r1 and prev r1 not being aligned with the origin, means that Ψ−
r1

and Ψ+
r1

are distinct,

and so is Γr1 . It follows that targetr1 has an angular position different from that of r1.

Thus, except for the initial location of robot r1, no other point on Pr1 is aligned with Ψ+
r1

and the other robots of the string. Because δr1 is greater than zero, the destination r′1 of

r1 cannot be aligned with the robots of σ, regardless of the test in line 16. Thus, after its

move, r1 no longer belongs to the string σ, thus decreasing its length by one. This proves

the induction step. �Lemma 10.3.12

Lemma 10.3.13 All robots located in the interior of C reach its circumference in finite

time.

Proof. By Lemma 10.3.12, if there exists a configuration wherein some robots are

aligned with the origin, there is a finite number of steps, in which this configuration is

reduced to the general case. From Lemma 10.3.11, at each activation step, a robot ri, not

located on the boundary of C, can progress by at least a radial distance dmin,ri > 0 toward

the periphery of the circle. It follows that, regardless of the initial position of some robot

ri, the number of activation steps it takes for ri to reach the boundary of C is bounded

above by R
dmin,ri

. Thus, due to the fairness of the activation schedule, the boundary of C
is reached in finite time, and the lemma holds. �Lemma 10.3.13

Lemma 10.3.14 The global predicate that all robots are located on the boundary of C is

stable.

Proof. Let us denote by Ccircle , the set of all configurations in which all robots are

located on the boundary of C. Then, we show that, for any configuration c in Ccircle , the

algorithm always leads to a configuration c′ in Ccircle .

Consider some robot ri that becomes active. By the algorithm, ri computes a new

targetri , located on C. Because ri is also on C, the entire path Pri is located on C. Thus,

ri can only move to a location on the boundary of C. It follows that configuration c′ is in

Ccircle . �Lemma 10.3.14
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Theorem 10.3.15 The algorithm solves the circle formation problem deterministically.

Proof. There is a time after which all robots are located on the boundary of the circle

(Lemma 10.3.13), and this situation is stable (Lemma 10.3.14). �Theorem 10.3.15

10.3.5 Uniform Transformation

We now show that our algorithm converges toward a uniform distribution of robots along

the boundary. Before we proceed, we give a few additional definitions:

Definition 10.3.16 For any robot ri, let αri(t) denote the angular distance between ri

and nextri. Thus, αri(t) = θnextri
(t) − θri(t).

Definition 10.3.17 Let αmax (t) (resp., αmin(t)) be the maximal (resp., minimal) angular

distance between any two consecutive robots, at time t. Thus, αmax (t) = maxri αri(t) and

αmin(t) = minri αri(t).

Lemma 10.3.18 The function αmax (t) is nonincreasing, and the function αmin(t) is non-

decreasing.

Proof. We only prove the lemma for αmax (t), as the proof for αmin(t) is then easily

derived by symmetry.

Let t be some time, and ri a robot. Obviously, αri(t+ 1) is maximized when (1) both

robots ri and nextri are active at time t, (2) they are moving away from each other, and

(3) they can reach their respective target points.

Thus, assuming that both robots ri and nextri are active at time t, we obtain:

αri(t+ 1) =
αri(t)/2 + αnextri

(t)/2

2
+
αri(t)/2 + αprevri

(t)/2

2

=
2αri(t) + αnextri

(t) + αprevri
(t)

4
≤ αmax (t) (10.4)

The inequality is obtained by replacing αri(t) , αprevri
(t) and αnextri

(t) by αmax (t).

It follows that, for any time t, αmax (t+ 1) ≤ αmax (t). �Lemma 10.3.18

Corollary 10.3.19 ∀t,∀ri : αmin(t) ≤ αri(t+1) ≤ αmax (t)

Lemma 10.3.20 Every configuration in which all robots are uniformly distributed on the

boundary of the circle is stable.
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Proof. Assume that, at some time t, the robots are uniformly distributed. In such

a configuration, the angular distance between any two consecutive robots must be the

same: 2π
n

. It follows that, αmin(t) = αmax (t) = 2π
n

, from which we derive,

∀t,∀ri :
2π

n
= αmin(t) ≤ αri(t+1) ≤ αmax (t) =

2π

n

and this completes the proof. �Lemma 10.3.20

Lemma 10.3.21 The function ∆(t) = αmax (t)−αmin(t) is monotonically decreasing and

converges to zero.

Proof. First of all, from Lemma 10.3.18, we can deduce that ∆(t) is nonincreasing.

We must show that, for any time t, if αmin(t) < αmax (t), then, eventually, either αmin(t′)

increases or αmax (t
′) decreases. In other words,

∀t : αmin(t) < αmax (t) ⇒ (∃t′ > t : (αmax (t
′) < αmax (t)) ∨ (αmin(t) < αmin(t′)))

First, let us show that an angle αri(t) strictly smaller than αmax (t) at time t, must

always be smaller than αmax (t) after time t (although αri(t) can possibly increase). In

other words,

∀t∀ri : αri(t) < αmax (t) ⇒ (∀t′ > t : αri(t
′) < αmax (t))

This is done easily by induction. Consider that, at time t, αri(t) < αmax (t). From

Equation (10.4) in the proof of Lemma 10.3.18, we have:

αri(t+ 1) =
2αri(t) + αprevri

(t) + αnextri
(t)

4

From which we deduce that αri(t+ 1) < αmax (t). Since, by Lemma 10.3.18, αmax (t+ 1) ≤
αmax (t), we indeed have that, for any time t′ after t, αri(t

′) < αmax (t).

To complete the proof of the lemma, we must now show that, if an angle αri(t) is

maximal at time t (αri(t) = αmax (t)), then there must be a time t′ in the future when it

becomes smaller. In other words,

∀t∀ri : αri(t) = αmax (t) ⇒ (∃t′ > t : αri(t
′) < αmax (t))

Observe that if αri(t) is equal to αmax (t), then αri(t) decreases only when αprevri
(t) is

less than αmax (t).

Assume that αri(t) = αprevri
(t) = αmax (t). Since, αmin(t) < αmax (t) by hypothesis,

and there is a finite number of robots, then there must be some robot rj such that

αrj(t) ≤ αmax (t) and αprevrj
(t) < αmax (t).

By the fairness of the scheduler, there must be a time t′′ for rj when αrj(t
′′) < αmax (t).

By applying induction repeatedly on the robots, we obtain that from some time t′′′, and

for all robots rk, αrk(t
′′′) < αmax (t).



10.4. SUMMARY 116

The same proof can be adapted for the minimum, and we have that, for any time t

when αmin(t) < αmax (t), there will be a time t′ in the future when αmax (t
′) < αmax (t) and

αmin(t′) > αmin(t). Thus, ∆(t) = αmax (t) − αmin(t) converges toward zero. �Lemma 10.3.21

Theorem 10.3.22 Algorithm 5 converges toward a configuration wherein all robots are

arranged at regular intervals on the boundary of the circle.

The theorem comes as a direct consequence of Lemma 10.3.20 and Lemma 10.3.21.

10.4 Summary

In this chapter, we have complemented a prior work in the circle formation problem, by

developing complete and rigorous proofs for correctness of a prior algorithm presented

within my master thesis research. The algorithm allows a team of oblivious mobile robots

to self-organize to form a circle. The algorithm allows a team of oblivious robots to deter-

ministically form the circle within a finite number of activation steps, and asymptotically

converges toward a uniform distribution of the robots along the circumference of the cir-

cle. Moreover, it is intrinsically self-stabilizing, due to the assumption that robots are

oblivious.

Our algorithm has several important advantages over the algorithm proposed by

Défago and Konagaya [23]. Most importantly, it is simpler in many different ways. Firstly,

it elegantly combines the solution of the two problems into a single algorithm. Secondly,

the only somewhat complex geometric computation on which it relies is the smallest en-

closing circle, which is well-known and well-studied problem in computational geometry.

Finally, the computation complexity is smaller. Indeed, finding the smallest enclosing

circle can be achieved in O(n), whereas computing the Voronoi diagram is normally done

in O(n log n).

For systems in which robots do have a memory, the algorithm can be further optimized

by relying on the invariance of the smallest enclosing circle. Then, the self-stabilizing

properties can still be preserved, provided that the validity of the smallest enclosing circle

cached in memory is verified before each activation.
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Chapter 11

Discussion: Gathering Robots with
Volume

In this chapter, we give a brief discussion on the gathering of robots with volume by

pointing out the different problems that arise once we add the realistic aspect of volume

to the robots.

In this dissertation, we considered system models where robots are represented by

points in the plane. However, these models are not realistic with respect to this aspect of

representation of robots by points. In reality, even very small robots occupy some space.

In this section, we would like to discuss the difficulties of solving problems when we

add the realistic aspect of volume to the robots. To the best of our knowledge, only

Czyzowicz et al. [20] have considered this problem so far. In particular, they proposed an

algorithm that solves the gathering for at most four robots. The question of the existence

of a solution for any number of robots was however left as an open question. This is can

be explained by the difficulty of the task.

Czyzowicz et al. [20] have observed that adding the realistic aspect of volume to the

robots (fat robots), significantly complicates the task of gathering. In particular, the

fatness of robots results into two main complications. First, some robots may prevent full

visibility of others. Second, some robots may mechanically obstruct the motion of others,

staying or getting in their line of move.

In other words, while solving problems, robots need to avoid collisions, and also they

should solve the problem of partial visibility, that is some robots should not obstruct vision

r
r

(a) Robot r′ is visible to robot r.

r r

r

(b) Robot r′ is not visible to robot
r.

Figure 11.1: Visibility of robots with volume.
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of others. This results on proposing new definitions for problems, and also for visibility

between robots.

We introduce the following definitions concerning robots with volume that are repre-

sented by unit discs in the plane.

Definition 11.0.1 (Visible Robots) Informally, we say that robot r′ is visible to robot

r if r′ belongs to the field of vision of robot r and there is no other robot that is located

between r and r′.

Formally, robot r′ is visible to robot r if the sector passing through the center of robot

r encapsulates all the disc of robot r′, and there is no other robot that intersects this sector.

An example of two visible and non visible robots are depicted in Figure 11.1

Definition 11.0.2 (Gathering Robots with Volume) We say that robots achieve the

gathering if they form a pattern with a minimal diameter of convex hull, such that any

two robots have full visibility of each other.

Definition 11.0.3 (Convergence of Robots with Volume) We say that robots achieve

the convergence toward the gathering if they converge toward a pattern with a minimal

diameter of convex hull, such that any two robots have full visibility of each other.

Solving the gathering problem for robots with volume as defined above is very com-

plicated starting from five robots. The first main problem is to find the pattern with

minimal diameter of convex hull in which these robots can be placed, and they all have

full visibility of each other. We thus, propose a weaker definition of the gathering where

robots can be placed in a minimal ring. Solving the convergence is less difficult, however

it depends to what extent we can ignore errors in practise.

Definition 11.0.4 (Weak Gathering of Robots with Volume) A weak gathering is

the formation of a minimal circle in which all robots have a full visibility of each other,

and they are uniformly spread over the circle.

This problem of weak gathering has interesting applications. For instance, the ability

to gather on a ring means that robots can reach an agreement on a common origin, and

a unit distance.

At a first glance, we may think that solving the weak gathering is easy, and this

problem can be reduced to solving the circle formation problem. However, this is not

true. In particular, when solving the weak gathering of robots with volume, we need to

deal in addition with the following problems:

• Finding minimal radius of circle: We need to find a formula that determines the

minimal radius of the circle in which robots with volume can be placed so that they

can gather as in Definition 11.0.4.
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• Solving the problem of partial visibility: Some robots may obstruct vision of each

other. So, each robot need to move in such a way to get full visibility with all other

robots in the system to be aware that gathering is accomplished.

• Detection of full visibility: Robots need to detect when all robots in the system are

visible in order to start to form the gathering circle. This problem is easy to deal

with when the number of robots in the system is known. However, the problem

becomes more complicated when the number of robots in the system in unknown to

the robots.

• Collision avoidance: While moving, robots need to avoid collisions between each

other. This can be done for instance by restricting their movements within Voronoi

cells as in Algorithm 5.

• Breaking the symmetry: Since all robots execute the same deterministic algorithm,

there exists some symmetric configurations where we need to break the symmetry

between the robots.

Note that most of algorithms for circle formation that were proposed so far in the

literature can not solve the gathering of robots with volume on a minimal circle for many

reasons. First, most of the algorithms rely on the computation of the smallest circle

enclosing all the robots, which is unique. However, when considering robots with volume,

these robots can not compute the same smallest enclosing circle because some robots may

hide the vision of others, and thus they can see only some of the robots in the system.

Second, most of algorithms are designed in such a way to form a circle with an arbitrary

radius.

We have thought of a partial solution for solving the weak gathering of robots with

volume on a minimal ring, where the number of robots is not known in the system. This

solution works for non oblivious robots. Initially, robots need to spread on a bigger portion

of the plane in order to have a full visibility of each other. For avoiding collisions, we use

Voronoi diagrams to restrict the movements of robots. For detecting the full visibility, we

suppose that when all robots see the same configuration twice, they all become visible.

When all robots become aware of each other, they start to form the smallest enclosing

circle of the current configuration, which may have a radius bigger than the gathering

circle. By using a simple algorithm, which based on computing the mid point, robots can

spread uniformly on the circumference of the current circle. Finally, robots need to move

on the radius in order to form the target circle with the minimal radius. However, we

need to find a way to synchronize between the current circle where robots are located,

and the target circle in order to maintain the origin of the smallest enclosing circle, and

thus the origin of the target circle.

Concerning the solvability of the weak gathering with oblivious robots, we conjecture

that there exists no algorithm for solving the weak gathering of robots with volume when
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the number of robots is not known in the system. This is mainly due to the fact that

robots are unable to compute the same origin of the target circle. However, the existence

of a solution in the oblivious setting when the number of robots is known in the system

mainly depends if we can break symmetric configurations



121

Chapter 12

Conclusion

What we call the beginning is often the end.

And to make an end is to make a beginning.

The end is where we start from.

Thomas Stearns Eliot

We first summarize our contributions and discuss the results of the thesis in Sec-

tion 12.1. Then, in Section 12.2, we present our plans for future work.

12.1 Research Assessment

In this dissertation, we studied the problem of coordination of a group of mobile robots

in a totally distributed fashion, and from an algorithmic standpoint. The robots are

represented as points that evolve in an environment devoid of any landmarks or common

coordinate system, they are equipped with sensors, and are able to move in the two dimen-

sional plane. In addition, robots are identical (i.e., indistinguishable by the algorithm),

they do not have any direct communication between them, and robots do not retain any

information between activations (i.e., oblivious). The robots, executing their own instance

of the same algorithm, must cooperate to accomplish some given task within finite time.

In particular, we studied the impact of sensor errors and instabilities in solving the

gathering of multiple mobile robots at the exact same location, not determined a priori.

More specifically, we defined a model in which compass sensors are unreliable, and we

studied the solvability of gathering with compasses that are unstable for some arbitrary

long periods, provided that they stabilize eventually (eventually consistent compasses),

and with compasses that are subject to inaccuracies (inaccurate compasses).

This research has led to four major contributions.

First, we have studied the solvability of the gathering problem deterministically in

the face of eventually consistent compasses in oblivious and limited visibility settings,

assuming the semi-synchronous model SYm, and we provided a solution to the problem.

The proposed solution guarantees that the robots gather at a single point in finite time, if
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their compasses provide correct output after some unknown period of instability, during

which our algorithm can tolerate any number of transient failures of the compasses.

Second, we have investigated the solvability of the gathering problem in the asyn-

chronous model Corda, relying on eventually consistent compasses when robots are

oblivious, and they have limited visibility. We have shown that our gathering algorithm

proposed for the SYm model, with eventually consistent compasses, solves the problem in

the Corda model, in finite time, for up to three robots. Furthermore, we have presented

a deterministic solution to the gathering problem in the Corda model for a maximum

of four robots. Thus, we can argue that eventually consistent compass have the same

computational power as perfect compasses for solving the gathering problem of at most

four robots.

Then, we have shown that the gathering has no deterministic solution for nine or

more robots in the asynchronous model Corda with eventually consistent compasses.

This means that there is an inherent trade-off between the degree of synchrony of the

system and the reliability of sensors.

Third, we have studied the solvability of the gathering of two asynchronous mobile

robots in the face of compass inaccuracies, and we have shown that the problem could be

solved, in a finite number of steps, provided that the divergence between the compasses

is at most 45◦. Besides, we have proved that our algorithm is also correct if we consider

robots with volume. This result is important in practice since compasses are inaccurate

devises by engineering.

Fourth, we have extended previous work by proving a tight bound on the degree of

divergence of robots’ compasses in solving the gathering of two robots. In particular, we

have presented a self-stabilizing algorithm that gathers two asynchronous robots when

their compasses can differ by any angle less than 180◦, which is obviously the largest

divergence for which the compasses can still provide any useful information.

Finally, we have complemented a prior work by developing complete and rigorous

proofs for a circle formation algorithm. The algorithm allows a group of mobile robots,

sharing no common coordinate system, to self-organize into forming a circle when starting

from any configuration in the SYm model.

The proposed algorithm ensures that robots deterministically form a circle in a finite

number of steps, and converges to a situation in which all robots are located evenly on

the boundary of the circle. In addition, the proposed algorithm has the useful property

that it allows robots to be added, removed, or relocated during its execution. A circle

is guaranteed to be reformed and remain stable after external changes have come to an

end. Moreover, it is intrinsically self-stabilizing, due to the assumption that robots are

oblivious.
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12.2 Open Questions and Future Directions

Besides the contributions presented in the previous section, this work has raised several is-

sues that deserve further investigations. In the following, we describe some open questions

related to this research and some future directions.

• Gathering with eventually bounded error compass. In Chapter 4, we have

showed that gathering can be solved in the SYm [69] model, in finite time, with

compasses that are unstable for some arbitrary long periods with the guarantee that

they eventually become perfect. An other interesting question to investigate is can

we still solve the gathering problem when compasses fluctuate for some arbitrary

periods, and then stabilize to certain bounded errors?

• Solvability of gathering with non oblivious robots and EVC compasses.

In Chapter 6, we have shown that the gathering problem has no solution in the

Corda model for nine or more robots when they are equipped with compasses that

are unstable for some arbitrary periods, that are oblivious and that have limited

visibility. It would be interesting to determine the strict number of robots from

which the problem is unsolvable.

The impossibility of the problem comes from the fact that any possible algorithm

fails to keep the distance graph connected during its execution (because of the

oblivious feature of the robots, and the inconsistencies of the compasses), which is

a necessary condition for solving the gathering. Alternatively, it would be beneficial

to equip the robots with a bounded memory (non-oblivious), and see if this can

be useful in solving the gathering with unstable compasses, and how it affects the

self-stabilizing feature of oblivious algorithms.

• Solvability of gathering with many robots and inaccurate compasses. In

Chapter 7 and Chapter 8, we have studied the solvability of the gathering of two

asynchronous mobile robots with inaccurate compasses. However, the natural prob-

lem of generalizing our algorithm to an arbitrary finite number of robots remains

open. We conjecture that a small bound on the degree of divergence of the compasses

is required, and that this bound varies between the SYm and Corda models.

Another interesting issue to investigate is to consider the variance in the north

directions indicated by compasses over time, and how it affects the solvability of the

gathering problem. To the best of our knowledge, only the work of Katayama et

al. [41] addressed this issue. However, many interesting questions remain open, for

instance, we know that gathering is solvable when robots’ compasses diverge by up

to an angle strictly less than π in the fixed compass model, then it would be good

to see if the same bound holds in the dynamic compass models, and if the different

classes of dynamic compass can be transformed to the fixed compass class.
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• Circle formation with limited visibility. In Chapter 10, we have shown that

the circle formation problem is solvable with oblivious robots in the SYm model,

provided that robots have an unlimited range of vision, by proposing a self-stabilizing

algorithm for the problem.

It is also interesting to see whether the problem can still be solved deterministically

with limited visibility or inaccurate sensors. Indeed, the proposed algorithm must

rely on unlimited (or ”sufficiently wide”) visibility in order to compute the smallest

enclosing circle. With limited visibility, it is no longer possible for the robots to com-

pute this circle. This actually raises the question of the existence of a deterministic

solution in that model.

Finally, it would be beneficial to see whether replacing vision with other commu-

nication models (e.g., ad hoc networking with directional antennas) still allows for

solving the circle formation problem.

• Computer simulation. In this dissertation, we analyzed the complexity of conver-

gence of our algorithms. Among our future work, we would like also to implement

these algorithms and quantify their convergence using computer simulation.

Among our future research directions, we aim at addressing the following issues:

• Robots with volume. Our work can still be extended to deal with real world

applications. In particular, the models we considered so far are not realistic in one

aspect, which is the representation of robots by points. In reality, robots have some

volume, which makes problems more difficult to solve. For instance, some robots may

obstruct visibility of others, and some robots may prevent the motion of others, by

interfering in their trajectories. Therefore, it would be interesting to investigate the

impact of considering robots with dimensions on the overall correctness of algorithms

on autonomous mobile robots proposed so far in the literature.

To the best of our knowledge, only the work of Czyzowicz et al. [20] has addressed

this issue by considering robots as unit discs in the plane, and they proposed an

algorithm for gathering up to four robots in the Corda model.

• Fault tolerance in multi-robot systems. The aspect of resilience to failure

in multiple robot systems has been studied only very superficially. In fact, most

of the results we are aware of rely on the assumption that the robots function

properly, and behave correctly. Among our future work, we aim at developing

robust distributed algorithms for reaching agreement among a set of autonomous

mobile robots when they exhibit faulty behavior. Concretely, some robots may crash

or behave maliciously. Our algorithms must be designed so as to deal properly with

such failures.



12.2. OPEN QUESTIONS AND FUTURE DIRECTIONS 125

We also aim at defining an appropriate failure model in which we can study agree-

ment problems for cooperative mobile robotics. We thus aim to investigate the

minimal conditions under which robots can cooperate in the presence of failure, and

develop resilient distributed algorithms for these problems. The integration of these

algorithms in a single framework will provide the necessary basis for decentralized

control of robots and smooth the progress toward real world applications. Our re-

search aims at emphasizing the guaranteed reliability of multiple robot systems,

by favoring fully decentralized solutions, developing fault-tolerant mechanisms, and

using an algorithmic approach to allow for formal verification and correctness.

• Explicit communication between robots. Another significant issue that we

want to investigate is the issue of asynchronous, geographically free communication

between mobile robots (for instance ad hoc communication), and its role in solving

cooperation problems in the presence of failure, and in developing more robust solu-

tions. More precisely, the robots may need to exchange information on their states

(positions, trajectories, orientation, etc.) to construct a complete configuration of

the team in order to cooperate. Many problems are impossible to solve when robots

rely on vision only, for instance robots may need communication to synchronize. We

believe that asynchronous communication can play a crucial role in their ability to

cooperate in the face of failures, since robots may not initially agree on a common

coordinate system.

Finally, we intend to use these problems as a starting point for studying the roles

and strengths of different communication models in mobile robotics research in order

to progress toward a more precise science.
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