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ABSTRACT

Recently, effectiveness of lotteries for financing public
goods has been shown by developing a mathematical
model of equilibrium and conducting experiments with
human subjects, compared with voluntary contributions.
In this paper, by using an agent-based simulation model
in which artificial adaptive agents have a mechanism of
decisions and learning based on neural networks and ge-
netic algorithms, we show effectiveness of lotteries for
financing, and examine validity of the mathematical equi-
librium model and the experiments with human subjects.

Keywords: agent-based simulations, financing public
goods with lotteries, neural networks, genetic algorithms.

1. INTRODUCTION

Morgan [1] develops a mathematical equilibrium model
of lotteries for financing public goods. Morgan and
Sefton [2] conduct experiments with human subjects and
focus on the following three points. First, when it is ef-
ficient to provide positive amount of a public good, the
provision of the public good through the lottery mech-
anism is more than the provision through the voluntary
contribution mechanism. Second, the provision of the
public good increases with the size of the lottery prize.
Third, wagers of the lottery mechanism vary with the re-
turn from the public good. On the whole the results of the
experiments support the above three predictions from the
mathematical equilibrium model.

Simulation analysis is advantageous for implementing a
model of a certain social system and examining effec-
tiveness of the social systems, and then in this paper we
employ simulation analysis in order to show effective-
ness of lotteries for financing and to examine validity
of the mathematical equilibrium model and the experi-
ments with human subject. While mathematical models
are based on optimization such as maximization of an
individual payoff or utility, our agent-based simulation
model employs adaptive behavior models in which agents
evaluate results of their decisions and revise policies to
choose one of alternatives as actual decision makers do

so. From this sense we can expect a reasonable interpre-
tation of the gaps between the results of the mathematical
equilibrium model and the experiments with human sub-
jects.

As concerns approaches based on adaptive behavior mod-
els, Holland and Miller [3] interpret most of economic
systems as complex adaptive systems, and point out that
simulations using artificial societies with adaptive agents
is effective for analysis of such economic systems. Ax-
elrod [4] insists on the need for simulation analysis in
social sciences, and states that purposes of the simula-
tion analysis include prediction, performance, training,
entertainment, education, proof and discovery. The num-
ber of researches related to adaptive behavior models
and agent-based simulation analyses have been reported
[5, 6, 7, 8, 9, 10, 11, 12], and then effectiveness of sim-
ulation analysis with artificial adaptive agents has been
recognized. In this paper, to examine the effectiveness
of lotteries for financing public goods, we conduct agent-
based simulations with a decision making and learning
mechanism based on neural networks and genetic algo-
rithms by extensively varying values of the parameters of
the mathematical equilibrium model [1] which is also the
basis of the experiments with human subjects by Morgan
and Sefton [2].

In the simulations, we deal with three parameters: the
exogenous contribution which becomes the prize in the
lottery game and utilizes for funding the public fund di-
rectly in the voluntary contribution game, the marginal
per capita return of the public good provision, and the
group size which is the number of players in the games.
Furthermore, providing a simple learning mechanism and
a more elaborate one, we examine which of agent ba-
havior with those two learning mechanisms approaches
closer to the prediction of the mathematical equilibrium
model.

2. THE MODEL AND THE EXPERIMENTS

A mathematical equilibrium model for financing public
goods by lotteries is developed by Morgan [1]. Let a set
of players be denoted N � �1� � � � �n�, where a player is



a contributor in a voluntary contribution game or a bettor
in a lottery game. In general, player i has the following
payoff function.

Ui � wi �hi�G�� (1)

where wi is the wealth of player i and G��� denotes the
level of the public good provided; �� is the set of non-
negative real numbers; player i has diminishing marginal
payoff from the provision of the public good, i.e., h �

i����
0 and h��i ���� 0; and Ui is assumed to be quasi-linear.

For a voluntary contribution game, player i chooses x i �
�0�wi� so as to maximize the payoff

Ui � wi� xi �hi�x�N��� (2)

where xi is the amount of wealth contributed by player i,
and x�N� � ∑i�N xi denotes the total contribution of all
the players.

For a lottery game, player i chooses a wager xi � �0�wi�
so as to maximize the expected payoff

Ui � wi� xi �
xi

x�N�
R�hi�x�N��R�� (3)

where R is a prize of some fixed amount.

The results of the mathematical equilibrium model [1] are
summarized as follows.

1. Voluntary contributions underprovide the public good
relative to first-best best levels.

2. The lottery with a fixed prize has a unique equilibrium.

3. The lottery with a fixed prize provides more of the
public good than the voluntary contributions.

In the experiments by Morgan and Sefton [2], a linear-
homogeneous version of the above-mentioned model [1]
is treated. For the voluntary contribution game, each
player has the same endowment e, and an exogenous con-
tribution R is used to fund the public good together with
the total contribution of all the players. Thus, the payoff
of player i is represented by

Ui � e� xi �β�x�N��R�� (4)

where β is the constant marginal per capita return of the
provision of the public good, and player i chooses a con-
tribution xi � �0�e� so as to maximize the payoff (4).

Assuming β � 1, for all i, the predicted equilibrium con-
tribution of the voluntary contribution game is xVC

i � 0.

For the lottery game, the whole sum of wagers is assigned
to the public good provision, and the exogenous contri-
bution R is used to fund a prize. Therefore, the expected

payoff of player i is represented by

Ui � e� xi �R
xi

x�N�
�βx�N�� (5)

player i chooses a wager xi � �0�e� so as to maximize the
payoff (5). Then, the predicted equilibrium contribution
of the lottery game is xL

i � R�n�1���n2�1�β��.

In the experiments, the payoff (4) is given to a subject in
the voluntary contribution game or the payoff (5) in the
lottery game. We focus on one of the two experiments
conducted by Morgan and Sefton [2] , and the values of
the primary parameters of the experiment are given as:
the number of players n � 4, the initial endowment e �
20, the exogenous contribution R � 8, and the marginal
per capita return β � 0�75. The game is iterated 20 times
each treatment. The results are summarized as follows.

1. In the voluntary contribution game, the average contri-
bution in the initial round was about 10.5, it decreased
as rounds proceeded, and finally it became 8.075 in the
final 20th round. The final average contribution 8.075
was considerably larger than the equilibrium contribu-
tion xVC

i � 0.

2. In the lottery game, the average wager in the initial
round was about 10, it was almost changeless as rounds
proceeded, and finally it became 10.35 in the final 20th
round. The final average wager 10.35 was larger than
the equilibrium wager xL

i � 8�4�1�
42�1�0�75�

� 6 and the final

average contribution of 8.075 in the voluntary contri-
bution game of the experiment.

3. In the treatment of the lottery game with the exoge-
nous contribution R � 16 which was twice as large as
that of the baseline treatment, the average wager in the
initial round was about 13, it was almost changeless as
rounds proceeded, and finally it became 13.825 in the
final 20th round. This result implies that large prize lot-
teries will be more successful fund-raising devices than
smaller scale endeavors.

4. In the treatment of the lottery game without the
marginal per capita return, i.e., β � 0, the average
wager in the initial round was about 8, it extremely
decreased as rounds proceeded, and finally it became
2.425 in the final 20th round. This result implies that
wagers are substantially reduced when the link between
public good provision and lottery proceeds is broken.

3. THE SIMULATIONS

In most of mathematical models, it is assumed that play-
ers are rational and then they maximize their payoffs.
Such optimization approaches are not always appropriate



for analyzing human behaviors and social phenomena.
Models based on adaptive behavior can be alternatives
to the optimization models, and it is natural that behav-
ior of agents in simulation models is described by using
adaptive behavioral rules. Especially, we employ a learn-
ing model of agents taking account of not only payoff of
self but also those of the others from a viewpoint that ob-
servation of other players’ actions and payoffs may affect
learning of agents [13].

An artificial adaptive agent in our simulation model has a
decision making and learning mechanism based on neural
networks and genetic algorithms. An agent corresponds
to a neural network which is characterized by synap-
tic weights between two nodes in the neural network, a
threshold which is a parameter for output of a node, and a
learning rate concerned with learning by error-correction.
Because a structure of neural networks is determined by
the number of layers and the number of nodes in each
layer, an agent is prescribed by the fixed number of pa-
rameters. By forming a chromosome consisting of these
parameters which is identified with an agent, each of the
artificial agents can be evaluated through the fitness com-
puted from the payoff obtained by playing the voluntary
contribution or the lottery game and they evolve in our
artificial genetic system. From this sense, in our simula-
tion model, a player of the game is referred to as an agent.
The structure of a neural network and a chromosome in
the genetic algorithm are depicted in Figure 1.
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Figure 1: The structure of a neural network and a chro-
mosome in the genetic algorithm

We design a simulation model related to the experimental
model by Morgan and Sefton [2] to compare with their re-
sults. In our simulation model, the population of agents is

divided into a certain number of groups, and each group
has the same number of agents. Each agent in a group de-
termines the amount of contribution or wager by an out-
put of the neural network and plays the voluntary contri-
bution or the lottery games. In the voluntary contribution
game, an agent obtains a payoff defined by (4). In the
lottery game, an agent obtains a payoff

Ui �

�
e� xi �R�βx�N� if winning

e� xi �βx�N� otherwise�
(6)

The payoff (6) differs from (5) of the mathematical model
in the third term, which is an expected payoff R xi

x�N� .

We provide two learning mechanisms. One is a simple
learning mechanism based only on genetic algorithms,
and in this mechanism agents evolve through the fitness
which is computed by payoffs obtained in the games. The
other is a learning mechanism based on both genetic al-
gorithms and neural networks, and in addition to learn-
ing by genetic algorithms, after finishing games, synap-
tic weights of the neural network corresponding to the
agent are revised by the error back propagation algorithm
with teacher signals (target outputs) obtained by comput-
ing optimal contributions or wagers for the given con-
tributions or wagers of the other agents. For simplicity,
let the simple learning mechanism and the more compli-
cated one be denoted by GA and GABP, respectively. By
providing the two learning mechanisms, we can verify
whether actions of agents with more elaborate learning
mechanism are closer to the predictions of the mathemat-
ical equilibrium model.

The procedures of simulations with GA and GABP are
summarized as follows.

Step 1 (Generating the initial population) Let the number
of agents in a group and the number of groups in the
population of the simulations be n and 10, respectively.
Then, the initial population of 10n agents is formed.

Step 2 (Dividing the population into groups) From the
population, n agents are randomly chosen and then
one group is formed, and this procedure is repeated 10
times. Eventually, 10 groups are made in all.

Step 3 (Playing games) For each group, the voluntary
contribution game or the lottery game is played by n
agents.

The voluntary contribution game.
Step 3-1-VC (Determining the amount of a contribu-

tion) As input values to the neural network, the con-
tribution x�i of agent i, the sum x�

�i of the contributions
of the other agents, the total fund x �i �x�

�i �R for the
public good, and the payoff U �

i of agent i in the pre-



vious generation are normalized into �0�1�. The four
normalized values are inputted to the neural network,
and an output x̂i is obtained. Especially, for the first
generation, the input values are randomly determined
from �0�1�. The contribution of agent i of the present
generation is determined as xi � ��e� 1�x̂i�, where
��� denotes rounding off fractions.

Step 3-2-VC (Informing about the contributions of the
others) Agent i is informed about the sum x�i of the
contributions of the other agents in the present gen-
eration.

Step 3-3-VC (Computing the payoff) The payoff Ui of
agent i is calculated by (4).

The lottery game.
Step 3-1-L (Determining the amount of a wager) As

input values to the neural networks, the wager x �i of
agent i, the sum x�

�i of the wagers of the other agents,
the total fund x�i � x�

�i for the public good, and the
payoff U �

i of agent i in the previous generation are
normalized into �0�1�. The four normalized values
are inputted to the neural network, and an output x̂ i

is obtained. Especially, for the first generation, in-
put values are randomly determined from �0�1�. The
wager of agent i is determined as xi � ��e�1�x̂i�.

Step 3-2-L (Drawing lotteries) After wagers of all the
agents are determined, winners are selected by a
roulette wheel in which agent i draws a winning with
the probability pi � xi�∑n

j�1 x j.

Step 3-3-L (Informing about the contributions of the
others) Agent i is informed about the result of the
lottery and the sum x�i of the wagers of the other
agents in the present generation.

Step 3-4-L (Computing the payoff) The payoff U i of
agent i is calculated by (6).

Step 4 (Learning by the error back propagation algo-
rithm) This step is executed only for GABP. Synaptic
weights of the neural network for agent i are revised
by teacher signals obtained by computing the optimal
wagers for the given wagers of the other agents. For
agent i, the wagers of self and the sums of the wagers
of the other agents for the last k games are recorded and
they are used as training data for revising the synaptic
weights.
If the number of rounds does not reach the given maxi-
mal round, return to Step 3.

Step 5 (Performing genetic operations) The following
genetic operations are performed to each of the chro-
mosomes for all the agents, and then the population of
the next generation is formed.
Step 5-1 (Reproduction) The fitness f i of each agent is

obtained by appropriately scaling the payoff x i ob-

tained in the present generation. Especially for simu-
lations with GABP, the payoff only at the first round
is used in order to exclude the effect of learning by
the error back propagation algorithm. As a repro-
duction operator, the elitist roulette wheel selection
is adopted. The elitist roulette wheel selection is a
combination of the elitism and the roulette wheel se-
lection. The elitist means that a chromosome with the
largest fitness is preserved into the next generation.
By a roulette wheel with slots sized by the probabil-
ity pselection

i � fi
∑10n

i�1 fi
, each chromosome is selected

into the next generation.

Step 5-2 (Crossover) A single-point crossover opera-
tor is applied to any pair of chromosomes with the
probability of crossover pc. Namely, a point of cross-
ing over on the chromosomes is randomly selected
and then two new chromosomes are created by swap-
ping subchromosomes which are the right side parts
of the selected point of crossing over on the original
chromosomes.

Step 5-2 (Mutation) With a given small probability of
mutation pm, each gene, which represents a synaptic
weight, a threshold or a learning rate, in a chromo-
some is randomly changed. The selected gene is re-
placed by a random number in ��1�1� for a synaptic
weight, or in �0�1� for a threshold and a learning rate.

If the number of generation does not reach the given
final generation, return to Step 2.

4. THE RESULTS OF THE SIMULATIONS

4.1. Treatments of the Simulations

In the simulations, the voluntary contribution and the lot-
tery games are played by agents, and there are three im-
portant parameters in the model: the exogenous contribu-
tion R which is used to fund the public good or a prize, the
marginal per capita return β of the public good provision,
and the group size n which is the number of agents in a
group. Then, we conduct the three simulations: the ex-
ogenous contribution simulation, the marginal per capita
return simulation, and the group size simulation. Fur-
thermore, providing two learning mechanisms, GA and
GABP, we verify whether actions of agents with more
elaborate learning mechanism are closer to the predic-
tions of the mathematical equilibrium model. In this pa-
per, we give only the result of the exogenous contribution
simulation because of limited space.

We summarize the general settings of the simulations and
the parameters of the neural networks and the genetic al-
gorithm as follows. The initial endowment is usually set



at e � 20, and only for the case where the equilibrium
wager is larger than 20, it is set at e � 40. Let n de-
note a group size, and because 10 groups are provided
for each treatment, the population size of each genera-
tion becomes 10n. Each treatment of the simulations is
performed 10 runs. There is 6 units in the hidden layer of
the neural networks. Each of the output functions of units
in the hidden and the output layers is a logistic function
f �x� � 1

1�exp��x� . For the GABP treatments, the game is
repeated 10 rounds in each generation. After the game
finishes in each round, the error back propagation algo-
rithm is performed using 10 sets of the training data. To
do so, each agent records the results of the games, i.e., x i

and x�i, for the last 10 games. Each of the initial values of
synaptic weights and thresholds is set at 1 so that a con-
tribution or a wager in the first generation becomes the
maximal values, i.e., 20 or 40, and the initial value of the
learning rate is set at a random number in �0�1�. For sim-
ulations with GABP, the fitness is computed by using the
payoff only at the first round in each generation in order
to exclude the effect of learning by the error back propa-
gation algorithm. The probabilities of crossover and mu-
tation are specified at pc � 0�6 and pm � 0�01, respec-
tively. When a certain gene is selected for mutation, the
gene is replaced by a random number in ��1�1� if it is for
a synaptic weight, and the gene is replaced by a random
number in �0�1� if it is for a threshold or a learning rate.
The simulations last to generation 1000 which is the final
generation for treatments with the group size n � 2�4�10,
or to generation 2000 which is the final generation for
treatments with n � 50�100.

4.2. The Exogenous Contribution Simulation

In the exogenous contribution simulation, the group size
and the marginal per capita return are fixed at n � 4 and
β � 0�75, respectively, related to the experiment by Mor-
gan and Sefton, and each treatment consists of four cases
with R � 2�4�8�16. Each of the treatments is repeated 10
times, and then numerical data given in the tables and the
figures of this subsection are averages of the 10 runs.

The voluntary contribution games: The result of the
voluntary contribution games is summarized in Table 1
where the average contributions of the last 100 genera-
tions in the GA treatments are shown in the column of
GA, the average contributions of the 10 rounds in the fi-
nal generation in the GABP treatment are shown in the
column of GABP, and the result of the experiment by
Morgan and Sefton is also given in the rightmost col-
umn. As seen in the table, the average contributions of
both the GA and the GABP treatments are close to the

equilibrium of zero, and the contributions of the GABP
treatments are closer to the equilibrium than those of the
GA treatments. Thus, the result supports the predictions
of the mathematical equilibrium model that the equilib-
ria are zero regardless of the value of R, and it is found
that actions of agents with more elaborate learning mech-
anism are closer to the predictions of the mathematical
equilibrium model.

Table 1: The voluntary contribution games
R equilibrium GABP GA subjects
2 0 0.033 0.220 —
4 0 0.022 0.199 —
8 0 0.023 0.175 10�5� 8�075

16 0 0.031 0.228 —

Transitions of contributions of the GA treatments are de-
picted in Figure 2. The equilibrium of contribution is
shown at the both sides of the vertical axis. As seen in
Figure 2 and Table 1, the average contributions of all the
treatments with R � 2�4�8�16 approach 0.2 up to around
generation 200, and for convergence of the sequence of
the average contributions, an obvious difference among
the four treatments is not found.
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Transitions of contributions of the GABP treatments are
depicted in Figure 3. As seen in Figure 3 and Table
1, the average contributions of all the treatments with
R � 2�4�8�16 approach zero up to about generation 200,
and for convergence of the sequence, an obvious differ-
ence among the four treatments is not also found. By the
learning by the error back propagation algorithm, aver-
age contributions approach almost zero before the fourth
round of the final generation in all the four treatments.

We compare the result of the voluntary contribution
games in the exogenous contribution simulation with the
corresponding result of the experiment by Morgan and
Sefton. In the experiment, the voluntary contribution
game with R � 8 is played. The average contribution at
the initial round of the game is about 10.5, it decreases
as the round proceeds, and it finally becomes 8.075 at the
final 20th round of the game. This contribution is con-
siderably larger than the equilibrium of zero, but the con-
tribution slightly decreases as subjects gain experiences.
For the result of the simulation, the average contributions
decrease from 20 to almost zero until around generation
200 in the both GA and GABP treatments.

We summarize the result of the voluntary contribution
games as follows. The contributions of both the simu-
lation and the experiment decrease as the learning devel-
ops. While the contribution of the experiment is larger
than the equilibrium, that of the simulation approaches
the equilibrium. Because the repetition of the game in
the simulation is vary large compared with that of the ex-
periment, it suggests that human subjects with rich expe-
rience of the game may make contributions close to the
equilibrium. The contributions of the experiment corre-
spond to the contributions of the simulation from gener-
ation 39 to generation 43. Although this correspondence
depends on the initial arrangement of the simulation, in
general it would be expected to exist some correspon-
dence between the result of the experiment and a part of
the whole transition of the simulation with a larger pro-
cess of the learning.

The lottery games: The result of the lottery games is sum-
marized in Table 2. The equilibria of wagers are shown
in the second column of the table, and they increase with
growing the exogenous contribution R, i.e., the size of the
prize. As seen in the table, the average wagers of both
the GA and the GABP treatments are close to the equilib-
ria, and the wagers of the GABP treatments are closer to
the equilibria than those of the GA treatments. Thus, the
result supports the predictions of the mathematical equi-
librium model that the equilibria of wagers increase as
the value of R becomes larger, and it is found that ac-

tions of agents with more elaborate learning mechanism
are closer to the predictions of the mathematical equilib-
rium model.

Table 2: The lottery games
R equilibrium GABP GA subjects
2 1.5 1.471 2.222 —
4 3 2.975 3.735 —
8 6 5.954 5.868 10 � 10�35

16 12 11.835 10.560 13� 13�825

Transitions of wagers of the GA treatments are depicted
in Figure 4. As seen in Figure 4 and Table 2, the differ-
ences among the average wagers of the treatments can be
seen from around generation 40, and the average contri-
butions of the treatments with R � 2�4�8�16 converge at
about 2.2, 3.7, 5.9, 10.6, respectively, after around gen-
eration 150. Compared with the equilibria of wagers, the
average wagers of the treatments with R� 2�4 are slightly
larger than the equilibria, and those of the treatments with
R� 8�16 are slightly smaller than the equilibria. For con-
vergence of the sequences, an obvious difference among
the four treatments is not found.

Transitions of wagers of the GABP treatments are de-
picted in Figure 5. After around generation 70, each of
the average wagers clearly converges at the correspond-
ing equilibrium. Compared with the GA treatments, the
transitions of the GABP treatments converge at the equi-
libria more exactly and earlier, and variances of the wa-
gers are obviously smaller than those of the GA treat-
ments. By the learning of the error back propagation
algorithm, the average wagers of the treatments with
R� 2�4�8 converge almost at the equilibria after the third
round, and even for the treatment with R � 16, although
there exists an oscillation around the equilibrium, the av-
erage wagers after the sixth round stably converge at the
equilibrium.

To examine the relation between the average wagers of
the simulations and the equilibria of the mathematical
model, we perform the treatments with R � 1�4, 2�7, 5�4,
6�7, 9�4, 10�7, 13�4 in addition to the original treatments
with R� 2�4�8�16. In Figure 6, given the equilibria in the
horizontal axis, we show the differences between the av-
erage wagers of the simulations and the equilibria in the
vertical axis. An seen in Figure 6 for the GA treatments,
the average wagers of the simulations are higher than the
corresponding equilibria in the games whose equilibria
are smaller than 6, and the average wagers of the simu-
lations are lower than the equilibria in the games whose
equilibria are larger than 8. In contrast, for the GABP
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treatments, the average wagers of the simulation are close
to the equilibria regardless of the sizes of the equilibria.
The learning mechanism of GABP is complicated and re-
quires a heavy load of computation. Because the learning
of people does not have a complicated mechanism such
as the GABP, we can conceive that the learning mecha-
nism of GA is closer to the learning of people, compared
with the GABP. This suggestion might give some reason
for the fact that the average wagers by human subjects
shown in Table 2 from the experiments by Morgan and
Sefton [2] are larger than the equilibria.

We compare the result of the lottery games in the exoge-
nous contribution simulation with the corresponding re-
sult of the experiment by Morgan and Sefton. In the ex-
periment, by comparing two lottery games with R� 8�16,
they examine how the size of the prize influences the wa-
gers of subjects. The average wager at the initial round
of the game in the treatment with R � 8 is about 10, the
round goes on but it rarely changes, and it finally becomes
10.35 at the 20th round of the game. The average wa-
ger at the initial round of the game in the treatment with
R � 16 is about 13, it is almost changeless even though
the round proceeds, and it finally becomes 13.825 at the
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Figure 6: Differences between the wagers of the simula-
tion and the equilibria

20th round of the game. Although the change by acquir-
ing experience is not found in each of the treatments with
R � 8�16, the experiment supports the equilibrium pre-
diction that the wagers increase as the value of R becomes
larger.

For the corresponding results of the simulation, in the
GA treatment with R � 8, the average wager starts at 20,
it decreases as the generation goes on, and after around
generation 150 it converges at almost 6. In the GA treat-
ment with R � 16, after around generation 150, the av-
erage wager finally oscillates in the interval between 10
and 11. In the GABP treatments, the average wagers con-
verge sooner and closer to the equilibria than those in the
GA treatments. Especially, the wagers of the human sub-
jects in the experiments R � 8 and R � 16 correspond
to parts of the transition of the wagers of the simulation.
Namely, for the treatment with R � 8, the transition of
wagers from 10 to 10�35 in the experiment corresponds
to the transition from a wager at generation 68 to a wager
at generation 70 in the simulation, and for the treatment
with R � 16, the transition from 13 to 13�825 in the ex-
periment corresponds to the transition from a wager at
generation 69 to a wager at generation 73 in the simu-
lation. Finally, as seen in Table 2, Figures 4 and 5, the



results of the simulation including the results of the treat-
ments not only with R � 8�16 but also with R � 2�4 more
clearly support the equilibrium prediction that the wagers
increase as the value of R grows larger.

Summary of the exogenous contribution simulation: To
conclude this subsection, we summarize the results of the
simulation for the exogenous contribution R.

1. Although it can be found that there exists a clear
difference between the equilibria of the mathemati-
cal model and the average contributions of the experi-
ment with human subjects in the voluntary contribution
games, in the simulation, we observe that the average
contributions of the simulation are sufficiently close to
the equilibria with the passage of time or with enough
learning of agents.

2. While the result of the experiment by Morgan and
Sefton supports the equilibrium prediction that the wa-
gers increase as the value of R grows larger, the result
of the simulation supports it more obviously.

3. In both of the voluntary contribution games and the
lottery games, the contributions and the wagers of the
GABP treatments are closer to the equilibria of the
mathematical model than those of the GA treatments.
Thus, it is found that actions of agents with more elab-
orate learning mechanism are closer to the predictions
of the mathematical equilibrium model.

4. From comparing Tables 1 and 2, we observe that the
lottery mechanism provides more of the public good
than the voluntary contributions mechanism.

5. CONCLUSIONS

In this paper, we have constructed an agent-based sim-
ulation model in which artificial adaptive agents have
a mechanism of decision making and learning based
on neural networks and genetic algorithms. Dealing
with three parameters: the exogenous contribution, the
marginal per capita return, and the group size, we have
performed simulations and examined the effectiveness of
the lottery mechanism compared with the voluntary con-
tribution mechanism. As a result of the simulations, we
have observed that the transitions of the average contri-
butions and wagers approach almost the corresponding
the predictions of the mathematical equilibrium model,
and actions of agents with more elaborate learning mech-
anism are closer to the equilibria. Moreover, from the
simulation, it is also found that the lottery mechanism
provides more of the public good than the voluntary con-
tributions mechanism. Thus, the results of the simula-
tion support the equilibrium prediction more obviously

compared with the experiments with human subjects, and
with the results of the simulations, we have given some
interpretation on the differences between the equilibrium
of the mathematical model and the result of the experi-
ments with human subjects.

REFERENCES

[1] Morgan, J. (2000). “Financing public goods by means of
lotteries,” Review of Economic Studies 67, 761–784.

[2] Morgan, J. and Sefton, M. (2000). “Funding public goods
with lotteries: experimental evidence,” Review of Eco-
nomic Studies 67, 785–810.

[3] Holland, J.H. and Miller, J.H. (1991). “Adaptive intelli-
gent agents in economic theory,” American Economic Re-
view 81, 365–370.

[4] Axelrod, R. (1997). “Advancing the art of simulation
in the social sciences,” Simulating Social Phenomena,
R. Conte, R. Hegselmann and R. Terna (eds), Springer-
Verlag, 21–40.

[5] Dorsey, R.E., Johnson, J.D. and Van Boening, M.V.
(1994). “The use of artificial neural networks for es-
timation of decision surfaces in first price sealed bid
auctions,” New Directions in Computational Economics,
W.W. Cooper and A.B. Whinston (eds.), Kluwer, 19–40.

[6] Andreoni, J. and Miller, J.H. (1995). “Auctions with artifi-
cial adaptive agents,” Games and Economic Behavior 10,
39–64.

[7] Erev, I. and Rapoport, A. (1998). “Coordination, “magic,”
and reinforcement learning in a market entry game,”
Games and Economic Behavior 23, 146–175.

[8] Roth, A.E. and Erev, I. (1995). “Learning in extensive
form games: experimental data and simple dynamic mod-
els in the intermediate term,” Games and economic behav-
ior 8, 163–212.

[9] Rapoport, A., Seale, D.A. and Winter, E. (2002). “Co-
ordination and Learning Behavior in Large Groups with
Asymmetric Players,” Games and Economic Behavior 39,
111–136.

[10] Leshno, M., Moller, D. and Ein-Dor, P. (2002). “Neural
nets in a group decision process,” International Journal of
Game Theory 31, 447–467.

[11] Sundali, J.A., Rapoport, A. and Seale, D.A. (1995). “Co-
ordination in market entry games with symmetric play-
ers,” Organizational Behavior and Human Decision Pro-
cesses 64, 203–218.

[12] Nishizaki, I., Ueda, Y. and Sasaki, T. (forthcoming). “Lot-
teries as a means of financing for preservation of the
global commons and agent-based simulation analysis,”
Applied Artificial Intelligence.

[13] Duffy, J. and Feltovich, N. (1999). “Does observation of
others affect learning in strategic environments? An ex-
perimental study,” International Journal of Game Theory
28, 131–152.


