
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Methodology of Data Mining - Utilization of

Ruduct and Indentification of Decision Rule -

Author(s) Niwano, Kaede; Kijima, Kyoichi

Citation

Issue Date 2005-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/3873

Rights ⓒ2005 JAIST Press

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, IFSR 2005 : Proceedings of the

First World Congress of the International

Federation for Systems Research : The New Roles

of Systems Sciences For a Knowledge-based Society

: Nov. 14-17, 2083, Kobe, Japan, Symposium 2,

Session 5 : Creation of Agent-Based Social

Systems Sciences  Decision Systems



Methodology of Data Mining – Utilization of Ruduct and Indentification of Decision Rule - 
 
 

Kaede  N iwano 1  and  Kyo ich i  K ij ima 2  
1Graduate School of Decision Science and Technology, Tokyo Institute of Technology 

2-12-1, Ookayama, Meguro-Ku, Tokyo, Japan 
kaede@valdes.titech.ac.jp 

2Graduate School of Decision Science and Technology, Tokyo Institute of Technology 
2-12-1, Ookayama, Meguro-Ku, Tokyo, Japan 

kijima@valdes.titech.ac.at 
 
 
 

ABSTRACT 
 

This paper proposes a new data mining methodology 
of reasoning for sorting new cases by using past cases or 
data based on rough set theory. Rough set theory is a 
mathematical framework to treat uncertainty. Our 
methodology consists of two parts. At first we focus on 
finding reduct for reducing large amount of data. When 
we try to discover a useful knowledge from a large 
amount of data when performing data mining, there 
exists trade-off between computation capacity and 
precision degree of the results. If we want to get more 
precise knowledge, we more need to cut down the data. 
Reduct is such a subset of the set of data attributes that 
provides the same quality of reasoning as the original 
set. Therefore by finding out an appropriate reduct, we 
can cut the set of attributes. 

Then we introduce a new way to identify more 
appropriate decision by employing concept of 
approximation and similarity relation S. Generally, in 
reasoning using rough set theory, we have two types of 
rules, namely, deterministic rule and non-deterministic 
rule. The former determines only one decision class 
while the latter does not. To treat the latter cases, we 
propose a new approach to making more precise 
decisions by measuring the possibility of being in a 
decision class. 
 
Keywords: Rough set theory, Knowledge, Data mining, 
Decision making 
 
 

1. INTRODUCTION  
 

The purpose of the present paper is to propose a new 
data mining methodology of reasoning for sorting new 
cases by using past cases or data based on rough set 
theory. Rough set theory is a mathematical framework 
to treat uncertainty. 
Now a days we in information-overflowed society 
constantly face the need of processing large amount of 
information. However, we have to compromise at some 

point due to the bounded rationality as H. A. Simon 
pointed out [1]. Therefore it is important to dig out 
effective (important) pieces of information from 
ineffective ones to sort out substantial alternatives. 
 The importance of such data screening has been 
recognized most in economics. The reserch on 
utilization of information has been investigated as a 
reserch on a data mining. Though there are many 
methods for data mining, for instance the statics 
analysis and neuralnetwork, these methods have some 
limits. First, it is a limit of the data volume. In statics 
analysis, we have to do re-sampling repeatedly to gain 
sumpling distribution, which costs time complexity. In 
addition the analysis can deal with only quantitative 
data. In basket analysis, we have to check many 
combination of items. Hence, if the methods refer to 
NP-complete problem, we can not compute in 
polynominal time. Secondary, some limits arise from 
the method itsself. In neuoral network, the final weight 
is changeable depending on initial value, and the 
accuracy of prediction can be change every term.  
 In this paper, we propose a new reasoning method for 
treating uncertainty in data mining. We use rough set 
theory, which can deal with uncertainty with high 
precision of reasoning as well as high capability of 
prediction. The theory has been used in many research 
on data mining these days, especially in knowledge 
discovery, in prediction [2][3] and so many domains[5]. 

we will explain about rough set theory in section 2 and  
about decision rule in section 3. Then, a new 
methodology of data mining using rough set theory is 
introduced in section 4. In section 5 we present the 
algorithm of our methodology. Finally, in section 6 we 
describe conclusion. 
 
 

2. ROUGH SET THEORY 
 
 This section introduces general idea of rough set 
theory (Pawlak, 1982) for preparing our framework to 
deal with uncertainty. Besides rough set there are 
several approaches like fuzzy set theory to treat 



vagueness and uncertainty.  It is, however, true that the 
rough set theory provides more objective measure of 
uncertainty, so that we can evaluate quality of 
approximation objectively by it. 
 
2. 1. Information system and indiscernibility 
relations 
 
 In rough set reasoning a real world is expressed by a 
table which is called information system, and then some 
equivalence relation and set approximation are 
introduced. 
 The formulation is as follows: Information system is 
defined by a table consisting of 

U : a finite set of objects 
  Q : a finite set of attributes 
  V : q

Qq
q VV ,U

!

: the domain of attribute q 

  f : qVqxfVQU !"# ),(,  for every UxQq !! ,  
Q consists of subset C and subset D, where C denotes a 
set of the conditional attributes, while D represents a set 
of the decision attributes. D is derived from C and 
expresses sorting of some objects. We call such table 
“Decision System”. 
Then, for any CB !  the indiscernibility relation is a 
relation defined on U by 
 

)},'(),(,|)',{()( bxfbxfBbUUxxBIND =!"#!= . 
Since indiscernibility relation satisfy reflexive, 
symmetric and transitive, it is an equivalence relation. 
Let us denote an equivalence class of x by 

B
x][ .  

 
2. 2. Set Approximation 
 
 Besides the decision attribute and indiscernibility 
relation, from the information system we may get 
decision rules like “if condisional attribute =  then 
decision attribute = , where  is description of x in 
terms of conditional attributes while  is description 
of x in terms of decision attributes.” However, in the 
case that we cannot determine a unique value of 
decision attribute corresponding to the conditional 
attritute, we may not derive any crisp decision rule. To 
deal with such cases, we need to treat uncertainty by set 
approximation defined as follows: 
Let X be a subset of U, then we define 
 B-lower approximation of X : }][|{ XxxXB

B
!=  

 B-upper approximation of X : }][|{ !"#= XxxXB
B

 

 B-boundary of X          : XBXBXBN
B

!=)((  
If "}"),(|{ !== dxfxX and !")(XBN

B
 then X is 

called a rough set and in that case the decision system 
becomes non-deterministic. The lower approximation 

derives deterministic and crisp rules, while the upper 
approximation derives non-deterministic rules. 
Let us illustratet the above by taking Example 1 (See 
Table 1). Suppose },,,,,,,{ 87654321 xxxxxxxxU =  and 

}d{D},q,q{C,DCQ ==!=
21

 of 
"}"),(|{ acceptdxfxX == . Then the indiscernibility 

relation becomes 7532 )(,)( xCINDxxCINDx . The 
situation is summarized by Fig 1. 
 
Example 1 

Table 1.  Decision System 
 

Conditional attributes Decision  
q1 q2 d 

x1 20 50 Reject 
x2 100 80 Accept 
x3 100 80 Accept 
x4 50 60 Reject 
x5 90 90 Reject 
x6 100 80 Accept 
x7 90 90 Accept 
x8 100 80 Reject 

 
 
 

 
 

Fig 1. Set Approximations 
 
 
We can have some mathematical properties for the set 
approximation. 
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where X!  denotes XU ! . 
It is easily seen that the lower and the upper 
approximations of a set are, respectively, the interior 
and the closure of the set in terms of the topology 
generated by the indiscernibility relation. 
 
2. 3. Reduct 
 
Concept of reduct in rough set theory plays a significant 
and crucial role in this paper. Reduct is a subset of 
conditional attributes such that provides the same 
quality of classification as the original set of conditional 
attributes. Hence the ability of reduct to perform 
classifications is the same as that of the whole attribute 
set.  
We define reduct in information system as follows: 

R is a reduct 
cR

xxUxCR ][][,, =!"#$  
Then, we can introduce a decision-related reduct in such 
a way that it preserves the ability to identify decision. 
That is, 
 R is a decision–related reduct 

 
DR

xxUxCR ][][,, !"#!$  
If decision–relative reduct R is determined, then D is 
automatically fixed. The fact implies that R contains 
sufficient infromation to identify D and we can 
eliminate any other information than R from the 
decision system for making decision on a new case. 
 Although reduct is very usefull concept, it is not an 
easy task to find the best reduct since it may be 
sometimes an  NP-hard problem. Fortunately, however, 
there exist efficient heuristics based on genetic 
algorithms that computes sufficiently many reducts in 
often acceptable time, unless the number of attributes is 
very high. The heuristics is as follows: 
 Given an information system ),,,( fVQUA =  with 
n objeccts, the discernibility matrix of the information 
system is a symmetric nn!  matrix with entries ijc  
defined by: 
 }n,...,j,i,for)}x,q(f)x,q(f|Qq{c jiij 1=!"=  

Each entry thus consists of the set of attributes upon 
which objects 

i
x and jx differ. 

 A discernibility function 
A
D for given infromation 

system A is a Boolean function on m Boolean variables 
*

m

* q,...,q
1

(corresponding to the attributes mqq ,....,1 ) 
defined as follows. 
 }c,nij|c{)q,...,q(D

ij

*

ij

*

m

*

A
!"###$%= 1

1
, 

where }|{ **

ijij cqqc != . 
The set of all prime implicants of 

A
D determines the set 

of all reducts of A . 
 
2. 4. Decision class 
 
 We can formalize partition of decision classes of the 
universe U as follows. The cardinality of the image 

},),(|{),( XxkdxfkdUf !==  is called the rank of 
d and is denoted by )(dr . Let us assume that the set 

d
V of values of decision d is equal to },...,{ )(1 dr

dd
vv . 

The decision d determines a partition of the universe U 
 },...,{)( )(1 dr

dd
XXdCLASS = ,  

where })(|{ k

d

k

d
vxdXxX =!=  for )(1 drk !! . 

Let us illustrate this using table 1 of Example1. We 
have image of },{),( rejectacceptdUf = ,  

)(dr =2 and 

},{)( 21

dd
XXdCLASS = . 

The same hods for any attributes in Q. 
 
 

3. DECISION RULE EXTRACTION USING 
ROUGH SET THEORY 

 
 We may be able to derive some decision rules from the 
decision system inductively using rough set theory. 
There are two kinds of rule. One is a “deterministic 
rule” derived from the lower approximation. The other 
is a “non-deterministic rule” obtained from the upper 
approximation. In Example 1, the lower and upper 
approximations derive the following rules, respectively. 
 Lower approximation : {100,80} э accept 
 Upper approximation :  {90,90} э accept or reject 
                    {100,80} э accept or reject 
 In rough set theory, the description of decision 
attribute of a new case is derived by decision rules 
available so far. While the description of decision 
attribute of a new case is uniquely determined with a 
deterministic rule, it is not uniquely determined with a 
non-deterministic rule. 
 In non-deterministic case, the number of sorting 
examples which support each possible (decision) class 
is crucial. The number is called strength. If the strength 
of one class is greater than that of other classes one can 
conclude that the considered object most likely belongs 



to the strongest class [5]. However, such a way of 
selection is too simple to describe uncertainty. We insist 
that we can gain more information in the decision 
system than that we have using another concept of 
approximation within rough set framework. 
 
 

4. METHODOLOGY UTILIZING ROUGH SET 
THEORY 

 
 In this section we will propose a new approach to data 
mining using the rough set theory. We focus on two 
aspects of the theory to construct our methodology.  

One of the aspects is reduct. Using it we can reduce 
space and time costing to treat data. The other is 
identification of the non-deterministic rule. We try to 
reason as precisely as possible by measuring the 
possibility of being in a decision class. We also 
introduce another concept of approximation to get more 
information that is most likely to belong to. 
 
4. 1. Utilizing Reduct 
 
 It is important to reduce space and time costing when 
performing data mining. To resolve the computing 
resources problem we employ reduct. Since reduct is a 
sufficient information to make a decision rule, by using 
it we can save space and time by eliminating redundant 
attributes. We can get a reduct by performing the 
procedure explained in 2.3. Once we have obtained a 
reduct of a decision system, we only use the reduct for 
reasoning. 
 
4. 2. Identification of the non-deterministic rule 
 
 We can distinguish two types of decision rule based on 
rough set theory, i.e., a deterministic rule and  a 
non-deterministic rule. The deterministic rule leads to 
only one cleary decision class like “if a conditional 
attribute is  then decision attribute is “. On the 
other hand, the non-deterministic rule does not. It allows 
to more than one decision like “if a conditional attribute 
is  then decision attribute is  or “. For 
non-deterministic rule we generally use strength to    
determine which decision class a new case belongs to 
[5]. 
 However, it is too simple to explain a situation. It 
seems inevitable way. We introduce a new approach to 
resolve an identification non-deterministic rule. We can 
devide the member of boundary of rough set into two 
types of member, one is positive, the other is not 
positive. Getting know the type, we may conclude 
which is more appropriate decision class by using 
positive or not positive. 

 At first, we will describe the member of positive or 
possible of a decision class, and then, introduce a new 
concept of approximation. Finally, we will get more 
appropriate decision class of the non-deterministic rule. 
 
4.2.1. Positive and possible member of a decision 
class 
 
 When we consider a boundary on X, we introduce an 
original concept to set approximation [7]. 
 Let X be a set corresponding to vague concept. Then 
the elements of X are not certainly in X. Elements of X 
can be devided into unquestionable and questionable 
menmers. In such a case, rough set theory can be 
applied to classify the elements into three categories: 
positive members, possible members and boundary 
members. 
 Let X  and X  be sets such that XXX !! . Then 
we call X  a sets of positive members. We assume that 
only elements which are “similar“ to a member of 
X can be regarded as possible members.  

We call a relation S a similarity relation if it is reflexive. 
Let us denote 

}ySx|y{)x(S = , 
 }xSy|y{]x[ S = , 

}X]x[|x{)X(S S* !=  and  

}X]x[|x{)X(S S

* !"#= , 
then we have 

}X]x[|x{)y(S}xSy,Xy|x{X
S

Xy
!"#==$%&

$
U

   )X(S}X]x[|x{ *

S =!"# $  
Since  

)XU(XU !=!  and XU)XU( !=!  , 
we also have 
 U

Xy
S }X]x[|x{)y(SUX

!

"=#$  

   )X(S}X]x[|x{ *S =!"  
Finally, we have 
  )X(SXXX)X(S *

* !!!!              (1) 
Hence we have approximations of X , )X(S* , and of 

X , )X(S* . 
Based on the idea, we propose a new identification 

among elements in boundary. (1) shows that there is a
difference between X  and )X(S* , so that we pay 
attention of that point. Before explaining our idea we 
will re-define the original notations of rough set as 
follows: 
 Lower approximation of X: )(* XIND  

 Upper approximation of X: )(* XIND  



 Equivalence class of x : }xINDy|y{]x[
IND

=  
According to considering situation, we only focus on 
the member of )X(IND* and since X  is 
unquestionable members of X, we can derive 

 X)X(IND* = . 
Hence, we have 
   

)}X]x[xSy,Xy()Xx(|x{X IND !"#$%&'%=  

)X(IND}X]x[|x{ *

IND =!"# $  
and  

)X(INDXX)X(INDX *

* !!!= . 
This situation is shown in Fig 2. We can divide the 
members of )X(IND*  into the members of X  and 

not of X  using above property )X(INDX *
! . We 

can conclude that decision class of a x is X for all x 
in )X(IND* , if IND]x[  is in X .  

There are some types of elements in *
IND regarding 

relation S. We can determine a decision class of an 
element depends on its type. 
a) an element whose equivalence class is included in 

k

d
X  

b) not a) and an element with no relation S other than 
itself 

c) not a) and b) and, an element with some relation S 
to the elements in same decision class 

d) not a) , b) and c) and, an element with some relation 
S to the elements in different decision classes, the 
numbers of element in each decision class are 
different 

e) not a), b), c) and d) and, an element with some 
relation S to the elements in different decision 
classes, the numbers of element in each decision 
class are same 

We treat these types of element corresponding to above 
types as follows: 
a) decision class is k

d
X  

b) we can not determine decision class with S, 
re-define S and try again 

c) decision class is the decision class with relation S to 
the element 

d) decision class which have the greatest number of 
elements with relation S 

e) we can not determine decision class with relation S,          
re-define S and try again 

Type e) is very rare case. We had not had more precise 
expression of X than X  and X  so far. Hence 
re-defining S is the best way. We illustrate flow chart of 
identifying decision class of a new case x in Fig 3. 

We may have various X  depending on the definition 
of S. Next section (4.2.2), we discuss about a similarity 
relation S. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Image of 

! 

X  and 

! 

X  
 
 
 
 
4.2.2. Similarity relation S 
 
 If )x(S  has a wide range then the member of X  
will increase, otherwise it will decrease. We can define 
a set of possible members as any set X such 
that XX ! , which is determined by S. Therefore, we 
have to consider the nature of data and define S. It is 
quite natural to conclude that if the description of 
element is similar, then these elements have the same 
decision class. Now we define a similarity relation S by 
generalizing indiscernibility relation i.e., by dropping 
off transitivity and symmetry from it. Consider which 
requirement is necessary and which is not. Reflexive is 
necessary since it is natural that x is a similar to x. 
Transitive is not necessary since it is not always true 
that if x is similar to y and y is similar to z then x is 
similar to z. Both reflexive and transitive are clear, 
symmetric is not. However what we shown in 4.2.1 is 
true even when S is not symmetric. S needs at least 
reflexive. 
 

X 

S   : similarity relation 
IND : indiscernibility relation 
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Fig 3. Flow chart of identifying decision class of x 
 
 
4.2.3. Strict Similarity relation Ŝ  
 
 Next we define a “strict” similarity relation Ŝ  by 

}C))q,'x(f),q,x(f(d,Qq|UU)'x,x{(Ŝ !"#$"=

, where C is a constant and )'x,x(d  shows a metric 

Proposition. Ŝ  is symmetric.  
Proof) 

We show that Ŝ)x,'x(Ŝ)'x,x( !"! . 

Suppose Ŝ)'x,x( ! , then 
 C))q,'x(f),q,x(f(d ! . Since d is symmetric, we 
have 

C))q,x(f),q,'x(f(d))q,'x(f),q,x(f(d !=  

Hence, Ŝ)x,'x( ! .                     Q.E.D 

It is clear when 
q
V  is a quantitative data. We can think 

of an absolute value of the difference in data itself as a 
metric. However, in the case where 

q
V  is a qualitative 

data, we cannot calculate )q,x(f  and )q,'x(f . 
There are two ways to treat such cases in above 
formulation. 
a) The first is to give a real number as a metric 

between all combination of elements in 
q
V . 

b) The second is to give a partition of 
q
V   

In the case a) a metric should be given as a degree of 
similarity. In the case b) the elements which are similar 
to each other should be in the same partition. If b) is 
adopted, Ŝ  would be an equivalence relation with a 
broader range. Let us explain above by using Example 2. 
Example 2 expresses appearance of flowers, where 
attribute 

1
q  is “length of the flower” and attribute 

2
q  

is “color of the flower”. The former is quantitative while 
the latter is qualitative. We can calculate the metric 
between the elements in 

1qV  as follows: 

Let Ŝ  be 
}))q,'x(f),q,x(f(d,Qq|UU)'x,x{(Ŝ 1!"#$"= , 

then we have 
}x,x{})q,'x(f),q,x(f(d|'x{

21111
1 =!  

}x,x,x{})q,'x(f),q,x(f(d|'x{
321112

1 =!  
}x,x,x{})q,'x(f),q,x(f(d|'x{

432113
1 =!  

}x,x{})q,'x(f),q,x(f(d|'x{
43114

1 =!  
}x,x{})q,'x(f),q,x(f(d|'x{

51115
1 =!  

 
 
Let us take a) for attribute 

2
q , and give a matrix of 

metric of all the combinations of 
2q

V  in Table 3. Table 

3 provides intuitive difference in color. Since Ŝ is a 
symmetric, the matrix must be a symmetric matrix. In 
the case of difference in color, it might be good to use 
RGB value depending on a considering situation. 
Then we have 

}x,x,x{})q,'x(f),q,x(f(d|'x{
421221

1 =!  
}x,x{})q,'x(f),q,x(f(d|'x{

21222
1 =!  

}x,x{})q,'x(f),q,x(f(d|'x{
53223

1 =!  
}x,x{})q,'x(f),q,x(f(d|'x{

54224
1 =!  

}x,x,x{})q,'x(f),q,x(f(d|'x{
543225

1 =!  

Finally we have 
21
xŜx  then, 

}x,x{)x(Ŝ)x(Ŝ
2121

== , 

}x{)x(Ŝ
33

= , }x{)x(Ŝ
44

= , }x{)x(Ŝ
55

= , 
 
 



If we take b) instead, then the partition of 
2q

V is given 
by 

}X,X{X
qqq

2

2

1

22
= , 

}cyan,blue,red{X},yello,green{X qq ==
2

2

1

2
,  

then 
}x,x{)}q,'x(f),q,x(f(d|'x{

21221
=  

}x,x,x{)}q,'x(f),q,x(f(d|'x{
543223

= . 
The partition means that we treat green and yellow are 
the same color , and red, blue and cyan as well. 
We have  

21
xŜx  and 

43
xŜx then,  

}x,x{)x(Ŝ)x(Ŝ
2121

== , 

}x,x{)x(Ŝ)x(Ŝ
4343

== , 

}x{)x(Ŝ
55

= . 
 
 
 

Example 2.  
 

Table 2.  Flower Table 
 

Conditional attributes 
 

q1 q2 

] 20.5 green 

] 21 yellow 

] 22.3 red 

] 23 blue 

] 19 cyan 
 
 

Table 3.  Difference in color 
 

 green yellow red blue cyan 
green 0 0.5 1.5 1 1.3 
yellow 0.5 0 1.4 2 1.5 

red 1.5 1.4 0 1.3 0.8 
blue 1 2 1.3 0 0.8 
cyan 1.3 1.5 0.8 0.8 0 

 
 
 
 
 
 
 
 

5. PRESENTATION OF THE ALGORITHM 
 

We have introduced two portions of our methodology, 
utilizing reduct and identification of non-deterministic 
rule. In this section, we present an algorithm of our 
methodology combining each part.  
 Before introducing the algorithm, we describe the 
repetitive processing. We must know the details of all 
conditional attributes in advance, when we make Ŝ , 
otherwise we can not get reasonable result at one time. 
The decision class can drastically change depending on 
the domain of Ŝ . If Ŝ  has a wide domain, Ŝ  could 
derive many relations. Unfortunately, we may not know 
the perfect knowledge of the conditional attributes in 
advance so we have to make a repetitive processing of 
defining relation Ŝ , checking the results. Here we 
present the algorithm of our methodology as follows: 

1) Calculate a  reduct 
2) Eliminate other than reduct from the whole of 

source data 
3) Define the relation Ŝ  
4) Calculate the approximations of each decision 

class and identify decision class of all 
elements in upper approximation based on the 
flow chart in Fig. 3. 

5) Check the result. If you confident of the result 
then finish. If not, back to 3) and repeat 
following procedure. 

Generally, since we try to discover unknown knowledge, 
it seems hard to know the detailed information of 
attributes. It may be reasonable way to take a repetitive 
processing using the data. 
 
 

6. CONCLUSION 
 

 In this research we applied rough set theory to data 
mining. 
 We introduced a new methodology consists of utilizing 
reduct and identification of the non-deterministic rule. 

The former makes time- and space-complexity reduced. 
The data available are increasing year after year due to 
developing various technologies like internet. Hence we 
face mining problem from a large amount of data.  We 
showed the concept of reduct is a very useful for 
reducing data volume. 
 The latter makes uncertainty reduced. Use of strength 
generally used in rough set theory does not take into 
consideration “roughness” associated with values of 
attributes. By introducing X , similarity relation and 
strict similarity relation we could express rough 
boundaries related to decision class more flexibly. 
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