
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Computer-acceptable Set Theory for Model

Construction

Author(s) Takahara, Yasuhiko

Citation

Issue Date 2005-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/3882

Rights ⓒ2005 JAIST Press

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, IFSR 2005 : Proceedings of the

First World Congress of the International

Federation for Systems Research : The New Roles

of Systems Sciences For a Knowledge-based Society

: Nov. 14-17, 2092, Kobe, Japan, Symposium 3,

Session 4 : Intelligent Information Technology

and Applications  Models and Systems Engineering



Computer-acceptable Set Theory for Model Construction 
 

Yasuhiko Takahara 

Department of Management Information Science, Chiba Institute of Technology 
Tsudanuma, Narashino, Chiba, Japan 

takahara@pf.it-chiba.ac.jp 
 

Abstract 

We have proposed a new information system 

development approach which is called model theory 

approach [1]. The approach specifies a model in set 

theory. Once a model is specified in set theory, it can be 

translated into an executable system by set compiler 

provided by the approach. This paper investigates set 

theory for the model specification, which is called 

computer-acceptable set theory. 

 

Keywords: system development, systems approach, 

model theory,set theory 

 

1.MODEL THEORY APPROACH 

We have proposed a new information system 

development approach which is called model theory 

approach. The model theory approach is based on 

recognition that due to rapid progress of the information 

technology, in particular, the hardware technology, many 

systems are now running on PCs and hence a new 

systems development methodology must be proposed. 

The model theory approach addresses the request. Its 

features are summarized as below. 

1.The model theory approach is not concerned with 

software development or algorithm development but 

systems development of an information system. 

2.It asserts that systems development must be done based 

on the systems theory. In fact model construction of the 

approach is based on GST (general systems theory) 

systems concepts. 

3.It covers not only a transaction processing system but 

also a problem solving system. Since the skeleton of a 

management information system is constituted by the 

two systems, the approach can address the entire 

structure of an MIS.  

4.  A system model is specified in set theory based on a 

formal representation of an information system. 

5.  An executable system, which is implemented in 

extProlog, is automatically generated from the model 

specification.  

 

2. User Model Construction in Model 

Theory Approach 

This paper uses TPS (transaction processing system) 

development as illustration of the model theory approach. 

Fig. 1 shows an implementation structure of a TPS, 

which is called modTPS (model-based TPS). 

The modTPS is decomposed into two sub-systems, 

standardized interface and user model. The standardized 

user interface consists of two sub-interfaces, external UI 

built in PHP on a regular browser and internal UI built in 

extended Prolog (extProlog). The sub-interfaces are 



prepared by the system as black boxes for modTPS 

development.  

The real activity of the modTPS is performed by the 

user model. It consists of a family of atomic processes. A 

user command is represented by a pair (action name, 

action parameter). Since the function implied by an 

action name is carried out by an atomic process, each 

action name is associated with by one atomic process. 

The input to the process is an action parameter provided 

by the user. 

An atomic process consists of two components, 

interface and implementation. When an action name and 

its parameter are specified by an user as an input, an 

interface component corresponding to the action name is 

activated by the internal UI. The interface component 

prepares the action parameter as a list (paralist) and 

sends it to the implementation component. 

The implementation component triggers state 

transition in the file system using the paralist. The 

content of the file system is consequently modified by 

the component. In Fig. 1 the modification is illustrated 

as transition of the current state c to the next state c2. 

A proper response is also prepaed according to the 

state transition. 

 Fig. 2 shows the development procedure of a 

modTPS. A system developer must provide a user model 

of a target system in set theory. The model is constructed 

based on a DFD of the target system following the 

formal representation of a user model. Then, the 

setcompiler supported by the approach translates it into 

an executable system in extProlog. On translation the 

internal UI is attached to the system. Finally, the 

generated model is executed under control of the external 

UI, which accepts a user’s request and outputs a response 

while updating the file system 

An abstracted user model of modTPS is represented 

by the following structure: 

 user model structure = 

<MactionName,ActionName,ResName,AttrName,FNam

e,maction,homefile,fstruct,para,{delta_lambda, 

actionNi}i> 

where 

1. MactionName: set of macro action names; 

2. ActionName: set of action names; 

3. ResName:set of response names; 

4. AttrName: a set of attribute names; 

5. FName: set of file names; 

6. maction:MactionName→℘(ActionName); 

maction∈MactionName; 

7. homefile:MactionName→Fname; 

8. fstruct:FName→℘(AttrName);file structure 

representation function; 

9. para:ActionNane→℘(AttrName): parameter 

specification function for an action; 

10.delta_lambda:ActionName→(realization of 

ResName): interface of atomic process; it is specified as 

below: 

 delta_lambda(actionNi)=res↔paralist:=stdUI_para.lib, 

res:= actionNi (paralist),stdUI_res.lib2:=res; 

where paralist ∈ (realization of para(actionNi)). 

11. actionNi:ActionName→(realization of ResName): 

implementation of atomic process; it is specified as 

below: 

actionNi (paralist)=res↔ c2:=φ(c,paralist), 

res:=ϕ(c,paralist); 

c and c2 are states of the file system (see Fig. 1). 



stdUI_para.lib and stdUI_res.lib are special variables 

representing files used for communication between the 

interfaces and the user model.  

Macro actions correspond to modules of TPS 

development. Each macro action is implemented by a set 

of micro actions which perform real activities. A micro 

action will be called simply an action. The set of actions 

which implement a macro action is specified by the 

function, maction:MactionName→℘(ActionName). 

Since actions, which are collected to implement a macro 

action, should be coherent, it is usual that the target of 

their file processing activities is represented by one file. 

The file is called homefile for the macro action. The file 

is given by the function, homefile:MactionName → 

FName. 

A slide which is displayed on selection of a macro 

action is called a main slide. A main slide shows the 

hierarchical structure of the target TPS displaying three 

components, the list of macro actions, maction(selected 

macro action) (=a set of actions constituting a selected 

macro action) and homefile(selected macro action). Fig. 

3 shows an example of a main slide. 

An executable system is obtained by automatic system 

generation if a user model is specified in the above 

structure in computer-acceptable set theory. 

 

3. Well-Formed Formula of First-order 

Predicate Calculus 

To compile the user model, it must be described in a 

form that can be accepted by a computer. At the same 

time system defined predicates and functions are 

introduced in order to efficiently describe φ and ϕ of an 

atomic process. Set theory created in this way is called 

computer-acceptable set theory.  

The basic syntax of computer-acceptable set theory 

for the model theory approach is based on first-order 

predicate calculus [2].  

• A relational structure is  given by  

 ST = <A, {ri|i ∈ I}, {fj|j∈J}, {ck|k ∈ K}>  

where A= the domain of ST, is a non empty set; ri = a 

relation on A, i.e., ri⊂A×…×A; fj = a function on A, i.e., 

fj: A×…×A→A; ck = a constant element of A, i.e., ck∈A. 

• The first-order language L(ST) for the structure ST = 

<A, {ri|i ∈ I}, {fj|j∈J}, {ck|k ∈ K}>, then consists of 

individual variables v0,v1,…..; individual constant 

symbol ck for each k∈K; a λ(i)-arity predicate symbol ri 

for each i∈I; a µ(j)-ary function symbol fj for each j∈J; 

logical connectives ¬ (not) and & (and); universal 

quantifier ∀; brackets (,). 

• The set of terms of the first-order language L, Term(L), 

is the smallest set X such that all individual variables 

v0,v1,… and constant symbols, ck are members of X; if 

t1,..,tµ(j)∈X, then fj(t1,…,tµ(j))∈X for each j∈J 

• The set of atomic formulas of L, Atom(L), consists of 

all elements of the form ri(t1,…,tλ(i)) where 

t1,…,tλ(i)∈Term(L). 

• The set of well-formed formulas (or simply formulas) 

of L, Form(L), is defined as the smallest set Y such that 

Atom(L)⊂Y; if φ,ψ∈Y, then ¬φ, φ&ψ, ∀viφ∈Y. 

• Additional logical connectives ∨, →, and ↔ are 

defined in terms of the primitives as follows: A ∨ B ≡ 

¬(¬A &¬B); A → B ≡ ¬A ∨ B; A ↔ B ≡ A → B & B → 

A; ∃viφ≡¬∀vi¬φ. 

The above is a standard definition of a wff. The 

connectives → and ↔ are the main ingredients for a wff 

in the model theory approach. 



 

4. Basic Notation for Computer-acceptable 

Set Theory 

The following are extensions of the first-order language 

for computer-acceptable set theory. A symbol is an 

alphanumeric string starting with an alphabetical 

character. 

(1)The universal quantifiers are not explicitly used in this 

approach. Square brackets ‘[‘ and ‘]’ are used to 

represent a list structure. 

(1) The conventional expression of numbers is used for 

numeric constant symbols. Arithmetic and relational 

operators are used in the usual way. The absolute 

operator is given by a function abs().  

(3) A constant symbol is given by the form .<symbol>.  

(4) “<string>” is used as a text-type constant symbol 

(5) A symbol that is not a constant is a variable.  

(6) A variable with the suffix “.g” is treated as a special 

variable called a global variable. A global variable is a 

variable that is valid over the entire model, whereas a 

regular variable is valid only within the statement in 

which it is used.  

(7) A file is denoted by the form <filename>.lib and is 

treated as a global variable. As a file is a list of 

records, it is treated as a set in the model theory 

approach.  

(8) The equality symbol ‘=’ is used as a binary predicate 

symbol. 

(9) The symbol ‘:=’ is used as a binary predicate symbol 

to indicate the assignment of a value v to a variable x, i.e., 

x:=v. 

(10) Due to restrictions on keyboard input, logical 

operator symbols are replaced by computer-acceptable 

symbols (see Fig. 4). Here, “and” is replaced by ‘,’ as per 

convention. 

(11) A set is represented as a list term. For example, 

[1,[2,3],x] is a set expression, where “[…]” is treated as a 

function.  

(12) Let A, B and C be formulas. Then, an expression 

(left-hand side) may be replaced as follows. 

(A→B) & (¬A→C) ≡ (A)->(B) .otherwise (C). 

(13) The following four types of formulas terminated by 

‘;’ are called statements.  

(i) <global variable>=<term>. Used to define global 

variables. 

(ii) <predicate symbol>(<argument list>) <-> <formula>. 

Used to define predicates.  

(iii) <function symbol>(<argument list>)=<variable> 

<-> <formula>. Used to define functions. 

(iv) atomic formula. Used to define a record of data. 

(14) A user model in set theory is a set of statements. 

(15) Quantifiers are not used explicitly in the model 

theory approach. However, every statement is assumed 

to be quantified by the universal quantifier. 

(16) A meta statement “.func([….]);” is used to declare 

function symbols. If a predicate is listed in  

“.func([….]);”, it can be used as a function.  

(17) There are system-defined functions and predicates 

that are used to construct and manipulate sets, predicates 

and functions [3]. The following is a typical example: 

project():binary function; x:=project([1,2,3],2) implies 

x=2. 

 

5. Set 

• A set is represented as a list in the model theory 

approach. 



• A set is constructed by identifying elements of a list 

directly or by an extension of a predicate. A set Ys 

given by  Ys={y|p(y, x, <parameter list>),x∈Xs} is 

constructed as Ys:=defSet(p(y,x,[parameter 

list]),[x,Xs]);p(y,x,[parameter list]) <-> definition of p(); 

• Due to restrictions on keyboard input, set theoretic 

operator symbols are replaced by the 

computer-acceptable terms and atomic formulas given in 

Fig. 5.  

• A new element x is added to a set (list) Xs by 

Xs2:=union(Xs,[x]). 

• An element x is deleted from a set (list) Xs by 

Xs2:=minus(Xs,[x]). 

• An element x of a set Xs is replaced by another 

element y by pos:=invproject(Xs,x), 

Xs2:=replaceList(Xs,pos,y); 

The predicate invproject(Xs,x) gives the position pos of 

x in Xs.  

 

6. Predicate (Relation) 

• A relation is simply represented as a predicate, which is 

defined in the following form: 

 p(v1,..,vn)<->conditions on {v1,..,vn}; 

• A relation is modified in two ways. 

(1) If a relation is given by a set (its extension), the 

modification method of the set is applicable to the 

relation. 

(2) If a relation is given by a predicate p(x), it can be 

modified as follows: P2(x) <->(condition(x)) 

->(/*modified statement*/) .otherwise (p(x)); 

• Quantifiers are not used explicitly in the model theory 

approach. However, if the target set Z is finite, the 

functions of the quantifiers are handled by defSet() in the 

following way: (1) (∀x∈Z)(p(x)) is true iff 

Z=defSet(p2(x,x,[]),[x,Z]) where p2(x,x,[]) <-> p(x); 

(2) (∃x∈Z)(p(x)) = true iff []<>defSet(p2(x,x,[]),[x,Z]) 

where p2(x,x,[]) <-> p(x); 

 

7. Functions 

• A function is defined in several ways. 

(1) A function may be represented as a set or a relation.  

(3) Suppose f:X→Y is specified as 

   z if condition(ｘ)=true 

  z’ if condition’(ｘ)=true 

 f(ｘ)=   • 

  • 

  z” if condition”(ｘ)=true. 

Then, f:X→Y is described in the model theory approach 

as follows: f(x)=y <-> (condition(x)) -> (y:=z), 

(condition’(x)) -> (y:=z’), . . (condition”(x)) -> (y:=z”); 

In particular, if f is specified as 

 

  y1 if conditionA is true 

 f(x)= 

  y2 otherwise, 

f is described as follows: f(x)=y <-> 

(conditionA)->(y:=y1) .otherwise (y:=y2); 

• According to recursive function theory, a complicated 

function can be defined in three ways; composition, 

primitive recursion, and minimization. They can be 

realized by the meta command func() and the system 

defined function defSet() [3]. 

• A function is evaluated in two ways: (1) If a function 

f:X→Y is defined as a set, that is, f={(x,f(x))|x∈X}, y is 

obtained by execution of member([x,y],f) for a given x. 

(2) If a function f:X→Y is defined by f(x)=v <-> 



(specification of v), y is simply obtained by y:=f(x) if f is 

declared in func().  

• A function can be modified in two ways: (1) If a 

function f:X→Y is defined as a set, f={(x,f(x))|x∈X}, a 

new function f1: X→Y where 

 f(x) if x≠x1 

 f1(x)=  

  y1 otherwise, 

is created as follows: Ix:=invproject(f,[x,y0]), 

f1:=replaceList(f,Ix,[x,y1]); where the function 

replaceList(f,Ix,[x,y1]) replaces the Ix-th element by 

[x,y1] in f; (2) If f:X→Y is defined as  

f(x)=y <-> 

  (condition(x)) -> 

   (y:=z), 

  (condition’(x)) -> 

   (y:=z’), 

   . 

   . 

  (condition”(x)) -> 

   (y:=z”); 

f1(x)=y <->(x=x1) ->(y:=y1) .otherwise  (y:=f(x)); 

 

8. Example 

A simple example illustrating set theoretic description is 

given below. The example is the development of a 

registration system for a workshop [４]. Figure 6 shows 

a part of a DFD for the registration system. From the 

DFD in Fig. 6, the following user model is constructed in 

computer-acceptable set theory. 
func([delta_lambda,register]); 
MactionName.g=["quit","registration","participant"]
; 
registration.g=["register","reg_update","account"]; 
registration.lib.g=["participant","data"]; 

registrationHomeFile.g=["participant.lib"]; 
/*atomic process of register*/ 
register.g=["name","institute"]; 
delta_lambda([.register])=res <-> 

paralist:=stdUI_para.lib, 
res := register(paralist), 
stdUI_res.lib2:=res; 

register([name,institute])=res <->  
(notmember’[[name,institute],y], participant.lib)) -> 

 (participant.lib2 := 
union(participant.lib,[[[name,institute],[0,0,0]]]), 
 
 res:=[name,institute,.new_registration,.fee,.track]) 

.otherwise 
   
 ([fee,track,date] := participant.lib([name,institute]), 
 (fee <> 0 and track <> 0) -> 
     
 (res:=[name,institute,.pre_registration,.receipt,.proc
eeding]) 
    
 .otherwise 
     
 (res:=[name,institute,.incomplete_registration,.fee,.t
rack])); 
 

MactionName.g, registration.g, and 

registrationHomeFile.g correspond to MactionName, 

maction(registration) and homefile(registration) in the 

user model structure. Figure 3 is the main slide of 

“registration”. 
 
 

   REFERENCES 

[1] Takahara,Y and Liu, Y (2005), Management 

Information Development: Theoretical 

Foundation-Model Theory Approach, internal report, 

Chiba Inst. of Tech., Tsudanuma, Japan. 

[2] Bridge, J (1978), BEGINNING MODEL THEORY, 

Oxford UP. 

[3] Takahara et al (2003), Manual for extProlog, internal 

report, Chiba Inst. Of Tech., Tsudanuma, Japan. 

[4] Koizumi, T., Yoshida, K. and Nakajima, T. (2003) 

Software Development, Ohmusha (in Japanese).



 

Response 

user model Standardized internal UI:stdTPS_UI.p

File system: state 

Response

Next state：c2 State：c

Selection of atomic process 

Atomic 
process:a1

Atomic 
process:an

State：c Next state：c2

Action Action ResponRespon

Standardized external UI:stdUI.php

User command (action
name, action parameter)

  (Action name, 
  action parameter) Response

modTPS 

user 
interface 

External 
DB 

User 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

  Fig. 1 Structure of modTPS 

 

stdTPS_UI: 
internal 
standardized 
UI 

extProlog 
interpreter 

setcompiler

action name 
action 
parameter stdUI.php 

external UI
response 

system developer DFD of the
target system 

structure of
user model 

user model  in
extProlog  

user model in
set theory 

 

automati
c system 
generati

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Development procedure 



 

 

 

        

 

        

macro 

(micro) action 

homefile  

 

 

 

Fig. 3 Main slide 

 

 

 

 

 

 

  

 

Fig. 4 Connectives in set theory 

 

 

 

 

 

 

       Fig. 5 Operators in set theory 

 

 

 

4. Fig. 6 DFD for registration system 

 

Connective Computer-acceptable 

symbol 

Example Replaced 

example 

¬        not() ¬p not(p) 

∧(&) and p and q p and q 

∨ or P or q p or q 

↔ <-> p↔q p<->q 

→ -> p→q p->q 

Operator 

symbol 

Computer-acceptable 

term 

Example Replaced example 

∩ intersection() A∩B intersection(A,B) 

∪ union() A∪B union(A,B) 

× product A×B product(A,B) 

- minus() A-B minus(A,B) 

｜｜ cardinality() |A| cardinality(A) 

∈ .in (member) x∈Xs x .in Xs 

(member(x,Xs)) 

∉ .notin (notmember) x∉Xs x .notin Xs 

(notmember(x,Xs))

⊂ subset() A⊂B subset(B,A) 

⊄ notsubset() A⊄B notsubset(B,A) 

Participa
nt/organi

 register 

participant.li
b 

 check_ 
participan

 total fee 

Fee inf. Profile 
Current 
inf. 

Update 

Total_fee 

Total_feeRes Profile 

Participant 
Regist. inf. 

RegisterRe


	Yasuhiko Takahara
	Keywords: system development, systems approach, model theory


