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ABSTRACT 
 

This paper presents a semi-supervised co-training appr- 
oach for discriminative sequential learning models, such 
as conditional random fields (CRFs). In this framework, 
different CRF models are trained on an initial set of 
sequence data according different views. The bootstrap- 
ping process is performed by iteratively adding new 
reliably inferred data sequences to the training data sets 
of CRF models retraining them. Reliable data sequences 
are inferred from a huge set of unlabeled data by estima- 
ting entropy values of predicted labels at time positions 
in data sequences. The inference and re-train operations 
are repeated a number of times in order that each CRF 
model should gain as much useful evidence from unlab- 
eled data and the other CRF models as possible. The 
proposed method was tested on noun phrase chunking 
and achieved significant results. 
 
Keywords: semi-supervised learning, co-training, cond- 
itional random fields, text labeling and segmentation. 
 

1. INTRODUCTION 
 

Learning from both labeled and unlabeled data, also 
known as semi-supervised learning, has received much 
attention of machine learning and data mining commu- 
nities during the past few years. There have been many 
existing semi-supervised learning approaches to the tra- 
ditional classification such as co-training [1] [2], Gaus- 
sian mixture models with EM [3], minimizing separa- 
tion (transductive SVMs, Gaussian processes informa- 
tion regularization) [4], and graph-based methods [5].  
 
Recently, there is a subdirection of semi-supervised lea- 
rning that focuses on sequential modeling models, such 
as HMMs [6] and CRFs [7]. To gain additional benefit 
from unlabeled data for POS tagging and word segmen- 
tation, Li and McCallum [8] presented a clustering 
method to partition words into different syntactic and 
semantic topics based on word’s content and their 
surrounding context. Those clusters were then used as 
input features for training CRFs from a huge set of 
unlabeled words. Although this method showed a 
significant improvement in accuracy, the approach tends 
to be task and data-dependent. Lafferty et al. [9] introd- 

uced kernel conditional random fields for semi-supervi- 
sed learning. This model can learn from unlabeled data 
by relying on the similarities between labeled and 
unlabeled observations using kernel functions. Brefeld 
et al. [10] presented a multi-view discriminative sequen- 
tial learning method that is based on the principle of 
maximizing the consensus among multiple independent 
hypotheses. Other semi-supervised learning methods 
focus on sequential labeling for text data, such as 
unsupervised models for named entity recognition [11], 
semi-supervised learning from thousands of auxiliary 
classification problems [12], and contrastive estimation 
for log-linear models [13]. Those models are more or 
less domain and task-dependent, and thus have some 
difficulties when being applied to other sequential learn- 
ing applications. 
 
In this paper, we present a semi-supervised learning me- 
thod for CRFs that is based on co-training philosophy 
[1], i.e., try to gain extra useful information/evidence 
from unlabeled data by relying on the agreement among 
different hypotheses. Technically, we have different 
CRFs models trained according to different views on the 
small initial set of labeled data. Those models are 
bootstrapped by being iteratively re-trained on additio- 
nal confident labeled data sequences inferred from a 
huge set of unlabeled data. The selection of confident 
data sequences is performed by estimating entropy 
values of predicted labels at time positions in every 
sequence. Sequences with small entropy values for one 
CRF models should be confident and can be used to 
train the others in the next step. In addition, some 
confident sequences can be re-corrected from 
unconfident ones, and very useful for the bootstrapping 
process. The re-correction operation is based not oly on 
the entropy values but also on the consensus of 
independent CRFs. 
 
The main advantages of the proposed semi-supervised 
learning method are threefold. First, this method dedica- 
ted to discriminative models rather than generative ones. 
Second, it is easy for implementation because it is only 
based on simple entropy estimation. Finally, the method 
is task and domain independent, i.e., one can apply this 
method with CRFs for any sequential learning applica- 



tion and for any kind of data provided that the learning 
task can be separated into different views. 
 
The remaining of the paper is organized as follows. Sec- 
tion 2 briefly introduces sequential learning with CRFs. 
Section 3 presents the proposed co-training method for 
CRFs. Section 4 presents empirical evaluation and some 
discussion. Finally, conclusions are given in Section 6. 
 
2. SEGMENTING FOR SEQUENCE DATA WITH 

CONDITIONAL RANDOM FIELDS 
 
The goal of labeling/segmenting for sequence data is to 
learn to map observation sequences to their correspond- 
ing label sequences, e.g., a POS tag sequence for words 
in a sentence. Discriminative sequential modeling mod- 
els, such as CRFs [7] and Discriminative HMMs [14], 
were particularly designed for such sequential learning 
applications. In this paper, CRFs are referred to as 
conditionally-trained finite state machines and will be 
used to demonstrate our co-training method. 
 
2. 1. Conditional Random Fields 
 
Let o = {o1, o2, …, oT} be some observation sequence. 
Let S be a set of states, each of which is associated with 
a label, l ∈ L. Let s = {s1, s2, …, sT} be some state sequ- 
ence, Lafferty et al. [7] define CRF as the conditional 
probability of a state sequence s given data observation 
sequence o as follows, 
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where Z(o) is the normalization summing over all label 
sequences. fk denotes a feature function in the language 
of maximum entropy modeling and λk is a learned wei- 
ght associated with feature fk. Each fk is either a transit- 
ion or a per-state feature: 
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where δ denotes the Kronecker-δ function. A per-state 
feature (2) combines label l of the current state st and a 
characteristic (sometimes called “context predicate”) of 
of the observation sequence o at time position t. For 
example, the label of the current state is JJ (adjective) 
and the current word is “sequential”. A transition feature 
(3) represents a sequential dependency by combining 
the label l’ of the previous state st-1 and the label l of the 
current state st, such as the previous label l’ = JJ (adjec- 
tive) and the current label l = NN (noun). 

 
2. 2. Inference in Conditional Random Fields 
 
Inference in CRFs is to find the most likely state/label 
sequence s* given an observation o: 
 

  

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
=

=

∑∑
=

−

T

t k
ttkks

s

tossf

osps

1
1 ),,,(expmaxarg

)|(maxarg*

λ

θ

  (4) 

 
In order to find s*, one can apply a dynamic programm- 
ing technique with a slightly modified version of the 
original Viterbi algorithm for HMMs [6]. To avoid an 
exponential-time search over all possible settings of s, 
Viterbi stores the probability of the most likely path up 
to time t which accounts for the first t observations and 
ends in state si. We denote this probability to be ϕt(si) (0 
≤ t ≤ T-1). The recursion is given by: 
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The recursion terminates when t = T-1 and the biggest 
unnormalized probability is p* = argmaxi{ϕT(si)}. At 
this time, we can backtrack through the stored informat- 
ion to find the most likely label sequence s*. 
 
2. 3. Training Conditional Random Fields 
 
CRFs are trained by setting the weight set θ = {λ1, …} 
to maximize the log-likelihood function, L, of a given 
training dataset D = {(oj, lj)}j=1..N: 
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where the second sum is a Gaussian prior over weight 
set with variance σ2, which provides smoothing to deal 
with sparsity in data [15]. It has been proved that the 
above log-likelihood function is convex, thus searching 
the global optimum is guaranteed [16]. However, the 
optimum cannot be found analytically. The parameter 
estimation requires an iterative procedure. It has been 
shown that quasi-Newton methods, such as L-BFGS 
[17], are more efficient than the others [18] [19]. This 
method can avoid the explicit estimation of the Hessian 
matrix of the log-likelihood by building up an approxi- 
mation of it using successive evaluations of the gradi- 
ent.  
 



3. CO-TRAINING OF            
CONDITIONAL RANDOM FIELDS 

 
3. 1. Co-training Framework for CRFs 
 
The co-training framework for CRFs is similar to the 
general co-training framework for classification probl- 
em [1]. Initially, k CRF models (CRF1, …, CRFk) are 
trained according to different and independent views on 
the same small set of labeled data DL. The selection of 
independent views will be discussed latter. The CRF 
models are then bootstrapped by the co-training proce- 
dure as follows. First, all CRF models are used to 

predict labels for unlabeled data set DU. Then, we 
choose a subset of confidently predicted data sequences 
from DU to add to the training sets of those CRF models 
and retrain them. This procedure will be performed 
repeatedly several times so that useful information from 
unlabeled data is utilized. The final CRF models are 
expected to predict labels for sequence data better than 
those trained on the original set of labeled data. The key 
step in our method is how to identify reliably predicted 
data sequences from unlabeled data to enrich the 
training set of the next co-training iteration. This key 
problem will be thoroughly discussed in the next sub- 
section. 

 
3. 2. Entropy-Based Estimation of Reliably Inferred 
Sequence Data in CRFs 

 

Table 1. An example of a reliably inferred observation sequence based on entropy estimation 
Observation sequence True 

Label 
Predicted 
Label 

Entropy 
H(ot) 

Path1 
0.978

Path2 
0.012 

Path3 
0.006 

Path4 
0.002 

... 

... Word POS-tag 
B-NP B-NP 0.0 B-NP B-NP B-NP B-NP ... Other JJ 
I-NP I-NP 0.0 I-NP I-NP I-NP I-NP ... changes NNS 

O O 0.0 O O O O ... , , 
O O 0.0 O O O O ... including VBG 
O O 0.0061 O O O B-NP ... Easing VBG 

B-NP B-NP 0.0052 B-NP B-NP B-NP I-NP ... restrictions NNS 
O O 0.0 O O O O ... on IN 

B-NP B-NP 0.0 B-NP B-NP B-NP B-NP ... travel NN 
O O 0.0 O O O O ... for IN 

B-NP B-NP 0.0 B-NP B-NP B-NP B-NP ... East NNP 
I-NP I-NP 0.0137 I-NP I-NP O I-NP ... Germans NNPS 

O O 0.0227 O I-NP O O ... , , 
O O 0.0002 O O O O ... are VBP 
O O 0.0 O O O O ... expected VBN 
O O 0.0 O O O O ... . . 

 
Table 2. An example of an unreliably inferred observation sequence based on entropy estimation 

Observation sequence True 
Label 

Predicted 
Label 

Entropy 
H(ot) 

Path1 
0.774

Path2 
0.101 

Path3 
0.057 

Path4 
0.048 

... 

... Word POS-tag 
O O 0.0 O O O O ... However RB 
O O 0.0 O O O O ... , , 

B-NP B-NP 0.0 B-NP B-NP B-NP B-NP ... dealers NNS 
O O 0.0 O O O O ... caution VBP 
O O 0.0 O O O O ... that IN 

B-NP B-NP 0.0 B-NP B-NP B-NP B-NP ... any DT 
I-NP I-NP 0.0 I-NP I-NP I-NP I-NP ... increase NN 

O O 0.0 O O O O ... would MD 
O O 0.0 O O O O ... be VB 

B-NP B-NP 0.0 B-NP B-NP B-NP B-NP ... $ $ 
I-NP I-NP 0.0 I-NP I-NP I-NP I-NP ... 1 CD 
I-NP O 0.1219 O I-NP O O ... to TO 
I-NP B-NP 0.1196 B-NP I-NP B-NP B-NP ... $ $ 
I-NP I-NP 0.0002 I-NP I-NP I-NP I-NP ... 2 CD 

O O 0.0 O O O O ... at IN 
O B-NP 0.0807 B-NP B-NP O B-NP ... most RBS 
O O 0.0711 O O O I-NP ... . . 

 
 
This section discusses the selection of confidently inff- 
ered data sequences based on the entropy estimation of 

predicted labels at different time positions of unlabeled 



data sequences. Confident sequences are those having 
small entropy values of predicted labels. 
 
Let L = {l1, l2, …, lQ} be the set of all possible class 
labels. Let },...,,{ 21 Toooo = be some data observation 

sequence. Let },...,,{ 11
2

1
1

1
Tllll = , },...,,{ 22

2
2

1
1

Tllll = , ..., 
and },...,,{ 21

n
T

nnn llll =  the be the n-best predicted label 
sequences (commonly known as n-best label paths with 
path values: p1, p2, …, pn) for the observation sequence 
o. Table 1 shows an example of n-best label sequences 
in which the observation o consists of an English words 
(a sentence) and their POS tags. The problem is to 
predict a phrase chunk label (B-NP indicates the begin 
of a noun phrase, I-NP indicates inside of a noun phrase, 
and O indicates outside of a noun phrase) for each word 
in a sentence. We can see the best label path l1 = {B-NP, 
I-NP, O, O, O, B-NP, O, B-NP, O, B-NP, I-NP, O, O, O, 
O} with the path value p1 = 0.978. Similarly, the second 
path value p2 = 0.012, the third path value p3 = 0.006, 
etc. If n equals to N possible label paths of observation 
sequence o, then {p1, p2, …, pN} will be a distribution, 
i.e., sum(p1, p2, …, pN) = 1. However, in CRFs, n-best 
path values are much larger than the remaining ones and 
we can normalize so that {p1, p2, …, pn} is a 
probabilistic distribution. 
 
For each time position t (1 ≤ t ≤ T) in the observation 
sequence o, the portion of the label li ∈ L that are 
assigned for the data observation ot in the n-best paths is 
P(li) and can be calculated as follows. 
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Then, the entropy of predicted labels of the observation 
sequence o at the position t is defined as H(ot): 
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For the sake of simplicity, we normalize the entropy 
value H(ot) (i.e., scaling it to [0, 1]) by dividing by 
log(Q) (the maximum entropy value).  
 
For example, the observation o5 (word = “Easing”, 
POS-tag = “VBG”) in Table 1 has the entropy value 
H(o5) = 0.0061. In this example, we use 10-best (n = 10) 
label sequences and the number of label is Q = 3 (i.e., L 
= {B-NP, I-NP, O}). Similarly, H(o6) = 0.0052 (there is 
at least a little bit change of the predicted label at the 
Path4), H(o7) = 0.0 (there is no change of the predicted 
label of the 10-best paths at the time position t = 7). In 
general, all observations of the observation sequence in 

Table 1 have small entropy values (the largest value is 
H(o12) = 0.0227.  
 
Table 2 shows another example in which entropy values 
are much larger than those in Table 1. For example, the 
observation o12 (word = “to”, POS-tag = “TO”) has the 
entropy value H(o12) = 0.1219. This is because the best 
label path value (Path1 = 0.774) is not confident enough 
and there is a major change in the predicted label at this 
position (l1

12 = O, l2
12 = I-NP, l3

12 = O, …). 
 
Intuitively, H(ot) measures the uncertainty of the predic- 
ted label of observation ot. In other words, in general the 
uncertainty of the predicted label of ot is high if H(ot) is 
large. Let l(ot) be the predicted label in the best label 
path l1 of the observation ot. We have the following 
definition of “reliably predicted label”: 
 
Definition 1: label l(ot) is a “reliably predicted label” of 
the observation ot if the corresponding entropy value 
H(ot) is smaller than or equal to an entropy threshold Hth, 
i.e., H(ot) ≤ Hth. 
 
Based on definition (1), we have definition of “reliably 
inferred label sequence” below. 
 
Definition 2: Let l(o) be a predicted label sequence of 
observation sequence o. Then, l(o) is called the “reliably 
inferred label sequence” if every label l(ot) of l(o) is 
“reliable predicted label”, i.e., H(ot) ≤ Hth (1 ≤ t ≤ T). 
 
For example, setting the threshold Hth = 0.06, the best 
label path (Path1) in Table 1 is a reliably inferred label 
sequence because every H(ot) ≤ 0.06. On the other hand, 
the best label path in Table 2 does not satisfy definition 
(2) because there are some time positions whose entropy 
values are larger than 0.06 (e.g., o12, o13, o16, o17). We 
also compare the best label sequence and the true label 
sequence (humans annotated labels) in both Table 1 and 
Table 2 in order to demonstrate the reasonableness of 
our assumption about the relationship between the 
entropy values and the confidence of predicted labels. 
We can see that the best label path in Table 1 is the same 
as the true label sequence while in the Table 2 the predi- 
cted labels with high entropy values (at o12, o13, o16) are 
different from the true labels (I-NP | O; I-NP | B-NP; O | 
B-NP). In general, label sequences with small entropy 
values tend to be confident enough for retraining CRFs. 
 
3. 3. Co-training Algorithm for CRFs 
 
This section presents the co-training algorithm for CRF 
models. Let CRFs = {CRF1, CRF2, …, CRFk} be k CRF 
models according to different and independent views. 
The next section will discuss how to select different 



views for co-training CRFs. Let DL = {(oi, li)}i=1..L be 
the initial training set of labeled sequence data. Let DU = 
{(oj)}j=L+1..U be the huge set of unlabeled sequence data. 
The co-training algorithm for CRFs is presented in 
Table 3. 
 

Table 3. Co-training algorithm for CRFs 

In CRFs = {CRF1, CRF2, …, CRFk}, DU, DL 
Out CRFs trained on both DU and DL 
0. DLi = DL (i = 1..k) 
1. Train CRFi (i = 1..k) on DLi independently 
2. Use trained CRFi (i = 1..k) to predict n-best 

label sequences for all observation sequence 
in DU to obtain DUi. 

3. DLi = DLi ∪ ConfSeq1(DUj) (j = 1..k, j ≠ i) 
4. DLi = DLi ∪ ConfSeq2(DU1, DU2, …, DUk) 
5. If #iterations ≥ I Then stop Else go to step 1. 

 
The algorithm first trains CRF models (CRF1, …, CRFk) 
on the initial set of labeled sequence data DLi = DL (i.e., 
step 1). In step 2, it uses the trained CRF models to pre- 
dict n-best label paths for all observation sequences in 
DU to obtain DUi (corresponding to CRFi). Steps 3 and 4 
try to gain confident (labeled) sequences from DUi to 
add to the labeled training set of each CRFi. The first 
operation (step 3) is ConfSeq1(DUj) (j = 1..k, j ≠ i). This 
means that it collects all reliably inferred sequences 
predicted by the other CRF models (CRFj, j = 1..k, j ≠ i) 
and add to the labled training data set of the current 
model (i.e., CRFi). After collecting all confident data 
sequences, the algorithm focuses on unreliable sequen- 
ces: the second operation ConfSeq2(DU1, DU2, …, DUk). 
In this operation, we look entropy values generated by k 
CRF models for each “unreliable sequence” in order to 
utilize the significant difference in entropy values that 
derives from the independent views of those models. In 
other words, a label sequence may not confident when 
we examine the its entropy values generated by each 
CRFi separately. However, we can re-correct its label 
sequences if looking concurrently to k entropy paths 
generated by k CRFs in order to obtain more “confident 
sequences” from unlabeled data DU. The second operat- 
ion is very important because those confident sequences 
returned by this operation help the models to improve 
themselves very much. After gaining confident sequenc- 
es from DU and add to labeled data set DLi for CRFi, the 
algorithm check the stopping condition to stop, 
otherwise it goes to step 1 to re-train the CRF models on 
their new labeled data sets. 
 
3. 4. Multi-View Representation for Co-training 
 

The original work on co-training [1] proposed that one 
can use independent set of features for different and 
independent views. However, the feature set indepen- 
dence assumption is usually too restricted to obey. Thus, 
one can relax this assumption to a lower level: features 
are divided into subsets that are as much independent as 
possible.  
 
We present another choice of multi-view representation 
for co-training. That is label representation. For many 
segmenting sequence data applications, we have the 
different choice for representing label sequence. For 
example, in NP chunking we have at least five choices.  
 

 IOB1 IOB2 IOE1 IOE2 Start/End 
In O O O O O 
early I-NP B-NP I-NP I-NP B-NP 
trading I-NP I-NP I-NP E-NP E-NP 
in O O O O O 
Busy I-NP B-NP I-NP I-NP B-NP 
Hong I-NP I-NP I-NP I-NP I-NP 
Kong I-NP I-NP E-NP E-NP E-NP 
Monday B-NP B-NP I-NP E-NP S-NP 
, O O O O O 
gold I-NP B-NP I-NP E-NP S-NP 
Was O O O O O 

 
IOB1 representation was first introduced in [20]. The 
others (IOB2, IOE1, IOE2) were introduced by Tjong 
Kim Sang [21]. The last style was introduced in [22]. 
These representation styles have been used for phrase 
chunking application. However, they can be applied for 
any kind of data and any kind of sequence segmentation 
applications.  
 
IOB1: I (the current token is inside of a segment), O 
(the current token is outside of any segment), and B 
(current token is the beginning of a segment which 
immediately follows another segment). IOB2: a B tag is 
given for every token which exists at the beginning of a 
segment. Other tokens are the same as IOB1. IOE1: an 
E tag is used to mark the last token of a segment imme- 
diately preceding another segment. IOE2: an E tag is 
given for every token which exists at the end of a 
segment. Start/End: B (current token is the start of a 
segment consisting of more than one token), E (current 
token is the end of a segment consisting of more than 
one token), I (current token is a middle of a segment 
consisting of more than two tokens), S (current token is 
a segment consisting of only one token), and O (current 
token is outside of any segment). 
 
Although these representation styles have been mainly 
used for phrase chunking, they should be useful and 
suitable for co-training because we believe that they 
should provide different views into training data set and 



thus making a significant difference among CRFs. We 
used these representation styles for multi-view co-train- 
ing of CRFs for noun phrase chunking problem. 

4. EMPIRICAL EVALUATION 
 
We evaluate our co-training method on noun phrase 
chunking problem. Noun phrase chunking, an interme- 
diate step toward full parsing of natural language, 
identifies noun phrase (NP) in text sentences. Here is an 
example of a sentence with noun phrase marking: “[NP 
He] reckons [NP the current account deficit] will narrow 
to [NP only # 1.8 billion] in [NP September]”. 
 
4.1. Data 
 
The training and testing data for this task is available at 
the shared task for CoNLL-2000. The data consist of the 
same sections of the WSJ corpus: section 15-18 as train- 
ing data (8936 sentences, 211727 tokens) and section 20 
as testing data (2012 sentences, 47377 tokens). Each 
line in the annotated data is for a token and consists of 
three columns: the token (a word or a punctuation mark), 
the POS tag of the token, and noun phrase label (label 
for short) of the token. The representation for label can 
be one of IOB1, IOB2, IOE1, IOE2, Start/End mention- 
ed above. Two consecutive sequences (sentences) are 
separated by a blank line. 
 
For co-training of CRFs, we divided the training set into 
30 parts. Each part (297 sequences) can be used as the 
small original set of labeled data (i.e., DL). Another part 
was used as the development set to tune the entropy 
threshold (i.e., Hth). We removed the noun phrase labels 
of the remaining 28 parts and used these parts as 
unlabeled data set (i.e., DU). We keep the same testing 
set of CoNLL-2000 (i.e., the section 20 of WSJ) as the 
testing set of our CRF models.  
 
4.2. Multi-view Representation for Co-training 
 

We used four label representation styles IOB1, IOB2, 
IOE1, IOE2 for different CRFs (CRF1, CRF2, CRF3, and 
CRF4). The training data set of CRF1, CRF2, CRF3, 
CRF4 are DL1, DL2, DL3, DL4 and their label representa- 
tion styles are IOB1, IOB2, IOE1, IOE2, respectively. 
All our CRF models obey the first-order Markov prope- 
rty, i.e., the current state only depends on the previous 
label. 
 
4.3. Feature Selection for CRFs 
We used the same feature selection for four CRFs. The 
transition features obey the first-order Markov property. 
Per-state features are the combinations of the label of 
the current state and one context predicate within a slid- 
ing window of size 5 (i.e., -2, -1, 0, 1, 2). Context predi- 
cates can be a token or POS tag within the sliding wind- 
ow, the combination of the current token and the previ- 
ous token, the combination of the current token and the 
next token, the combination of two or three consecutive 
POS tags within the sliding window. 
 
4.4. Results 
 
Table 4 shows the results of the four CRF models using 
the proposed co-training algorithm. The first column is 
the number of co-training iterations. The next four large 
double-columns are corresponding to four CRF models. 
At each co-training iteration, the labeled training data 
set (DLi) of those models were added by selecting 
reliably inferred data sequences from unlabeled data set 
(DU). 
 
We used a development set to tune the entropy thres- 
hold (Hth = 0.06). We can see that after three co-training 
iterations, the error rate decrease significantly (16.5%, 
13.2%, 16.4%, and 19.0%). The phrase-based error rate 
reductions are around 15.0%. Four CRF models used 
around 7000 sequences from un- labeled data set in 
order to improve the learning performance 
 

 
Table 4. Error rate reduction of four CRF models using co-training 

Iteration CRF1 (IOB1) CRF2 (IOB2) CRF3 (IOE1) CRF4 (IOE2) 
 DL1 #seq. F1 (%) DL2 #seq. F1 (%) DL3 #seq. F1 (%) DL4 #seq. F1 (%) 

0  297 96.43 297 95.21 297 96.35 297 95.32 
1 3267 96.79 3362 95.69 3329 96.86 3117 95.90 
2 5701 96.93 5569 95.74 5660 96.99 5745 96.00 
3 6730 97.02 6999 95.84 6769 96.95 7260 96.21 

Total  16.5% 
error rate 
reduction 

 13.2% 
error rate 
reduction 

 16.4% 
error rate 
reduction 

 19.0% 
error rate 
reduction 

 
 



 
5. CONCLUSIONS 

 
In this paper, we presented a semi-supervised learning 
framework for conditional random fields based on the 
co-training technique and the entropy estimation to det- 
ermine confident sequences inferred from a huge set of 
unlabeled data. The proposed method has some advant- 
ages comparing to the other semi-supervised learning 
methods for sequence data. First, this method is domain 
and data independent. This means that we can apply this 
method to any sequential learning problems to improve 
the prediction accuracy. Second, it is easy to implement 
because it is only based on a simple and fast entropy es- 
timation. Finally, one can freely choose a multi-view 
representation and apply this framework to build a CRF 
co-training application. 
 
The future work will focus on the complex analysis of 
entropy values and how to select reliably inferred data 
sequences from unlabeled data more accurately and eff- 
iciently. We will also try with other multi-view represe- 
ntation ways to see that whether our method can be ada- 
ptive to different kinds of sequence data and sequential 
learning applications. 
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