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ABSTRACT1 
 

Based on earlier, pioneering work done at IIASA, this 
paper presents a model of endogenous technological 
change under the three most important “stylized facts”: 
increasing returns to adoption, uncertainty, and 
heterogeneous agents following diverse technology 
development and adoption strategies. As an 
intermediary step towards the final, long-term research 
objective of developing a multi-agent model, this paper 
deals with two heterogeneous agents, a risk-taking agent 
and a risk-aversion agent. Interactions between the two 
agents include trade on resource and good, and 
technological spillover (“free-riding” and technology 
trade). With the two agents, we run Pareto optimization 
to minimize the total system’s cost. The simulations 
show how agent heterogeneity — different risk attitudes 
and sizes, trade between agents and technological 
spillover effect influence the technological change 
process. Finally this paper plots and analyzes emission 
paths as results of different technological change 
process.           
 
Keywords: endogenous technological change, 
uncertainty, heterogeneous agents   
 
 

1. INTRODUCTION 
 

The development and diffusion of new technologies is 
the most important source of long-run productivity and 
economic growth. Technological change is both costly 
and highly uncertain. For example, the importance of 
technological uncertainty has been recognized and 
explored ever since the earliest days of global 
environmental modeling [1, 2].  
 
In most of traditional models, technological change has 
to date largely been treated as exogenous, i.e. 
technological change, typically in form of 
improvements in engineering and economic 
characteristics of individual or aggregate technologies is 
a free good and also known with perfect foresight 
within a given scenario of technological "expectations". 
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This is both the case for models developed within the 
tradition of growth theory and associated production 
function models (so-called “top-down” models), as well 
as those developed within a systems engineering 
perspective (e.g., detailed sectorial “bottom-up” 
optimization models). In both modeling traditions, 
technological change is either reduced to an aggregate 
exogenous trend parameter (the “residual” of the growth 
accounts), or introduced in form of numerous 
(exogenous) assumptions on costs and performance of 
future technologies. Common to both modeling 
traditions is that the only endogenous mechanism of 
technological change is that of progressive resource 
depletion and resulting cost increases, which also 
explains that the inevitable outcome of imposing 
additional (e.g. environmental) constraints on the 
model: rising costs due to the forced adoption of more 
costly capital vintages that remain unaffected by 
endogenous policy variables in the model. Such 
constraints which are at odds with historical experience 
[3] trigger both substitutions of factor inputs as well as 
the penetration of otherwise uneconomic technologies. 
These are either represented generically as aggregates in 
form of so-called “backstops” [1], or through detailed 
assumptions on numerous technologies individually. 
 
Traditional technology change models assumed the 
existence of a global social planner with perfect 
foresight, which have been criticized (e.g. see [4]) for 
being overly naive and optimistic on the feasibility of 
meeting (e.g. environmental) constraints, as availability 
and adoption of new technologies will be much slower 
and discontinuous due to agent heterogeneity and 
uncertainty than suggested in traditional policy models. 
However, traditional models can also be technologically 
too “pessimistic”, as missing out on spillover effects and 
adaptive, innovative behavior that arises precisely 
because of agent heterogeneity and interaction.  

 
Based on earlier, pioneering work done at IIASA [5-8], 
the model presented in this paper deals with uncertain 
increasing return and two heterogeneous agents -- a 
risk-taking agent and a risk-aversion one. Interactions 
between the two agents include trade on resource and 
good, and technological spillover effects (“free-riding” 
and technology trade). With the heterogeneous agents, 
we run Pareto optimization. 



  
The model presented here is not intended to be by any 
means a “realistic” model in the sense of technological 
or sectorial detail. Rather, the main objective of the 
model is for exploratory modeling purposes and as a 
heuristic research device to examine in depth the 
impacts of alternative model formulations on the 
endogenous technology transition dynamics.  
 
The rest of this paper is organized as the following. 
Section 2 briefly introduces the technological change 
model with uncertain learning and two heterogeneous 
agents. Section 3 analyzes different simulation results, 
focusing on how agent heterogeneity and their 
interactions affect technological change process; Section 
4 plots and analyzes emission paths which are the 
results of different technological change process; and 
Section 5 gives concluding remarks.    
 
 

2. THE MODEL 
 
2.1 Technology Change with Increasing Return and 
Uncertainty   
 
Our optimization model of technology choice is highly 
stylized. We suppose one primary resource, whose 
extraction costs increase over time as a function of 
resource depletion. The economic demands one 
homogeneous good and the exogenous demand 
increases over time.                                     
 
There are three kinds of technology, namely “Existing”, 
“Incremental”, and “Revolutionary”, which can be used 
to produce the good. The “Existing” and “Incremental” 
technologies need consuming primary resource for 
producing the good, while the “Revolutionary” hardly 
need no resource input.  

 
  The “Existing” technology is assumed to be entirely 

mature, and its costs and efficiency do not change 
over time.  

  The “Incremental” technology has a slight 
efficiency advantage. With a higher initial cost than 
that of the “Existing” technology (by a factor 2 
higher than the “Existing” technology), it has 
potential for technological learning (we assume a 
mean learning rate of 10%).  

  The “Revolutionary” technology requires no 
resource input. Its initial cost is much higher than 
the “Incremental” one (by a factor 40 higher than 
the “Existing” technology), but its learning 
potential is also higher (we assume a mean rate of 
30%).  

 

We assume in the initial year, all demand can be 
satisfied by the “Existing” technology, and the 
“Incremental” and “Revolutionary” has no installation 
in the initial year.  Technology learning is based on RD 
& D (research, development and demonstration) [7-9]. 
In our model, the input and effort in RD & D is 
quantified by the cumulative installed capacity, and 
future investment cost is a function of cumulative 
installed capacity. The learning rates of the 
“Incremental” and “Revolutionary” technology are 
treated as random values. The probabilistic 
characteristics of these random values can be derived 
from lognormal distribution functions of the 
corresponding learning rates. In our model, we use a 
simultaneous approximation of these random future cost 
values by N sample functions of the learning rate, where 
N is the sample size. The model is solved for a 
sufficiently large sample N, where the size of N has 
been determined through successive experiments. 
Several successive model runs with the same sample 
size N are compared. If no major change in the solution 
structure and the objective function can be observed 
then N is considered sufficiently large.  
 
For more details of the model, please refer to the 
appendix of this paper. 
 
2.2 Heterogeneous Agents and their Interactions 
  
The model deals with two heterogeneous agents (agent 
1 and agent 2) operating simultaneously in the 
technological change process. The agents’ 
heterogeneities which this paper will focus on are 
agents’ different risk attitudes to uncertainty in learning 
and weights.  
 
The interaction between the two agents includes trade 
on resource and good and technology spillover. Trade 
on resource and good means that one agent can buy 
resource and good from the other. By means of Pareto 
optimization, our model does not treat the price of 
resource and good, instead it includes the cost of the 
trade. This cost can be viewed as cost for transportation, 
distributions and any other additional cost caused by 
moving and using resource and good from the other 
agent. The quantity of trade flow at each time step is 
treated as decision variables.  
 
We distinguish two kinds of technology spillover 
effects: technological “free-riding” and technology trade. 
Technological free-riding means that one agent can 
benefit from the other’s learning effect without cost, but 
most of time with some delay. There are no additional 
decision variables for free-riding. Technology trade 
means that one agent can benefit from the other’s 



experience (cumulative installed capacity) with some 
cost. Technology trade is different from resource trade 
and good trade in sense that the bargainer agent does not 
lose the experience, unlike in the case of resource and 
good trade. It just shares the experience with the 
purchaser agent. Again, here we don’t consider the price 
of technology. And we let the quantity of technology 
trade at each time step be decision variables 
 
We assume a 100-year scale (from 1990 to 2090) 
problem, with a 10-year interval between decision times. 
The objective function of the Pareto optimization can be 
simply denoted as  
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where 1
dcA and 2

dcA  in the first part of the objective 
function denotes discounted deterministic cost of agent 
1 and agent 2, including both R&D and investment cost 
and O+M (Operation and Management) cost; 1ϖ  and 

2ϖ in the second part denotes agent 1’s and agent 2’s 
discounted cost resulting from overestimating learning 
rate,  with 1ρ  ( 2ρ ) denoting agent 1’s (agent 2’s) risk 
factor; the third part is the cost of trading on resource 
and good and the forth part is the cost of technology 
trade, with δ  denoting the discount rate, 1α  denoting 
the unit cost of resource trade, 2α  denoting the unit 
cost of good trade, 3α  denoting the unit cost of 
technology trade, tr  denoting trade quantity of 
resource at time t , tg  denoting trade quantity of good,  
and ts  denoting the trade quantity of experience 
(cumulative installed capacity) at time t . The tr , tg  
and ts  can be negative, depending on the direction of 
the trade.   
 
Each agent is subject to two constraints. Its total annual 
production of all three technologies must satisfy given 
demand, and its annual production for each technology 
does not exceed installed capacity. 
    
Agents’ weights denote their sizes or their share in the 
total system. The weight for the agent 1 is 1 (0,1)w ∈ , 
and the weight for agent 2 is 2 (0,1)w ∈ , the two weights 
satisfy the formulation: 1 2 1w w+ = . 
 

The two agents’ weights don’t appear in the objective 
function, instead it appears in constrains related to 
demand. Suppose tD  is the demand in whole market 
at time step t, then agent 1’s demand at time step t is 

1 1
t tD w D= , and for agent 2, it is 

2 2 1(1 )t t tD w D w D= = − . 
 
Obviously, we can generate infinite future scenarios and 
stories with different combinations of those parameters. 
And also with some specification value, the model can 
be used for some practical analysis. But before that, we 
would show the behaviors of the model, which is the 
main purpose of this paper.  
 

 
3. SIMULATION 

 
3.1 Pareto Optimization without Technology 

Spillover  
 
In our basic case (BC in short) simulation, we assume 
the two agents have the same weight ( 1 2 0.5w w= = ) ,  
agent 1 is  risk-taking ( 1 0.1ρ = ) while agent 2 is a 
risk-aversion one ( 2 1ρ = ), and the unit trade costs of 
good and resource are the same and they are 100 
( 1 2 100α α= = ).  
 
The third part of Fig. 1 shows the result -- market share 
(percent) of each technology -- of the basic case 
simulation, comparing with the result of assuming a 
single global social planner agent (the first and second 
part of Fig. 1). We can see, in the two-agent model, the 
diffusion time of the “Revolutionary” technology is 
longer, and the break-even point of it is later than the 
case with a risk-taking agent 1 and is earlier than that 
with a risk-aversion agent 2.      
 
In the basic case simulation, we found that agent 2 did 
not develop the “Revolutionary” technology at all, it 
only developed the “Incremental” technology, with its 
total installed capacity decreased to zero at 2080. The 
reason is that from 2050, it becomes an economic way 
for agent 2 to import good from agent 1 because of the 
continuous diffusion of the “Revolutionary” technology 
in agent 1 making the cost of the good produced by 
agent 1 continuously decrease.  Before 2040, the 
demand of agent 2 is totally satisfied by its own 
production; from 2040 to 2080, it is satisfied by both its 
own production and the import from agent 2; and from 
2080, it is completely satisfied by the import from agent 
2, i.e., finally, agent 1 dominated the whole market.    



 
                     Figure 1 a global social planner VS two agents interacting with each other 

-- Market share (percent) of each technology with the time axis 
 

We varied the values of 1α  and 2α  to see what will 
happen in the simulation. We assumed 1 2 10α α= = , 
which means the cost for trade is very low. We found 
with the low trade cost, agent 1 dominates the whole 
market of good, and agent 2 does not produce any good. 
It imports good from agent 1 and exports resource to 
agent 1.  The reason is very obvious, for agent 1, its 
adventure character makes it develop advanced 
technology early and result in low production cost; 
while for agent 2, since the trade cost is cheap, it is a 
rational decision to buy cheap good from agent 1 rather 
than to execute expensive RD & D investment and 
production. Then we assumed the unit trade cost is 
expensive, 1 2 1000α α= = , and in this case, it was not 
economic for agents to do business with each other, and 
agent 2 did not develop and adopt the “revolutionary” 
technology within the simulation period.  

 
Figure 2 Diffusion of the “Revolutionary” technology in 

whole market with different 1w  
 
The above simulations assumed that the two agents had 
the same size. Now we give sensitive analysis on the 
parameter 1w . Fig. 2 shows the diffusion of the 
“Revolutionary” technology – its share at each time step 
-- in the whole market with different 1w . We can see 

that the entry and mature time of the “Revolutionary” 
technology was brought forward with the increasing of 
the risk-taking agent’s weight.   

 
With the above Pareto optimization, we did not consider 
the price of good and resource, that is to say, in fact, we 
optimize the total system’s cost instead of maximizing 
each agent’s profit. 

 
 

3.2 Pareto Optimization with Technological 
“Free-Riding” 

 
Now we consider the situation that there is free-riding 
between agents. That is to say, although agent 2 does 
not have R&D investment in the “Revolutionary” 
technology, it can benefit from agent 1’s learning effect. 
We assume that agent 2’s future investment cost on the 
“Revolutionary” technology relies on agent 1’s 
cumulative installed capacity, but with one-decade 
delay. 
 
With the parameter values set in the basic case 
simulation, we found the “free-riding” made agent 2 
develop the “Revolutionary” technology from 2070, and 
the diffusion time of it was very short -- only one 
decade from introduction to mature. While with low 
trade cost, i.e., 1 2 10α α= = , the “free-riding” did not 
show its effect at all; and from 2030, agent 2’s 
consumption completely depends on the import from 
agent 1. With high trade cost, i.e., 1 2 1000α α= = , 
with “free-riding”, agent 2 started R&D investment on 
“Revolutionary” technology from 2060, and 
“Revolutionary” technology finally occupies all of the 
market in 2090.  We would imagine with higher trade 
cost, for example, 1000 rather than 500, trade between 
two agents will be less, and thus technological 
“free-riding” will show stronger effect. But our 
simulation results show this is not the truth, the 
“revolutionary” technology occupy the market earlier 
with 1 2 500α α= =  than that with 1 2 1000α α= = . 

only agent 1                     only agent 2              two agents operates together



This is because with 1 2 1000α α= = , the 
“incremental” technology in agent 2 has a wider 
application, thus it takes more time for the 
“revolutionary”  technology to takeover.             
 
The above result was based on the assumption that the 
two agents have the same weight, i.e. 1 2 0.5w w= = . 
We varied both weights and the trade cost to see what 
will happen. The simulations showed that, in the whole 
market (the sum of agent 1 and agent 2’s market), when 
agent 1’s weight is bigger and the unit trade cost is 
lower, the entry time and mature time of the 
“revolutionary” technology is earlier; and the same 
happened in agent 1’s local market2. For agent 2, the 
“free-riding” showed its effect (which means that agent 
2 develops the “revolutionary” technology) when agent 
2’s weight is big and when the unit trade cost is high, 
otherwise agent 2 imports good from agent 1 instead of 
developing the “revolutionary” technology. 
 
3.3  Pareto Optimization with Technology Trade 

instead of “Free-Riding” 
 
In the above, “free-riding” means one agent can benefit 
from the other’s learning effect without any cost, but 
with some delay (eg. one decade). In terms of 
technology trade, we allow an agent to decide whether it 
need buy technology from the other and when to buy. 
Technology trade is different from resource trade and 
good trade in the sense that the bargainer agent does not 
lose the experience, unlike in the case of resource and 
good trade. It just shares the experience with the 
purchaser agent. In the following simulation, we assume 
that agent 2 will buy the “Revolutionary” technology 
from agent 1. But not all the bought experience can be 
internalized. We assume 80% of the bought experience 
from agent 1 can be internalized by agent 2. For making 
the technology trade show its effect, we assume a low 
unit cost for technology trade, i.e., 3 10α = . 
 
Fig. 3 shows the result of the diffusion and trade of 
“revolutionary” technology with different weight of 
agent 1. We can see when agent 1 is very big, i.e., 

1 0.9w = , agent 1 developed the “revolutionary” 
technology a little earlier than other occasions. This is 
because  agent 1’s large weight denotes that it faces a 
large market. Varying 1w  from 0.2 to 0.8 does not 

                                                 
2 When agent 1’s weight is very small, i.e., 1 0.1w = , 
and the trade cost of resource and goods is not big (e.g. 

1 2 600α α= < ),  agent 1 developed the 
“revolutionary” technology slightly earlier to let agent 2 
benefit from “free-riding” on agent 1’s learning effect.  

show obvious impact on agent 1’s behavior. What is 
interesting here is that when agent 1’s weight is very 
small, i.e., 1 0.1w = , agent 1 developed the 
“revolutionary” technology slightly earlier. This can be 
explained as: with a small weight, agent 1’s learning 
effect (accumulative installed capacity) becomes 
relatively weak for agent 2 who will buy agent 1’s 
experience, and thus agent 1 developed the 
“revolutionary” technology slightly earlier as 
compensation. 
 
For agent 2, with its risk-aversion attitude, it adopted 
the “revolutionary” technology a little later than agent 1 
by buying technology from agent 1. It made no obvious 
impact on agent 2’s behavior when varying 1w  from 
0.1 to 0.7, and the diffusion of the “revolutionary” 
technology in agent 2 started from about 2050 and 
occupied all the market in about 2080. The diffusion 
time (about 3 decades) was shorter than that (about 5 
decades) in agent 1. This accords with the historical 
observation that the later developer of a new technology 
can obtain a shorter diffusion period [5]. And we can see 
that the technology trade happened during the period 
from 2030 to 2060. This suggest a policy for those 
risk-aversion actors that it is not a good decision to wait 
until new technology has been developed to a very 
mature-level by others, e.g., after 2060 in the simulation, 
instead it is better to learn from technology pioneers 
(those risk-taking agents who develop new technology 
earlier) at the earlier diffusion stage (niche market stage 
according to the life-cycle model) of the new technology, 
and most of time it is not a right decision to buy new 
technology forever. After some periods, the later 
adopters should do RD&D by themselves.  When 
agent 2 is very small ( 1 0.8w ≥ ), agent 2 never 
developed the “revolutionary” technology. It imported 
good instead of technology from agent 1.        
 
From the whole market level, with the increase of agent 
1’s weight, the entry time and mature time of the 
“revolutionary” technology was brought forward. 
 
 
4. CARBON EMISSION PATHS AS RESULTS OF 

DIFFERENT TECHNOLOGY CHANGE 
 
Our model is very idealized in terms of carbon emission. 
It assumes that the “Revolutionary” technology has little 
emission which can be negligible.   
 
 



 
Figure 3  Pareto optimization with technology trade and different weight of agents 

  
 

 
Figure 4 Different carbon emission paths 

 
Fig. 4 shows different emission paths (sum of agent 1 
and agent 2) with different technology change, from 
which we can see that from 2000 to 2040, the basic case 
(BC in short) simulation (without any technological 
spillover effect) has the most obvious carbon abatement, 
while BC plus “free-riding” ranks the second and BC 
plus technology trade shows the weakest abatement. But 
after 2050, the rank order is inversed. According to our 
intuition, technological spillover should be helpful for 
carbon abatement. The reason why the emission paths 
from 2000to 2040 are contrary to this intuition is that, 

during that period, with technological spillover effect, 
agent 2 developed less “Incremental” technology than in 
the case without spillover, as shown in Fig. 5, thus more 
“existing” technology was used in this period which 
resulted in weaker carbon abatement. 

 
BC --without technological spillover 
BC1: BC + technological free-riding 
BC2: BC + technology trade 

 
Figure 5 Agent 2’s “Incremental” technology in 

different simulations  
 
 



5. CONCLUSIONS 
 
With increasing returns and uncertainty, this paper 
presented a model of endogenous technological change 
with two heterogeneous agents, a risk-taking pioneer 
agent and a risk-aversion follower agent. The model 
showed the following behaviors. 
 
  With the two heterogeneous agents, the diffusion of 

the “revolutionary” technology is longer than that 
with a single global social planner. And diffusion 
time in the follower agent is shorter than that in the 
pioneer agent.  

  Technological spillover effects between the two 
agents, technological “free-riding” and technology 
trade in this paper, will encourage the risk-aversion 
agent to develop and adopt the “Revolutionary” 
technology, at the same time, it will discourage the 
wide diffusion of the “Incremental” technology in 
the risk-aversion agent. 

  Concerning the environmental issue, technological 
spillover effects between the two agents can 
enhance carbon abatement in a long-term, but in a 
short or middle-term, they can also weaken carbon 
abatement.            

 
The stylized and also idealized two-agent model and 
simulations introduced in this paper can enhance 
people’s imagination about how agent heterogeneity 
(different weights and risk attitudes) and technological 
spillover among agents (“free-riding” and technology 
trade) impact technological change processes. In 
addition, the simulation results can give some policy 
implications for both risk-taking and risk-aversion 
decision makers, e.g., for risk-aversion agent, it is better 
to import a new technology from risk-taking agent at the 
niche market stage of the new technology, instead of 
waiting until the new technology being mature.      
 
 

APPENDIX 
 

Here we give more mathematic expressions of the 
model. The demand is exogenous and it increases over 
time as shown in Eq. (1).   

100(1 2.6%)t tD = +            (1) 
Here, tD  denotes the demand at decision time t , 
which increases by 2.6% annually. Each agent has a 
share of the demand based on its weight. The following 
expression is for an individual agent.  
 
Let t

ix  ( 1,2,3i = ) denotes the annual production of 
technology i  at time t , and let iη  denotes 
technology i ’s efficiency, then the annual extraction 

tR  is the sum of resources consumed by each 
technology, as shown in Eq. (2) 

3
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1 .t t
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i i

R x
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Thus the cumulative extraction by time t  is: 
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The extraction cost of the resource increases over time 
as a linear function of resource depletion, as shown in 
Eq. (4)  

0t t
E E Ec c k R= +       (4) 

where t
Ec  denotes the extraction cost per resource unit 

at time t , 0
Ec  is the initial extraction cost, tR is the 

total extraction by decision time t , and Ek is a 
constant coefficient.   
 
Let t

iy  ( 1,2,3i = ) denotes the annual new installation 
of technology i at time t , then the total installed 
capacity (TIC) of technology i  at time t , denoted by 

t
iC ( 1,2,3i = ) can be calculated according to Eq. (5).  

,
i

t
t j
i i

j t

C y
τ= −

= ∑        (5) 

where iτ denotes the plant life of technology i .  
 
The cumulative installed capacity (CIC) t

iC  of 
technology i by time t  is calculated as: 

0

1

.
t t

t j j
i i i i

j j

C C C C
=−∞ =

= = +∑ ∑     (6) 

 
Technology learning is based on experience which is 
quantified by the cumulative installed capacity, thus 
future investment cost is a function of cumulative 
installed capacity, as shown in Eq. (7) 

0 ( ) ,ibt t
F i F i ic c C −= ×          (7) 

where ib  is the progress ratio (1 2 ib−−  is the learning 
rate) of technology i, and 0

Fic  is the initial cost of 
technology i. 
 
The deterministic cost, which includes investment on 
plants, extraction cost, and O+M (operation and 
maintenance) cost, is   
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and the cost resulted from overestimating learning rates 
is  
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where δ  denotes the discount rate, OMic denotes the 
operating and maintenance (O+M) cost of technology 
i , ρ  is a risk factor ( 1ρ>  emphasizing the risk and 

1ρ<  reflecting a tendency toward risk neutrality), 
( )t

F ic ψ  is a random variable with ψ  denoting an 
element from a probability space that is characterized by 
a lognormal distribution, and E denotes expectation.  
 

Constrains are 
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Table 1. gives the initial values of parameters. 

 
Table 1. Initial values of parameters 

 
Parameters related to the three technologies  

 Existing Tech. Incremental Tech. Revolutionary Tech. 

Initial cost  0
1 1000Fc =  0

2 2000Fc =  0
3 40000Fc =  

Efficiency 1 30%η =  2 40%η =  Hardly no resource input 
Mean Learning Rate and 
the variances  

1 0b =  
( 11 2 0b−− = ) 
 

( 21 2 10%b−− = ) 

( ) ( )2
2 20.1 E Var b b=  

( 31 2 30%b−− = ) 

( ) ( )2
3 30.1 E Var b b=  

Plant life 1 30τ =  2 30τ =  3 30τ =  
Initial Total Installed 
Capacity  kW 

0
1 50C =  0

2 0C =  0
3 0C =  

Initial Cumulative Installed Capacity  0
2 0.5C =  0

3 0.5C =  
O+M cost  1 30OMc =  2 50OMc =  3 50OMc =  

Other Parameters  
Initial extraction cost   0 200Ec =  Extraction cost coefficient 0 0.01EK =  
Discount rate 5%δ =  Risk factor Different for the two agents 
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