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ABSTRACT

In this study, a novel adaptive learning algorithm for
back-propagation neural network (BPNN) based on
optimized instantaneous learning rates is proposed. In
this new algorithm, the optimized adaptive learning
rates are used to adjust the weight changes dynamically.
For illustration and testing purposes the proposed
algorithm is applied to stock market prediction.

Keywords: Adaptive learning, BPNN, optimal learning
rate, stock market prediction

1. INTRODUCTION

Back-propagation neural network (BPNN) is the most
popular class of artificial neural networks (ANNS)
which have been widely applied to time series
prediction, function approximation, pattern recognition,
nonlinear system identification and control problems,
etc. The basic learning rule of BPNN is based on the
gradient descent optimization method and the chain rule,
as initially proposed by Werbos [1] in the 1970s. Since
the basic learning rule is based on the gradient descent
method, which is known for its slowness and its
frequent confinement to local minima [2], many
improved BP algorithms are developed such as variable
step size, adaptive learning [3-4] and others [5-6].
Generally, these algorithms have an improved
convergence property, but most of these methods do not
use the optimized instantaneous learning rates. In their
studies, the learning rate is set to a fixed value when
learning. However, it is critical to determine a proper
fixed learning rate for the applications of the BPNN. If
the learning rate is large, learning may occur quickly,
but it may also become unstable and even will not learn
at all. To ensure stable learning, the learning rate must
be sufficiently small, but with a small learning rate the
BPNN may be lead to a long learning time. Also, just
how small the learning rate should be is unclear. In
addition, for different structures of BPNN and for

different applications, the best fixed learning rates are
different.

There are other ways to accelerate the network learning
using  second-order gradient based  nonlinear
optimization methods, such as the conjugate gradient
algorithm [6] and Levenberg-Marquardt algorithm [7].
The crucial drawbacks of these methods, however, are
that in many applications computational demands are so
large that their effective use in many practical problems
is not viable.

A common problem with the all above mentioned
methods is a non-optimal choice of the learning rate
even with the adaptive change of the learning rate. A
solution is to derive optimal learning rate formulae for
BPNN and then allow an adaptive change at each
iteration step during the learning process. The resulting
algorithm will eliminate the need for a search for the
proper fixed learning rate and provide fast convergence.

Due to the highly nonlinearity of neural networks, it is
difficult to obtain the optimum learning rate. In this
paper, a new method based on matrix and optimization
techniques is proposed to derive the optimal learning
rate and construct an adaptive learning algorithm. To
test the efficiency of the proposed algorithm, an
important stock index — Nikkei225 is used. The rest of
this work is organized as follows. In Section 2, the
proposed adaptive learning algorithm with optimal
learning rate is presented. In order to testing the
proposed algorithm, Section 3 gives an experiment and
reports the results. Finally, the conclusions are made in
Section 4.

2. THE ADAPTIVE LEARNING ALGORITHM

Consider a three-layer BPNN, which has p nodes in the
input layer, q nodes in the hidden layer and k nodes in
the output layer. Mathematically, the basic structure of
the BPNN model is described by
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where x(t), j = 1, 2, ..., p, are the inputs of the BPNN; y
is the output of the BPNN; wjj(t), i=1,...,9,j=1, ..., p,
are the weights from the input layer to the hidden layer;
wio(t), i = 1, ..., q, are the biases of the hidden nodes;
vit), i=1, ..., 0,j =1, ..., k, are the weights from the
hidden layer to the output layer; vio(t) is the bias of the
output node; t is a time factor; f; is the activation
function of the nodes for the hidden layer and f; is the
activation function of the nodes for the output layer.
Generally, the activation function for nonlinear nodes is
assumed to be a symmetric hyperbolic tangent function,
I8, f,(x)=tan( uglx) » and its derivative is
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where Uy is the shape factor of the activation function.
Specially, some notations in Equation (1) are defined as
follows:
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Usually, by estimating model parameter vector (W, V)
via BPNN training and learning, we can realize the
corresponding tasks such as function approximation,
system identification or prediction. In fact, the model
parameter vector (W, V) can be obtained by iteratively
minimizing a cost function E(X: W, V). In general, E(X:
W, V) is a sum of the error squares cost function with k
output nodes and N training pairs or patterns, that is,
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where y; is the jth actual value and y;j(X: W,V) is the jth
estimated value.

Given the time factor t, Equation (2) can be rewritten as
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where e;(t)=[e;j(t) e - eg@®T €R®,j=12---N

By applying the steepest descent method to the error
cost function E(t) (i.e., Equation (3)), we can obtain the
gradient of E(t) with respect to V and W, respectively.
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So, the updated formulae of weights are given by,
respectively
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where 77 is the learning rate;

Fi(jy = diag[fyy) fiiz) - fiq]e R,

/ o my ofp(net)
ity = fa(net )_W’ =12,,q-
Vi =[vip - Viq]T e RPLi=12,.q,
F; =diag [f;q) f3(2) NG R Kk |
Vin, Var o o Vg
U V12 V22 sz =[V Vp - Vi Je R¥P
Vig Vaqg Vg

fl = £V _w 2,k
2(i) Z[VI Fl(WX )] '\[V| F]_(WX )] =1

To derive the optimal learning rate, let A be an
increment operator and consider the general error
equation:
Ae(t+1) =e(t+1)—e(t) ©)
=y-yt+1)-y+y(t)=-Ay(t+1)
where Ay(t+1) = 0. This means there is no change
in the pattern during the neural networks’ learning



procedure and the change of output of neural networks
is
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Here, & indicates a direct product, and x indicates a
cross product.

In order to prove Equation (7), a lemma must be
introduced.

Lemma: The total time derivative of the BPNN single
output vT F, (wx ) is given by
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Proof: Derivation of d[v' F1 (WX )] is as follows:
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In the following, we start to prove Equation (7). Let us
consider the change of output of MLFNN for the mth
pattern first. The above Lemma together with Equations
(4) and (5) gives
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So, the total change caused by all patterns is
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Substituting (7) into (6), we obtain
e(t+1) =e(t) —n< (t)e(t) 8)

The objective here is to derive an optimal learning rate
7. That is, at iteration t, an optimal value of the

learning rate, ") , which minimizes E(t+1) is
obtained. Define the cost function:
E(t+1):%eT (t + De(t +1) ©)
Using Equation (8), Equation (9) may be written as
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which gives the error e, at iteration t+1, as a function of
the learning rate 77, which minimizes E(t+1). Now we

use the first and second order conditions
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Since £(t) is positively defined, the second condition
is met and the optimum value of the learning rate is
found to be
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Finally, the increments of the BP neural network
parameters, by using the optimal learning rate, are
obtained by replacing the 17" given by Equation (11) to
Equations (4) and (5), which yield
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Using the new weight update formulae with optimal
learning rates, a new learning algorithm is generated. To
verify the effectiveness of the proposed adaptive
learning model, a major stock index (Nikkei225) is used
as testing targets. A detailed process is presented below.

3. EMPIRICAL STUDY
3.1 Data Description

In the experiments, the data of an important stock index
(Nikkei225) is daily and is obtained from Datastream.
The entire data set covers the period from January 1
2000 to December 31 2004. The data sets are divided
into two periods: the first period covers from January 1
2000 to December 31 2003 while the second period is
from January 1 2004 to December 31 2004. The first
period, which is assigned to in-sample estimation, is
used to network learning and training. The second
period is reserved for out-of-sample evaluation. For
brevity, the original data are not listed in the paper, and
detailed data can be obtained from the sources.



To examine the forecasting performance, the root mean
squared error (RMSE) and directional change statistics
(Dstat) Of stock index movement are employed in this
study. The directional change statistics (Dga) can be

expressed as
N
Dyt = Z‘:lai/N (14)

where a,=1if(X,,; — %, )(X,,; —%X,)=0,and a,=0
otherwise.

3.2 Experiment Results

When the data are prepared, we begin to train BPNN
model. In these experiments, we prepare 5 years’ daily
data. We use the first 4 years’ daily data to train and
validate the network, and use the last one years’ data to

test the prediction performance. For comparison, the
standard three-layer BP neural network is used as
benchmark model. This study varies the number of
nodes in the hidden layer and stopping criteria for
training. In this study, 5, 10, 20 hidden nodes for each
stopping criteria because the BP network does not have
a general rule for determining the optimal number of
hidden nodes. The study uses 500, 1000, 2000 and 4000
learning epochs for the stopping criteria of BPNN. For
standard BPNN model, the learning rate is set to 0.25.
The hidden nodes use the sigmoid transfer function and
the output node uses the linear transfer function. The
study allows 5 input nodes in terms of the results of
auto-regression testing. The comparison of experiment
results are reported in Table 1.

Table 1 The prediction performance comparison of various BPNN models

Stock  Training Number RMSE Distar(%)
index epochs ofhidden "“Standard ~ Adaptive  Standard  Adaptive
nodes BPNN BPNN BPNN BPNN
500 5 100.3541 70.1124 49.63 59.44
10 89.6472 54.3589 51.58 63.38
20 70.5428 41.2547 52.63 62.38
1000 5 81.5477 50.3584 50.36 58.76
10 51.8545 39.6874 52.05 61.02
Nikkei 20 37.5426 21.2387 52.63 64.47
225 2000 5 40.3376 14.3541 53.54 66.71
10 22.5474 8.4579 55.68 70.25
20 16.3785 5.4763 55.41 72.39
4000 5 35.4754 20.2378 52.24 65.65
10 36.3687 13.3782 54.35 72.35
20 21.3523 7.8524 52.63 68.36

As can be seen from Table 1, we can find that (1) the
best prediction performance for the testing data is
generally produced when the number of hidden nodes is
20 and the training epochs are 2000. (2) Generally
speaking, the prediction performance improves with the
increase of training epochs and hidden nodes. (3)
Usually, too few training epochs and hidden nodes can
not lead to a good forecasting result. (4) The
performance of the proposed adaptive BPNN model is
much better than that of the standard BPNN model in
the experiment.

In addition, focusing on two indicators of Table 1, we
find the proposed adaptive BPNN model performs much
better than the standard BPNN models in all testing
cases. These results also indicate the feasibility of the
adaptive BPNN model in stock index forecasting.

4. CONCLUSIONS

In this study, an adaptive BP learning algorithms with
optimal learning rate is first proposed. And then this
exploratory research examines the potential of using an
adaptive  BPNN model to predict an important
international stock index — Nikkei 225. Our empirical
results suggest that the adaptive BPNN model may
provide better forecasts than the standard BPNN model.
The comparative evaluation is based on a variety of
statistics such as RMSE and Dgg. In our empirical
investigation, the adaptive BPNN model outperforms
the standard BPNN model in terms of RMSE and Dy
Furthermore, our experimental analyses reveal that the
RMSE and Dg, for the stock index using the proposed
adaptive BPNN model are significantly better than those
obtained using the standard BPNN model. This implies
that the proposed adaptive BPNN model can be used as
a feasible solution for stock market prediction.
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