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ABSTRACT 
 

In this study, a novel adaptive learning algorithm for 
back-propagation neural network (BPNN) based on 
optimized instantaneous learning rates is proposed. In 
this new algorithm, the optimized adaptive learning 
rates are used to adjust the weight changes dynamically. 
For illustration and testing purposes the proposed 
algorithm is applied to stock market prediction. 
 
Keywords: Adaptive learning, BPNN, optimal learning 

rate, stock market prediction 
 
 

1. INTRODUCTION 
 

Back-propagation neural network (BPNN) is the most 
popular class of artificial neural networks (ANNs) 
which have been widely applied to time series 
prediction, function approximation, pattern recognition, 
nonlinear system identification and control problems, 
etc. The basic learning rule of BPNN is based on the 
gradient descent optimization method and the chain rule, 
as initially proposed by Werbos [1] in the 1970s. Since 
the basic learning rule is based on the gradient descent 
method, which is known for its slowness and its 
frequent confinement to local minima [2], many 
improved BP algorithms are developed such as variable 
step size, adaptive learning [3-4] and others [5-6]. 
Generally, these algorithms have an improved 
convergence property, but most of these methods do not 
use the optimized instantaneous learning rates. In their 
studies, the learning rate is set to a fixed value when 
learning. However, it is critical to determine a proper 
fixed learning rate for the applications of the BPNN. If 
the learning rate is large, learning may occur quickly, 
but it may also become unstable and even will not learn 
at all. To ensure stable learning, the learning rate must 
be sufficiently small, but with a small learning rate the 
BPNN may be lead to a long learning time. Also, just 
how small the learning rate should be is unclear. In 
addition, for different structures of BPNN and for 

different applications, the best fixed learning rates are 
different. 
 
There are other ways to accelerate the network learning 
using second-order gradient based nonlinear 
optimization methods, such as the conjugate gradient 
algorithm [6] and Levenberg-Marquardt algorithm [7]. 
The crucial drawbacks of these methods, however, are 
that in many applications computational demands are so 
large that their effective use in many practical problems 
is not viable. 
 
A common problem with the all above mentioned 
methods is a non-optimal choice of the learning rate 
even with the adaptive change of the learning rate. A 
solution is to derive optimal learning rate formulae for 
BPNN and then allow an adaptive change at each 
iteration step during the learning process. The resulting 
algorithm will eliminate the need for a search for the 
proper fixed learning rate and provide fast convergence. 
 
Due to the highly nonlinearity of neural networks, it is 
difficult to obtain the optimum learning rate. In this 
paper, a new method based on matrix and optimization 
techniques is proposed to derive the optimal learning 
rate and construct an adaptive learning algorithm. To 
test the efficiency of the proposed algorithm, an 
important stock index — Nikkei225 is used. The rest of 
this work is organized as follows. In Section 2, the 
proposed adaptive learning algorithm with optimal 
learning rate is presented. In order to testing the 
proposed algorithm, Section 3 gives an experiment and 
reports the results. Finally, the conclusions are made in 
Section 4. 
 
 

2. THE ADAPTIVE LEARNING ALGORITHM 
 
Consider a three-layer BPNN, which has p nodes in the 
input layer, q nodes in the hidden layer and k nodes in 
the output layer. Mathematically, the basic structure of 
the BPNN model is described by  
 



          

])()())()()(([

])()())()()(([

])()())()()(([

)1(

)1(
)1(

)1(

1 1 0012

1 1 202012

1 1 101012

2

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

++

++

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

∑ ∑

∑ ∑
∑ ∑

= =

= =

= =

q

i

p

j kkiijij

q

i

p

j iijij

q

i

p

j iijij

k tvtvtwtxtwff

tvtvtwtxtwff

tvtvtwtxtwff

ty

ty
ty

tY
LL

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∑ ∑

∑ ∑
∑ ∑

= =

= =

= =

)])()(([

)])()(([
)])()(([

])())()(([

])())()(([

])())()(([

12

122

112

0 012

0 0 212

0 0 112

tXtWFVf

tXtWFVf
tXtWFVf

tvtxtwff

tvtxtwff

tvtxtwff

T
k

T

T

q
i

p
j kijij

q
i

p
j ijij

q
i

p
j ijij

LL

 

)])()()([ 12 tXt(WFtVF T=                        (1) 
where xj(t), j = 1, 2, …, p, are the inputs of the BPNN; y 
is the output of the BPNN; wij(t), i = 1, …, q, j = 1, …, p, 
are the weights from the input layer to the hidden layer; 
wi0(t), i = 1, …, q, are the biases of the hidden nodes; 
vij(t), i = 1, …, q, j = 1, …, k, are the weights from the 
hidden layer to the output layer; vi0(t) is the bias of the 
output node; t is a time factor; f1 is the activation 
function of the nodes for the hidden layer and f2 is the 
activation function of the nodes for the output layer. 
Generally, the activation function for nonlinear nodes is 
assumed to be a symmetric hyperbolic tangent function, 
i.e., )tanh()( 1

01 xuxf −= , and its derivative is 

)](1[)( 2
1

1
01 xfuxf −=′ − , )](1)[(2)( 2

11
1

01 xfxfuxf −−=′′ − , 
where u0 is the shape factor of the activation function. 
Specially, some notations in Equation (1) are defined as 
follows: 
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Usually, by estimating model parameter vector (W, V) 
via BPNN training and learning, we can realize the 
corresponding tasks such as function approximation, 
system identification or prediction. In fact, the model 
parameter vector (W, V) can be obtained by iteratively 
minimizing a cost function E(X: W, V). In general, E(X: 
W, V) is a sum of the error squares cost function with k 
output nodes and N training pairs or patterns, that is, 
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where yj is the jth actual value and yj(X: W,V) is the jth 
estimated value. 
 
Given the time factor t, Equation (2) can be rewritten as 
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By applying the steepest descent method to the error 
cost function E(t) (i.e., Equation (3)), we can obtain the 
gradient of E(t) with respect to V and W, respectively. 
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So, the updated formulae of weights are given by, 
respectively 
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To derive the optimal learning rate, let ∆ be an 
increment operator and consider the general error 
equation: 
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where 0)1( ≡+∆ ty . This means there is no change 
in the pattern during the neural networks’ learning 



procedure and the change of output of neural networks 
is 
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Here,⊗ indicates a direct product, and ×  indicates a 
cross product. 
 
In order to prove Equation (7), a lemma must be 
introduced. 
 
Lemma: The total time derivative of the BPNN single 
output )(1 WXFv T is given by 
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In the following, we start to prove Equation (7). Let us 
consider the change of output of MLFNN for the mth 
pattern first. The above Lemma together with Equations 
(4) and (5) gives 
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Substituting (7) into (6), we obtain 

)()()()1( tettete ηξ−=+           (8) 
 
The objective here is to derive an optimal learning rate 
η . That is, at iteration t, an optimal value of the 
learning rate, )(* tη , which minimizes E(t+1) is 
obtained. Define the cost function: 

)1()1(
2
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Using Equation (8), Equation (9) may be written as 
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which gives the error e, at iteration t+1, as a function of 
the learning rate η , which minimizes E(t+1). Now we 
use the first and second order conditions 
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Since )(tξ is positively defined, the second condition 
is met and the optimum value of the learning rate is 
found to be 
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Finally, the increments of the BP neural network 
parameters, by using the optimal learning rate, are 
obtained by replacing the η* given by Equation (11) to 
Equations (4) and (5), which yield 
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Using the new weight update formulae with optimal 
learning rates, a new learning algorithm is generated. To 
verify the effectiveness of the proposed adaptive 
learning model, a major stock index (Nikkei225) is used 
as testing targets. A detailed process is presented below. 
 
 

3. EMPIRICAL STUDY 
 
3.1 Data Description 
 
In the experiments, the data of an important stock index 
(Nikkei225) is daily and is obtained from Datastream. 
The entire data set covers the period from January 1 
2000 to December 31 2004. The data sets are divided 
into two periods: the first period covers from January 1 
2000 to December 31 2003 while the second period is 
from January 1 2004 to December 31 2004. The first 
period, which is assigned to in-sample estimation, is 
used to network learning and training. The second 
period is reserved for out-of-sample evaluation. For 
brevity, the original data are not listed in the paper, and 
detailed data can be obtained from the sources. 
 



To examine the forecasting performance, the root mean 
squared error (RMSE) and directional change statistics 
(Dstat) of stock index movement are employed in this 
study. The directional change statistics (Dstat) can be 
expressed as 

NaD
N

t tstat ∑=
=

1
              (14) 

where ta =1 if 0)ˆ)(( 11 ≥−− ++ tttt xxxx , and ta =0 
otherwise. 
 
3.2 Experiment Results 
 
When the data are prepared, we begin to train BPNN 
model. In these experiments, we prepare 5 years’ daily 
data. We use the first 4 years’ daily data to train and 
validate the network, and use the last one years’ data to 

test the prediction performance. For comparison, the 
standard three-layer BP neural network is used as 
benchmark model. This study varies the number of 
nodes in the hidden layer and stopping criteria for 
training. In this study, 5, 10, 20 hidden nodes for each 
stopping criteria because the BP network does not have 
a general rule for determining the optimal number of 
hidden nodes. The study uses 500, 1000, 2000 and 4000 
learning epochs for the stopping criteria of BPNN. For 
standard BPNN model, the learning rate is set to 0.25. 
The hidden nodes use the sigmoid transfer function and 
the output node uses the linear transfer function. The 
study allows 5 input nodes in terms of the results of 
auto-regression testing. The comparison of experiment 
results are reported in Table 1. 

 
Table 1 The prediction performance comparison of various BPNN models 

RMSE Dstat(%) Stock 
index 

Training 
epochs 

Number 
of hidden 

nodes 
Standard 
BPNN 

Adaptive 
BPNN 

Standard 
BPNN 

Adaptive 
BPNN 

500 5 100.3541 70.1124 49.63 59.44 
 10 89.6472 54.3589 51.58 63.38 
 20 70.5428 41.2547 52.63 62.38 

1000 5 81.5477 50.3584 50.36 58.76 
 10 51.8545 39.6874 52.05 61.02 
 20 37.5426 21.2387 52.63 64.47 

2000 5 40.3376 14.3541 53.54 66.71 
 10 22.5474 8.4579 55.68 70.25 
 20 16.3785 5.4763 55.41 72.39 

4000 5 35.4754 20.2378 52.24 65.65 
 10 36.3687 13.3782 54.35 72.35 

Nikkei 
225 

 20 21.3523 7.8524 52.63 68.36 
 
As can be seen from Table 1, we can find that (1) the 
best prediction performance for the testing data is 
generally produced when the number of hidden nodes is 
20 and the training epochs are 2000. (2) Generally 
speaking, the prediction performance improves with the 
increase of training epochs and hidden nodes. (3) 
Usually, too few training epochs and hidden nodes can 
not lead to a good forecasting result. (4) The 
performance of the proposed adaptive BPNN model is 
much better than that of the standard BPNN model in 
the experiment.  
 
In addition, focusing on two indicators of Table 1, we 
find the proposed adaptive BPNN model performs much 
better than the standard BPNN models in all testing 
cases. These results also indicate the feasibility of the 
adaptive BPNN model in stock index forecasting.  
 
 
 

4. CONCLUSIONS 
 
In this study, an adaptive BP learning algorithms with 
optimal learning rate is first proposed. And then this 
exploratory research examines the potential of using an 
adaptive BPNN model to predict an important 
international stock index — Nikkei 225. Our empirical 
results suggest that the adaptive BPNN model may 
provide better forecasts than the standard BPNN model. 
The comparative evaluation is based on a variety of 
statistics such as RMSE and Dstat. In our empirical 
investigation, the adaptive BPNN model outperforms 
the standard BPNN model in terms of RMSE and Dstat. 
Furthermore, our experimental analyses reveal that the 
RMSE and Dstat for the stock index using the proposed 
adaptive BPNN model are significantly better than those 
obtained using the standard BPNN model. This implies 
that the proposed adaptive BPNN model can be used as 
a feasible solution for stock market prediction. 
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