
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Adaptive BP Learning Algorithm for Stock

Market Prediction

Author(s) Kin, Keung Lai; Lean, Yu; Shouyang, Wang

Citation

Issue Date 2005-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/3948

Rights ⓒ2005 JAIST Press

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, IFSR 2005 : Proceedings of the

First World Congress of the International

Federation for Systems Research : The New Roles

of Systems Sciences For a Knowledge-based Society

: Nov. 14-17, 2158, Kobe, Japan, Symposium 3,

Session 7 : Intelligent Information Technology

and Applications Computational Intelligence (1)

An Adaptive BP Learning Algorithm for Stock Market Prediction

Kin Keung Lai 1 2 , Lean Yu 1 3 and Shouyang Wang 3
1 Department of Management Sciences, City University of Hong Kong,

83 Tat Chee Avenue, Kowloon, Hong Kong
mskklai@cityu.edu.hk

2 College of Business Administration, Hunan University, Changsha, 410082, China
3 Institute of Systems Science, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100080, China
{yulean, sywang}@amss.ac.cn

ABSTRACT

In this study, a novel adaptive learning algorithm for
back-propagation neural network (BPNN) based on
optimized instantaneous learning rates is proposed. In
this new algorithm, the optimized adaptive learning
rates are used to adjust the weight changes dynamically.
For illustration and testing purposes the proposed
algorithm is applied to stock market prediction.

Keywords: Adaptive learning, BPNN, optimal learning

rate, stock market prediction

1. INTRODUCTION

Back-propagation neural network (BPNN) is the most
popular class of artificial neural networks (ANNs)
which have been widely applied to time series
prediction, function approximation, pattern recognition,
nonlinear system identification and control problems,
etc. The basic learning rule of BPNN is based on the
gradient descent optimization method and the chain rule,
as initially proposed by Werbos [1] in the 1970s. Since
the basic learning rule is based on the gradient descent
method, which is known for its slowness and its
frequent confinement to local minima [2], many
improved BP algorithms are developed such as variable
step size, adaptive learning [3-4] and others [5-6].
Generally, these algorithms have an improved
convergence property, but most of these methods do not
use the optimized instantaneous learning rates. In their
studies, the learning rate is set to a fixed value when
learning. However, it is critical to determine a proper
fixed learning rate for the applications of the BPNN. If
the learning rate is large, learning may occur quickly,
but it may also become unstable and even will not learn
at all. To ensure stable learning, the learning rate must
be sufficiently small, but with a small learning rate the
BPNN may be lead to a long learning time. Also, just
how small the learning rate should be is unclear. In
addition, for different structures of BPNN and for

different applications, the best fixed learning rates are
different.

There are other ways to accelerate the network learning
using second-order gradient based nonlinear
optimization methods, such as the conjugate gradient
algorithm [6] and Levenberg-Marquardt algorithm [7].
The crucial drawbacks of these methods, however, are
that in many applications computational demands are so
large that their effective use in many practical problems
is not viable.

A common problem with the all above mentioned
methods is a non-optimal choice of the learning rate
even with the adaptive change of the learning rate. A
solution is to derive optimal learning rate formulae for
BPNN and then allow an adaptive change at each
iteration step during the learning process. The resulting
algorithm will eliminate the need for a search for the
proper fixed learning rate and provide fast convergence.

Due to the highly nonlinearity of neural networks, it is
difficult to obtain the optimum learning rate. In this
paper, a new method based on matrix and optimization
techniques is proposed to derive the optimal learning
rate and construct an adaptive learning algorithm. To
test the efficiency of the proposed algorithm, an
important stock index — Nikkei225 is used. The rest of
this work is organized as follows. In Section 2, the
proposed adaptive learning algorithm with optimal
learning rate is presented. In order to testing the
proposed algorithm, Section 3 gives an experiment and
reports the results. Finally, the conclusions are made in
Section 4.

2. THE ADAPTIVE LEARNING ALGORITHM

Consider a three-layer BPNN, which has p nodes in the
input layer, q nodes in the hidden layer and k nodes in
the output layer. Mathematically, the basic structure of
the BPNN model is described by

])()())()()(([

])()())()()(([

])()())()()(([

)1(

)1(
)1(

)1(

1 1 0012

1 1 202012

1 1 101012

2

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

++

++

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

∑ ∑

∑ ∑
∑ ∑

= =

= =

= =

q

i

p

j kkiijij

q

i

p

j iijij

q

i

p

j iijij

k tvtvtwtxtwff

tvtvtwtxtwff

tvtvtwtxtwff

ty

ty
ty

tY
LL

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∑ ∑

∑ ∑
∑ ∑

= =

= =

= =

)])()(([

)])()(([
)])()(([

])())()(([

])())()(([

])())()(([

12

122

112

0 012

0 0 212

0 0 112

tXtWFVf

tXtWFVf
tXtWFVf

tvtxtwff

tvtxtwff

tvtxtwff

T
k

T

T

q
i

p
j kijij

q
i

p
j ijij

q
i

p
j ijij

LL

)])()()([12 tXt(WFtVF T= (1)
where xj(t), j = 1, 2, …, p, are the inputs of the BPNN; y
is the output of the BPNN; wij(t), i = 1, …, q, j = 1, …, p,
are the weights from the input layer to the hidden layer;
wi0(t), i = 1, …, q, are the biases of the hidden nodes;
vij(t), i = 1, …, q, j = 1, …, k, are the weights from the
hidden layer to the output layer; vi0(t) is the bias of the
output node; t is a time factor; f1 is the activation
function of the nodes for the hidden layer and f2 is the
activation function of the nodes for the output layer.
Generally, the activation function for nonlinear nodes is
assumed to be a symmetric hyperbolic tangent function,
i.e.,)tanh()(1

01 xuxf −= , and its derivative is

)](1[)(2
1

1
01 xfuxf −=′ − ,)](1)[(2)(2

11
1

01 xfxfuxf −−=′′ − ,
where u0 is the shape factor of the activation function.
Specially, some notations in Equation (1) are defined as
follows:

1)1(
10),,,(×+∈= pT

p RxxxX L , 1
10),,,(×∈= kT

k RyyyY L ,

,),,,()1(
10

10

22120

11110

+×∈=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

= pq
p

qpqq

p

p

RWWW

www

www
www

W L

L

LLLL

L

L

,),,,()1(
21

21

12111

02010

kq
k

kqqq

k

k

RVVV

vvv

vvv
vvv

V ×+∈=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

= L

L

LLLL

L

L

() 1)1(
111011))(())(())(())()((×+∈= qTH

q
HH RtnetFtnetFtnetFtXtWF L

∑ =
=

p

j jij
H
i txtwtnet

0
),()()(i = 0, 1, … , q.

Usually, by estimating model parameter vector (W, V)
via BPNN training and learning, we can realize the
corresponding tasks such as function approximation,
system identification or prediction. In fact, the model
parameter vector (W, V) can be obtained by iteratively
minimizing a cost function E(X: W, V). In general, E(X:
W, V) is a sum of the error squares cost function with k
output nodes and N training pairs or patterns, that is,

∑∑ ∑ == =
==

N

j j
T
j

N

j

p

i ij eeeVWXE
11 1

2

2
1

2
1),:(

∑ =
−−=

N

j jj
T

jj VWXyyVWXyy
1

)],:([)],:([
2
1 (2)

where yj is the jth actual value and yj(X: W,V) is the jth
estimated value.

Given the time factor t, Equation (2) can be rewritten as

∑∑ ∑ == =
==

N

j j
T
j

N

j

k

i ij tetetetE
11 1

2)()(
2
1)(

2
1)(

∑ =
−−=

N

j jj
T

jj tyytyy
1

)]([)]([
2
1 (3)

where .,,2,1,)]()()([)(1
21 NjRtetetete kT

kjjjj LL =∈= ×

By applying the steepest descent method to the error
cost function E(t) (i.e., Equation (3)), we can obtain the
gradient of E(t) with respect to V and W, respectively.

∑
∑∑

∑ ∑∑ ∑

=

==

= == =

′−=

′−=′′−=

∂

∂
−=

∂

∂
=

∂
∂

=∇

N

j j
T
jj

N

j j
T
jj

N

j j
T

jj

N

j

k

i
ij

ij
N

j

k

i
ij

ijV

FteF

FteWXFWXFVFte

tV
ty

te
tV
te

te
tV
tEtE

1)(2)(1

1)(2)(11)(1)(2

1 11 1

)(

)()(])([)(

)(
)(

)(
)(
)(

)(
)(
)()(

∑
∑∑

∑ ∑∑ ∑

=

==

= == =

′′−=

′′−=′′−=

∂

∂
−=

∂

∂
=

∂
∂

=∇

N

j
T
jjjj

N

j
T
jjjj

N

j j
T

jj

N

j

k

i
ij

ij
N

j

k

i
ij

ijW

xeFVF

txteFVFWXFVFte

tW
ty

te
tW
te

te
tW
tEtE

1)(2)(1

1)(2)(11)(1)(2

1 11 1

)()(])([)(

)(
)(

)(
)(
)(

)(
)(
)()(

So, the updated formulae of weights are given by,
respectively

∑ =
′=∇−=∆ N

j j
T
jjV FeFtEV 1)(2)(1)(ηη (4)

∑ =
′′=∇−=∆

N

j
T
jjjjW xeFVFtEW

1)(2)(1)(ηη (5)

whereη is the learning rate;
qq

qj RfffF ×∈′′′=′] [diag)(1)2(1)1(1)(1 L ,

qi
net
netf

netff H
i

H
iH

ii ,,2,1,
)(

)(1
1)(1 L=

∂

∂
=′=′ ,

qiRvvv qT
iqii ,,2,1,] [1

1 LL =∈= × ,
kk

k RfffdiagF ×∈′′′=′] [)(2)2(2)1(22 L ,

pq
k

kqqq

k

k

Rvvv

vvv

vvv
vvv

V ×∈=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=] [21

21

22212

12111

L

L

LLLL

L

L

ki
WXFv
WXFvf

WXFvff T
i

T
iT

ii L,2,1,
)]([
)]([

)]([
1

12
12)(2 =

∂

∂
=′=′

To derive the optimal learning rate, let ∆ be an
increment operator and consider the general error
equation:

)1()()1(
)()1()1(

+∆−=+−+−=
−+=+∆

tytyytyy
tetete (6)

where 0)1(≡+∆ ty . This means there is no change
in the pattern during the neural networks’ learning

procedure and the change of output of neural networks
is

)()()1(tetty ηξ=+∆ (7)
where 211112)]()()[()(2 FFFXXIFFF ′′′×+⊗′= VVt T

k
Tξ with

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

=′

)(2

)2(2

)1(2

2

00

00
00

NF

F
F

L

LLLL

L

L

F

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

N
T
N

T
N

T
N

N
TTT

N
TTT

T

xxxxxx

xxxxxx
xxxxxx

L

LLLL

L

L

21

22212

12111

XX

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(1)(1)2(1)(1)1(1)(1

)(1)2(1)2(1)2(1)1(1)2(1

)(1)1(1)2(1)1(1)1(1)1(1

11

N
T

N
T

N
T

N

N
TTT

N
TTT

T

FFFFFF

FFFFFF
FFFFFF

L

LLLL

L

L

FF

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′′′′

′′′′′′
′′′′′′

=′′

)(1)(1)2(1)(1)1(1)(1

)(1)2(1)2(1)2(1)1(1)2(1

)(1)1(1)2(1)1(1)1(1)1(1

11

NNNN

N

N

FFFFFF

FFFFFF
FFFFFF

L

LLLL

L

L

FF

Here,⊗ indicates a direct product, and × indicates a
cross product.

In order to prove Equation (7), a lemma must be
introduced.

Lemma: The total time derivative of the BPNN single
output)(1 WXFv T is given by

X
dt

dWWXFvWXF
dt

dv

X
dt

dWWXFv
dt
dvWXF

dt
WXFvd

T
T

T
T

)()(

)()(
)]([

11

11
1

′+=

′+=

Proof: Derivation of
dt

WXFvd T)]([1 is as follows:

()[]
dt

xwfvd

dt
WXFvd

q

i

p

j jiji
T ∑ ∑= == 0 011)]([

()[] ()[]

dt
dv

netf
dt
dvnetf

dt
dvnetf

dt
dw

xxwfv
dt
dvxwf

dt
dw

w

xwfv

dt
dv

v

xwfv

q
q

ij
j

q

i

p

j

p

j
jiji

i
q

i

p

j
jij

q

i

p

j

ij

ij

q

i

p

j jijiq

i

i

i

q

i

p

j jiji

)()()(1
1

11
0

01

0 0 0
1

0 0
1

0 0

0 01

0

0 01

+++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛′+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂

∂
+

∂

∂
=

∑∑ ∑∑ ∑

∑∑
∑ ∑

∑
∑ ∑

= = == =

= =

= =

=

= =

L

⎥
⎦

⎤
⎢
⎣

⎡
+++′+

⎥
⎦

⎤
⎢
⎣

⎡
+++′+

⎥
⎦

⎤
⎢
⎣

⎡
+++′+

dt
dw

x
dt

dw
x

dt
dw

xnetfv

dt
dw

x
dt

dwx
dt

dw
xnetfv

dt
dw

x
dt

dw
x

dt
dw

xnetfv

qp
p

qq
qq

p
p

p
p

L

L

L

1
1

0
01

111
1

10
0111

001
1

00
0010

)(

)(

)(

[]

[]
()

()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

≡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′

′

+

⎥
⎦

⎤
⎢
⎣

⎡
=

0)(
1,)(todue

0

0

)()()(

0

0
1

21

10
11101

netf
netf

netf

netf
vvv

dt
dv

dt
dv

dt
dvnetfnetfnetf

q

q

T
q

q

L

LLL

L

L

L

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

p
qpqq

p

p

x

x

x

dt
dw

dt
dw

dt
dw

dt
dw

dt
dw

dt
dw

dt
dw

dt
dw

dt
dw

L

L

LLLL

L

L

1

0

10

11110

00100

X
dt

dWWXFvWXF
dt

dv

X
dt

dWWXFv
dt
dvWXF

T
T

T

)()(

)()(

11

11

′+=

′+=

In the following, we start to prove Equation (7). Let us
consider the change of output of MLFNN for the mth
pattern first. The above Lemma together with Equations
(4) and (5) gives

()[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆′+∆⋅′

∆′+∆⋅′
∆′+∆⋅′

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆

∆
∆

=∆=+∆

)(

)(
)(

)1(

,1,1),(2

,122,1),2(2

,111,1),1(2

),(2

),2(2

),1(2

12

mm
T
kk

T
mmk

mm
TT

mm

mm
TT

mm

mk

m

m

m
T

m

WxFvvFf

WxFvvFf
WxFvvFf

f

f
f

WxFVFty

L

L

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆′+∆⋅′

∆′+∆⋅′

∆′+∆⋅′

=

∑

∑
∑

=

=

=

)(

)(

)(

,11,1),(2

,121 2,1),2(2

,111 1,1),1(2

mm
T
k

N

j kj
T
mmk

mm
TN

j j
T
mm

mm
TN

j j
T
mm

WxFvvFf

WxFvvFf

WxFvvFf

L

() ()[]
() ()[]
() ()[]

∑

∑∑

∑∑
∑∑

=

==

==

==

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′+′⋅′

′′′+′⋅′
′′′+′⋅′

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′+′⋅′

′′′+′⋅′

′′′+′⋅′

=

N

j

m
T
jjjjm

T
kjkkjj

T
mmk

m
T
jjjjm

T
jjj

T
mm

m
T
jjjjm

T
jjj

T
mm

m
N

j
T
jjjjm

T
k

N

j jkkjj
T
mmk

m
N

j
T
jjjjm

TN

j jjj
T
mm

m
N

j
T
jjjjm

TN

j jjj
T
mm

xxeFVFFvfeFFf

xxeFVFFvfeFFf
xxeFVFFvfeFFf

xxeFVFFvfeFFf

xxeFVFFvfeFFf

xxeFVFFvfeFFf

1

21,1),(21,1),(2

21,12),2(221,1),2(2

21,11),1(211,1),1(2

1 21,11),(21,1),(2

1 21,121),2(221,1),2(2

1 21,111),1(211,1),1(2

)(

)(
)(

L

L

η

ηη

ηη

ηη

∑
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′+′

′′′+′
′′′+′

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

=
N

j

m
T
jjjjm

T
kjkkjj

T
m

m
T
jjjjm

T
jjj

T
m

m
T
jjjjm

T
jjj

T
m

mk

m

m

xxeFVFFvfeFF

xxeFVFFvfeFF
xxeFVFFvfeFF

f

f
f

1

21,1),(21,1

21,12),2(221,1

21,11),1(211,1

),(2

),2(2

),1(2

00

00
00

L

L

LLLL

L

L

η

jj
N

j m
T
jjm

T
kj

T
mm

N

j m
T
jjjjm

T
j

T
mjjm

eFxxVFFVIFFF

xxeFVFFVFFeFF

21 1,11,1,2

1 21,11,12,2

)(

)(

2 ′⋅′′+⋅′=

′′′+′⋅′=

∑
∑

=

=

η

η

So, the total change caused by all patterns is

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′⋅′′+⋅′

′⋅′′+⋅′

′⋅′′+⋅′

′⋅′′+⋅′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+∆

+∆

+∆
+∆

=+∆

∑

∑

∑
∑

=

=

=

=

jj
N

j N
T
jjN

T
kj

T
NN

jj
N

j m
T
jjm

T
kj

T
mm

jj
N

j
T
jj

T
kj

T

jj
N

j
T
jj

T
kj

T

N

m

eFxxVFFVIFFF

eFxxVFFVIFFF

eFxxVFFVIFFF

eFxxVFFVIFFF

ty

ty

ty
ty

ty

21 1,11,1,2

21 1,11,1,2

21 212,112,12,2

21 111,111,11,2

2

1

)(

)(

)(

)(

)1(

)1(

)1(
)1(

)1(

2

2

2

2

η

η

η

η

L

L

L

L

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

=

NF

F
F

,2

2,2

1,2

00

00
00

L

LLLL

L

L

η

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

×

222

222

222

11121111

11212121112

11112111111

2

22

21

2

222

121

00

00
00

kN
T
Nk

T
Nk

T
N

kN
T

k
T

k
T

kN
T

k
T

k
T

NNN

IFFIFFIFF

IFFIFFIFF
IFFIFFIFF

F

F
F

eF

eF
eF

L

LLLL

L

L

L

LLLL

L

L

L
η

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′′′′

′′′′′′
′′′′′′

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

V

FFFFFF

FFFFFF
FFFFFF

V

xxxxxx

xxxxxx
xxxxxx

NNNN

N

N

T

N
T
N

T
N

T
N

N
TTT

N
TTT

11121111

11212121112

11112111111

21

22212

12111

L

LLLL

L

L

L

LLLL

L

L

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

×

NN e

e
e

F

F
F

L

L

LLLL

L

L

2

1

2

22

21

00

00
00

)()()()]()(

)[(

211

112 2

tetteVVT
k

T

ηξ

η

=′′′×

+⊗′=

FFFXX

IFFF

Substituting (7) into (6), we obtain

)()()()1(tettete ηξ−=+ (8)

The objective here is to derive an optimal learning rate
η . That is, at iteration t, an optimal value of the
learning rate,)(* tη , which minimizes E(t+1) is
obtained. Define the cost function:

)1()1(
2
1)1(++=+ tetetE T (9)

Using Equation (8), Equation (9) may be written as
[] [])()()()()()(5.0)1(tettetettetE T ηξηξ −−=+ (10)

which gives the error e, at iteration t+1, as a function of
the learning rate η , which minimizes E(t+1). Now we
use the first and second order conditions

[]

0)()()]()()()([
2
1

)]()()()([)()(
2
1)1(

*

*

)(*

=−−

−−=
+

=

tettettte

tetttetet
d
tdE

T

T

t

ξξη

ξηξ
η ηη

0)()()()()1(

)(
2

2

*

>=
+

=

tettte
d

tEd TT

t

ξξ
η ηη

Since)(tξ is positively defined, the second condition
is met and the optimum value of the learning rate is
found to be

)()()()(
)()()()(*

tettte
tettet

TT

TT

ξξ
ξ

η = (11)

Finally, the increments of the BP neural network
parameters, by using the optimal learning rate, are
obtained by replacing the η* given by Equation (11) to
Equations (4) and (5), which yield

∑ =
′=

∇−=∆

N

j j
T
jjTT

TT
V

FeF
tettte

tette

tEV

1)(2)(1)()()()(
)()()(

)(

ξξ
ξ

η
 (12)

∑ =
′′=

∇−=∆

N

j
T
jjjjTT

TT
W

xeFVF
tettte

tette

tEW

1)(2)(1)()()()(
)()()(

)(

ξξ
ξ

η
 (13)

Using the new weight update formulae with optimal
learning rates, a new learning algorithm is generated. To
verify the effectiveness of the proposed adaptive
learning model, a major stock index (Nikkei225) is used
as testing targets. A detailed process is presented below.

3. EMPIRICAL STUDY

3.1 Data Description

In the experiments, the data of an important stock index
(Nikkei225) is daily and is obtained from Datastream.
The entire data set covers the period from January 1
2000 to December 31 2004. The data sets are divided
into two periods: the first period covers from January 1
2000 to December 31 2003 while the second period is
from January 1 2004 to December 31 2004. The first
period, which is assigned to in-sample estimation, is
used to network learning and training. The second
period is reserved for out-of-sample evaluation. For
brevity, the original data are not listed in the paper, and
detailed data can be obtained from the sources.

To examine the forecasting performance, the root mean
squared error (RMSE) and directional change statistics
(Dstat) of stock index movement are employed in this
study. The directional change statistics (Dstat) can be
expressed as

NaD
N

t tstat ∑=
=

1
 (14)

where ta =1 if 0)ˆ)((11 ≥−− ++ tttt xxxx , and ta =0
otherwise.

3.2 Experiment Results

When the data are prepared, we begin to train BPNN
model. In these experiments, we prepare 5 years’ daily
data. We use the first 4 years’ daily data to train and
validate the network, and use the last one years’ data to

test the prediction performance. For comparison, the
standard three-layer BP neural network is used as
benchmark model. This study varies the number of
nodes in the hidden layer and stopping criteria for
training. In this study, 5, 10, 20 hidden nodes for each
stopping criteria because the BP network does not have
a general rule for determining the optimal number of
hidden nodes. The study uses 500, 1000, 2000 and 4000
learning epochs for the stopping criteria of BPNN. For
standard BPNN model, the learning rate is set to 0.25.
The hidden nodes use the sigmoid transfer function and
the output node uses the linear transfer function. The
study allows 5 input nodes in terms of the results of
auto-regression testing. The comparison of experiment
results are reported in Table 1.

Table 1 The prediction performance comparison of various BPNN models

RMSE Dstat(%) Stock
index

Training
epochs

Number
of hidden

nodes
Standard
BPNN

Adaptive
BPNN

Standard
BPNN

Adaptive
BPNN

500 5 100.3541 70.1124 49.63 59.44
 10 89.6472 54.3589 51.58 63.38
 20 70.5428 41.2547 52.63 62.38

1000 5 81.5477 50.3584 50.36 58.76
 10 51.8545 39.6874 52.05 61.02
 20 37.5426 21.2387 52.63 64.47

2000 5 40.3376 14.3541 53.54 66.71
 10 22.5474 8.4579 55.68 70.25
 20 16.3785 5.4763 55.41 72.39

4000 5 35.4754 20.2378 52.24 65.65
 10 36.3687 13.3782 54.35 72.35

Nikkei
225

 20 21.3523 7.8524 52.63 68.36

As can be seen from Table 1, we can find that (1) the
best prediction performance for the testing data is
generally produced when the number of hidden nodes is
20 and the training epochs are 2000. (2) Generally
speaking, the prediction performance improves with the
increase of training epochs and hidden nodes. (3)
Usually, too few training epochs and hidden nodes can
not lead to a good forecasting result. (4) The
performance of the proposed adaptive BPNN model is
much better than that of the standard BPNN model in
the experiment.

In addition, focusing on two indicators of Table 1, we
find the proposed adaptive BPNN model performs much
better than the standard BPNN models in all testing
cases. These results also indicate the feasibility of the
adaptive BPNN model in stock index forecasting.

4. CONCLUSIONS

In this study, an adaptive BP learning algorithms with
optimal learning rate is first proposed. And then this
exploratory research examines the potential of using an
adaptive BPNN model to predict an important
international stock index — Nikkei 225. Our empirical
results suggest that the adaptive BPNN model may
provide better forecasts than the standard BPNN model.
The comparative evaluation is based on a variety of
statistics such as RMSE and Dstat. In our empirical
investigation, the adaptive BPNN model outperforms
the standard BPNN model in terms of RMSE and Dstat.
Furthermore, our experimental analyses reveal that the
RMSE and Dstat for the stock index using the proposed
adaptive BPNN model are significantly better than those
obtained using the standard BPNN model. This implies
that the proposed adaptive BPNN model can be used as
a feasible solution for stock market prediction.

ACKNOWLEDGEMENTS

This work is partially supported by National Natural
Science Foundation of China; Chinese Academy of
Sciences; Key Laboratory of Management, Decision
and Information Systems and SRG of City University of
Hong Kong (No. 7001806).

REFERENCES

[1] Widrow, B., Lehr, M.A.: 30 Years of Adaptive

Neural Networks: Perception, Madaline, and
Backprpagation. Proceedings of the IEEE Neural
Networks I: Theory & Modeling (Special issue) 78
(1990) 1415-1442.

[2] Rumelhart, D.E., McClelland, J.L.: Parallel
Distributed Processing. MIT Press, Cambridge,
MA 1986.

[3] Tollenaere, T.: SuperSAB: Fast Adaptive Back
Propagation with Good Scaling Properties. Neural
Networks 3 (1990) 561-573.

[4] Park, D.C., El-Sharkawi, M.A., Marks II, R.J.: An
Adaptive Training Neural Network. IEEE
Transactions on Neural Networks 2 (1991)
334-345.

[5] Jacobs, R.A.: Increase Rates of Convergence
through Learning Rate Adaptation. Neural
Networks 1 (1988) 295-307.

[6] Brent, R.P.: Fast Training Algorithms for
Multilayer Neural Nets. IEEE Transactions on
Neural Networks 2 (1991) 346-35.

[7] Hagan, M.T., Menhaj, M.: Training Feedforward
Networks with Marquardt Algorithm. IEEE
Transactions on Neural Networks 5 (1994)
989-993.

