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Specification and Verification of a Single-Track Railroad

Signaling in CafeOBJ∗

Takahiro SEINO†a), Kazuhiro OGATA†, and Kokichi FUTATSUGI†, Nonmembers

SUMMARY A signaling system for a single-track railroad
has been specified in CafeOBJ. In this paper, we describe the
specification of arbitrary two adjacent stations connected by a
single line that is called a two-station system. The system con-
sists of two stations, a railroad line (between the stations) that
is also divided into some contiguous sections, signals and trains.
Each object has been specified in terms of their behavior, and
by composing the specifications with projection operations the
whole specification has been described. A safety property that
more than one train never enter a same section simultaneously
has also been verified with CafeOBJ.
key words: CafeOBJ, formal methods, railroad signaling

1. Introduction

Since key industrial systems such as railroad signaling
systems and aviation control systems heavily affect peo-
ple’s lives, we must improve their safety as much as pos-
sible. We do not think that we can improve their safety
in an ad hoc way because the systems are complex as
well as huge. It is one possible approach to improving
their safety that we formally specify the systems and
verify that the systems have some desired properties
based on the formal specifications.

Formal specification languages in which we can for-
mally specify systems and with which we can formally
verify that the systems have some properties have been
proposed. CafeOBJ [4] is one of them. CafeOBJ al-
lows us to specify state machines or objects of object-
orientation in terms of their behavior.

We believe that case studies that we formally spec-
ify and verify some systems have to be done so that
we can improve specification and verification techniques
with formal specification languages such as CafeOBJ,
and also make the languages easier to use. Therefore,
as a case study we have done the following experiment.
We have specified a kind of railroad signaling systems
in CafeOBJ, and have formally verified that the system
has an important safety property based on the formal
specification with the help of the CafeOBJ system.

Railroad systems usually adopt block systems so
as to prevent collisions between trains [9]. In block
systems, railroad lines are partitioned into contiguous
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sections, in each of which at most one train is allowed to
be. Railroad signaling systems are designed to aim at
(semi-)automatically implementing block systems. We
have dealt with a single-track railroad system that con-
sists of a straight line on which more than one station
are located. In this paper, we describe the specifica-
tion of arbitrary two adjacent stations connected by a
single line that is called a two-station system and the
verification that no collision occurs.

The rest of the paper is organized as follows. Sec-
tion 2 mentions CafeOBJ and how to specify systems in
CafeOBJ and verify that the systems have some proper-
ties with CafeOBJ. Section 3 describes the two-station
system, its specification in CafeOBJ, and the verifica-
tion with CafeOBJ that the system has a safety prop-
erty that more than one train never enter a same section
simultaneously. In Sect. 4, we introduce some related
works, and we finally conclude the paper in Sect. 5.

2. CafeOBJ in a Nutshell

CafeOBJ [4] is a direct successor of OBJ3 [7] that is
one of the best-known algebraic specification languages.
One of the outstanding features of CafeOBJ is that
we can specify state machines or objects of object-
orientation naturally, which were supposed to be diffi-
cult to specify in algebraic specification languages. The
point is hidden algebra [6], with which we specify ob-
jects in terms of their behavior. There are two kinds
of sorts in hidden algebra: hidden and visible sorts. A
hidden sort represents the state space of an object, and
a visible one usual data such as integers. There are also
two kinds of operations: action and observation opera-
tions. An action operation may change the state of an
object, and the state of an object can be only observed
with observation ones. In addition, components are
synthesized according to the component-based specifi-
cation in CafeOBJ [5]. We use projection operations to
combine specifications of component systems and build
a specification of a composite system.

2.1 How to Specify Concurrent Systems in CafeOBJ

We show a specification for fields of radio-buttons as
an example. Figure 1 shows a field of radio-buttons
consisting of three buttons. We can use fields of radio-
buttons to exclusively choose one among the buttons. A
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Fig. 1 Field of radio-buttons.

Fig. 2 UML object diagram for fields of radio-buttons.

UML object diagram for fields of radio-buttons is shown
in Fig. 2. We first write a specification of buttons (cor-
responding to Btn in Fig. 2), and then we use a projec-
tion operation to combine the specification of buttons
and build a specification for fields of radio-buttons (cor-
responding to RdBtn in Fig. 2).

We show the signature of a specification of buttons
from which fields of radio-buttons are made:

op init : Bool-> Btn -- initial state.
bops on off: Btn -> Btn -- actions.
bop on? : Btn -> Bool-- observation.

A comment starts with -- and terminates at the end
of the line. Btn is a hidden sort representing the state
space of each button, and Bool is a (built-in) visible
sort representing boolean values. Operator init takes a
boolean value, representing an initial state of a button.
Action operators on and off can select and disselect a
button, respectively. Observation operator on? allows
us to observe the state of a button, i.e. selected or
disselected. If a button is selected, on? returns true,
and otherwise on? returns false. We use equations
to define what happens next after applying an action
operation to a button. The equations for buttons are
as follows:

eq on? (init (B)) = B .
eq on? (on (S)) = true .
eq on? (off (S)) = false .

B and S are variables whose sorts are Bool and Btn,
respectively. The first equation means that the initial
state of a button is what is given to the button as its
argument. The second (or third) equation means that
the state of a button is changed to true (or false), i.e.
selected (or disselected), after applying on (or off) to
the button.

We show the signature of a specification of fields
of radio-buttons:

-- initial state.
op init : BtnID -> RdBtn
-- action.
bop on : BtnID RdBtn -> RdBtn
-- observation.
bop on? : BtnID RdBtn -> Bool
-- projection.
op btn : BtnID RdBtn -> Btn

Hidden sort RdBtn and visible one BtnID represent the

state space of fields of radio-buttons and IDs for but-
tons, respectively. Projection operator btn is used to
make fields of radio-buttons by combining buttons as
components. More precisely, given a field of radio-
buttons and an ID for a button in the field, btn takes
out the corresponding button out from the field, or
projects the field onto (the axis of) the button.

Operator init takes an ID as its argument, rep-
resenting an initial state of a field of radio-buttons at
which the button corresponding to the ID is selected
and any other button is disselected. The following two
(conditional) equations define this. Note that BTN and
BTN’ are variables whose sort is BtnID, and R is a vari-
able whose sorts are RdBtn.

ceq btn (BTN, init (BTN’)) = init (true)
if BTN == BTN’ .

ceq btn (BTN, init (BTN’)) = init (false)
if BTN =/= BTN’ .

init on the left-hand sides is an operator on sort RDBtn,
while init on the right-hand sides is one on sort Btn.

Action operator on chooses one among the buttons,
namely that it makes the chosen button selected and
makes any other button disselected. The following two
equations define this.

ceq btn (BTN, on (BTN’, R)) =
on (btn (BTN, R)) if BTN == BTN’ .

ceq btn (BTN, on (BTN’, R)) =
off (btn (BTN, R)) if BTN =/= BTN’ .

on on the left-hand sides is an action operator on sort
RDBtn, while on on the right-hand sides is one on sort
Btn.

Observation operator on? observes the state of a
button given by its first argument in a field of radio-
buttons given by its second argument. The following
equation defines this.

eq on? (BTN, R) = on? (btn (BTN, R)) .

on? on the left-hand side is an observation operator on
sort RDBtn, while on? on the right-hand side is one on
sort Btn.

Let us consider the following expression, or term:

on (1, on (3, on (2, init (1))))

where natural numbers are used to identify buttons.
The term represents the state of a field of radio-buttons
after some action operations are applied to the field.
The initial state is that button 1 is selected and any
other button is disselected, followed by choosing button
2, button 3, and again button 1. Let r be the term.
By applying on? to r, we can observe the state of
each button in that state. For example, on? (1, r)
is true and on? (2, r) is false.

2.2 How to Verify Concurrent Systems with CafeOBJ

We describe the verification of the claim that a field
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of radio-buttons has the safety property that only one
button is always selected. If a field of radio-buttons
has one button, it is easy to show the claim. Hence, we
suppose that there are at least two buttons in a field
of radio-buttons. Since one and only button is initially
selected in a field of radio-buttons, the claim is initially
true. Hence, all we have to do is that given any state
of a field of radio-buttons in which the claim holds, we
show that the claim keeps holding in each next state
after applying any action operation to the state. Let rb
be a state where the claim holds, namely that only one
button is selected. Since there is one action operation in
a field of radio-buttons, we examine whether the claim
keeps holding after applying the action operation to
rb. We should consider two cases: (1) the selected
button is selected again, and (2) any disselected button
is selected. Let b1 and b2 be the selected button and an
arbitrary disselected button in rb, respectively, and let
rb1 and rb2 be the next states after selecting b1 and b2,
respectively. The case (2) is also divided into two cases
that there are two buttons, and more than two buttons
in rb. Let b3 be an arbitrary disselected button except
for b2 in rb if there are more than two buttons in rb.
The following proof score makes it possible to show that
the claim keeps holding in rb1 and rb2.

ops rb rb1 rb2 :-> RdBtn .
ops b1 b2 b3 :-> BtnID .
eq on? (btn(b1, rb)) = true .
eq on? (btn(b2, rb)) = false .
eq on? (btn(b3, rb)) = false .
eq rb1 = on (b1, rb) .
eq rb2 = on (b2, rb) .
red on? (b1, rb1) == true

and on? (b2, rb1) == false .
red on? (b1, rb2) == false

and on? (b2, rb2) == true
and on? (b3, rb2) == false .

The equations on the third, fourth, and fifth lines mean
that button b1 is selected, and b2 and b3 representing
an arbitrary disselected button are disselected in rb.
The equations on the sixth and seventh lines define rb1
and rb2 as the next states after selecting b1 and b2,
respectively. CafeOBJ command red reduces a term by
regarding given equations as left-to-right rewrite rules.
The term following the first (or second) red means that
the claim is also true in rb1 (or rb2) as well. Both
terms are reduced to true. We have completed the
verification that a field of radio-buttons has the safety
property.

3. A Single-Track Railroad System

We consider a two-station system shown in Fig. 3. The
system has seven sections† Tn (n = 1, . . . , 7) and four
signals Sn (n = 1, . . . , 4). A station consists of three
sections: T1, T2, and T3 for station A, and T5, T6,

Fig. 3 Two-station system.

Fig. 4 One possible scenario.

and T7 for station B. A section has two properties: the
number of trains in it and the direction. The direction
has three possible values: Ldir (for left), Rdir (for right),
and Ndir (for neutral). A signal has two possible states:
G (for green) and R (for red) with usual meanings.

Initially there are two trains C1 and C2 in the sys-
tem as shown in Fig. 3, and every signal shows R. Be-
sides, T1 and T6, T2 and T7, and T3, T4, and T5 have
Rdir, Ldir, and Ndir, respectively, in the initial state,
and the directions of T1, T2, T6, and T7 cannot be
changed.

Let us show one possible scenario that train C1
reaches station B shown in Fig. 4:

1. Figure 4(a) shows the initial state.
2. It is confirmed whether the direction of T4 is Ndir,

and only if so, the direction is set to Rdir (see
Fig. 4(b)).

3. It is confirmed whether the directions of T3 and
T4 are Ndir and Rdir, respectively, and only if so,
the direction of T3 is set to Rdir. It is confirmed
whether both directions of T3 and T4 are Rdir, and
there is no train on T3 and T4, and only if so, S1

†Each Tn may not actually correspond to a section, but
in this paper it is regarded as a section for brevity.
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is changed to G from R (see Fig. 4(c)).
4. It is confirmed whether S1 is G, and only if so, C1

is moved to T3 from T1 and S1 is changed to R
at the same time (see Fig. 4(d)), and then C1 is
moved to T4.

5. It is confirmed whether the direction of T5 is Ndir,
and only if so, it is set to Rdir. It is confirmed
whether the direction of T5 is Rdir, and there is no
train on T5 and T6, and only if so, S3 is changed
to G from R (see Fig. 4(e)).

6. It is confirmed whether S3 is G, and only if so, C1
is moved to T5 from T4 and S3 is changed to R at
the same time, and then C1 is moved to T6 (see
Fig. 4(f)).

In the above scenario, we have mentioned how ob-
jects such as S1 change their states. We describe how
to change the states of objects in more detail.

• The direction of T4 can be set to either Rdir or
Ldir only if it is Ndir. It can be set back to Ndir
from Rdir (or Ldir) if the direction of T3 (or T5) is
Ndir.

• The direction of T3 can be set to Rdir (or Ldir) only
if it is Ndir and the direction of T4 is Rdir (or any
value). It can be set back to Ndir only if there is
no train on it. The direction of T5 can be changed
likewise.

• S1 can be changed to G from R only if there is
no train on both T3 and T4, and both direction
of T3 and T4 are Rdir. If a train enters T3, or
the direction of T3 is set back to Ndir, S1 must be
set back to R simultaneously. S4 can be changed
likewise.

• S3 can be changed to G from R only if there is no
train on both T5 and T6, and the direction of T5
is Rdir. If a train enters T5, or the direction of
T5 is set back to Ndir, S3 must be set back to R
simultaneously. S2 can be changed likewise.

3.1 Specification

We describe the specification of the two-station sys-
tem in CafeOBJ. As the specification of fields of radio-
buttons, specifications of components, i.e. trains and
sections, are first written, and then the specification of
the two-station system is built by combining the spec-
ifications of the components. Signals are represented
in terms of sections. For example, S1 is represented by
the states of T3 and T4. If both directions of T3 and
T4 are Rdir, and there is no train on both T3 and T4,
then this case means that S1 is G, and otherwise the
other cases mean that S1 is R. Figure 5 shows the UML
object diagram corresponding to our specification.

The signature of the specification of trains is as
follows:

-- initial state.

Fig. 5 UML object diagram for two-station systems.

op init-tr : Dir -> Train
-- observations.
bop dir? : Train -> Dir
bop where? : Train -> TcID
-- actions.
bops move reach leave : Train -> Train

Train is a hidden sort representing the state space of
trains, and Dir and TcID are visible sorts represent-
ing directions to which train are running and IDs of
sections, respectively. There are basically two kinds of
trains in the two-station system. One is running right,
and another running left. Hence, operator init-tr
takes as its argument right or left, representing the ini-
tial state of a train. We have two observation operators:
dir? and where?. dir? (or where?) takes as its argu-
ment (a state of) a train, and returns the direction to
which the train is running (or the section on which the
train is). We have three action operators: move, reach,
and leave. move takes as its argument a train within
the two-station system, and moves it to the next sec-
tion (the right or left section depending on the direction
to which the train is running) if a condition described
above is true. reach takes as its argument a train out
of the two-station system, and puts it on T1 or T7. A
train running right (or left) is put on T1 (or T7). This
action operation may be considered as a special version
of move, which moves a train running right (or left) on
the left (or right) section or yard of T1 (or T7) to T1
(or T7). leave is the opposite one that removes a train
from T1 (or T7). The behavior of these observation and
action operations are defined in equations in the same
way as in fields of radio-buttons. Hence, we omit the
definitions.

The specification of sections can be written in the
same way as trains. In this paper, we omit the specifi-
cation.

We show the main part of the specification of the
two-station system:

-- initial state.
op init : -> Sys
-- observations.
bop watch? : SignalID Sys -> Signal
bop where? : TrainID Sys -> TcID
-- actions.
bop reach : TrainID Sys -> Sys
bop leave : TrainID Sys -> Sys
bop move : TrainID Sys -> Sys
bop setdir : TcID Dir Sys -> Sys
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-- projections.
op train : TrainID Sys -> Train
op tc : TcID Sys -> Tc

Sys is a hidden sort representing the state space of the
two-station system, and Train and Tc also hidden sorts
representing the state spaces of a train and a section
that are components of the system. The other sorts
are visible ones. Bool represents the boolean values,
TrainID, SignalID, and TcID represent IDs of trains,
signals, and sections, respectively, and Signal and Dir
represent values of signals and directions of sections,
respectively.

Operator init represents the initial state of the
two-station system. Operators watch? and where? are
observation ones. watch? returns either R or G of the
signal given as its first argument. where? returns the
section where the train given as its first argument is.
Operator reach, leave, move, and setdir are action
ones. reach puts a train running right (or left) on T1
(or T7), which means that a train enters a station from
a yard or the previous section of T1 (or T7). leave
is the opposite one that removes a train from T1 (or
T7). move moves a train to the next section. If the
next section has a signal, the operator is enabled (or
can change the system state) only if the signal is G.
setdir sets a section (except for T1, T2, T6, and T7)
to either Ldir, Rdir, or Ndir. Operators train and tc
are projection ones that combine the specifications of
trains and sections to build the specification of the two-
station system.

We describe how to define each operation in equa-
tions.

Action operator setdir only affects each section
Tn in the two-station system. Each train Cn cannot be
affected by setdir at all. So, it is very simple to define
setdir for projection operator train as follows:

eq train (TR, setdir (TC, D, S)) =
train (TR, S) .

The equation means that even if setdir sets section TC
in system S to direction D, train TR does not change its
state at all. On the other hand, setdir for projection
operator tc is defined as follows:

ceq tc (TC, setdir (TC’, D, S)) =
setdir (D, tc (TC, S))

if TC == TC’
and setdir-cond (TC, D, S) .

ceq tc (TC, setdir (TC’, D, S)) =
tc (TC, S)

if TC =/= TC’
or not (setdir-cond (TC, D, S)) .

setdir on the left-hand side of each equation is an
action operator on Sys, and setdir on the right-hand
side is an action operator on Tc. The first equation
means that if setdir tries to set section TC’ in system

S to direction D provided that condition setdir-cond
is satisfied, section TC’ is actually set to the direction.
The second equation means that even if setdir tries
to set TC’ in S to D, any other section TC does not
change its state, and section TC’ does not change its
state either unless condition setdir-cond is satisfied.

Condition setdir-cond is defined for each section
Tn. For sections t1, t2, t6, t7, and yard, condition
setdir-cond is always false as defined as follows:

op setdir-cond : TcID Dir Sys -> Bool
eq setdir-cond (t1, D, S) = false .
eq setdir-cond (t2, D, S) = false .
eq setdir-cond (t6, D, S) = false .
eq setdir-cond (t7, D, S) = false .
eq setdir-cond (yard, D, S) = false .

where tn and yard are constants representing Tn and
the previous section of either T1 or T7, respectively.
For t3, t4, and t5, condition setdir-cond is defined
as described earlier. The definition is as follows:

eq setdir-cond (t3, L, S) =
dir? (tc (t3, S)) == N .

eq setdir-cond (t3, R, S) =
dir? (tc (t3, S)) == N

and dir? (tc (t4, S)) == R .
eq setdir-cond (t3, N, S) =

not (exist? (tc (t3, S))) .
eq setdir-cond (t4, L, S) =

dir? (tc (t4, S)) == N .
eq setdir-cond (t4, R, S) =

dir? (tc (t4, S)) == N .
eq setdir-cond (t4, N, S) =

(dir? (tc (t4, S)) == R
and dir? (tc (t3, S)) == N)
or (dir? (tc (t4, S)) == L
and dir? (tc (t5, S)) == N) .

eq setdir-cond (t5, L, S) =
dir? (tc (t5, S)) == N

and dir? (tc (t4, S)) == L .
eq setdir-cond (t5, R, S) =

dir? (tc (t5, S)) == N .
eq setdir-cond (t5, N, S) =

not (exist? (tc (t5, S))) .

where constants L, R, and N represent Ldir, Rdir, and
Ndir, respectively, and dir? and exist? are obser-
vation operators on Tc with which we can observe the
direction of each section and confirm whether there ex-
ist trains on each section, respectively. For example,
for section t3 in system S and direction L, condition
setdir-cond is true if the direction of t3 in S is N.

Observation operator watch? obtaining the state
of each signal is defined as follows:

ceq watch? (SG, S) = G
if signal-cond (SG, S) .

ceq watch? (SG, S) = R
if not (signal-cond (SG, S)) .
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Signal SG is G (or R) if condition signal-cond is sat-
isfied (or not). Condition signal-cond is defined for
each signal as follows:

op signal-cond : SignalID Sys -> Bool
eq signal-cond (s1, S) =

exist? (tc (t3, S)) == false
and exist? (tc (t4, S)) == false
and dir? (tc (t3, S)) == R .

eq signal-cond (s2, S) =
exist? (tc (t2, S)) == false

and exist? (tc (t3, S)) == false
and dir? (tc (t3, S)) == L .

eq signal-cond (s3, S) =
exist? (tc (t5, S)) == false

and exist? (tc (t6, S)) == false
and dir? (tc (t5, S)) == R .

eq signal-cond (s4, S) =
exist? (tc (t4, S)) == false

and exist? (tc (t5, S)) == false
and dir? (tc (t5, S)) == L .

where sn is a constant representing Sn. The above
equations basically correspond to what we have de-
scribed on behavior of each signal except that the di-
rection of T4 is not inspected. The reason why the
inspection does not need is because if the direction of
T3 (or T5) is Rdir (or Ldir), it is clear from the defi-
nition of setdir-cond that the direction of T4 is also
Rdir (or Ldir).

Observation operation where? is defined simply as
follows:

eq where? (TR, S)
= where? (train (TR, S)) .

where? on the left-hand side is an observation operator
on Sys, while where? on the right-hand side is one on
Train.

Action operator move for projection operator
train is defined as follows:

ceq train (TR, move (TR’, S)) =
move (train (TR, S))
if TR == TR’
and move-cond (where? (TR, S), TR, S).

ceq train (TR, move (TR’, S)) =
train (TR, S)
if TR =/= TR’
or not
(move-cond (where? (TR, S), TR, S)).

move on the left-hand side of each equation is an action
operator on Sys, and move on the right-hand side is
an action operator on Train. The first equation means
that if move tries to move train TR’ to the next section
provided that condition move-cond is satisfied, train
TR’ is actually moved to the next section. The sec-
ond equation means that even if move tries to move
train TR’ to the next section, any other train does not

move at all, and train TR’ does not move either un-
less move-cond is satisfied. Action operator move for
projection operator tc is defined as follows:

ceq tc (TC, move (TR, S)) =
enter (tc (TC, S))
if TC == where? (move (train (TR, S)))

and move-cond (where? (TR, S), TR, S) .
ceq tc (TC, move (TR, S)) =
exit (tc (TC, S))
if TC == where? (train (TR, S))
and move-cond (

where? (TR, S), TR, S) .
ceq tc (TC, move (TR, S)) = tc (TC, S)
if TC =/= where? (train (TR, S))
or TC =/=

where? (move (train (TR, S)))
or not

(move-cond
(where? (TR, S), TR, S)) .

where enter (or exit) is an action operator on Tc,
meaning that a train has entered (or exited) the sec-
tion, and where? is an observation operator on Train
observing the section on which there exists the train.
The first (or second) equation means that if move tries
to move train TR in system S provided that condition
move-cond is satisfied, train TR enters the next of the
section where TR is (or exits the section where TR is).
The third equation means that even if move tries to
move TR in S, no train enters and/or exits any other sec-
tion, and no train enters and/or exits the section where
TR is and the next section unless condition move-cond
is satisfied.

Condition move-cond is defined for each section as
follows:

op move-cond : TcID TrainID Sys -> Bool
eq move-cond (t1, TRR, S) =

watch? (s1, S) == G .
eq move-cond (t2, TRR, S) = false .
eq move-cond (t3, TRR, S) = true .
eq move-cond (t4, TRR, S) =

watch? (s3, S) == G .
eq move-cond (t5, TRR, S) = true .
eq move-cond (t6, TRR, S) = false .
eq move-cond (t7, TRR, S) = false .
eq move-cond (yard, TRR, S) = false .

The above equations are good for a train running right.
For example, a train on section T1 can move to section
T3 if signal S1 shows G, a train on section T2 can-
not move to section T3 at any time, and a train on
section T3 can always move to section T4, which are
represented by the first, second, and third equations,
respectively. The equations for a train running left can
be defined as well. Note that as described above, action
operator move does not move a train on section T6 to
the yard or the right section of T6, but action operator
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leave does this. Action operators reach and leave
may be considered as special versions of move. They
can be defined as move.

3.2 Verification

We have proved that the two-station system has the
safety property that more than one train never enter a
same section simultaneously. We describe the verifica-
tion.

Basically we have used the same verification tech-
nique described in Sect. 2. In the two-station system,
however, there are states such that although the states
have the property, the property is not preserved in the
next states after applying some action operation to the
states. Therefore, we first find out such states, and
then show that these states are not reachable from the
initial state.

There are basically four cases corresponding to
such cases. For the symmetry of the two-station sys-
tem, however, only two cases should be considered. The
two cases are (r1) and (r2) shown in Fig. 6.

First let us consider the case (r1). Suppose that
there exist two trains moving left on T2 and T3, respec-
tively, the two trains are on T2 simultaneously if action
operator move is applied to the train on T3. Now we
show that any state corresponding to the case (r1) is not
reachable. Although there are more than one state that
are predecessors of the states corresponding to the case
(r1), we only need to consider the states corresponding
to the case (r1’) because any other previous state coin-
cides with one of the states corresponding to the case
(r1). Only applying move to the train on T4 in the case
(r1’) could change a state corresponding to (r1’) to a
state corresponding to (r1). Therefore, we have only to
show that such a transition cannot be happened. The
following proof score can prove this:

ops c1 c2 : -> TrainID .
ops r1 r1’ : -> Sys .
eq where? (train (c1, r1’)) = t2 .
eq where? (train (c2, r1’)) = t4 .
eq dir? (train (c1, r1’)) = L .
eq dir? (train (c2, r1’)) = L .

Fig. 6 Unsafe but unreachable states.

eq exist? (tc (t2, r1’)) = true .
eq exist? (tc (t3, r1’)) = false .
eq exist? (tc (t4, r1’)) = true .
eq r1 = move (c2, r1’) .
red where? (c2, r1’) == where? (c2, r1) .

Constants c1 and c2 are IDs of two trains in the case
(r1’) of Fig. 6. Constant r1’ represents a state corre-
sponding the case (r1’) of Fig. 6. State r1’ is charac-
terized with above equations. For example, the equa-
tion on the third line means that train c1 is on section
t2 in state r1’. In the proof, we do not define any
other components such as T5 that do not matter in
the proof. Constant r1 represents the state after try-
ing to apply action operation move to train c2 in state
r1’. The term following red means that the section on
which train c2 is in state r1 is the same as in state r1’,
namely that any state corresponding to the case (r1) is
not reachable from the initial state. The term has been
reduced to true.

Next let us consider the case (r2). Suppose that
there exist a train moving right on T3 and a train mov-
ing either left or right on T4, the two trains are on T4
simultaneously if action operator move is applied to the
train on T3. We can show that any state corresponding
to the case (r2) is not reachable in the same way as the
case (r1). In this case, there are two cases (r2a) and
(r2b) corresponding to the states that are predecessors
of the states corresponding to the case (r2). Moreover,
we have to consider two cases (r2b’) and (r2b”) that
are predecessors of the states corresponding to the case
(r2b) because a state corresponding to the case (r2b)
can be changed to a state corresponding to the case
(r2). That is, all that is needed is to show that any state
corresponding to one of the three cases (r2a), (r2b’) and
(r2b”) does not lead to any state corresponding to the
case (r2). In this paper, we only show that any state
corresponding to the case (r2b’) does not lead to any
state corresponding to the case (r2b), which implies
that it does not lead to any state corresponding to the
case (r2). The following proof score makes it possible
to show this:

op c1 : -> TrainID .
op c2 : -> TrainID .
ops r2b r2b’ : -> Sys .
eq where? (train (c1, r2b’)) = t5 .
eq where? (train (c2, r2b’)) = t1 .
eq dir? (train (c2, r2b’)) = R .
eq exist? (tc (t1, r2b’)) = true .
eq exist? (tc (t3, r2b’)) = false .
eq exist? (tc (t4, r2b’)) = false .
eq exist? (tc (t5, r2b’)) = true .
eq dir? (tc (t4, r2b’)) = L .
eq dir? (tc (t5, r2b’)) = L .
eq r2b = move (c2, r2b’) .
red where? (c2, r2b’)

== where? (c2, r2b’) .
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The other two cases can be done likewise.
We have completed the verification that the two-

station system has the safety property.

4. Related Work

Block systems are the principal concept for safety as-
surance on the railroad domain. Cichoki and Gorski
describe a formal specification of railroad signaling sys-
tems written in Z and show some safety properties and
hazards on the systems with FMEA (Failure Mode and
Effect Analysis) analysis technique [3]. The technique
is a kind of methodology for system analysis with bot-
tom up approach, and aims to identify and document
anticipated faults of the components and their impact
on the system external interfaces. Cichoki and Gorski
indicate that some hazards cause failures of the low-
est components (hardware) on their model, and show
countermeasures for some cases on the hazards.

In the railroad domain, to synthesize signals and
branches are called interlocking, and each station needs
an interlocking controller. There are many works of ap-
plying formal methods to interlocking design. For ex-
ample, Morley models interlocking logic with higher or-
der logic and implements his model and a model checker
in Standard ML [8]. He designs a special language with
which we can specify rails, signals and branches on a
station and prove full-automatically some safety prop-
erties about interlocking with the models and the model
checker. But it is still difficult to prove properties in-
terlocking for huge stations.

Bjørner et al. model many functions in the railroad
domain and describe their requirements as widely as
possible. They aim to illustrate what a railroad system
is by decomposing the system into a number of compo-
nents. The domain models and requirement definitions
are written both informally in English and formally in
the RAISE Specification Language [1], [2]. Their works
are still in progress, and these papers are incomplete.

5. Conclusion

We have described the specification of a single-track
railroad system in CafeOBJ, and the verification of its
signaling system that no collision between trains occurs
if trains run according to the signals with the help of
the CafeOBJ system.
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