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Abstract We propose a novel model-concept of selective sound segregation based on Auditory Scene 

Analysis and then describe implementation of a prototype model for selectively segregating a target musical 

instrument sound from the mixed sound of various musical instruments. This model is extended from our 

previously proposed model of segregating two acoustic sources (Unoki and Akagi, Speech Communication, 

27,261-279,1999). The extended model consists of two blocks: our previous model as bottom-up processing 

and a selective processing based on knowledge sources as top-down processing. A novel idea is to segregate a 

target sound from the mixed sound based on the top-down information as an interaction between bottom­
up and top-down processing. To demonstrate the ability of the proposed model, we carried out three 

simulations: (i) segregation of the target sound from noisy sound (signal extraction); (ii) segregation of the 
target sound from four mixed sounds (concurrent separation); and (iii) segregation of the target performance 

sound from mixed sound (selective segregation). Simulation results showed that the proposed model could 

adequately selectively segregate not only the target instrument sound, but also the target performance 

sound, from the mixed sound of various instruments; this is not possible when using only bottom-up or 

top-down processing. The advantage provided by this model-concept led to significantly improved results. 

This model can be applied to selective speech-sound segregation, enabling its extension to computational 
modeling of the mechanisms of a human's selective hearing system. 

Keywords: cocktail party effect, computational auditory scene analysis, selective sound segregation, musical instrument 

1.	 Introduction the task is to try to selectively hear a target sound 
(e.g., a familiar Japanese word /kon-nichiwa/ ("Hello" 

1.1	 General issue in English) pronounced by a Japanese male speaker 
standing behind three other people) from among the 

A human can easily selectively listen to a desired mixed sound (a mixture of speech from various people 
sound (a target sound) in a real environment that si­ amidst background music) under noisy conditions. In 
multaneously contains various kind of sound such as this task, we can easily selectively listen to the target 
conversation speech, instrument sounds, animal songs, sound if we know who the target is (or what the target 
noises, reflections, etc. Let us, for example, consider is) and we know his voice as well (or we have previ­
a general problem of selective listening of the target ously listened to it). Of course, we can more easily 
sound in the case of sound mixtures as shown in Fig. selectively listen to it if we are fluent Japanese speak­
1. Here, the sound of four speech signals, indepen­ ers and this word is familiar to us. However, we may 
dently generated by four speakers as different words, not be able to selectively listen to the target sound if 
three musical performances (independently played on we do not know what it is and/or we have never heard 
a flute, piano, and violin) as background music, and it (e.g., if we cannot speak Japanese in this case)". 
some other background noises, are mixed together un­
der unpredictable conditions. Here, we assume that 1 In general, it is believed that we also use visual information 

such as lip reading, etc. to selectively understand the target 
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Fig. 1	 The select ive sound segregation problem 
known as the cocktail par ty problem: There 
is a mixed sound of three musical instru­
ments being played (flute , piano, an d vio­
lin) , four speech signals being uttered by 
two male and two female speakers, and back ­
grou nd noise. The task is to select ively seg­
regate the speech sound ut tered by the male 
stand ing behin d three people from t he mixed 
sound. 

This ab ility seems to be st rongly related to the 
availability of prior inform ation (stored knowledge 
gained through experience) t hat allows us to identify 
the target sound within the mixed sound. In general, 
hearing a target soun d in this type of sit uation (the 
task) depends on what is called t he "cocktail party 
effect" [1]. T he ability of the hum an auditory system 
seems to play a significant role in this effect . If this 
ability of select ive list ening to a target sound can be 
implemented as a computational model, it should im­
prove the perform an ce of preprocessors and enable ro­
bust speech-recognit ion systems and hearing-aid sys­
t ems. 

1.2 Previous approaches 

The straightforward app roach of signal process­
ing for speech sepa ration has been investigat ed by 
many resear chers , who have proposed many separa­
t ion methods. For exa mple, to enable robust spe ech 
recognition [2] , noise reduction or suppression tech­
niqu es [3] and speech enha ncement methods [4] can be 
used. Signal processing has been invest igated based on 
signal estimation usin g a linear system [5, 6] and sig­
nal est imation based on a stochast ic process for signal 
and noise [7] . In practice , t hough, it is difficult to con­
st ruct a computational model t hat can process signals 
in a way related to select ive separat ion (as hearin g in 
this research field), because the signa ls exist in a con­
curr ent time-frequency region and thi s problem is an 
ill-posed inverse problem. Therefore, we need to use 

soun d. However, in t his examp le, we ass ume th at clues regard­
ing only t he actual soun d information can be used . 
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reasonable constraints to solve the problem. 
Recently, blind source separ at ion (BSS) methods 

based on independent component analysis (ICA) have 
been proposed (e.g., [8,9]). In these methods, measur­
ing ind ependence among the source signals is used to 
separate source signals from t he mixed signals. The 
methods can enable good source separation in arti­
ficial environments or when all source-signals satisfy 
the assumpt ions; in ad dit ion , the number of micro­
phones used in these models should be greater t han 
or equal to the number of source-signals. However , 
in th ese methods, it is difficult to select ively separate 
only t he target signal, as is desired by the listener or 
model, from mixed signals because we do not know 
which is the desired source-signal among t he multiple 
out puts. Moreover , thi s issue is also due to the permu­
tation problem in the frequency domain BSS meth od 
with ICA. On the other han d, one factor cont ribut ­
ing to the cocktail par ty effect (select ive listening) is 
regarded as a function of an act ive scene analysis sys­
te m, called auditory scene analysis (ASA) [10] . Breg­
man has repor te d that the human audito ry syst em 
uses four psychoacous ti cally heuristic regular it ies re­
lated to acoust ic event s to solve t he ASA problem [11] 
(see Append ix) . One possible approach has been to 
develop soun d separation models based on ASA to t ry 
to solve the prob lem by using Bregman 's regularities. 
This is referr ed to as "computational audito ry scene 
analysis (CASA)"2 

In this research field , select ive listenin g can be re­
ferred to as "select ive segregation" in which the seg­
regation consists of th e following sequential process­
ing stages: decomposition of acoustical features; sep­
aration of each set of features corres ponding to each 
sound source; and t hen grouping each separated set of 
features to merge each soun d source . The aim of this 
at tempt is to obtain a model t ha t enables us to solve 
the select ive segregat ion problem by applying reason­
able constraints (Bregman's regular it ies [11]; see Ap­
pendix) to sounds and the environment . T here are 
two main types of CASA-motivated segregation mod­
els [12], based on either bot t om-up (e.g., [13- 19]) or 
t op-down (e.g., [20-22]) processes". 

Most models based on bot to m-up processing can 
adequately separate or extract a target signal such as 
a harmonic complex tone (vowel) and ar ti ficial sinu­
soidal signals from the mixture in a concur rent time­
frequency region . However , these are not good at 
grouping them in order to separate a natural speech 

2CASA is a comput at ional version of ASA and includes a 
funct ion simi lar to this ability of the human audito ry system. 

3In particular, in t he case of musical sound , t his is also 
called "music scene analysis" [22,23], and models have been pro­
pose d for ext ract ing significant info rm at ion (musical sequences , 
rhythm, et c.) regarding a t ar get sou nd from a mixed sound 
and to underst and the target [20, 22, 24]. Models have also been 
proposed for identifying a target soun d as form of music scene 
analysis [23,25J. 
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signal such as consonants and long sentences. In con­
trast, models based on top-down processing can deal 
with realistic signals for selection and/or extraction as 
the grouping process. However, these models cannot 
completely separate the target components from the 
mixture so the extracted signal still includes residual 
signals such as noise and artifacts. 

1.3 Motivation and contribution 

We think that selective segregation is best 
achieved, however, through the interaction of bottom­
up and top-down processes. That is, by (1) precisely 
selecting the position of the target sound in the mixed 
sound based on our knowledge and then (2) completely 
segregating the target sound from the other sounds in 
the concurrent time-frequency region . However, since 
top-down and bottom-up processes focus only on ei­
ther (1) or (2), respectively, each alone cannot be used 
to realize a selective sound segregation model. There­
fore , to realize a selective sound segregation model as 
shown in Fig . 1, we have to resolve two issues: (I) 
how to precisely select the target sound within a real 
environment (selection), and (II) how to completely 
separate the target sound from the mixed sound in 
which overlapped components exist in a concurrent 
time-frequency region (separation). 

The ultimate goal of our work is to construct a se­
lective sound segregation model that can be applied to 
any real world sound as a realistic problem. In this pa­
per, as the first step, we consider a selective sound seg­
regation problem for instrument sound mixtures using 
a single-channel method (monaural processing, with­
out a direct cue) as a basic problem. We propose a 
novel model-concept of the selective segregation where 
a combination of top-down and bottom-up processing 
is used, and then describe implementation of a pro­
totype model to selectively segregate a target instru­
ment sound from the mixed sound of instruments. Our 
main aim in this paper is to demonstrate the ability 
to solve the above two issues by reasonably combining 
top-down and bottom-up processing. 

This paper is organized as follows. In Sec. 2, we 
describe the sound segregation problem that we dealt 
with assumptions and our model-concept of the selec­
tive sound segregation. In Sec. 3, we describe the 
algorithm and model implementation. In Sec. 4, we 
discuss our simulation results. Section 5 gives our con­
clusions and perspectives regarding further work. 

2. Selective Sound Segregation Model 

2.1 Simplified segregation problem 

Consider again the selective sound segregation 
problem shown in Fig. 1. This is a general prob­
lem so it should be simplified so that we can deal with 
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Fig. 2 Selective sound segregation model 

it as a basic selective segregation problem. Thus, in 
this paper, we consider the problem of selective sound 
segregation in the case of mixed instrument sounds as 
shown in Fig. 1. The sound of three musical perfor­
mances, independently played on a flute, piano, and 
violin, are mixed together. When we try to selec­
tively listen to the piano sound from the mixed sound, 
we can easily succeed as we imagine the piano sound. 
Thus, our conceptual idea is that the bottom-up pro­
cess decomposes all features from the mixed sound and 
presents us with all the answer candidates for solving 
the problem, and then the top-down processing selects 
a reasonable solution from all conditions and merges 
it according to our knowledge. 

2.2 Model concept 

Figure 2 shows the proposed selective segregation 
model based on our concept . This model consists of 
the two types of processing: top-down processing to 
select the position of the target sound in the mixed 
sound (to resolve issue (1), as shown by the dashed­
line in Fig. 2), and bottom-up processing to separate 
the target sound from the other sounds in the concur­
rent time-frequency region (to resolve issue (2), the 
dotted line in Fig. 2). The bottom-up processing is 
the same method proposed in [18,19]' but it has been 
modified so that it can be combined with top-down 
processing. 

2.3 Assumption and definition 

In this model, the original signals (h (t), Jz (t), 
h(t), and so on) are not known, nor is it known how 
many different sounds there are. The only model in­
puts are the observed mixed signal f(t) (i.e., single 
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microphone input) and a knowledge key such as the 
symbol for the target instrument 'name (here, this is 
for I, (t); e.g., "piano" ). To investi gat e whet her the 
proposed model using top-down information can seg­
regat e th e target sound from the mixed sound, we as­
sume t ha t the exact target sound can exist anywhere 
in the mixed sound", and knowledge ab out the tar­
get sound can be repr esent ed through the acoust ical 
features. Thus, the key enables the model to obtain 
inform ation regarding the acoust ical features of the 
target sound from the knowledge sources. 

This model concept is based on th e problems as­
sociated with segregating two acoust ic sources. This 
fund amental problem is defined as follows [18, 19], 

First , only th e mixed signa l f (t), where f (t ) = 
h (t) + h (t ), can be observed and f (t ) is then decom­
posed into its frequency components by a K- channel 
filterb ank . The output of the k-th channel X k(t ) is 
represented by 

Xk (t )	 X 1,dt) + X 2,k(t ) (1) 

Sk(t ) exp(jwkt + je!Jk(t) ) (2) 

where Sdt) and ¢k(t ) are the instantaneous ampli­
tude and phase, respectively. If the outputs of the 
k-th channel, which corre spond to h (t ) and h (t) , are 
assum ed to be 

X 1,k(t ) Ak(t) exp(jwk t + je1dt )) (3) 

X 2 ,d t ) B k(t ) exp (jwk,t + je2dt )) (4) 

then t he instant aneous amplitudes Adt ) and Bdt ) 
can be dete rmined as 

Sk,(t) sin(e2k(t) - ¢dt))
Adt)	 (5)

sin ek (t) 
Sk( t) sin(¢k(t ) - e1k (t )) 

Bk(t )	 (6) 
sin ek (t) 

where edt ) = e2dt ) - e1k(t) , ek(t ) =J:. m r, n E Z, and 
W k is the cente r frequency of the k-t h chan nel. 

We cannot uniquely determine Ak( t) , Bk(t ), eH (t ), 
and e2d t ), though, wit hout some const raints . T his is 
easily understood by considering t he above equations. 
The problem , th erefore, is the ill-posed inverse prob­
lem. To solve this problem, we previously prop osed a 
basic model th at uses constraints related to t he four 
Bregman regularities [18,19], as shown in Ta ble 1 (see 
App endix and [18,19] for details) . 

T he basic problem given in the above concerns two­
sound segregation. T hus, in this pap er , the problem 

4In practica l cases, it is unc ert ain whether the target signal 
exact ly exists anywhere in t he mixed sou nd , Th e aim of t his 
work is to show it is possible to model selecti ve sound segre­
ga t ion using pr ior top-dow n information such as knowledg e of 
t he target. Thus, this assumpt ion is to test the model-concept . 

,Segregat ion issues t hat are not consistent wit h t his assu mpt ion, 
such as illusion ary hear ing, are beyond the scope of this pap er. 

is set so tha t h (t) is the target sound selected by top­
down processing an d [z (t) is the ot her mixed sound 
(i.e., h(t) + J3(t) + ., . + fM (t)). The problem (to 
select ively segregate I, (t) from f (t) ) is then solved 
using the modified solution based on ASA [18,19]. 

3. Model Implementation 

The prop osed model is implemented in six blocks: 
t he filterbank, Fa (F-note) est imation, te mplate gen­
eration, event detection , separation block, and group­
ing block (Fig . 2). 

3.1 Filterbank 

The filterbank decomp oses the observed signa l f (t) 
into compl ex spectra Xk (t). It is designed as a con­
stant narrow-band filterb ank using an FIR-ty pe band­
pass (gammatone) filter 9k(t) as follows. 

t 

X dt )	 I 9d r ) * f(t - r) dr (7) 

9k(t)	 At N -
1exp(- 21Tbw t)exp(-jwkt) (8) 

where N = 4, bw = 20 (20-Hz bandwidth) , Wk = 
21Tkfe' k = 1,2 , ··· , K, K = 500, I: = 10 Hz, and the 
sampling frequency is 20-kHz (see [17] for det ails). 

The inst antaneous amplitude Sdt) and phase 
¢dt) are determined using the Hilbert transform tech­
niqu e with regard to X k(t) [18,19J. 

3.2 Fa (F- note) est imation block 

The Fa (funda mental frequency) est imation block 
determines t he candidates for the note of the musi­
cal instrument sound by obt aining peaks in the auto­
correlat ion fun ction rt (e) in term s of channel number 
k (t he frequency region) at each time t of Sdt)s, as 
follows. 

K o 

rt (e) = L	 Sk( t) . Sk+e(t) (9) 
k= l 

where e = 1,2, " ' , Ko, Ko = K / 2, and Sk(t) is the 
cente r-clippe d 10g(Sdt )). Cente r-clipping is a process 
tha t replaces the values of 10g(Sk(t )) with regard to 
cha nnel number k wit h the mean value of log(Sk(t )) 
when the original values are less than the mean value. 
This technique emphasizes the peaks in rt (e). Here, 
these peak frequencies in re(e) corres pond to the fre­
quencies related to the Fa of each sound. Therefore, 
these can be regarded as the candidates to be the Fa 
of the target sound. In t his pap er , Fa is referred as 
the F-note for musical sound. 

The histograms for each F-note candidate are then 
calculated according to t he time ax is in the time­
frequency region. The M -best candidates wit h higher 
histogram values ar e passed to the event- detection 
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Fig . 3	 Schematic shape of a standard templ at e for
 
the target instrument: (a) flut e, (b) piano,
 
and (c) violin
 

block and the final est imated F-note of the target 
sound, Fo(t) , is det ermined in thi s block. In this pa­
per , Fo (t) fluctu at es in steps, and the temporal differ­
ent iat ion of Fo(t ) is zero in all segments . As a result , 
t his paper assumes t hat EO ,R(t) = 0 in Table 1 (ii) 
for each segment . Most of the segments correspond to 
each F-note duration in the target instrument sound . 

3.3 Templ at e generat ion block 

The template generator pro duces an acoust ical 
templ at e from the knowledge source s, depending on 
the target sound symbol. The generated template is 
composed of the shap e of th e inst an taneous amplitude 
in the time-frequency region , based on the fundamen­
tal frequency (F-not e) , dur ation, and general acous­
tical features of the musical instrument sound . The 
schematic shapes of the standard te mplate for flut e, 
piano, and violin are shown in Fig. 3. The st an­
dard templ at es considered in this pap er were set as 
the average d inst antan eous am plit ude of the target 
sound und er various condit ions (normalized duration 
and normalized harmonic compo nents based on t he 
F-note, etc .) . The te mplate , used in t he sepa ration 
block, is t hen reshap ed as a function of the segrega­
tion duration and F-not e. This can be extended by 
analyzing all of the sounds, as was done in [22,26,27]' 
to obtain a reali sti c generated template. 

3.4 Event detection block 

The event det ection block uses a template of the 
target to determine the concur rent tim e-frequency re­
gion of the target sound. In this block, the F-note 
(Fo(t)) of the target is selected from the IV!-best can­
didates of the F-n ote while the block searches to check 
whether the extracted amplitude based on t he har­
monicity of each F-note candidate matches t he gen­
erated template based on the target symb ol (Fig. 3). 
The mat ching degree is determined as a measur e of 
correlat ion between each est imated amplitude and the 
generated template in which the durati on of t he te m­
plat e is rearran ged to equal the duration of the F­
not e candidate. This corresponds to constraint (iii) in 
Table 1. The est imate d target event can then be ob­
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tained from the candidate wit h t he highest corre lation. 
The onset and offset of th e target instrument sound, 
Tk,on and Tk,o ff , are determined from t he est imated 
instant aneous amplit ude based on the harmonic com­
ponents of t he select ed fundamental frequency. This 
corresponds to constraint (i) in Tabl e 1. 

3.5 Separation block 

The separation block determines A k (t) , B k (t ), 
8lk(t) , and 8Zk(t) from Sk(t) and <Pk(t) using con­
st raints (ii) and (iv) in the determined concurrent 
tim e-frequency region. Const raint (ii) in Table 1 is 
implemented such that Ck,R(t ) and Dk,R(t) are lin­
ear (R = 1) polynomials, which reduces the com­
pu tational cost of estimating Ck,R(t ) and Dk,R(t ). 
Under this assumption, Ak (t ) and 8l d t), which can 
be allowed to undergo a temporal change in re­
gion, constra in th e second-order polynomials (Adt ) = 
JCk,l (t) dt + C£,o and 8l d t) = JDk,l (t ) + D~ ,o)' 
Then , by substituting dAk(t )/dt = Ck,R(t) into Eq. 
(5), we end up with t he linear differential equat ion of 
the input ph ase difference 8k(t ) = 8zdt ) - 81k (t ). By 
solving this equation, a genera l solut ion is det ermined 
by 

8k(t) 

Sk(t) sin(<pk(t ) - 8lk(t)) )
arctan ( Sdt) COS(<Pk (t ) - 8lk(t)) + Ck(t) 

(10) 

where Ck(t) = - JCk,R(t) dt - Ck,o = -Adt) [18,19J . 
In the segment Th - Th- l of each instrument 

duration , which can be determined by EO ,R(t ) = 
0, Adt), Bdt ), 8ldt ), and 8Zk(t) are det ermined 
through the following ste ps. First , the est ima ted re­
gions , Ck,o(t) - Pdt) ~ Ck,l (t) ~ Ck,o(t ) + Pdt ) and 
fh ,o(t) - Qk(t) ~ Dk,l (t) ~ fh, o(t ) + Qk(t ), are de­
te rmined by using the Kalman filter, where C\ ,o(t) 
and fh ,o (t ) are the est imated values and Pk(t ) and 
Qk(t) are the est imate d errors. Next , the candidates 
of Ck,l(t) at any Dk,l (t) are selected by using splin e 
int erp olati on in the est imated error region . Ck,l(t) is 
then determined by 

-	 < Ak , AT M P k >
Ck,l = arg max _ ' (11) 

Ck.O -Pk ~,ck .1 S': Ck, O +Pk IIAk ll ·IIAT MP,kll 

where Ak(t) is obtained through spline interp olation 
and AT M P,k(t ) is t he reshap ed standard template as 
shown in Fig. 3, as a function of the separation dura­
t ion (Tk,on to Tk,off) and F-n ote Fo(t). Finally, fh, 1(t ) 
is det ermined by 

Dk,1 = . arg max. <_Ak, AT MP ,k > (12) 
Dk,O -Qk S':Dk, IS':Dk ,O+Qk IIAkII . IIAT MP,kII 
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Table 1 Constraints corresponding to Bregman's regularities (See Appendix for details) 

Regularity (Bregman, 1993) Constraint (Unoki and Akagi, 1999) 
(i) common onset/offset synchronous of onset/offset ITs ­ Tk,on l ::; t:!..Ts, ITE - Tk,offl ::; t:!..TE 
(ii) gradualness of change piecewise-differentiable polynomial dAk(t)/dt = Ck,R(t), d(hk(t)dt = Dk,R(t) 

approximation dFo(t)/dt = EO,R(t) 
(slowness) (Kalman filtering) 

(smoothness) (spline interpolation) (JA = Itt: [AR+Il (t)Fdt =} min 

(JO = It~[ei~+ll(t)Fdt =} min 
(iii) harmonicity multiples of the fundamental frequency nxFo(t), n =I,2,· ··,NFo 
(iv) changes occurring in 

the acoustic event 
correlation between the instantaneous 
amplitudes 

~,....,~ k--l.£
IIAdtl 11 ,...., IIAe(tlll' r 

The difference between our proposed model and the 
previous model is that we use a template of ATMP,k(t ) 

instead of the averaged Jh(t) [18,19]. These equa­
tions mean we can determine a unique solution from 
among the candidates. Since e1k(t) and ek(t) are de­
termined from [h,1 (t) and c., (t), we can determine 
Ak(t), Bk(t), and e2k(t) from Eq. (5), Eq . (6), and 
e2dt) = edt) + eldt), respectively. 

3.6 Grouping block 

The grouping block merges the instantaneous am­
plitudes Ak(t)s and phases e1k(t)S in the concurrent 
time-frequency region of the target using constraints 
(i) and (iii) in Table 1 to reconstruct X 1k(t ) in Eq . 
(3). It then reconstructs them into the segregated sig­
nal 11 (t) using inverse processing of the filterbank All 
processing in the grouping block is done across the 
channel, following Eqs. (3), (5), (10)-(12) step-by­
step, so the permutation problem does not occur in 
the proposed method. 

3.7 Example 

First, we assume that the target sound h (t) in this 
example is a flute sound (A4) and the mixed sound 
f(t) is a combination of piano (G3), flute (A4), horn 
(Eb2), and violin(C4). The observed signal f(t) is 
then decomposed into Sk(t) and ¢dt) by the con­
stant narrow-band filterbank in Eq. (7). Figure 4(a) 
shows the magnitude of the filterbank output, Sdt)s , 
in which the frequency range of Sdt) is restricted to 
a range from 100 Hz to 1 kHz. Black parts show the 
harmonics of each musical sound. The harmonics of 
piano, flute, horn, and violin were located from 1200 
to 3200, from 2000 to 4000, from 4200 to 5200, and 
from 100 to 7800 in the sample number, respectively. 

Next , the F-note estimation block determines the 
candidates for the target sound note. Figure 4(b) 
shows the auto-correlation function at each time (1)­
(3) from Fig. 4(a). Panels (b-l), (b-2), and (b-3) show 
the candidates (some of the peaks) for the F-note of 
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each musical sound at each time (at the (1) 1000, (2) 
2800, and (3) 4500 points) . Figure 4(c) shows seven 
F-note candidates (seven peaks for each time). One 
of these peaks corresponds to the F-note of one of the 
musical sounds. In panel (b-l), the maximum peak is 
at about 270 Hz and corresponds to the F-note of the 
violin (C4) at the 1000 point in Fig. 4(a). In panel 
(b-2), the maximum peak is at about 450 Hz and cor­
responds to the F-note of the flute (A4) at the 2800 
point in Fig. 4(a). In panel (b-3) , the maximum peak 
is at about 160 Hz and corresponds to the F-note of 
the horn (Eb2) at the 4500 point in Fig. 4(a) . 

The template generation block produces the aver­
aged instantaneous amplitude of the target (flute) as 
shown in Fig. 3(a). The event-detection block deter­
mines the concurrent time-frequency region of the tar­
get "flut e" using the generated template. The F-note 
of the flute is selected from the M-best candidates 
(M = 7) for the F-note in Fig. 4(c) while this block 
determines whether the extracted amplitudes based 
on the harmonicity of each F-note candidate matches 
the generated template. Tk,on and Tk,off are then de­
termined from the estimated instantaneous amplitude 
based on the harmonicity of the selected F-note. In 
this example, they are determined as being at about 
the 1200 and 3200 points, respectively. ATMP,k(t ) is 
the reshaped standard template, as shown in Fig. 3, 
that is a function of the separation duration (Tk,on to 
Tk ,off) and the estimated F-note Fo(t) . 

Finally, the separation block determines Adt), 
Bk(t), e1k(t) , and e2k(t) from Sk(t) and ¢k(t) using 
Eqs. (10)-(12) in the determined concurrent time­
frequency region. The grouping block merges the 
AI, (t) and elk (t) in the concurrent time-frequency re­
gion of the target (flute), and then reconstructs them 
into the segregated signal 11(t). 

4. Simulations 

To show that the proposed model can selectively 
and precisely segregate the target instrument sound 
h(t) from the observed sound f(t), we carried out 
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three typ es of simulat ion: (i) segregation of the target 
sound it(t) from noisy sound f(t ) (with added white 
noise) [signal extraction]; (ii) segregation of the target 
sound it (t) (piano, flut e, horn , or violin) from four 
mixed sounds (piano, flut e, horn , and violin) [concur ­
rent separation]; and (iii) segregat ion of the target per­
formance sound it (t) from mixed sound f (t) [selective 
segregation]. The first two simulat ions correspond to 
typical engineering prob lems such as signal ext raction 
and concurrent signal separation. Especially, in the 
second simulation, four ot her fund amental frequencies 
exist ed in th e mixed sound, so we refer to this as "con­
curre nt separation" here. The t hird simulation corre­
sponds to a more genera l segregation problem, so we 
refer to this as "selective segregation" . A mixed signal 
f (t ) was used as the simulatio n st imuli in each simula­
tion, where th e SNR of f (t ) ra nged from - 10 to 20 dB 
in 10-dB steps. These original signals were generated 
using a tone-generator (YAMAHA, MU-2000) [28]. 

To evaluate the segregation performance of our 

proposed meth od , we used the following two measures. 
These measures revealed whet her the model precisely 
segregated the ta rget from the mixed sound in terms of 
amplitude as well as waveform . Both measures show 
improvement if t hey become higher positive values. 

JOT !J(t)2dt 
[dB] (13)

SNR = 1010g1o J{ (!J (t )- !1(t ))2dt 

Precision 
K

2:Ak (t )2 

i T k-l dt.!. 10loglO K , 2 

T 0 2: ( Ad t )- Ak(t)) 

[dB] 

k=l 

(14) 

Moreover, to show the advantages of the proposed 
model, we compared th e model performance when (a) 
using only top-down processing and (b) using bottom­
up processing. Here, t he proposed model in which the 
separation block is not act ive (Le., we only extract the 
harmonic component of the target sound, and do not 
segregate it in each chan nel) is used for the top-down 
processing, whereas the previous model [18,19] is used 
for the bottom-up processing (i.e., we do not use any 
template) . 

4.1 Simulation 1 

The results of the first simulations for flute (E3, 
A4, D4, or C5) are shown in Fig. 5, where f (t ) was the 
target flute sound mixed with white noise. Each bar 
height and error bar shows the averaged value and the 
standard deviat ion, respectively. All three methods 
led to almost the same degree of improvement when 
the SNR was high , because Ak(t ) :::::J Sd t) and (}lk (t ) :::::J 

cPk(t) , bu t the improvement with the proposed meth od 
was biggest of all. For exam ple, when the SNR of the 
mixed signal was 0 dB , it was possible to improve the 
SNR by abo ut 14.9 dB from f (t ), and to improve the 
SNR by about 2 dB and the precision by about 5 dB 
in terms of segregat ion accuracy (compared with the 
top-d own processing). 

This comparison shows the importance of sepa­
rating each component from the overlapped compo­
nents in each channel. These results confirm that the 
proposed model can segregate the ta rget sound from 
the mixed sound as well as t he two-sound segregation 
model proposed by [18, 19J. 

4.2 Simulation 2 

The results of the second simulat ions for flute (A4) 
are shown in Fig. 6, where f (t ) was the target flute 
(A4) sound mixed with piano (G3), violin (C4), and 
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horn (Eb2). For example, when t he SNR of t he mixed 
signal was 0 dB , it was possible to improve the SNR 
by about 16 dB from f (t), and to improve t he SNR by 
about 10 dB and th e precision by about 2 dB in terms 
of segregation accuracy, compared with t he top-down 
processing. Thi s comparison shows the importance of 
separating each component from t he overlapped com­
ponent s in each channel. These results show that the 
proposed model can select ively segrega te the target , 
using the key of th e t arget sound, with high accuracy. 

Th e results of ot her second simulations for piano 
(G3) are shown in Fig. 7, where f (t ) was the target 
piano (G3) sound mixed with flute (A4), violin (C4), 
and horn (Eb2) . For example, when the SNR of t he 
mixed signal was 0 dB , it was possible to improve the 
SNR by about 12 dB from f (t), and to improve the 
SNR by about 2 dB and the precision by about 5 dB 
wit h respect to segregat ion accuracy, compared with 
the top-down processing. 

For t he oth er target sounds (horn, violin) , the re­
sults were similar to those shown in Figs. 6 and 7. 
When the SNR of t he mixed signal was 0 dB , we 
could improve the SNR for the horn and violin sounds 
by about 7.3 dB, and 13.6 dB, respect ively, from f (t ), 
and improve t he SNR by about 3.6 dB, and 0.9 dB and 
the precision by abo ut 9.3 dB, and 0.3 dB with respect 
to segregation accuracy compared with th e top-down 
processing. 

These comparisons again show the importance of 
separat ing each component from t he overlapped com­
ponent s in each channel, and that the proposed model 
can select ively segregate the target , using th e key of 

426 

(a) 

_
CD 

en 

25 f o Top-down 
20 = Bottom- up 

_ Proposed model 
15 

~ l°f_ nOLJ5 

~~ 

~_ , J_
m
I _l.I-

o ' ­

-5 ' 
(b) 

" 

30 1 , I 

CD 
~ 
c: 
o 

:~ 
~ 
n, 

20 

- 10 

10 

0 

O' 
40 ' 

- 10 o 10 
Signal to Noise Ratio [dB] 

20 
, 

Fig. 6 Segregati on accuracy when segre
flute sound from a mixed sound: 
and (b) precision 

gat ing 
(a) SN

a 
R 

th e target sound, wit h high accuracy. 

4.3 Simulat ion 3 

Next , to demonstrate th at the proposed model can 
be applied to a realist ic problem where the target 
performance sound must be segrega ted from mixed 
sound (which is a typical situa t ion regarding t he cock­
tail party effect ) , we carr ied out the following sim­
ulation. The original signa ls were as follows. Tar­
get it (t) was a piano sound played "chu-rippu" (six 
notes: CDECDE), h (t ) was a flu te sound played "ki­
rakiraboshi" (seven notes: CCGGAAG), h (t ) was a 
violin sound played "choucho" (six notes: GEEFEE), 
and f 4(t ) was white noise. T hese were musical sounds 
taken from Japanese songs (except for f4(t )). Inputs 
were th e mixed signal f (t) = I, (t) + h (t) + h(t) + 
f 4(t ) and the keys of the symbol (piano) and notes 
(CDECDE, not including any t ime inform ation) of t he 
t arget. Th e task was to select ively segregate t he target 
sound ("chu-rippu" of t he piano sound) from mixture 
f (t ). 

Figure 8 shows an example of the signa l processing 
of th e proposed model for th is tas k. In t his figure, 
pane ls A and B respecti vely show each original signal 
an d the mixed signa l f (t ) at an SNR of 0 dB. T he in­
stantaneous amplit udes Sk(t )Sand phase (h( t)s (panel 
C) are decomp osed from f (t ) using t he filterban k and 
then th e candidates for t he F-note (panel D) are ex­
tr act ed from S.,(t)s. The templ ate of the target sound 
(panel E) is generated from the knowledge sources us-
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ing keys. The segregate d amplitude Ak(t)s (pa nel F) 
and phase B1dt)s are obtained from Sdt) and <Pk(t) 
using the constraints and temp late, and then the selec­
tively segregate d signal A(t ) is reconstructed by t he 
grouping block. 

In this simulat ion, the proposed mod el improved 
the SNR by about 10.6 dB from f(t) . Moreover, the 
accuracy of the segregate d target sound was improved 
by about 1.5 dB becau se of the better SNR and by 
about 2 dB becau se of the greater precision , compared 
with top-down pro cessing. T his suggests t hat t his 
imp rovement reflect s an advantage of the proposed 
model because top-d own processing can precisely se­
lect the position of the target signa l in the mixture 
and then bot to m-up pro cessing can separate the sig­
nal components of the target at the signal position 
from the mixture in the concurrent time-frequency re­
gion. In contrast, it was difficult to select ively seg­
regat e th e target sound from th e mixed sound using 
bottom-up process ing without having som e pri or in­
formation because the t arget position could not be 
precisely select ed. We have t hus shown th at our pro­
posed model can be used to select ively segregate the 
sound of a tar get musical instrument from a mix of 
various sounds in a way similar to the cocktail par ty 
effect. 

4.4 Consideration 

The simulation results show th at the proposed 
model based on our model-concept can select ively seg­

regate a target instrument from a mixture of instru­
ments. They also show that the proposed model per­
form ed best in the three simulat ions when using only 
top-down and only bot t om-up processing. Although 
th e sound separation using bottom-up processing that 
we previousl y prop osed worked well in simulat ions 1 
and 2 (signal ext raction and concurrent separation) , 
in simulat ion 3 it was too difficult to selectively segre­
gate the target performan ce sound from the mixture of 
perform an ce sounds with out any useful prior informa­
tion. Top-d own processing worked in the t hree sim­
ulations, but this has an essent ial dr awback in t hat 
it cannot segregate the target components from the 
mixture components in t he concurrent t ime-frequency 
region . We confirmed that the proposed model can 
simultaneously solve the two issues that we addressed 
in Sec. 1 while the sound segregation model based 
on either bot tom-up or to p-down process ing only can­
not solve these simultaneously. T his advan tage was 
proven to be best achieved t hrough the int eracti on of 
bottom-up and to p-down processes. 

5. Conclusion and Future Perspectives 

In this paper , as the first step towards const ruct ing 
a selective sound segregation model, we considered a 
simple basi c problem of select ive segregation for in­
strument sounds. We have proposed a novel model­
concept of selective sound segregation that combines 
top-down and bottom-up processing and have imp le­
mented a model for select ively segregating instrument 
target sound from a sound mixture. We carried out 
three segregation simulations to evaluate the proposed 
model: (i) segregation of the target sound from a 
noise-added target sound (signa l ext raction), (ii) seg­
regation of the target sound from a mix of four instru­
ment sounds (concurrent separation) , and (iii) segre­
gat ion of a musical performance from t he mixture of 
musical perform ance sounds (select ive segregation) . 

Our resu lts in the first two cases (signal ext rac ­
t ion and concurre nt separation) show t hat our model 
can select ively and highly accurately segregate a t ar­
get sound not only from a noisy sound bu t also from 
a mix of various sounds . Our results also show that 
combining top-down and bot tom-up processing is use­
ful for selective sound segregation. The results of 
our third simulation (select ive segregat ion) show that 
the proposed model can be applied to a more real­
istic sound segregation problem, such as th e sort of 
sit uation where the cocktail party effect occur s. As 
the resul ts, the proposed model was best const ructed 
through th e interaction of bot tom-up and top-down 
pro cesses so that the two issues in the probl em can be 
solved and a reasonable prototype model of select ive 
sound segregation can be achieved. 

In our future work, we hope to establish a means of 
constructing a standard template for any instrument 
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sound (e.g., opt imizat ion between the template and 
a real sound , and an HMM-based synthesis method) 
and a grouping rul e for the interaction of top-down 
and bottom-up processing through other mathemat­
ical techniques. Moreover , we will adapt the model 
for various musical performance sounds and will also 
extend the model for speech segregati on problems to 
develop this model concept as a model of the cocktail 
party effect , as shown in Fig . 1. \Ve also hope to 
extend this mod el to a binaural proc essing model to 
deal with directional hearing. 

We have already studied this applicability of the 
proposed model as a form of front-end pro cessing for 
speech recognition systems in a preliminary study [29] . 
If successful for all perspectives, the developed gen­
eral selective segregation model based on our model­
concept may not only cont ribute to vari ous types of 
signal processing for applicat ions, but also play a role 
in modeling the mechanisms of a human's select ive 
hearing system . 
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Appendix: Bregman's regularities and 
const r a in ts 

As we know well, t he human auditory sys tem can 
eas ily segregate a desired signal in a noisy environment 
that simu ltaneously contains speech, noise, and reflec­
tions. Recen tly, thi s ab ility of t he audito ry system has 
been regarded as a function of an act ive scene anal­
ysis system. Auditory scene analysis (ASA) has be ­
come widely known as a result of Bregman's book [10] . 
Bregman claimed that to perform ASA, t he hu man 
auditory system uses four psychoacoustically heuris­
t ic regularities related to an acoustic event [11], as 
shown in Table 1 (left colum n): 

1.	 common onset and offset, 

2.	 gradualness of change, 

3.	 harmonicity, and 

4.	 changes occurring in the acoustic event. 

On the ot her hand , Unok i and Akagi have pro­
posed t hat a CASA-based segregation method using 
these four regularit ies as constraints can solve a two­
acoust ic-source segregat ion problem as an ill-p osed in ­
verse problem. These constraints are listed in Table 1 
(right column), an d are br iefly exp lained bellow: 

(i)	 Common onset and offset . Sup pose that Ts and 
TE are the onset and offset of t he fund amental 
compo nent. If the signal com ponent obtained 
by t he kth channel is t he signal component gen­
erated by the same aco ustic sour ce (that is, har­
monic components), t hen Tk,on and offset T k,off 

determined by t he kth channel mu st coincide 
wit h Ts and TE, respectively, as shown in Table 
1(i). 

(ii-a)	 Gradualness of change (po lynomial approxima­
t ion) . Temp oral differenti at ions of the instan t a­
neous amplitude Adt), the instan taneous ph ase 
eu,(t ), and th e fun damental frequ en cy Fo(t ) 
must be represen ted by an Rth-oder differen ­
tiable piecewise polynomial as shown in Table 
1(ii). 

(ii-b)	 Gradualness of change (smoothness) . Suppose 
that the instan taneou s am plit ude A k (t) and 
ph ase e1dt) are defined in t he closed-duration 
[ta, tb] and satisfy constraint 1. If Ad t) and 
elk (t) are as smooth as possible, t he integrations 
shown in Table 1 (ii) must be minimized . 

(iii)	 Harmonicity. Fo(t ) is the fundam ental fre­
quency and NFa is the number of harmonics 
of the highest order. The harmonic component 
mu st satisfy t he multiple of Fo(t) with N Fa as 
shown in Table l(iii) . 

(iv)	 Common AM . The normalized instantan eous 
amp lit ude of t he out put of t he kt h channel mu st 
approximate t hat of t he l't h channel as shown in 
Table l (iv) . 

See [18, 19] for more details. 
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