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Abstract We propose a novel model-concept of selective sound segregation based on Auditory Scene
Analysis and then describe implementation of a prototype model for selectively segregating a target musical
instrument sound from the mixed sound of various musical instruments. This model is extended from our
previously proposed model of segregating two acoustic sources (Unoki and Akagi, Speech Communication,
27, 261-279, 1999). The extended model consists of two blocks: our previous model as bottom-up processing
and a selective processing based on knowledge sources as top-down processing. A novel idea is to segregate a
target sound from the mixed sound based on the top-down information as an interaction between bottom-
up and top-down processing. To demonstrate the ability of the proposed model, we carried out three
simulations: (i) segregation of the target sound from noisy sound (signal extraction); (ii) segregation of the
target sound from four mixed sounds (concurrent separation); and (iii) segregation of the target performance
sound from mixed sound (selective segregation). Simulation results showed that the proposed model could
adequately selectively segregate not only the target instrument sound, but also the target performance
sound, from the mixed sound of various instruments; this is not possible when using only bottom-up or
top-down processing. The advantage provided by this model-concept led to significantly improved results.
This model can be applied to selective speech-sound segregation, enabling its extension to computational
modeling of the mechanisms of a human’s selective hearing system.

Keywords: cocktail party effect, computational auditory scene analysis, selective sound segregation, musical instrument

1. Introduction the task is to try to selectively hear a target sound
(e.g., a familiar Japanese word /kon-nichiwa/ (“Hello”
in English) pronounced by a Japanese male speaker

standing behind three other people) from among the

1.1 General issue

A human can easily selectively listen to a desired
sound (a target sound) in a real environment that si-
multaneously contains various kind of sound such as
conversation speech, instrument sounds, animal songs,
noises, reflections, etc. Let us, for example, consider
a general problem of selective listening of the target
sound in the case of sound mixtures as shown in Fig.
1. Here, the sound of four speech signals, indepen-
dently generated by four speakers as different words,
three musical performances (independently played on
a flute, piano, and violin) as background music, and
some other background noises, are mixed together un-
der unpredictable conditions. Here, we assume that
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mixed sound (a mixture of speech from various people
amidst background music) under noisy conditions. In
this task, we can easily selectively listen to the target
sound if we know who the target is (or what the target
is) and we know his voice as well (or we have previ-
ously listened to it). Of course, we can more easily
selectively listen to it if we are fluent Japanese speak-
ers and this word is familiar to us. However, we may
not be able to selectively listen to the target sound if
we do not know what it is and /or we have never heard
it (e.g., if we cannot speak Japanese in this case)®.

'n general, it is believed that we also use visual information
such as lip reading, etc. to selectively understand the target
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Target speaker

What does he say?

Cocktail Party

Background music

Fig. 1 The selective sound segregation problem
known as the cocktail party problem: There
is a mixed sound of three musical instru-
ments being played (flute, piano, and vio-
lin), four speech signals being uttered by
two male and two female speakers, and back-
ground noise. The task is to selectively seg-
regate the speech sound uttered by the male
standing behind three people from the mixed
sound.

This ability seems to be strongly related to the
availability of prior information (stored knowledge
gained through experience) that allows us to identify
the target sound within the mixed sound. In general,
hearing a target sound in this type of situation (the
task) depends on what is called the “cocktail party
effect” [1]. The ability of the human auditory system
seems to play a significant role in this effect. If this
ability of selective listening to a target sound can be
implemented as a computational model, it should im-
prove the performance of preprocessors and enable ro-
bust speech-recognition systems and hearing-aid sys-
tems.

1.2 Previous approaches

The straightforward approach of signal process-
ing for speech separation has been investigated by
many researchers, who have proposed many separa-
tion methods. For example, to enable robust speech
recognition [2], noise reduction or suppression tech-
niques [3] and speech enhancement methods [4] can be
used. Signal processing has been investigated based on
signal estimation using a linear system [5,6] and sig-
nal estimation based on a stochastic process for signal
and noise [7]. In practice, though, it is difficult to con-
struct a computational model that can process signals
in a way related to selective separation (as hearing in
this research field), because the signals exist in a con-
current time-frequency region and this problem is an
ill-posed inverse problem. Therefore, we need to use

sound. However, in this example, we assume that clues regard-
ing only the actual sound information can be used.
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reasonable constraints to solve the problem.

Recently, blind source separation (BSS) methods
based on independent component analysis (ICA) have
been proposed (e.g., [8,9]). In these methods, measur-
ing independence among the source signals is used to
separate source signals from the mixed signals. The
methods can enable good source separation in arti-
ficial environments or when all source-signals satisfy

the assumptions; in addition, the number of micro-

phones used in these models should be greater than
or equal to the number of source-signals. However,
in these methods, it is difficult to selectively separate

only the target signal, as is desired by the listener or

model, from mixed signals because we do not know
which is the desired source-signal among the multiple

outputs. Moreover, this issue is also due to the permu-

tation problem in the frequency domain BSS method

with ICA. On the other hand, one factor contribut-

ing to the cocktail party effect (selective listening) is
regarded as a function of an active scene analysis sys-
tem, called auditory scene analysis (ASA) [10]. Breg-
man has reported that the human auditory system
uses four psychoacoustically heuristic regularities re-
lated to acoustic events to solve the ASA problem [11]
(see Appendix). One possible approach has been to

develop sound separation models based on ASA to try

to solve the problem by using Bregman’s regularities.
This is referred to as “computational auditory scene
analysis (CASA)”?

In this research field, selective listening can be re-
ferred to as “selective segregation” in which the seg-

regation consists of the following sequential process-
ing stages: decomposition of acoustical features; sep-
aration of each set of features corresponding to each
sound source; and then grouping each separated set of
features to merge each sound source. The aim of this
attempt is to obtain a model that enables us to solve
the selective segregation problem by applying reason-

able constraints (Bregman’s regularities [11]; see Ap-

pendix) to sounds and the environment. There are
two main types of CASA-motivated segregation mod-

els [12], based on either bottom-up (e.g., [13-19]) or
top-down (e.g., [20-22]) processes®.

Most models based on bottom-up processing can
adequately separate or extract a target signal such as

a harmonic complex tone (vowel) and artificial sinu-

soidal signals from the mixture in a concurrent time-
However, these are not good at
grouping them in order to separate a natural speech

frequency region.

2CASA is a computational version of ASA and includes a

function similar to this ability of the human auditory system.

3In particular, in the case of musical sound, this is also
called “music scene analysis” [22,23], and models have been pro-
posed for extracting significant information (musical sequences,
rhythm, etc.) regarding a target sound from a mixed sound
and to understand the target [20,22,24]. Models have also been
proposed for identifying a target sound as form of music scene

analysis [23,23].
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signal such as consonants and long sentences. In con-
trast, models based on top-down processing can deal
with realistic signals for selection and/or extraction as
the grouping process. However, these models cannot
completely separate the target components from the
mixture so the extracted signal still includes residual
signals such as noise and artifacts.

1.3 Motivation and contribution

We think that selective segregation is best
achieved, however, through the interaction of bottom-
up and top-down processes. That is, by (1) precisely
selecting the position of the target sound in the mixed
sound based on our knowledge and then (2) completely
segregating the target sound from the other sounds in
the concurrent time-frequency region. However, since
top-down and bottom-up processes focus only on ei-
ther (1) or (2), respectively, each alone cannot be used
to realize a selective sound segregation model. There-
fore, to realize a selective sound segregation model as
shown in Fig. 1, we have to resolve two issues: (I)
how to precisely select the target sound within a real
environment (selection), and (II) how to completely
separate the target sound from the mixed sound in
which overlapped components exist in a concurrent
time-frequency region (separation).

The ultimate goal of our work is to construct a se-
lective sound segregation model that can be applied to
any real world sound as a realistic problem. In this pa-
per, as the first step, we consider a selective sound seg-
regation problem for instrument sound mixtures using
a single-channel method (monaural processing, with-
out a direct cue) as a basic problem. We propose a
novel model-concept of the selective segregation where
a combination of top-down and bottom-up processing
is used, and then describe implementation of a pro-
totype model to selectively segregate a target instru-
ment sound from the mixed sound of instruments. Our
main aim in this paper is to demonstrate the ability
to solve the above two issues by reasonably combining
top-down and bottom-up processing.

This paper is organized as follows. In Sec. 2, we
describe the sound segregation problem that we dealt
with assumptions and our model-concept of the selec-
tive sound segregation. In Sec. 3, we describe the
algorithm and model implementation. In Sec. 4, we
discuss our simulation results. Section 5 gives our con-
clusions and perspectives regarding further work.

2. Selective Sound Segregation Model
2.1 Simplified segregation problem
Consider again the selective sound segregation

problem shown in Fig. 1. This is a general prob-
lem so it should be simplified so that we can deal with
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Fig. 2 Selective sound segregation model

it as a basic selective segregation problem. Thus, in
this paper, we consider the problem of selective sound
segregation in the case of mixed instrument sounds as
shown in Fig. 1. The sound of three musical perfor-
mances, independently played on a flute, piano, and
violin, are mixed together. When we try to selec-
tively listen to the piano sound from the mixed sound,
we can easily succeed as we imagine the piano sound.
Thus, our conceptual idea, is that the bottom-up pro-
cess decomposes all features from the mixed sound and
presents us with all the answer candidates for solving
the problem, and then the top-down processing selects
a reasonable solution from all conditions and merges
it according to our knowledge.

2.2 Model concept

Figure 2 shows the proposed selective segregation
model based on our concept. This model consists of
the two types of processing: top-down processing to
select the position of the target sound in the mixed
sound (to resolve issue (1), as shown by the dashed-
line in Fig. 2), and bottom-up processing to separate
the target sound from the other sounds in the concur-
rent time-frequency region (to resolve issue (2), the
dotted line in Fig. 2). The bottom-up processing is
the same method proposed in [18,19], but it has been
modified so that it can be combined with top-down
processing.

2.3 Assumption and definition
In this model, the original signals (f1(¢), f2(%),
f3(t), and so on) are not known, nor is it kncwn how

many different sounds there are. The only model in-
puts are the observed mixed signal f(t) (i.e., single

421



http:u~kn.�.w

microphone input) and a knowledge key such as the
symbol for the target instrument name (here, this is
for fi(t); e.g., “piano”). To investigate whether the
proposed model using top-down information can seg-
regate the target sound from the mixed sound, we as-
sume that the exact target sound can exist anywhere
in the mixed sound?, and knowledge about the tar-
get sound can be represented through the acoustical
features. Thus, the key enables the model to obtain
information regarding the acoustical features of the
target sound from the knowledge sources.

This model concept is based on the problems as-
sociated with segregating two acoustic sources. This
fundamental problem is defined as follows [18,19].

First, only the mixed signal f(t), where f(t) =
f1(t) + f2(t), can be observed and f(¢) is then decom-
posed into its frequency components by a K-channel
filterbank. The output of the k-th channel Xj(t) is
represented by

Xi(t) = X))+ Xox(t) (1)
Sk (t) exp(jwrt + jor(t)) (2)

where Si(t) and ¢ (t) are the instantaneous ampli-
tude and phase, respectively. If the outputs of the
k-th channel, which correspond to f(t) and f2(t), are
assumed to be

X1k(?) Ag(t) exp(Junt + j01x(t))  (3)
Xok(t) = Bi(t)exp(jurt +762e(t))  (4)

then the instantaneous amplitudes A (t) and Bg(t)
can be determined as

By, (t) _ Sk(t) Sins(i(flke(;zt)— Hlk(t)) (6)

where 60y (t) = a1, (t) — 61£(t), Ox(t) # nm,n € Z, and
wyg, is the center frequency of the k-th channel.

We cannot uniquely determine Ay (¢), Bi(t), 61 (t),
and 62 (¢), though, without some constraints. This is
easily understood by considering the above equations.
The problem, therefore, is the ill-posed inverse prob-
lem. To solve this problem, we previously proposed a
basic model that uses constraints related to the four
Bregman regularities [18,19], as shown in Table 1 (see
Appendix and [18,19] for details).

The basic problem given in the above concerns two-
sound segregation. Thus, in this paper, the problem

“In practical cases, it is uncertain whether the target signal
exactly exists anywhere in the mixed sound. The aim of this
work is to show it is possible to model selective sound segre-
gation using prior top-down information such as knowledge of
the target. Thus, this assumption is to test the model-concept.
.Segregation issues that are not consistent with this assumption,
such as illusionary hearing, are beyond the scope of this paper.
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is set so that fi(¢) is the target sound selected by top-
down processing and f»(t) is the other mixed sound
ey fo(t) + falt) + -+ + fur(t)). The problem (to
selectively segregate f)(t) from f(t)) is then solved
using the modified solution based on ASA [18,19].

3. Model Implementation

The proposed model is implemented in six blocks:
the filterbank, FO (F-note) estimation, template gen-
eration, event detection, separation block, and group-
ing block (Fig. 2).

3.1 Filterbank
The filterbank decomposes the observed signal f(t)
into complex spectra X (t). It is designed as a con-

stant narrow-band filterbank using an FIR-type band-
pass (gammatone) filter g (t) as follows.

X (t)

/0 g (r) * f(t — T)dr ()
ge(t) = AtV lexp(—2mby,t) exp(—jwit) (8)

where N = 4, b,, = 20 (20-Hz bandwidth), w; =
orkfo, k=1,2,---, K, K = 500, f, = 10 Hz, and the
sampling frequency is 20-kHz (see [17] for details).

The instantaneous amplitude Si(t) and phase
¢ (t) are determined using the Hilbert transform tech-
nique with regard to X (t) [18,19].

3.2 FO (F-note) estimation block

The FO (fundamental frequency) estimation block
determines the candidates for the note of the musi-
cal instrument sound by obtaining peaks in the auto-
correlation function 7¢(€) in terms of channel number
k (the frequency region) at each time ¢ of Si(t)s, as
follows.

Ko
re(€) =D Sk(t) - Skse(h) (9)
k=1

where £ = 1,2,---, Ky, Ko = K/2, and Si(¢) is the
center-clipped log(Sk(t)). Center-clipping is a process
that replaces the values of log(Sk(t)) with regard to
channel number k with the mean value of log(Sk(t))
when the original values are less than the mean value.
This technique emphasizes the peaks in r;(£). Here,
these peak frequencies in r:(£) correspond to the fre-
quencies related to the FO of each sound. Therefore,
these can be regarded as the candidates to be the FO
of the target sound. In this paper, FO is referred as
the F-note for musical sound.

The histograms for each F-note candidate are then
calculated according to the time axis in the time-
frequency region. The M-best candidates with higher
histogram values are passed to the event-detection

Journal of Signal Processing, Vol. 10, No. 6, November 2006



(a) Flute (b) Piano (c) Violin
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Tequency Frequency requency

Time Time Time

Fig. 3 Schematic shape of a standard template for
the target instrument: (a) flute, (b) piano,
and (c¢) violin

block and the final estimated F-note of the target
sound, Fg(t), is determined in this block. In this pa-
per, Fyp(t) fluctuates in steps, and the temporal differ-
entiation of Fy(t) is zero in all segments. As a result,
this paper assumes that Ey g(t) = 0 in Table 1 (ii)
for each segment. Most of the segments correspond to
each F-note duration in the target instrument sound.

3.3 Template generation block

The template generator produces an acoustical
template from the knowledge sources, depending on
the target sound symbol. The generated template is
composed of the shape of the instantaneous amplitude
in the time-frequency region, based on the fundamen-
tal frequency (F-note), duration, and general acous-
tical features of the musical instrument sound. The
schematic shapes of the standard template for flute,
piano, and violin are shown in Fig. 3. The stan-
dard templates considered in this paper were set as
the averaged instantaneous amplitude of the target
sound under various conditions (normalized duration
and normalized harmonic components based on the
F-note, etc.). The template, used in the separation
block, is then reshaped as a function of the segrega-
tion duration and F-note. This can be extended by
analyzing all of the sounds, as was done in [22,26,27],
to obtain a realistic generated template.

3.4 Event detection block

The event detection block uses a template of the
target to determine the concurrent time-frequency re-
gion of the target sound. In this block, the F-note
(Fo(t)) of the target is selected from the M-best can-
didates of the F-note while the block searches to check
whether the extracted amplitude based on the har-
monicity of each F-note candidate matches the gen-
erated template based on the target symbol (Fig. 3).
The matching degree is determined as a measure of
correlation between each estimated amplitude and the
generated template in which the duration of the tem-
plate is rearranged to equal the duration of the F-
note candidate. This corresponds to constraint (iii) in
Table 1. The estimated target event can then be ob-
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tained from the candidate with the highest correlation.
The onset and offset of the target instrument sound,
Tr,on and Tk o, are determined from the estimated
instantaneous amplitude based on the harmonic com-
ponents of the selected fundamental frequency. This
corresponds to constraint (i) in Table 1.

3.5 Separation block

The separation block determines Ag(t), Bi(t),
01 (t), and Oax(t) from Sk(t) and ¢x(t) using con-
straints (ii) and (iv) in the determined concurrent
time-frequency region. Constraint (i) in Table 1 is
implemented such that Cy r(t) and Dy g(t) are lin-
ear (R = 1) polynomials, which reduces the com-
putational cost of estimating Cy r(t) and Dy r(t).
Under this assumption, A(t) and 6;4(t), which can
be allowed to undergo a temporal change in re-
gion, constrain the second-order polynomials (A (t) =
JCrat)dt + Cpy and 61x(t) = [ Dia(t) + Diy)-
Then, by substituting dAx(t)/dt = Ci,r(t) into Eq.
(5), we end up with the linear differential equation of
the input phase difference 6 (t) = a1 (t) — 01%(t). By
solving this equation, a general solution is determined
by

k(1)

= arctan (

Sk (t) sin(@(t) — 01£ (1)) )
Sk (t) cos(@r () — O1x(2)) + Cr(t)
(10)

where Ci(t) = — ka,R(t)dt—Ck,o = —A(t) [18, 19].

In the segment T} — Th_1 of each instrument
duration, which can be determined by Egy r(t) =
0, Ax(t), Bg(t), 61x(t), and 8s4(t) are determined
through the following steps. First, the estimated re-
giOl’lS, Ck,o(t) = Pk (t) S Ck,l (t) S Ck,O(t) + Pk(t) and
Dy o(t) — Qk(t) < Dra(t) < Dipolt) + Qi(t), are de-
termined by using the Kalman filter, where C’k,o(t)
and Dy o(t) are the estimated values and Py(t) and
Q«(t) are the estimated errors. Next, the candidates
of Ck,1(t) at any Dy ,(t) are selected by using spline
interpolation in the estimated error region. C’k,l(t) is
then determined by

G < Ag, Armp k>
k1 =

arg max -
Cro—Pu<Ci1 <Cro+Pi 1Akl - [|ATMP k]|

where flk(t) is obtained through spline interpolation
and Armp x(t) is the reshaped standard template as
shown in Fig. 3, as a function of the separation dura-
tion (Tk on t0 Tk or) and F-note Fy(t). Finally, Dy 1 (t)
is determined by

D < A, Armp,i >
6= arg max

Dio—Qr<Dk,1 <Dk 0+Qx ||Akl| : HATMPJC”

(12)
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Table 1 Constraints corresponding to Bregman’s regularities (See Appendix for details)

Regularity (Bregman, 1993) Constraint (Unoki and Akagi, 1999)

(i) common onset /offset
(ii) gradualness of change

approximation
(slowness) (Kalman filtering)
(smoothness) (spline interpolation)

(iil) harmonicity
(iv) changes occurring in

the acoustic event amplitudes

synchronous of onset/offset
piecewise-differentiable polynomial

multiples of the fundamental frequency n x Fy(t),
correlation between the instantaneous

|Ts — Thon| < AT5, |Te — Thon| < ATg
dAk(t)/dt = Ck‘R(t), d91k(t)dt = Dk,R(t)
dFy(t)/dt = Ep g(t)

o4 = tib [AECRH)(t)Pdt = min
og = [[0SET ()]Pdt = min
n = 172"”7NF0

A (t) s Ay t!
4.0 ~ Ta@p 74

The difference between our proposed model and the
previous model is that we use a template of Aryp k(t)
instead of the averaged Ag(t) [18,19]. These equa-
tions mean we can determine a unique solution from
among the candidates. Since 61;(t) and 6 (t) are de-
termined from f)k‘l(t) and C:’k,l(t), we can determine
A (t), Bi(t), and 6ax(t) from Eq. (5), Eq. (6), and
B2k (t) = 0, (t) + 611 (t), respectively.

3.6 Grouping block

The grouping block merges the instantaneous am-
plitudes A (t)s and phases 6;(t)s in the concurrent
time-frequency region of the target using constraints
(i) and (iii) in Table 1 to reconstruct X;(¢) in Eq.
(3). It then reconstructs them into the segregated sig-
nal fi(t) using inverse processing of the filterbank All
processing in the grouping block is done across the
channel, following Egs. (3), (5), (10)-(12) step-by-
step, so the permutation problem does not occur in
the proposed method.

3.7 Example

First, we assume that the target sound f; (¢) in this
example is a flute sound (A4) and the mixed sound
f(t) is a combination of piano (G3), flute (A4), horn
(Eb2), and violin(C4). The observed signal f(t) is
then decomposed into Si(t) and ¢4(t) by the con-
stant narrow-band filterbank in Eq. (7). Figure 4(a)
shows the magnitude of the filterbank output, Sk (t)s,
in which the frequency range of Si(t) is restricted to
a range from 100 Hz to 1 kHz. Black parts show the
harmonics of each musical sound. The harmonics of
piano, flute, horn, and violin were located from 1200
to 3200, from 2000 to 4000, from 4200 to 5200, and
from 100 to 7800 in the sample number, respectively.

Next, the F-note estimation block determines the
candidates for the target sound note. Figure 4(b)
shows the auto-correlation function at each time (1)-
(3) from Fig. 4(a). Panels (b-1), (b-2), and (b-3) show
the candidates (some of the peaks) for the F-note of
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each musical sound at each time (at the (1) 1000, (2)
2800, and (3) 4500 points). Figure 4(c) shows seven
F-note candidates (seven peaks for each time). One
of these peaks corresponds to the F-note of one of the
musical sounds. In panel (b-1), the maximum peak is
at about 270 Hz and corresponds to the F-note of the
violin (C4) at the 1000 point in Fig. 4(a). In panel
(b-2), the maximum peak is at about 450 Hz and cor-
responds to the F-note of the flute (A4) at the 2800
point in Fig. 4(a). In panel (b-3), the maximum peak
is at about 160 Hz and corresponds to the F-note of
the horn (Eb2) at the 4500 point in Fig. 4(a).

The template generation block produces the aver-
aged instantaneous amplitude of the target (flute) as
shown in Fig. 3(a). The event-detection block deter-
mines the concurrent time-frequency region of the tar-
get “flute” using the generated template. The F-note
of the flute is selected from the M-best candidates
(M = 7) for the F-note in Fig. 4(c) while this block
determines whether the extracted amplitudes based
on the harmonicity of each F-note candidate matches
the generated template. T on and T} o are then de-
termined from the estimated instantaneous amplitude
based on the harmonicity of the selected F-note. In
this example, they are determined as being at about
the 1200 and 3200 points, respectively. Armp x(t) is
the reshaped standard template, as shown in Fig. 3,
that is a function of the separation duration (T} ¢n to
Tk.ot) and the estimated F-note Fp(t).

Finally, the separation block determines Ag(¢),
By (t), 01x(t), and 0(t) from Si(t) and ¢y (t) using
Egs. (10)-(12) in the determined concurrent time-
frequency region. The grouping block merges the
A (t) and ;4 (¢) in the concurrent time-frequency re-
gion of the target (flute), and then reconstructs them
into the segregated signal fl(t)‘

4. Simulations
To show that the proposed model can selectively

and precisely segregate the target instrument sound
f1(t) from the observed sound f(t), we carried out
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Fig. 4 F-note estimation: (a) sound spectrogram,
(b) autocorrelation functions at each time
(1)-(3), and (c) F-note candidates

three types of simulation: (i) segregation of the target
sound f1(t) from noisy sound f(t) (with added white
noise) [signal extraction]; (ii) segregation of the target
sound fi(t) (piano, flute, horn, or violin) from four
mixed sounds (piano, flute, horn, and violin) [concur-
rent separation); and (iii) segregation of the target per-
formance sound fi (t) from mixed sound f(¢) [selective
segregation]. The first two simulations correspond to
typical engineering problems such as signal extraction
and concurrent signal separation. Especially, in the
second simulation, four other fundamental frequencies
existed in the mixed sound, so we refer to this as “con-
current separation” here. The third simulation corre-
sponds to a more general segregation problem, so we
refer to this as “selective segregation”. A mixed signal
f(t) was used as the simulation stimuli in each simula-
tion, where the SNR of f(¢) ranged from —10 to 20 dB
in 10-dB steps. These original signals were generated
using a tone-generator (YAMAHA, MU-2000) [28].
To evaluate the segregation performance of our
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proposed method, we used the following two measures.
These measures revealed whether the model precisely
segregated the target from the mixed sound in terms of
amplitude as well as waveform. Both measures show
improvement if they become higher positive values.

I A dt

SNR = 10log; e [dB] (13)
’ LX) = @) at
Precision
K
1 /T Z Ak (t)2

R 10 10g10 k=1 gt [dB]

T K

0 (Aett) - Aett))’

k=1

(14)

Moreover, to show the advantages of the proposed
model, we compared the model performance when (a)
using only top-down processing and (b) using bottom-
up processing. Here, the proposed model in which the
separation block is not active (i.e., we only extract the
harmonic component of the target sound, and do not
segregate it in each channel) is used for the top-down
processing, whereas the previous model [18,19] is used
for the bottom-up processing (i.e., we do not use any
template).

4.1 Simulation 1

The results of the first simulations for flute (E3,
A4, D4, or C5) are shown in Fig. 5, where f(t) was the
target flute sound mixed with white noise. Each bar
height and error bar shows the averaged value and the
standard deviation, respectively. All three methods
led to almost the same degree of improvement when
the SNR was high, because Ay (t) ~ Si(t) and 6,4 (t) =~
¢r(t), but the improvement with the proposed method
was biggest of all. For example, when the SNR of the
mixed signal was 0 dB, it was possible to improve the
SNR by about 14.9 dB from f(t), and to improve the
SNR by about 2 dB and the precision by about 5 dB
in terms of segregation accuracy (compared with the
top-down processing).

This comparison shows the importance of sepa-
rating each component from the overlapped compo-
nents in each channel. These results confirm that the
proposed model can segregate the target sound from
the mixed sound as well as the two-sound segregation
model proposed by [18,19].

4.2  Simulation 2
The results of the second simulations for flute (A4)
are shown in Fig. 6, where f(t) was the target flute

(A4) sound mixed with piano (G3), violin (C4), and
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Fig. 5 Segregation accuracy when segregating a
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horn (Eb2). For example, when the SNR of the mixed
signal was 0 dB, it was possible to improve the SNR
by about 16 dB from f(t), and to improve the SNR by
about 10 dB and the precision by about 2 dB in terms
of segregation accuracy, compared with the top-down
processing. This comparison shows the importance of
separating each component from the overlapped com-
ponents in each channel. These results show that the
proposed model can selectively segregate the target,
using the key of the target sound, with high accuracy.

The results of other second simulations for piano
(G3) are shown in Fig. 7, where f(t) was the target
piano (G3) sound mixed with flute (A4), violin (C4),
and horn (Eb2). For example, when the SNR of the
mixed signal was 0 dB, it was possible to improve the
SNR by about 12 dB from f(t), and to improve the
SNR by about 2 dB and the precision by about 5 dB
with respect to segregation accuracy, compared with
the top-down processing.

For the other target sounds (horn, violin), the re-
sults were similar to those shown in Figs. 6 and 7.
When the SNR of the mixed signal was 0 dB, we
could improve the SNR for the horn and violin sounds
by about 7.3 dB, and 13.6 dB, respectively, from f(t),
and improve the SNR by about 3.6 dB, and 0.9 dB and
the precision by about 9.3 dB, and 0.3 dB with respect
to segregation accuracy compared with the top-down
processing.

These comparisons again show the importance of
separating each component from the overlapped com-
ponents in each channel, and that the proposed model
can selectively segregate the target, using the key of
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the target sound, with high accuracy.
4.3 Simulation 3

Next, to demonstrate that the proposed model can
be applied to a realistic problem where the target
performance sound must be segregated from mixed
sound (which is a typical situation regarding the cock-
tail party effect), we carried out the following sim-
ulation. The original signals were as follows. Tar-
get f1(t) was a piano sound played “chu-rippu” (six
notes: CDECDE), f»(t) was a flute sound played “ki-
rakiraboshi” (seven notes: CCGGAAG), f3(t) was a
violin sound played “choucho” (six notes: GEEFEE),
and f4(t) was white noise. These were musical sounds
taken from Japanese songs (except for f4(t)). Inputs
were the mixed signal f(t) = fi(t) + fa(t) + fa(t) +
fa(t) and the keys of the symbol (piano) and notes
(CDECDE, not including any time information) of the
target. The task was to selectively segregate the target
sound (“chu-rippu” of the piano sound) from mixture
£(t).

Figure 8 shows an example of the signal processing
of the proposed model for this task. In this figure,
panels A and B respectively show each original signal
and the mixed signal f(t) at an SNR of 0 dB. The in-
stantaneous amplitudes S (t)s and phase ¢y (t)s (panel
C) are decomposed from f(t) using the filterbank and
then the candidates for the F-note (panel D) are ex-
tracted from S (t)s. The template of the target sound
(panel E) is generated from the knowledge sources us-
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grouping block.
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In this simulation, the proposed model improved

the SNR by about 10.6 dB from f(¢). Moreover, the
accuracy of the segregated target sound was improved

about 1.5 dB because of the better SNR and by
out 2 dB because of the greater precision, compared
th top-down processing. This suggests that this

improvement reflects an advantage of the proposed

model because top-down processing can precisely se-

an

lect the position of the target signal in the mixture

d then bottom-up processing can separate the sig-

nal components of the target at the signal position
from the mixture in the concurrent time-frequency re-
gion. In contrast, it was difficult to selectively seg-
regate the target sound from the mixed sound using
bottom-up processing without having some prior in-
formation because the target position could not be
precisely selected. We have thus shown that our pro-
posed model can be used to selectively segregate the
sound of a target musical instrument from a mix of
various sounds in a way similar to the cocktail party
effect.

4.4 Consideration

The simulation results show that the proposed

model based on our model-concept can selectively seg-
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regate a target instrument from a mixture of instru-
ments. They also show that the proposed model per-
formed best in the three simulations when using only
top-down and only bottom-up processing. Although
the sound separation using bottom-up processing that
we previously proposed worked well in simulations 1
and 2 (signal extraction and concurrent separation),
in simulation 3 it was too difficult to selectively segre-
gate the target performance sound from the mixture of
performance sounds without any useful prior informa-
tion. Top-down processing worked in the three sim-
ulations, but this has an essential drawback in that
it cannot segregate the target components from the
mixture components in the concurrent time-frequency
region. We confirmed that the proposed model can
simultaneously solve the two issues that we addressed
in Sec. 1 while the sound segregation model based
on either bottom-up or top-down processing only can-
not solve these simultaneously. This advantage was
proven to be best achieved through the interaction of
bottom-up and top-down processes.

5. Conclusion and Future Perspectives

In this paper, as the first step towards constructing
a selective sound segregation model, we considered a
simple basic problem of selective segregation for in-
strument sounds. We have proposed a novel model-
concept of selective sound segregation that combines
top-down and bottom-up processing and have imple-
mented a model for selectively segregating instrument
target sound from a sound mixture. We carried out
three segregation simulations to evaluate the proposed
model: (i) segregation of the target sound from a
noise-added target sound (signal extraction), (ii) seg-
regation of the target sound from a mix of four instru-
ment sounds (concurrent separation), and (iii) segre-
gation of a musical performance from the mixture of
musical performance sounds (selective segregation).

Our results in the first two cases (signal extrac-
tion and concurrent separation) show that our model
can selectively and highly accurately segregate a tar-
get sound not only from a noisy sound but also from
a mix of various sounds. Our results also show that
combining top-down and bottom-up processing is use-
ful for selective sound segregation. The results of
our third simulation (selective segregation) show that
the proposed model can be applied to a more real-
istic sound segregation problem, such as the sort of
situation where the cocktail party effect occurs. As
the results, the proposed model was best constructed
through the interaction of bottom-up and top-down
processes so that the two issues in the problem can be
solved and a reasonable prototype model of selective
sound segregation can be achieved.

In our future work, we hope to establish a means of
constructing a standard template for any instrument
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sound (e.g., optimization between the template and
a real sound, and an HMM-based synthesis method)
and a grouping rule for the interaction of top-down
and bottom-up processing through other mathemat-
ical techniques. Moreover, we will adapt the model
for various musical performance sounds and will also
extend the model for speech segregation problems to
develop this model concept as a model of the cocktail
party effect, as shown in Fig. 1. We also hope to
extend this model to a binaural processing model to
deal with directional hearing.

We have already studied this applicability of the
proposed model as a form of front-end processing for
speech recognition systems in a preliminary study [29].
If successful for all perspectives, the developed gen-
eral selective segregation model based on our model-
concept may not only contribute to various types of
signal processing for applications, but also play a role
in modeling the mechanisms of a human’s selective
hearing system.
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Appendix: Bregman’s regularities and
constraints

As we know well, the human auditory system can
easily segregate a desired signal in a noisy environment
that simultaneously contains speech, noise, and reflec-
tions. Recently, this ability of the auditory system has
been regarded as a function of an active scene anal-
ysis system. Auditory scene analysis (ASA) has be-
come widely known as a result of Bregman’s book [10].
Bregman claimed that to perform ASA, the human
auditory system uses four psychoacoustically heuris-
tic regularities related to an acoustic event [11], as
shown in Table 1 (left column):

1. common onset and offset,

2. gradualness of change,

3. harmonicity, and

4. changes occurring in the acoustic event.

On the other hand, Unoki and Akagi have pro-
posed that a CASA-based segregation method using
these four regularities as constraints can solve a two-
acoustic-source segregation problem as an ill-posed in-
verse problem. These constraints are listed in Table 1
(right column), and are briefly explained bellow:

(i) Common onset and offset. Suppose that Ts and
Tg are the onset and offset of the fundamental
component. If the signal component obtained
by the kth channel is the signal component gen-
erated by the same acoustic source (that is, har-
monic components), then Ty on and offset T} of
determined by the kth channel must coincide
with T's and Tg, respectively, as shown in Table

1(1).

(ii-a) Gradualness of change (polynomial approxima-
tion). Temporal differentiations of the instanta-
neous amplitude Ay(¢), the instantaneous phase
01x(t), and the fundamental frequency Fy(t)
must be represented by an Rth-oder differen-
tiable piecewise polynomial as shown in Table

1(ii).
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(ii-b) Gradualness of change (smoothness). Suppose
that the instantaneous amplitude Ag(t) and
phase 61(t) are defined in the closed-duration
[ta,ts] and satisfy constraint 1. If Ag(¢) and
01x(t) are as smooth as possible, the integrations
shown in Table 1 (ii) must be minimized.

(iii) Harmonicity. Fp(t) is the fundamental fre-
quency and Np, is the number of harmonics
of the highest order. The harmonic component
must satisfy the multiple of Fy(t) with Ng, as
shown in Table 1(iii).

(iv) Common AM. The normalized instantaneous
amplitude of the output of the kth channel must
approximate that of the £th channel as shown in
Table 1(iv).

See [18,19] for more details.
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