
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Matching Complex Documents Using Tolerance Rough

Set Model

Author(s) Nguyen, T.B.; Ho, T.B.; Pham, C.; Kawasaki, S.

Citation

Issue Date 2007-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/4123

Rights

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, Proceedings of KSS'2007 : The

Eighth International Symposium on Knowledge and

Systems Sciences : November 5-7, 2007, [Ishikawa

High-Tech Conference Center, Nomi, Ishikawa,

JAPAN], Organized by: Japan Advanced Institute of

Science and Technology

Matching Complex Documents Using Tolerance Rough Set Model

Nguyen T.B.† Ho T.B.† Pham C.‡ Kawasaki S.†
†School of Knowledge Science

Japan Advanced Institute of Science and Technology
{thaibinh,bao,skawasa}@jaist.ac.jp
‡Cisco System, Inc., San Jose, California, USA

chpham@cisco.com

Abstract

Matching documents is to find similar ones of
a given document from an existing document
database. It is an important problem in prac-
tice as well as in research. This paper presents
a method for matching document applying to
identify duplicate errors in network systems.
The database we used is CISCO network errors
database (CNED), a collection of documents that
describe error cases occurred in network sys-
tems. Each document is a complex document
composed of several parts in different types:
plain text, source code, dump code, debug, etc.
Our experiments are carried out for CNED but
the method can be extended to many other kinds
of complex documents.

Keywords: Document matching, complex doc-
ument, information retrieval, tolerance rough set
model.

1 Introduction

Document matching has always been an impor-
tant application and an attractive research topic.
Documents can be divided into two types: plain
text documents and complex documents. A plain
text document contains only plain text, while a
complex document contains not only plain text
but also several parts in different forms, e.g.,
symbols, formulas, source code, XML, etc.

One real life example of complex documents
is the collection of documents about network er-
rors, called the CISCO network error database
(CNED), provided by CISCO. Each document
in the CNED contains information about a cus-
tomer’s network error such as: Network topol-
ogy, Configuration, Analysis information, source
code, etc. The information (i.e., data) contains
network domain knowledge and is in various
types: natural language text, machine generated
code, source code, etc.

Other examples about complex documents
can be raised are hospital records or company
product error records [1].

In the example of the CNED above, when an
error occurs in the network of a customer, the
technical staffs have to create this error’s docu-
ment and try to find the solution for this error. An
algorithm for matching error’s documents would
help the technical staff identify the errors oc-
curred in the past which have the same root cause
with the newly occurred error. It makes more
quickly for the the technical staffs to find the root
cause of the error.

There are many studies related to document
matching and information retrieval from text
documents. In [2], the authors presented a
method for finding similar text files in large doc-
uments repositories. The method is based on
chunking the byte stream to find unique signa-
tures that may be shared in multiple files. In [3],
the authors introduced a Bayesian framework for
text case matching for Case-based Reasoning. In
[4], Zhao et al. introduced a method for text min-
ing using class association rules. However, those
methods either are limited to their specific data
or only concentrate on matching algorithm after
representing the documents as feature vectors.

The objective of our research is to propose a
general solution for the matching complex docu-
ments in the CNED. The problem can be defined
as following: “given a document of a newly oc-
curred network error (the query document), find
in the CNED the documents of errors that have
the same root cause with the newly occurred er-
ror”. From here, we call the documents of the
same root cause errors, as duplicate documents.

In this paper, we analyze the data and pro-
pose a general solution for the problem. Then
we show a partial solution for the problem which
matches two documents by matching only their
natural language parts. In this partial solution,

from each natural language part, only 6-8 key-
words were extracted. With this small number of
keywords, current available similarity measures
[5] often yield zero-values and the matching ac-
curacy is decreased. To overcome this limita-
tion, we employed the Tolerance rough set model
(TRSM) [6] for representing text. TRSM, an ex-
tension of rough set theory [7], represents a text
using not only its keywords but other keywords
that have the relationship in context with its key-
words. Therefore, the set of keywords represent-
ing a text is enriched, resulting in the increase of
matching accuracy.

The rest of this paper is organized as fol-
lows: In section 2, we show more detail about
the CNED and its documents. In section 3 we
present a general solution for the matching prob-
lem. Section 4 shows our partial solution and its
result. Finally, in section 5 we summarize the
research and show our future work.

2 CISCO network error database

The CISCO network error database (CNED) is
a collection of more than million documents
about customers’ network errors. Each docu-
ment contains information about the error such
as: network topology, network configuration, er-
ror description, analysis information, etc. The
updated information via email such as source
codes, dump codes is also included in the record.

Commonly, each record is organized by some
components as follows:

• Topology: shows how hosts are connected

• Error description: briefly describe the er-
ror such as the symptoms, the circumstance
of the network when the error occurred, etc.

• Configuration: show the configuration of
the network such as network protocols, en-
capsulations, interfaces, etc.

• Analysis information: the results of exe-
cuting commands.

An example of a document in CNED is shown
in Figure 1.

Following are some properties of the docu-
ments that make the matching process difficult:

• The documents contain network domain
knowledge that is not easy to exploit and
represent in computer

1. Topology
===========

 Generator UnitUnderTest Reflector
 (UUT)
 +------------+ +----------------+ +-------------+
 | | | | | | |
 | agsk1 e1|----|----|e4 agsk2 s3|----------|s0 agsm3 |
 | | | | | | |
 +------------+ +----------------+ +-------------+

2. Summary of failed testcases
==============================

 clns_static, clns_igrp, and clns_isis switching tests fail with
 102-8.4 version of images. Output of 'show clns neighbors' doesn't
 include the complete information when Serial interface with
 fr-ietf enacpaulation is configured in the switching path.

 Images: gs3-k.102-8.4, igs-bpx-l.102-8.4

 The following testcase is presented here:
switching/clns_static clns_static.0130201121241 mec N/A noencap slow mci_s 1 fr-ietf slow
Ethernet1 Ethernet4 Serial3 Serial0

 Generator <--------------> UUT <--------------> Reflector
 e1 arpa e4 s3 fr-ietf s0

3. Configuration
=================
agsk1
=====
agsk1(config)#clns routing
agsk1(config)#clns net 47.0004.004D.0055.0000.0C00.0000.00
agsk1(config)#!
agsk1(config)#interface Ethernet1
agsk1(config-if)#clns enable

agsk2
=====
agsk2(config)#clns routing
agsk2(config)#clns net 47.0004.004D.0055.0000.0C00.0001.00
agsk2(config)#!
agsk2(config)#interface Ethernet4
agsk2(config-if)#clns enable
agsk2(config-if)#! ring-speed 16
agsk2(config-if)#no clns route-cache

4. Analysis
============
show inter Ethernet1
Ethernet1 is up, line protocol is up
 Hardware is MCI Ethernet, address is 0000.0c02.cb98 (bia 0000.0c02.cb98)
 MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255
 Encapsulation ARPA, loopback not set, keepalive set (10 sec)
 ARP type: ARPA, ARP Timeout 4:00:00
 Last input 0:00:02, output 0:01:56, output hang never
 Last clearing of "show interface" counters never
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 2 packets input, 178 bytes, 0 no buffer
 Received 1 broadcasts, 0 runts, 0 giants
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 0 input packets with dribble condition detected
 2 packets output, 195 bytes, 0 underruns
 0 output errors, 0 collisions, 3 interface resets, 0 restarts

Figure 1: Example of a document

• Information in the documents is in various
types: topology is in the form of a graph, er-
ror description is in natural language, con-
figuration and analysis information are ma-
chine generated codes, etc.

• The organizations of the documents (num-
ber of components, order of the compo-
nents) are different and not well-formatted
relying on the people who created it

The documents in the CNED are already di-
vided into groups. Documents in each group are
those of the same root cause errors. Each docu-
ment belongs to only one group.

3 Methodology

The general method contains two main steps:

• Data preparation: extracting information

from the original document to fill in a pre-
determined template

• Document matching: matching two filled
template

The framework is shown in Figure 2

Database of
filled templates

Query
document

Data preparation

CNED

Documents matching

Duplicate
documents of

the query

Offline phase

Online phase

Figure 2: Framework of the method

3.1 Data preparation
Data preparation is to extract information from
each document to fill in the pre-determined tem-
plate.

The template contains several slots, such
as Topology, Error description, Configuration,
Analysis information, etc. The value for the Er-
ror description slot is simply plain text, while
those of other slots (e.g.Topology, Configura-
tion, Analysis information) are represented using
sub-templates with their own slots. The structure
of the template with sub-templates is shown in
Figure 3.

There are some researches related to informa-
tion extracting in natural language text or from
websites [8, 9, 10, 11]. Those methods use Natu-
ral language processing techniques to extract en-
tities and their mentions from natural language
text as well as HTML tags analysis techniques to
extract information from web tables. However,
in our data, each document contains not only

Topology

Error description

Configuration

Analysis information

…

Host number: 3
Connection type: star

Protocol: CLNS
Routing protocol: IS-IS
Encapsulation: FR
Interface: Tok
….

RouteInfo: CLNS
NeighborInfor: IS-IS
PathInfo: 2
MediaInfor: OK
PackageInfo: 1
…

Sub-templates

Figure 3: Template consisting sub-templates

Information extraction module

Original
document

Reference
Network domain

knowledge

 Commands’ formats
 Protocols’ information
 Interfaces’ information
 ・・・

Network domain
knowledge

 Commands’ formats
 Protocols’ information
 Interfaces’ information
 ・・・

Filled template

Figure 4: Information Extraction module

plain text but also various type of information in-
cluding network domain knowledge. Therefore,
to extract information from the documents, it is
necessary to create a Domain knowledge base
for referencing. The Domain knowledge base
should include information so that the Informa-
tion Extraction module can use to know how to
extract information from the documents. These
information includes Commands’ syntaxes, For-
mats of the commands executing results, Inter-
face information, etc. The Information Extrac-
tion module is shown in Figure 4.

The Data preparation for the documents in
CNED is implemented in an offline phase to
create a database of filled templates. The Data
preparation for the new document is executed in
an online phase to fill in its template. The doc-
ument matching phase in the next section will
compare the new document with all the docu-
ments in the database by comparing correspond-
ing information in the templates.

3.2 Documents matching
The Document matching phase computes the
distance between the new document with all doc-
uments in the CNED and ranks the documents in
the CNED based on such distances.

The distance between the new document
and each document in the CNED is calculated
through the distance between the values of corre-
sponding slots in the two templates. For the sim-
plicity to understand, we assume that there are
only 4 components in each document: Topology,
Error description, Configuration, Analysis infor-
mation. The distance between two documents
di, dj can be written as in equation 1.

D(d1, d2) = α1TP + α2ED + α3CF + α4AI
(1)

TP,ED,CF,AI: are the distances between
the two corresponding Topologies, Error de-
scriptions, Configurations Analysis informa-
tions, respectively.

The error description is in natural language, so
ED is calculated matching plain text documents.
TP,CF,AI , in turn, are computed through

the distance between the values in the corre-
sponding sub-slot of the sub-templates.

TP = β1TP1 + β2TP2 + β3TP3 + · · ·
CF = γ1CF1 + γ2CF2 + γ3CF3 + · · ·
AI = δ1AI1 + δ2AI2 + δ3AI3 + · · ·

(2)

The values of αi, βi, γi, δi will be learned by
supervised machine learning techniques using
sample documents in the CNED. The distance
metric should make the documents of the same
groups close, and separate documents of differ-
ent groups.

4 A partial solution

We investigated thoroughly the database and re-
alized that among the components of the doc-
ument, the error descriptions of the same root
cause errors often share some keywords related
to the error. Beside, they have following fea-
tures: 1) Compact and the contents are highly
reliable 2) In natural language

As a preliminary solution, we did an experi-
ment using only the error descriptions in match-
ing two documents. Then, the similarity of two
document given in (1) becomes the similarity of
the two Error descriptions:

D(d1, d2) = ED (3)

The framework for this partial solution is
shown in Figure 5.

Collection of
Feature vectors

Query
document

Error description
 extracting

CNED

Feature vector

Text representation

Text matching

Offline phase
Online phase

Figure 5: The framework of the partial solution

As shown in Figure 5, the Error description
extraction phase for the documents in CNED is
implemented in an offline process to create a
database of Error descriptions. The Error de-
scription extraction for the new document is ex-
ecuted in an online process.

4.1 Extracting error description
The Error descriptions often begin with some
signs such as: “Error description”, “Error sum-
mary”, etc. Therefore, the Error description
module simply searchs for these signs and ex-
tract the Error descriptions.

4.2 Representing text
4.2.1 Traditional bag-of-words method

Traditionally, the bag-of-words method is
used for presenting natural language documents.
A document is represented by a vector of key-
words extracted from the document, with associ-
ated weights with respect to the importance of
the keywords in the document and within the
whole document collection.

Each Error description is a natural language
document, and in this section, we call it a docu-
ment. We denote
E = {e1, e2, ..., eM}: the set of all documents

(Error descriptions)

T = {t1, t2, ..., tN}: the set of keywords ex-
tracted from the documents in E.

The weight of a term in a document is often
determined using the so-called TF.IDF in which
the weight of a term is determined by two fac-
tor: how often the keywords ti occurs in the doc-
ument ej and how often it occurs in the whole
documents collection, as in equation 4 [12]:

wij = fej (ti) log
M

fE(ti)
(4)

fej (ti): number of occurrences of ti in ej
fE(ti): total number of occurrences of ti inE.
With the bag-of-words methods, we could ex-

tract only 6-8 keywords from each document.
With this few keywords, the common mea-
sure similarities often yield zero-value, and the
matching quality is not so good. Table 1 is an
example of 5 documents with there keywords.

No. Keywords characterizing documents
e1 clns, isis, route, across, link,

frame relay, encapsulation
e2 learn path, net, isis
e3 iso igrp, updates, frame relay, ietf, en-

capsulation
e4 frame relay, ietf, atm-dxi, ad-ietf, en-

capsulation, clns
e5 clns, route, learn path, iso igrp

Table 1: Keywords of first 5 documents

To overcome this limitation, we used the Tol-
erance rough set model (TRSM) [6], a model for
representing text, which consider the relation-
ship in context between keywords. In this model,
a document ej is represented not only by its key-
words, but also other keywords which have the
relationship with its keywords. With this exten-
sion, the number of keywords for representing ej
is enlarged, resulting in the increase of matching
performance.

The Error description extracting and Text rep-
resenting for the documents in CNED are done
offline to make a collection of feature vectors.
That process for the new document is done on-
line to make its feature vector.

4.2.2 Tolerance rough set model
As mentioned in 4.2.1, the TRSM represents

ej by not only keywords in ej but other keywords
which have relationship with its keywords. The

relationship used here is the co-occurrence rela-
tion. It means that there exists a relationship be-
tween ti and tj if the number of co-occurrence
of ti and tj is larger than a threshold.

For each keyword ti, define its tolerance rough
setR(ti) as the set of keywords that have number
of co-occurrence with this keyword is large than
a threshold θ, including itself.

R(ti) = {tj ∈ T |fE(ti, tj) ≥ θ} ∪ ti (5)

fE(ti, tj): total number of co-occurrences of
ti and tj in E.

Then each document ej in the set E will be
represented by its keywords and the keywords in
the tolerance rough set of these keywords. In this
case, the set that represents the ej is called its
upper-approximation, and denoted by U(ej).

U(ej) =
⋃

tk∈ej

R(tk) (6)

The weigh of keyword ti in ej is extended into
the following formula:

wij =


(1 + log(fej (ti))) log M

fE(ti)
if ti ∈ ej

minth∈ejwhj

log M
fE(ti)

1+log M
fE(ti)

if ti ∈ U\dj

0 if ti /∈ U
(7)

in which, U = U(ej).
This way of weighting ensures that each term

of U(ej) but not appears in ej has a weight
smaller than any term appearing in ej . And
the keywords that not appears in the U(ej) are
weighted 0.

Table 2 shows an example of 5 documents and
there upper-approximations.

4.3 Matching text

Many similarity measures between documents
can be used in TRSM matching algorithm. We
used two common coefficients of Dice, and Co-
sine [13, 5] for our TRSM matching algorithm
to calculate the similarity between pairs of doc-
uments ei and ej . For example, the Dice coeffi-
cient is:

SD(ei, ej) =
2

∑N
k=1(wki × wkj)∑N

k=1(w2
ki + w2

kj)
(8)

No. Keywords U(di)
e1 t180, t44, t32, t113, t108,

t61, t12

t180, t44, t32, t113, t108, t61, t12,
t5, t7, t9, t22

e2 t168, t5, t113 t168, t5, t113, t12

e3 t87, t91, t32, t19, t61 t87, t91, t32, t19, t61

e4 t91, t57, t32, t19, t108, t61 t91, t57, t32, t19, t108, t61

e5 t87, t5, t108, t12 t87, t5, t108, t12, t7, t9, t11, t37

Table 2: Approximations of first 5 documents

It is worth to note that most similarity mea-
sures for documents [13, 5] yields a large num-
ber of zero values when documents are repre-
sented by only a few terms as many of them may
have no terms in common.

Similarity measures above will be applied to
the upper-approximation U(ej). Two main ad-
vantages of using upper approximation are: i)
To reduce the number of zero-valued coefficients
by considering documents themselves together
with the related terms in tolerance classes, and ii)
The upper approximations formed by tolerance
classes make it possible to relate documents that
may have few terms in common with the query.

4.4 Experiment and Evaluation

4.4.1 Experimental design
The purpose of our experiment is to estimate

the matching performance. We did an experi-
ment on a set of 1500 documents. Given a query
document, we measured the distances from this
query document to all documents in the docu-
ments set. The documents in the database will
be sort ascendingly based on the distances be-
tween them and the query document. If in 5 first
ranked documents there exists a duplicate docu-
ment of the query, we say that the query hit by
5 First Ranked. If in 3 first ranked documents
there exists a duplicate document of the query,
we say that the query hit by 3 First Ranked If the
first ranked document is a duplicate document of
the query document, we say that the query hit by
First Ranked. We estimated the matching per-
formance using 5 first ranked rate (5 FRR), 3
First Ranked rate (3 FRR) and First Ranked rate
(FRR).

4.4.2 Experimental result
Bellow is the 5 FRR, 3 FRR and FRR with

some value of θ using Dice similarity measure
and Cosine similarity measure.

θ 5 FRR 3 FRR FRR
1 81% 80% 78%
2 82% 80% 77%
3 86% 82% 76%
4 87% 84% 77%
5 85% 82% 79%
6 85% 83% 80%
7 84% 82% 80%

Table 3: Performance with Dice similarity mea-
sure

θ 5 FRR 3 FRR FRR
1 83% 78% 72%
2 84% 80% 75%
3 87% 80% 73%
4 87% 82% 75%
5 86% 82% 78%
6 86% 82% 77%
7 88% 83% 79%

Table 4: Performance with Cosine similarity
measure

From the FRR column, it can be realized that
the error descriptions occupy about 70% infor-
mation of the documents. Using only the error
description, a considerable result is achieved.

However, since the number of keywords are
limited, when the number of documents in-
crease, say, 1 million, documents sharing a quite
high number of keywords may not be likely lim-
ited to duplicate documents. Therefore, using
only the error description is not efficient. An al-
gorithm to extract all useful information in the
documents is required.

5 Conclusion and Future work

We have introduced and analyzed a complex
documents matching method for identifying du-

plicate error cases in the CISCO network. As
a partial solution of the whole solution, we did
an experiment using only the error description
part to match two documents. Although the re-
sult is quite good, however, when the number
of documents using for the experiment become
larger, using only the error description is not
good enough.

In the future we concentrate on extracting use-
ful information from the documents and in defin-
ing a distance metric between two documents.

Acknowledgments

The authors would like to thank Mr. Pham N.K.
for his valuable comments to improve this paper.

References

[1] C. H. Pham, F. Lin, N. Gupta, and K. Ma.
Big gap from academic response to indus-
try’s demand for optimized engineering ef-
ficacy. In The International Conference on
Dependable Systems and Networks (DSN-
2006), 2006.

[2] G. Forman, K. Eshghi, and S. Chiocchetti.
Finding similar files in large document
repositories. In KDD ’05: Proceeding of
the eleventh ACM SIGKDD international
conference on Knowledge discovery in data
mining, pages 394–400, New York, NY,
USA, 2005. ACM Press.

[3] P. Kontkanen, P. Myllymäki, T. Silander,
and H. Tirri. On bayesian case matching.
In EWCBR ’98: Proceedings of the 4th
European Workshop on Advances in Case-
Based Reasoning, pages 13–24, London,
UK, 1998. Springer-Verlag.

[4] K. Zhao, B. Liu, J. Benkler, and W. Xiao.
Opportunity map: identifying causes of
failure - a deployed data mining system.
In KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference
on Knowledge discovery and data min-
ing, pages 892–901, New York, NY, USA,
2006. ACM Press.

[5] W. B. Frakes and R. A. Baeza-Yates, ed-
itors. Information Retrieval: Data Struc-
tures & Algorithms. Prentice-Hall, 1992.

[6] T. B. Ho, S. Kawasaki, and N. B.
Nguyen. Documents clustering using toler-
ance rough set model and its application to

information retrieval. In Intelligent explo-
ration of the web, pages 181–196. Physica-
Verlag, January 2003.

[7] Z. Pawlak. Rough Sets - Theoretical As-
pects of Reasoning about Data. Kluwer
Academic, Dordrecht, 1991.

[8] H. Cunningham. Information Extraction,
Automatic. Encyclopedia of Language and
Linguistics, 2nd Edition, 2005.

[9] D.Maynard, K. Bontcheva, and H. Cun-
ningham. Towards a semantic extraction of
named entities. In Recent Advances in Nat-
ural Language Processing, Bulgaria, 2003.

[10] W. W. Cohen and A. McCallum. Informa-
tion extraction from the world wide web.
In KDD ’03: Proceeding of the eleventh
ACM SIGKDD international conference on
Knowledge discovery in data mining, 2003.

[11] B. Habegger and M. Quafafou. Build-
ing web information extraction tasks.
In WI ’04: Proceedings of the 2004
IEEE/WIC/ACM International Conference
on Web Intelligence, pages 349–355, Wash-
ington, DC, USA, 2004. IEEE Computer
Society.

[12] D. L. Lee, H. Chuang, and K. Seamons.
Document ranking and the vector-space
model. IEEE Software, 14(2):67–75, 1997.

[13] B. R. Boyce, C .T Meadow, and H. K. Don-
ald. Measurement in Information Science.
Academic Press, 1994.

