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Java Obfuscation — Approaches to Construct

Tamper-Resistant Object-Oriented Programs

YUSUKE SAKABE,"? MASAKAZU SOsHI! and ATSUKO MIYAJIf

In Java programs, it is difficult to protect intellectual property rights and secret infor-
mation in untrusted environments, since they are easy to decompile and reverse engineer.
Consequently realization of software obfuscation becomes increasingly important. Unfortu-
nately previous software obfuscation techniques share a major drawback that they do not have
a theoretical basis and thus it is unclear how effective they are. Therefore we shall propose
new software obfuscation techniques for Java in this paper. Our obfuscation techniques take
advantage of features of object-oriented languages, and they drastically reduce the precision
of points-to analysis of the programs. We show that determining precise points-to analysis in
obfuscated programs is NP-hard and the fact provides a theoretical basis for our obfuscation
techniques. Furthermore, in this paper we present some empirical experiments, whereby we
demonstrate the effectiveness of our approaches.

1. Introduction

With the wide spread of computer networks
such as the Internet, a huge number of com-
puters of different architectures are now in-
terconnected through the networks. As a re-
sult, the classical style of software distribution
in binary code form is rapidly being replaced
by the one in source code form. Notable ex-
amples of such a way of software distribution
are via Perl scripts, JavaScripts, and Java ap-
plications. Here, Java® is one of the most
promising object-oriented languages used in the
large range, for example, in developing network
servers or tiny applications on cellular phones.
Java applications are usually distributed over
the Internet as Java class files, i.e., hardware-
independent binary codes that contain virtually
all the information of the original Java sources.
Hence, these class files are easy to decompile.

In such situations, malicious users and hosts
can analyze software distributed over the Inter-
net and can extract secret information and/or
proprietary algorithms from it. Unfortunately
encryption is hardly competent to solve the
problems since encrypted programs must be
eventually decrypted into executable forms and
then adversaries can intercept them in hostile
environments.

Consequently realization of software with
tamper-resistance, which means the difficulty
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to read and modify the software in an unau-
thorized manner, becomes increasingly im-
portant. Although tamper-resistant software
can be realized with the help of hardware,
much attention is now being focused on soft-
ware obfuscation, which transforms a program
into a tamper resistant form. Thus soft-
ware obfuscation has been vigorously studied
50 far2)4),6),7),9),11)~14),16),18),19),23)  Unfortu-
nately previous software obfuscation techniques
share a major drawback that they do not have
a theoretical basis and thus it is unclear how
effective they are.

In order to mitigate such a situation, Wang
et al. proposed a software obfuscation tech-
nique based on the fact that aliases in a pro-
gram drastically reduce the precision of static
analysis of the program??®). However, their ap-
proach is limited to the intraprocedural anal-
ysis. Since a program consists of many pro-
cedures in general, whether or not it is obfus-
cated, we must conduct interprocedural analy-
sis. Hence Ogiso et al. proposed obfuscation
techniques with the use of function pointers
and arrays, which greatly hinder interprocedu-
ral analysis'®'?) . Their works are also success-
ful in providing theoretical bases for the effect
of obfuscation techniques.

However the techniques in 18), 19), 23) can-
not straightforwardly apply to object-oriented
languages, especially, to Java. Furthermore,
some theoretical basis should be provided for
the obfuscation techniques.  Unfortunately,
most of previous obfuscation techniques fail to
meet all of these requirements at once.
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Here we observe that Java is an object-
oriented language, which has some advanced
features such as:

e addition/deletion of a part of program

without changing existing objects,

e establishment of relationship between one

object and another,

e ecase of maintenance, and so on.

However in some cases such features make it
significantly difficult to perform precise analy-
sis of programs. For example, in the presence
of polymorphism (see Sect. 2), precise points-to
analysis is known to be P-space complete®)19),
which means that there is very little possibility
of finding precise solution in such a situation.

From the observation above, we shall propose
novel software obfuscation techniques for Java,
which take advantage of the features of poly-
morphisms. Hence the techniques are easily ap-
plicable to other object-oriented languages such
as C++. In addition, technically our obfusca-
tion techniques are based on the difficulty of
points-to analysis, which can be proved to be
NP-hard. Therefore, we can also provide a the-
oretical basis to the techniques.

Finally, in this paper we present some empir-
ical experiments, whereby we demonstrate the
effectiveness of our approaches.

The rest of the paper is structured as fol-
lows. In Sect. 2 and Sect. 3, we explain about
Java and software analysis in general. Next in
Sect. 4, we discuss related work and point out
the drawbacks. In order to solve such prob-
lems, we propose new obfuscation techniques
in Sect. 5, and we evaluate our techniques in
Sect. 6 and 7. Then we discuss several aspects
of our work in Sect. 8 and finally we conclude
this paper in Sect. 9.

2. Java

Our obfuscation techniques take advantage of
functions of Java as an object-oriented language
such as polymorphism. Therefore, before going
into details of the techniques, in this section we
explain about the functions that we use.

2.1 Object-oriented Languages

Object-orientation is the framework to de-
scribe a program with objects and mes-
sages. Object-oriented languages have advan-
tages over traditional languages such as C from
the viewpoint of cost for reuse or maintenance
of programs.

Object-oriented languages mainly consist of
the following three foundations:
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interface F {
public void m(Q);

}

class A implements F {
public void m() {
System.out.println("I’m A");

}
}

class B implements F {
public void m() {
System.out.println("I’m B");

}
}

{ F obj;
obj = new AQ;
cl: obj.m();
obj = new BO);
c2: obj.m();

Fig.1 Example of Interface

(1) encapsulation:
routines,

(2) inheritance: defines a hierarchical rela-
tionships among objects, and

(3) polymorphism: handles different func-
tions by a unique name.

While these functions often make it easier
to implement programs for large scale or ad-
vanced application, the behavior of the program
is likely to be more complex. As a result, the
analysis of object-oriented programs often be-
comes more difficult. Our proposed obfuscation
techniques exploit this fact.

In the rest of this section, we present Poly-
morphism on Java, which is ingeniously used in
our proposed obfuscation techniques.

2.2 Polymorphism in Java

In Java, we can implement polymorphism by
the following features;

(1) method override with class subtyping,
(2) interface, or
(3) method overload.

We explain how to implement polymorphism
with interface and method overload, which are
used for our obfuscation techniques.

Interface

Fig.1 is an example of the use of interface.
The variable obj is defined to have the type of
interface F, therefore obj can be an instance of
a class that implements interface F. When this

integrates data and
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static void m(int arg) {
System.out.println("int");
}

static void m(char arg) {
System.out.println("char");
}

{ int i=0; char c=0;
cl: m(i);
c2: m(c);

}

Fig.2 Example of Overloading

code is executed, the string “I'm A” is printed
at the program site cl, because obj is an in-
stance of class A. And at the site ¢2, the pro-
gram prints “I’'m B” because obj is an instance
of class B there.

Here notice that the code obj.m() at cl is
identical to the one at ¢2, although, different
methods are called according to the class types
of obj. The behavior cannot be decided when
the program is compiled, but is dynamically de-
cided when it is executed.

Method overloading

Next in Fig. 2, we show a Java code that per-
forms method overloading. At the sites c1 and
c2, methods of the same name m are called. The
difference between them is the type of the argu-
ments, which is int at site ¢1 and char at c2.
Consequently the string printed on the terminal
is “int” and “char”, respectively. If there are
some methods with the same name, the types or

the number of the arguments determine which
method should be called.

3. Software
analysis

analysis and points-to

In this section we present what is software
analysis (especially points-to analysis) and de-
scribe a threat model we suppose in this paper,
i.e., what attackers can or cannot do.

If an adversary is trying to gather or tam-
per secret information in a program, first he
must analyze it by some means. The major
and important approach of software analysis is
static analysis')'")17) The objective of static
analysis is to extract useful information from a
program without running it. Generally speak-
ing, static analysis first builds the (control) flow
graph of the program and then examines the
control flow or data flow of the program through
the graph. Static analysis will be discussed in

Aug. 2005

a more formal manner in Sect. 6.

For object-oriented languages such as Java,
points-to analysis, which is a kind of static anal-
ysis, is important to investigate the behavior of
a program. At each program point, points-to
analysis determines to which object a reference
may refer during execution. When a reference
is used in an object oriented program, it can po-
tentially refer to many objects of the same type
as the reference and thus static (points-to) anal-
ysis is much deterred. Furthermore, notice that
in almost all cases, a program has multiple if-
statements. In such a case, generally speaking,
it is well-known that it is undecidable to de-
termine which path is executable!)29)7 . Hence
the existence of if-statements hinders precise
points-to analysis. Putting it altogether, we can
conclude that it is remarkably hard to perform
points-to analysis®»2?). Actually many points-
to problems are known to be not easier than
NP-completel™).

Now it should be easy to see that as the num-
bers of references and variables of the same type
as the references increase, static analysis be-
comes more difficult. Moreover, as the number
of execution paths due to possible combination
of if-branches increases, the analysis also be-
comes more difficult. Our proposed obfusca-
tion techniques exploit the features of polymor-
phism and succeed in making points-to analysis
significantly harder by increasing the number of
execution paths that we should examine in the
analysis. This will be discussed in Sect. 8.

Finally, in this paper we suppose that what
attackers can do is to perform static analysis
on obfuscated programs. Therefore, we do not
assume that they can perform analysis of any
other types, for instance, analysis with a de-
bugger with breakpoint functionalities, which
is called dynamic analysis®®.

4. Related work

In this section, we discuss some of existing
software tamper-resistance approaches.

In 1997, Mambo proposed new software ob-
fuscation techniques in which frequency distri-
butions of instructions in obfuscated programs
are made as uniformly as possible by limiting

Y Therefore we usually conduct static analysis on the
assumption ‘meet over all paths’. This will be fur-
ther discussed in Sect. 6.

U0 However, we are doing research on software obfus-
cation techniques resistant to dynamic analysis. We
hope that we can publish it in a near future.
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available instructions for obfuscation'®).

Keeping in mind application to mobile agent
systems, Hohl proposed the concept of ‘time-
limited blackbox security’, which provides
tamper-resistance until a prescribed time limit
in order to protect mobile agents against at-
tacks mounted by malicious hosts'?).

Unfortunately previous software obfuscation
techniques share a major drawback that they
do not have a theoretical basis and thus it is
unclear how effective they are.

In order to mitigate such a situation, Wang
et al. proposed a software obfuscation tech-
nique based on the fact that aliases in a pro-
gram drastically reduce the precision of static
analysis of the program?3). However, their ap-
proach is limited to the intraprocedural anal-
ysis. Since a program consists of many pro-
cedures in general, whether or not it is obfus-
cated, we must conduct interprocedural analy-
sis. Hence Ogiso et al. proposed obfuscation
techniques with the use of function pointers
and arrays, which greatly hinder interprocedu-
ral analysis'®)'?) . Their works are also success-
ful in providing the theoretical basis for the ef-
fect of obfuscation techniques.

Chow et al. proposed an obfuscation tech-
nique, which also has a theoretical basis®.
Their approach embeds an intractable problem
with respect to computational complexity the-
ory into a program to be obfuscated. Con-
sequently, to analyze the obfuscated program
is equivalent to solve the intractable problem.
Their approach is very interesting and seems
promising. However, we can point out two sig-
nificant differences between their approach and
ours. First, our approach does not embed an
intractable problem as a whole into the obfus-
cated program. From the viewpoint of com-
putational complexity theory, such transforma-
tion as in 6) is not always necessary since all
we need is polynomial reducibility between the
intractable problem and some analysis problem
(see Sect. 6). Second, their approach does not
suppose object oriented languages and hence it
would be difficult to apply it to object oriented
programs.

Most of the techniques in 6), 18), 19),
23) cannot straightforwardly apply to object-
oriented languages, especially, to Java, because
they require the use of pointers or goto state-
ments, which are not supported in Java. There-
fore we need now obfuscation techniques that
can be applicable to Java.
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Collberg et al. proposed some obfusca-
tion techniques using object-oriented features”
however their techniques are limited to rather
simple ones, e.g., disturbance of class hierar-
chies. Furthermore they do not provide any
theoretical basis about how effective their tech-
niques are.

Tyma proposed “overload induction” tech-
niques??), although they do not take obfusca-
tion into consideration. They transform the
identifiers of multiple methods into an identifier
of a smaller length. So at first glance, the pro-
posed technique in Sect. 5.1 would seem similar
to them. However, one of the biggest differences
between them is that our approach can trans-
form arguments and return values of methods
into the same identifiers.

Sosonkin et al. propose obfuscations of
object-oriented programs®'). In their paper
they propose three obfuscation techniques, i.e.,
class coalescing, class splitting, and type hid-
ing. The techniques are interesting, although,
they also are not based on theories. However,
they seem to be independent of our proposed
techniques, and could be combined with ours
to strengthen obfuscation.

5. Proposed obfuscation techniques

From the discussions so far, in this section
we shall propose new software obfuscation tech-
niques using object-oriented features of Java.

5.1 Use of Polymorphism

Our obfuscation procedures with respect to
polymorphism on Java are given below. They
consist of three phases: (1) Introduction of
method overloading, (2) Introduction of inter-
faces and dummy classes, and (3) Change types
and new sentences. Below, the procedures are
concisely described because of space limitation.
Also notice that although the example pro-
grams below that result from obfuscation are
intentionally not so obfuscated for the purpose
of explanation, it is not difficult to transform a
program into any more obfuscated form.

5.1.1 Introduction of method over-

loading

At first, we randomly pick some classes to
be obfuscated and add some number of dummy
methods” in the classes so that the number of
the methods of each class becomes the same.

Y In Java there are two types of method, instance
method and static (class) method, and our proce-
dure does not count static methods. Hereinafter a
‘method’ means instance method.
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Let s be the number of the methods (includ-
ing dummy methods). Then we introduce new
classes Ag and Rt as preparation”. Class Rt
manages information of return types and val-
ues, and class Ag and its subclasses manage ar-
gument types and values. Furthermore, we cre-
ate new classes Agl~Ags derived from Ag.

Next, we change the name of every method
contained in the classes into the same name.
Then we change the type of a return value of
every method into type Rt, and change the type
of the arguments into a type of subclasses of Ag.

An example process of the definition changes
of methods just described above are depicted
in Fig.3 and Fig.4. Let us suppose that
class A and B in Fig.3 are chosen to be obfus-
cated. Then the name of every method in two
classes changes into ‘m’, and a dummy method
is added to class A. Finally all the return types
are changed into Rt, and the arguments into
Agl~Ag3.

Now let us examine the method move of class
A. Although move originally requires two argu-
ments of type float, it now changes into ‘m(Ag2
x)’, which requires one argument x of type Ag2.
Moreover the return type of move is changed
from float into Rt. Here class Ag2 is defined
to accommodate argument values of two meth-
ods, i.e., move of class A and power of class B.
Furthermore, in Ag2, private fields i and f are
arrays of int and float, respectively. They
are used to store actual arguments of move and
power. Example usages of classes Rt and Ag2
and of methods getRetValue and getArg are
given below.

In order to maintain the semantics of the orig-
inal program, we modify the method calls and
the way of arguments and return values passing,.
The example of this is illustrated in Fig. 4. Note
that method move is now transformed into m.
Then in order to execute move with arguments
x and y in line 13 of the figure at the right hand
side of Fig. 4, first we newly create an instance
x of class Ag2 with initial arguments £1 and
£2 in line 12 (notice that variables x, y, and z
now correspond to £1, £2, and £3, respectively).
These two arguments are stored in x.f[0] and
x.f[1] by calling the constructor Ag2(f1, £2)
in the line 12 (see also the definition of this
constructor in Fig. 3). These private fields val-

Y Construction of class Ag and Rt is a bit complicated
and somewhat tedious. So we describe the actual
procedure in Sect. A.1.
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ues £1 and £2 can be accessed in the method m
(i.e., move) via calls to getArg(f1, 0) (in line
3) and getArg(f2, 1) (in line 4), respectively
(see the definition of getArg in Fig.3). Here
‘0’ and ‘1’ mean the first and the second ar-
guments, respectively. Furthermore, note that
the type of the first argument of getArg is used
to obtain the private field of the desirable type
(i.e., float), so the actual values of the argu-
ments £1 and £2 are not significant when we
invoke getArg in lines 3 and 4.

Finally, a return value of m is stored in an in-
stance r of class Rt in line 13 (see also the state-
ment in line 5). The execution of the statement
in line 5 sets £3 to r.f. The actual return value
can be obtained by calling r.getRetValue (£3)
in line 14, where the type of £3 is used to distin-
guish the desirable private fields for the return
value from others as in the case of getArg. So
at the entry to the call of getRetValue(£3),
the actual value of £3 is not significant (see the
definitions of getRetValue in Fig.3).

Needless to say, constructors Rt()s and
Ag2()s, methods getRetValue, getArg, and m
have the form of method overloading.

We apply the transformation described above
for each method call.

5.1.2 Introduction of interfaces and

dummy classes

In this step we newly introduce interface, and
dummy classes if needed. The interface defines
methods transformed in step (1), and we make
targeted classes to ‘implements’ this interface.
Moreover, we newly create classes that play no
role (i.e., dummy). These dummy classes also
need to implement the interface defined imme-
diately before. If dummy classes are not needed
for some reasons (for example, due to perfor-
mance the program requires), we can cancel to
introduce dummy classes.

As continuation of the example given by (1),
we show an example in Fig.5. The interface I
defines three methods that have the same name
‘m’ and return type Rt, and the arguments of
each method are Agl, Ag2, and Ag3 respectively.
Furthermore, we add the declaration of imple-
mentation to class A and B. Class C has the same
method as class A and B.

5.1.3 Change types and new sentences

Finally, we change types of instance variables
of targeted classes into the type of interface in-
troduced in the step (2). And for every new sen-
tence which creates the reference of the targeted
class, we put the new sentence into if-sentence
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class A {
public void show() { ... }
public float move(float x, floaty) { ... }

}

class B {
public int display() { ... }
public float power(float x, inty) { ... }
public void run() { ... }

Java Obfuscation for Tamper-Resistant Object-Oriented Programs
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class Rt {
private int i;
private float f;
RtQ {}
Rt(int x) {i=x;}
Rt(float x) { f = x; }
int getRetValue(int x) { return i; }
float getRetValue(float x) { return f; }
}
class Ag {
Ag( {}
}
class Agl extends Ag {
Agl() {
}
class Ag2 extends Ag {
private int[] i;
private float[] f;
Ag2(float x,float y) { // for ‘move’
f = new float[2]; f[0] = x; f[1] = y;
}

class A {
public Rt m(Agl x) { ... } // show
public Rt m(Ag2 x) { ... } // move
public Rt m(Ag3 x) { ... } // dummy

}

class B {
public Rt m(Agl x) { ... } / display
public Rt m(Ag2 x) { ... } // power
public Rt m(Ag3 x) { ... } // run

}

Ag2(float x, inty) { // for ‘power’
f = new float[1]; f[0] = x;
i =new int[1]; i[0] = v;
}
float getArg(float x, int y) { return fy]; }
int getArg(int x, inty) { return i[y]; }
}
class Ag3 extends Ag {
Ag3() {
}

Fig.3 Change definitions of methods

with another new sentences.

Fig.6 is an example of that conversion.
EXP_TRUF is the condition expressions that
is always true such as =x*x(x+1)%2==0 or
y* (y+1) * (y+2) %6==0. Hence the semantics of
the original program is maintained. However,
generally speaking, in static analysis it is very
difficult to evaluate such expressions and this
results in difficulty in determining the execu-
tion paths in the presence of if-statements”.
Needless to say, such condition expressions can
be made arbitrarily complicated as long as the
original semantics is retained. Therefore the if-
statements make it difficult to determine the
reference variable ins points to.

Y This will be discussed in Sect. 6 in more details.

5.2 Example of obfuscation

At the end of Sect. 5, for completeness of the
description of this section, we show in Fig. 7 an
example of obfuscation to which all obfuscation
techniques apply.

6. Complexity Evaluation

Our obfuscation techniques described in
Sect. 5 substantially impede precise points-to
analysis. In this section, we support this claim
by presenting a proof in which we show that
statically determining precise points-to is NP-
hard.

Theorem 1: In the presence of classes which
implement an interface, method call by the
instance of the classes, and the presence of
method-overloadings (i.e., polymorphism), the
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/l'in class A
J/in class A 1: public Rt m(Ag2 x) { // move
public float move(float x, float y) { 2. floatf1, 2, f3;
float z;
3: fl1 =x.getArg(f1, 0);
return z: 4: f2 = x.getArg(f2, 1);
} 5: Rtr=new Rt(f3);
. 6: returnr;
{ 7}
float x, y, z;
Athe_a = new A(); 8: {
9: float f1, f2, 3;
z = the_a.move(x, y); 10: Athe_a = new A();
11: Rtr; Ag2 x;
}
12: x=new Ag2(fl, f2);
13: r=the_a.m(x); //the_a.move(x,y)
14: 3 =r.getRetValue(f3);
15:}
Fig.4 Modify methods and method calls
classRt{...}
class Ag{...}
class Agl extends Ag { ... }
class A {

public void show() { ... }
public float move(float x, float y) {

}
}
class B {

public int display() { ... }
public float power(float x, int y) {

}
public void run() { ... }

}
{

float x, y, z;
Athe_a =new A();

z = the_a.move(x, y);

class Ag2 extends Ag { ... }
class Ag3 extends Ag{ ... }

interface | { public Rt m(Ag1l x); public Rt m(Ag2 x); public Rt m(Ag3 x); }

class C implements | {
public Rt m(Ag1x){ ... }
public Rt m(Ag2 x) { ... }
public Rt m(Ag3x) { ... }

class A implements | {
public Rt m(Agl x){ ... }
public Rt m(Ag2 x) { ... }
public Rt m(Ag3x) { ... }

class B implements | {
public Rt m(Ag1x){... }
public Rt m(Ag2 x) { ... }
public Rt m(Ag3x){ ... }

. } } }

{
float f1, 2, f3; intw;
litf; Ag x; Rtr;

if (w*(w+1)%2==0) itf = new A(); else if (w*w<0) itf = new B();
else itf = new C();

if (W*w<0) x = new Agl(); else if (W*(w+1)*(w+2)%6==0) x = new Ag2(f1, f2);
else x = new Ag3();

if (w*(w+1)*(W+2)%6!=0) r = itf. m((Ag1)x); else if (W*w>=0) r = itf.m((Ag2)x);
else r = itf. m((Ag3)x);

f3 = r.getRetValue(f3);

}...

Fig.7 Example of Obfuscation

problem of precisely determining if there ex-
ists an execution path in a program on which
a given instance points to a given method at a
point of the program is NP-hard®.

Y Here static analysis of a program is conducted un-

der the assumption that all execution paths are
executable. This assumption is commonly found
in the literature and is often called ‘meet over all
paths’ls). For further backgrounds behind the way
of this proof, see 17), for example.
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interface | {
public Rt m(Agl x);
public Rt m(Ag2 x);
public Rt m(Ag3 x);
}

class A implements | {
public Rt m(Agl x) { ... }
public Rt m(Ag2 x) { ... }
public Rt m(Ag3 x) { ... }

class B implements | {
public Rt m(Agl x){... }
public Rt m(Ag2 x) { ... }
public Rt m(Ag3 x) { ... }

} }

/I *dummy

class C implements | {
public Rt m(Agl x){ ...}
public Rt m(Ag2 x) { ... }
public Rt m(Ag3x){ ... }

Fig.5 Definition of new Interfaces and Classes

{
{ float f1, 2, f3; I itf; Rt r;
float x, y, z; if (EXP_TRUE) itf = new A();
PO ) Ise if (EXP_FALSE) itf = new B();
Athe_a = new A(); €
- 0 =P | cise itf = new C();

e a .
2= the_amove(x, y) Ag2 X = new Ag2(fL, f2);

r = itf.m(x);

}

}...

Fig.6 Change Types and new sentences

Proof: The proof of Theorem 1 is by
reduction from the 3-SAT problem'?) for

? 1 (I;1VI; 2 VI; 3) with propositional variables
{v1,v2,...,9m }, where I;; is a literal and is ei-
ther vy or Ug for some k (1 < k < m). The
reduction is specified by the program in Fig. 8,
which is polynomial in the size of the 3-SAT
problem. The conditionals are not specified in
the program since we assume that all paths are
executable. As will be seen later, paths through
the code between L1 and L2 represent truth as-
signments for the propositional variables. The
truth assignment on a particular path is en-
coded in the points-to relationship of certain
variables in the program. Paths between L2
and L3 then encode in the points-to relationship
whether or not the truth assignment resultant
from the path to L2 satisfies A7, (I;1 VI; 2Vl 3).

If we interpret v; pointing to b_true as the
propositional variable v; being true, then any
path from L1 to L2 uniquely determines one
truth assignment. Furthermore, the converse is
also true, namely, every truth assignment cor-
responds to exactly one execution path as just
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mentioned.

Now consider the path from L2 to L3. If
the truth assignment for a path from L1 to L2
satisfies the formula then every clause has at
least one literal which is true. Pick the path
from L2 on which each clause assigns b_true
to c. Then each assignment corresponds to
¢ = b_true.and(b_true) and ¢ must point to
b_true at L3. However if the formula is unsatis-
fiable then every truth assignment has a clause,
say (l;,1 V1; 2Vl 3), where all these three literals
are false. This implies l; 1, [; 2, and [; 3 all point
to b_false. Because every path from L2 to L3
must go through the statement

if(_) c = c.and(lm)

else if(-) ¢ = c.and(;2)

else ¢ = c.and(l;3);
¢ must point to b_false on all paths to L3 and
thus ¢ never points to b_true. Therefore 3-
SAT is polynomial reducible to the problem of
Theorem 1 and this completes the proof. O

7. Empirical Evaluation

In this section we present application of our
obfuscation procedures to five programs, that
is, zip (compression), decompress (lzw_j decom-
pression), FFT (Fast Fourier Transform), RC6
(a symmetric encryption), and MD5 (a hash
function).

Obfuscation was done in manners described
in Sect. 5. The numbers of classes and methods
in the obfuscation processes are as follows:

e Oanly one class in each program was obfus-

cated.

e The number of methods (including dummy
methods) in each obfuscated class was pre-
pared to be 20 at most and then method
overloading was applied to them in a man-
ner presented in Sect. 5.1.

e FEach if-statement was made to have 20
branches at most.

Table 7 shows the differences between the hier-
archy/call graphs of the original programs and
those of the obfuscated programs. In hierar-
chy graph, ‘nodes’ represents the sum of classes
and interfaces, and ‘edges’ represents the sum
of subclassing and implements edges. Further-
more, in the call graph, ‘nodes’ represents the
number of call sites, and ‘edges’ represents the
number of ‘to method nodes’.

In the hierarchy graphs of the obfuscated pro-
grams, in the average, the number of nodes and
edges are 10.7 and 20.0 times greater than the
originals, respectively. On the other hand, in
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interface Bool {

}

public Bool and(Bool arg);

class True implements Bool {

public Bool and(Bool arg) { return arg; }

class False implements Bool {

}

public Bool and(Bool arg) { return this; }

class theorem {

Bool b_true, b_false;
Bool c;

void var(Bool vi, Bool 71) {
if(-) var(v;, v1, b_true, b_false);
else var(vi, v1, b_false, b_true);

void var(Bool vi, Bool Ui, Bool wy, Bool T3) {
if(-) var(vy, v1, v2, U2, b_true, b_false);
else var(vy, v1, v2, U2, b_false, b_true);

Aug. 2005

void var(Bool wj, Bool 7y, Bool ws, Bool w3, Bool Uy, Bool Tm) {
L2:
/* The code below will create a (c,b_true) points-to
iff the truth assignment from above makes the formula true */
if(-) ¢ = l1,1 else if(-) ¢ = l12 else ¢ = l1,3;
if(-) ¢ = c.and(l2,1) else if(-) ¢ = c.and(l2,2) else ¢ = c.and(l2,3);
if(-) ¢ = c.and(l,1) else if(-) ¢ = c.and(l,,2) else ¢ = c.and(l, 3);
L3: }
public theorem() {
b_true = new True();
b_false = new False();
L1i: if(-) var(b_true, b_false); else var(b_false, b_true);
public static void main(String[] args) {
new theorem();
}
}

Fig.8 3-SAT solution iff (¢, b_true) in Interprocedural Points-to Analysis

the call graphs of the obfuscated programs, the
number of nodes and edges are 4.4 and 18.5
times greater than the originals, respectively.
Furthermore, we can see that in the average
one call site has more than 4.2 candidates of
methods. These results give a good evidence
that precision of analysis is much reduced by
our obfuscation techniques.

We have evaluated performance degradation
due to the obfuscation, as indicated in Table 7.
The experiments were conducted on a Win-
dows XP machine with Pentium 4 1.80GHz and
768MB memory. Programs were compiled and
executed by Java version 1.4.2.06. Each exe-
cution time was the average of 1000 times exe-
cution. The average rate of execution times of

obfuscated programs over the original programs
is 1.43, which is not so great as the rise in source
codes (5.32) or class files (10.3). Therefore, our
obfuscation techniques do not decrease perfor-
mance so much.

These are results of applying our obfuscation
procedures once. If needed we can apply the
procedures two or more times, then it will pro-
vide further obfuscated programs.

8. Discussion

So far we have presented our proposed ob-
fuscation techniques in Sect. 5 and theoreti-
cal analysis in Sect. 6. Furthermore, we have
demonstrated the effectiveness and usefulness
of our approaches by experimental evaluation
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Table 1 Change of hierarchy and call graphs
program 1]C3ef0re. Ob- After. Ob- ratio
uscation fuscation
Hierarchy nodes 3 46 15.3
zip Graph edges 2 65 32.5
Call Graph | nodes (Call site) 37 163 44
edges 37 183 4.96
Hierarchy nodes 4 48 12.0
decompress Graph edges 3 67 22.3
Call Graph | nodes (Call site) 41 160 3.9
edges 41 1160 28.3
Hierarchy nodes 5 48 9.6
FFT Graph edges 4 67 16.8
Call Graph | nodes (Call site) 47 174 3.7
edges 49 216 4.41
Hierarchy nodes 5 48 9.6
RC6 Graph edges 4 68 17.0
Call Graph | nodes (Call site) 26 125 4.81
edges 26 860 33.1
Hierarchy nodes 7 50 7.14
Graph edges 6 69 11.5
MD5 Call Graph | nodes (Call site) 208 1044 5.02
edges 212 4648 21.9
Table 2 Change of program size and execution time
program ecasion | tiscsion | ™
program size | source [lines] 102 887 8.7
zip class file [byte] 2727 44154 16.19
execution time [sec] 0.00558 0.00566 1.01
program size | source [lines] 143 965 6.75
decompress class file [byte] 3641 41276 11.3
execution time [sec] 0.0087 0.0204 2.34
program size source [lines] 250 1032 4.13
FFT class file [byte] 4638 44900 9.68
execution time [sec] 0.0017 0.0018 1.06
program size source [lines] 578 1465 2.53
RC6 class file [byte] 7149 51018 7.14
execution time [sec] 0.0071 0.0118 1.66
program size | source [lines] 774 3505 4.53
MD5 class file [byte] 11567 84801 7.33
execution time [sec] 0.191 0.211 1.10
in Sect. 7. interface I in Fig.5, for example, is possibly

In this section, for a summarization purpose,
we show by examples why our obfuscation tech-
niques obstruct points-to analysis considerably.

First of all, remember that as the numbers
of references and variables of the same type as
the references increase, static analysis becomes
more difficult, as mentioned in Sect. 3. More-
over, as the number of execution paths due to
possible combination of if-branches increases,
the analysis also becomes more difficult.

Our obfuscation techniques force methods to
be called in a polymorphic way. For exam-
ple, let us consider Fig.3. In the figure, the
method m now potentially points to show, move,
display, power, or dummy. Furthermore, by
introduction of interfaces and dummy classes,
many classes ‘implements’ an interface. The

implemented by classes A, B, or C.

Now let us look at Fig.6. The interface itf
can be implemented by A, B, or C. Furthermore,
statement ‘r = itf.m(x);’ is a polymorphic
method call. At this stage our obfuscation tech-
niques newly introduce if-statements with many
branches. Notice that it is significantly dif-
ficult to determine realizable execution paths
in the presence of if-statements, as discussed
in Sect. 3. Therefore, in Fig.6, it becomes
much difficult for points-to analysis to deter-
mine which method, i.e., one of six methods just
presented, is actually called in itf.m(x) ;. This
is the intuitive reason why our obfuscation tech-
niques hinders points-to analysis remarkably.

We have succeeded in providing a theoretical
basis for the difficulty of static analysis of the
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obfuscated programs. However, from the prac-
tical viewpoint, we would have to consider some
kind of attacks. For example, as in previous ob-
fuscation techniques” , our proposed techniques
also depend on ‘always-true’ conditions such as
i* (i + 1)%2 == 0, which are well-known as
‘opaque’ conditions”)®). Since the opaques look
somewhat peculiar, if they are found by an at-
tacker, then they might facilitate the analysis
of the attacker. However, Collberg and others
extensively have studied various techniques to
make it harder to analyze the opaques® and
so we can take advantage of such techniques
to obstruct the attacks mounted on our opaque
conditions.

9. Conclusion

In Java programs it is difficult to protect in-
tellectual property rights and secret informa-
tion in untrusted environments, since they are
easy to decompile and reverse engineer. Conse-
quently realization of software obfuscation be-
comes increasingly important. Unfortunately
previous software obfuscation techniques share
a major drawback that they do not have a theo-
retical basis and thus it is unclear how effective
they are. Therefore we have proposed new soft-
ware obfuscation techniques for Java in this pa-
per. Our obfuscation techniques take advantage
of features of object-oriented languages, and
they drastically reduce the precision of points-
to analysis of the programs. We have shown
that determining precise points-to analysis in
obfuscated programs is NP-hard and the fact
provides a theoretical basis for our obfuscation
techniques. Furthermore, it is fairly easy to ap-
ply our obfuscation techniques to other object-
oriented languages such as C++. The empirical
results show that the precision of analysis is re-
duced and the structure of graphs of obfuscated
programs are made more complicated than orig-
inal ones. They imply the effectiveness of our
obfuscation approaches.
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Appendix

A.1 Construction of argument class Ag
and return value class Rt

In this appendix, we describe a procedure to

construct argument class Ag and return value

class Rt. The procedure presented here is actu-

ally used in experimental obfuscation programs

in Sect. 7.

(1) First of all, choose multiple classes to be
obfuscated. The chosen classes are de-
noted by A, ..., A,. Furthermore, OA;
denotes the class obtained by obfuscating

(2) Let m; be the number of methods defined
in A; (1 <i < n). Furthermore, let us
suppose that m = max{mj,ma,...,my,}.
Now we arbitrarily determine s (> m),
which is the number of methods to be
obfuscated. s — m; means the number of
dummy methods to be introduced in O A;
(1<i<n).

(3) Compose dummy methods. We can de-
fine arbitrary dummy methods if they do
not interfere with any methods in the
program. As a result, each class has s
methods including dummy methods.

(4) 1In order to express the types of return
values of methods of OA4; (1 <i<mn)in
one type, we introduce an Rt class. An Rt
class is structured in the following way:

e Each field variable of Rt corresponds
to a distinct type of return values
of the methods and stores a return
value of the type. For example, let
us look at Rt in Fig.3. Private field
variable i corresponds to the return
values of display. Similarly, £ cor-
responds to move or power. The
types of return values of show and
run are void, so that they do not
have corresponding fields in Rt.

e Fach constructor of Rt is intro-
duced to set a return value of a dis-
tinct type. In Fig.3, constructor
Rt (float f) corresponds to return
values of move and power.

e getRetValue is used to retrieve a re-
turn value of a distinct type. The
type of an argument of getRetValue
determines a return value of a de-
sirable type. For example, in Fig. 3,
if you want to get a return value of
type float for move or power, call
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getRetValue with an arbitrary ar-

gument, variable of type float.
Define an Ag class. An Ag class is actu-
ally an empty class as follows:

class Ag {

Ag( ){ }

}
Choose one method from every A4; (1 <
i <n). Now we have chosen n methods.
In order to express arguments types of
the chosen n methods in one type, intro-
duce an class Ag;. Repeat this procedure
s times and finally we have Ag;, Ago, ...,
and Ags. Each Ag; inherits from Ag, i.e.,
Ag; is a child of Ag in the Java class hi-
erarchy (1 <i < n).
A; has a similar structure to that of Rt
(1 <i < n), except for the private fields
and getArg methods. Each private field
of A; is an array of the same type of ar-
guments of the original methods. For ex-
ample, in Fig. 3, the field i, which is an
array of int, accommodates the second
argument of power. In a similar manner,
the field £, which is an array of float,
accommodates the arguments x and y of
move, or x of power. Finally, each getArg
is used to obtain an argument value of a
distinct type. The type of the first ar-
gument of getArg is used to obtain the
private field of the desirable type, as dis-
cussed in Sect. 5.1.1.
Define an interface I. The interface I has
the following form:

interface I {

public Rt m(Agl x);

public Rt m(Ags x);
}
For 1 < i < n, let OA; ‘implements’
the interface I (see also Sect. 5).
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