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|PAPER Special Section on Discrete Mathematics and Its Applications

On Secure and Fast Elliptic Curve Cryptosystems

over F,

SUMMARY From a practical point of view, a cryptosystem
" should require a small key size and less running time. For this
purpose, we often select its definition field in such a way that the
arithmetic can be implemented fast. But it often brings attacks
which depend on the definition field. In this paper, we investi-
gate the definition field F,, on which elliptic curve cryptosystems
can be implemented fast, while maintaining the security. The ex-
pected running time on a general construction of many elliptic
curves with a given number of rational points is also discussed.

key words: public-key, elliptic curves

1. Introduction

Koblitz[6] and Miller[10] proposed a method by
which public key cryptosystems can be constructed on
the group of points on an elliptic curve over a finite
field instead of a finite field. If elliptic curve cryp-
tosystems avoid the Menezes-Okamoto-Vanstone reduc-
tion [14], then the only known attacks are the Pollard
p-method [16] and the Pohlig-Hellman method [15]. So
up to the present, we can construct elliptic curve cryp-
tosystems over a smaller definition field than that of
cryptosystems based on a finite field discrete logarithm
problem (called finite field cryptosystems in this paper).
But the running time is not so reduced as the size of the
definition field [ 11]. That is a problem we must solve.

The purpose of this paper is to study an elliptic
curve cryptosystem which is implemented fast, while
keeping the security high at the same time. For this pur-
pose, we investigate the fundamental operations which
determine the running time and show how to make the
fundamental operations fast, considering the relation
between the fundamental operations and the related at-
tacks. We also show that a general algorithm which
constructs many elliptic curves with a given number of
rational points, including an elliptic curve with the fast
fundamental operations, runs in time

O((log p)* T2 L(y/p)?V2+OW)),

where L(z) = exp (v/Iog z loglog ). In fact, the general
algorithm constructs isogenous elliptic curves, where el-

liptic curves are called isogenous each other when they
have the same number of rational points on the same
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definition field [ 18]. Isogenous elliptic curve cryptosys-
tems modulo isomorphism can give different cryptosys-
tems implemented by the same fundamental operations.
This paper shows that there exist many isogenous el-
liptic curve cryptosystems, each of which is constructed
in the above time. These results mean that we can of-
fer enough many isogenous elliptic curve cryptosystems
over I, whose size is 100-bit or more in a practical time.

This paper is organized as follows. Section 2 sum-
marizes elliptic curve cryptosystems and discusses the
fundamental operations. Section 3 investigates the re-
lation between the fundamental operations of elliptic
curve cryptosystems over I, and the related attacks. Sec-
tion 4 discusses the expected running time of a general
algorithm that constructs many elliptic curves with a
given number of rational points. It also shows exam-
ples of elliptic curves over F, investigated in Sect. 3.
Section 5 describes the characteristic of isogenous ellip-
tic curve cryptosystems.

2. Elliptic Curve Cryptosystems

We will summarize cryptosystems using an elliptic curve
over I, where p = 5. An elliptic curve over F), is given
as follows,

E:y* =2+ Az +B
(A, B € F,,4A° + 27B% £ 0).

Then the set of Fy-rational points on E (with a spe-
cial element O at infinity), denoted E(F}), is a finite
abelian group, where E(F,) = {(z,y) € Fily* =
z® + Az + B} U {O}.

The security of cryptosystems on E/F,, chosen ap-
propriately depends on the size of a large prime [ with
[ |#E(F,). Here we show one example of elliptic curve
cryptosystems, ElGamal Signature scheme and discuss
the fundamental operations of elliptic curve cryptosys-
tems.

Letm € Z be a message. User A sends the message
m to user B with her or his signature of m.

o Initialization

— system parameter

o E:y*=az"+az+b (a,b€ F,;pisa
prime).
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o PeE(F,):
o l=ord(P).

a basepoint.

e Key generation
User A randomly chooses an integer s as a secret
key and makes public the point P4 = sP as a pub-
lic key.

e Signature generation

1 User A picks a random number k € {1, ,l}
and computes

R=FkP = (rg,ry). (1
Here r, = z(R) and r, = y(R). |
2 User A computes

m — STy
k
and outputs the signature (R, y).

Y= mod [ 2)

e Signature verification

1 User B checks that
mP =yR+r,Pj4. (3)

What is supposed to be the fundamental operations of
elliptic curve cryptosystems? The most critical opera-
tion is an elliptic curve addition in Egs. (1) and (3). The
addition is accomplished by the arithmetic on the defi-
nition field F, (arithmetic modulo p). In order to im-
plement them fast, we may use a precomputation table
in the arithmetic modulo p. In fact, generally, the run-
ning time of elliptic curve cryptosystems is determined
by the arithmetic modulo p (definition field). Only in
the signature scheme, the arithmetic modulo ! (the order
of a basepoint) is required, as seen in the above exam-
ple. In the signature generation, the computation of Eq.
(2) becomes rather important since we can compute Eq.
(1) in off-line using idle-time.

Therefore the arithmetic modulo p and modulo !
are regarded as fundamental operations of an elliptic
curve cryptosystem. In the next section, we discuss one
of fundamental operations, arithmetic modulo p, which
is required in all cryptosystems using elliptic curve.

3. Optimal Definition Field F,

In order to implement cryptosystems fast, we often select
its definition field in such a way that the arithmetic can
be implemented fast. But it often brings critical attacks
which depends on the definition field. Therefore we
must investigate the relation between the definition field
and attacks. In the case of Fy-, we may select such def-
inition field that there exists a basis which enables fast
multiplication over Fy-, for example optimal normal
basis, and £ over such Fy- avoiding the attacks[4], [7].
Here we investigate the case of F},.
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To construct elliptic curve or finite field cryptosys-
tems over Fj, we had better select the definition field F,
with p = 2° — s (s is a small ¢-bit integer): Multiplica-
tions over F,, can be done by replacing2¢° = s (mod p)
without computing a residue modulo p[19]. Thus we
can compute multiplications over F,, by repeating the
following Eq. (4).

Leta,b € F,.
2e—1 e—1 )
axb = Z ;2" = Z(.’IJZ + 5%4¢)2°  (mod p)
=0 i=0
e+t

= Z Y 2" 4)
1=0

This means that the smaller s is, the faster modular
multiplication is. Especially when s is enough small,
modular multiplication (over F,) can be accomplished
by computation amount of only one multiplication of
two e-bit integers.

Here we will discuss the security of elliptic curve
or finite field cryptosystems over F,, with p = 2° — s.
If we consider a finite field cryptosystem over such F},,
there exists an attack of the number field sieve [8]. The
attack especially will be applied to primes p = 7 — s
for a small positive integer r and a nonzero integer s of
small absolute value. Since the above p = 2° — s is the
case of r = 2, we would be forced to enlarge s or e in
order to avoid the attack. To the contrary, the definition
field F,, with p = 2° — s does not bring a critical attack
for the elliptic curve cryptosystems. Since the attack is
a generalization of the Gaussian integer method [2] to
a general number field, the discussion of Ref.[10] that
the index-calculus attacks do not extend to elliptic curve
cryptosystems still holds. Therefore only E over such
a special finite field F,, would not be less secure than a
randomly chosen elliptic curve. Thus we should select
F, (p = 2° — s, s is small) and E/F, satisfying the two
conditions:
(1) #E(F,) has a large prime factor,
(2) p* -1 is not divisible by a prime factor for a small
integer ! (to avoid the attack of Ref.[14]).
Next section will show elliptic curve cryptosystems sat-
isfying these conditions.

4. Fast Elliptic Curve Cryptosystems over F,

There are two algorithms to construct elliptic curves
over Fy,, where p is any prime. One is a trial-and-error
algorithm to find a suitable elliptic curve by comput-
ing the number of rational points of a randomly cho-
sen elliptic curve. The other is the algorithm to con-
struct an elliptic curve with a given number of rational
points[13], [12]. Both algorithms work for construct-
ing a single elliptic curve. Here we show a generalized
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version of the latter algorithm, which can construct any
elliptic curve with a given number of rational points.

Algorithm

1. Choose a prime p.

2. Choose D with (=2)
the Legendre symbol.

= 1, where (%) denotes

3. Check 4p = a? + Db? for an integer a,b. If such
integers a and b do not exist, then goto step 2.

4. Set N=p+1—aand N = p+ 1+ a. Check either
N or N is divided by a‘large prime. If it is not divided,
then goto step 2.

5. Calculate a class polynomial Ppy2(X), which is
a polynomial uniquely determined by D2, and solve
Ppy2(X) =0 (mod p) for an integer &’ with ¥'|b.

6. Take a solution jo of Ppp2(X) = 0 (mod p).
Construct an elliptic curves E/F, with j-invariant jo
and #E( ») equal to the one divisible by a large prime,

N or N. Stop.

In stepd, we check either N or N is divided by a
large prime. The size of the large prime depends on a
security level. If “a large prime” is more than 120-bit,
then the known attacks on such an elliptic curve cryp-
tosystems require at least 260 elliptic curve operations.
The amount of necessary operations is roughly equal to
that of attacks on finite field cryptosystems on F, (p is
512 bits). Sometimes lower security is necessary when
fast implementation is required or memory storage is
limited. In such a case, “a large prime” is replaced by
a smaller prime like 100 bits. We will show examples
for each case later. Here we call the former case Higher
Security Case and the latter case Lower Security Case.

In step 5, the number of different solutions j for
Ppy2(X) = 0 (mod p) is equal to the degree of
Ppy2(X), deg(Ppp2(X)). Any solution j can give
an elliptic curve with the required number of rational
points, N or N. We will discuss this topic later. As for
the construction of Ppy2(X), it is difficult for a large
Db'? since deg(Ppy2(X)) = O(VDb?) (Siegel’s result).
Therefore we will choose a small D and set ¥ = 1 in
step 5 when we need an elliptic curve over F}, [13].

Now we discuss the running time of Algorithm.
Since construction of Ppy2(X) requires O(,/p) time
in the case of ¥ = O(,/p), the next condition for
step 3 of Algorithm should be required: b is L(,/p)*-
smooth. Here we call an integer L(x)“-smooth when
all of its prime factors are at most L(z)*, where L(z) =

exp (v1og zloglogz) and « is a positive real number.
Then the probability that a random positive integer

b= /pis L(,/p)*-smooth is
L(\/ﬁ)l/(~2a)+0(1)
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for p — oo[1]. Here we assume that the probability
holds for an integer b in step 5.

In this case, Algorithm consists of three parts:
(1) Find D such that 4p = a? + Db? for an integer a
and b, that N=p+1—a orﬁzp+1+a is divisible
by a large prime, and that b is L(,/p)*-smooth (step 2,
3 and 4); .
(2) For &'|b with b < L(,/p)*, construct a polyno-
mial Ppy2(X) and solve the equation Ppy2(X) = 0
(mod p) (step 5);
(3) Construct an elliptic curve F/F, with j-invariant jo
and the given number of rational points, where jg is a
solution of Ppp2(X) =0 (mod p) (step 6).

The expected running time of each step (1)—(3) is
analyzed as follows.
(1) The expected time needed to test a candidate is
O(log® p) by using a probabilistic primality test[17].
The expected number of repetition depends deeply on
the product of the next two probabilities:
1. the probability that N or N is divisible by a large
prime;
2. the probability that b is L(,/p)*-smooth.
From Cramer’s conjecture, we assume that the former
probability is O(log™* p) for a positive integer k. Com-
bining the probability of smooth integer, we see that
the product is O(L(,/p)'/ (72910 1og™* p). The re-
maining problem is the number of D necessary to be
checked. It is reasonable to expect that we have to try
roughly O((log®* p)L(\/p)*/*+°(M)) values of D by the
following reason: For the bound B on D, we would
expect that there are

B

< x/P
Z 2deg PD Z 2B

\/_

values of D with 4p = a?+ Db?. Therefore the expected

final D is

O((log** p)L(y/p)*/*+OM)
and the expected time required in (1) is
O((log™+* p) L(yF)"/*+O),
(2) Since the degree of Ppy2(X) with the final D is

O(\/log2ka(\/Z_3)2a+l/a+O(l)),

the optimal choice of @ is % So the expected time to
construct a polynomial Ppy2(X) is

O(log" pL(y/p)Y?*M).

The remaining problem is to factorize Pp(X) modulo
p. Using a formula[5], it is computed in time

O((log™** p) L(y/p)*V#+OW).
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Therefore the expected time required in (2) is
O((log™** p)L(yp)*Y> D).

(3) The only problem in this stage is to determine
which elliptic curve of at most 6 classes modulo Fj-
isomorphism with a given j-invariant has the given
number of rational points. Therefore the expected time
required in (3) is O(log p).

Combining the above discussion, we conclude that
the total expected time is

O((log?*%* p) L(/p)*V*+OW)

for p — oo. In fact, we can construct elliptic curves with
the required number of rational points in deg(Ppyr2(z))
numbers in this expected time. Therefore we can con-
struct an elliptic curve cryptosystem in time

O((log p)*T2* L(/p)??+0W)),

Note that the running time of Algorithm for the other
b"|b with b” 4 b/ and b < L(,/p)"/V? in step 5 is also
the same. Since we select D such that 4p = a? 4+ Db?
and b is L(,/p) 72 smooth, we conclude that we can con-
struct enough many elliptic curve cryptosystems over F,
(p is 100-bit or more) with a required number of ratio-
nal points in a practical time.

We set ¥ =1 in step 5 and 6 when we construct a
single elliptic curve. Omitting the condition for b from
the above discussion, we get that the expected running
time to construct a single elliptic curve is O(logzlﬁ_3 D).
We see that this result follows the conjecture{13].

4.1 Example
We show two examples of elliptic curves over Fj, (p =

2¢ — s) constructed by Algorithm. First we show an
example in the case that higher security is required.

o Higher security Case

step 1 We set p = 2'27 — 1. As we know well, the
prime is the 12th Mersenne prime.

step 2 For D = 51, we get (—751) =1.

step 3 Computing the expansion into continued frac-
tion, we find that

4p = a? + 5162,
with
a = 509 07740 96623 87813,

b = 3652 30406 47016 56567.
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step 4 SetN=p+1—aand]V:p+1+a. Then
N = 3%567 13727 82015 64105 77398 79370 85154 97847, where
the last prime is a 126-bit prime.

step 5 Calculate a class polynomial Ps1(X) for ¥ = 1.
Then we get

P51(X) = x? + 5541101568 X + 6262062317568.
Then

j = 76005728646095776847381808266870753232

is one solution of Ps1(X) =0 (mod p). Construct an
elliptic curve E/F, with j-invariant j and #E(F,) =
N. We get E : y? = 2% + Az + B, where

A = 684 63438 46595 72910 76199 13576 67282 37150,
B = 1590 69747 95095 10152 05257 62632 17415 61918.

In the above example, #E(F}) is divisible by a 126-
bit prime. So E/Fyizr_; can offer a fast cryptosystem
keeping a desirable security.

Next we show an example in the case that lower
security is allowed.

o Lower security Case

step1 We set p = 2'%7 — 1. As we know well, the
prime of s =1 is the 11th Mersenne prime.

step2 For D = 3, we get (*73) =1

step 3 Computing the expansion into continued frac-
tion, we find that

4p = a? + 30,
with
a = 24 38789 23037 40815
b =4 25314 84925 08931.
step 4 SetN:p+1—aandN:p+1+a. Then
N = 3 %661 x 8182 51522 08377 88149 45464 98511,
where the last prime is a 97-bit prime.

step 5 Calculate a class polynomial P3(X) for b’ = 1.
Then we get P3(X) = X. So j = 0 is one solution of
P3(X)=0 (mod p). Construct an elliptic curve E/F,
with j-invariant 0 and #E(F,) = N. We get

E:y? =25 +625.

In the above example, #E(F}) is divisible by a 97-
bit prime. So F/Fyior_; can offer a fast cryptosystem
keeping a desirable security.

5. Isogenous Elliptic Curve

In this section, we will describe the isogenous elliptic
curves modulo isomorphism. By Hasse’s theorem, we
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have |a] < 2,/p for a = p+ 1 — #E(F,). Con-
versely, for any integer |a| < 2,/p, there exists 7/ F}, with
#FE(F,) =p+1—a[3]. On the other hand, there are p
elliptic curves over F, modulo isomorphism. Therefore
there exist a number of elliptic curves over F}, with a
certain #E(F,) points modulo isomorphism. Two el-
liptic curves £ and I over F}, are called isogenous if
#E(F,) = #F1(F,)[18]. So isogenous elliptic curves
modulo isomorphism can give different elliptic curve
cryptosystems implemented by the same fundamental
operations. We have the next fact about the isogenous
elliptic curves: For any |a| < 2,/p, j-invariants of E/F,
with p+ 1 + a elements are represented as a solution of

H Ppy2(X) =0 (mod p), 4p = a* + Db*.  (5)
b|b

For more information about this, we would refer the
reader to Ref[9].

An isomorphism between E'/F, and E/F, exists
if and only if p = p’ and j-invariant of E, j(F) equals
J(E"). Therefore, in fact, Algorithm can construct the
isogenous elliptic curves modulo isomorphism. From
the fact that the solutions of Eq.(5) are different each
other[3], all elliptic curves constructed in Algorithm
for Vb'|b are not isomorphic each other but have the
same rational points on F,. So Algorithm also shows
that we can construct enough many isogenous elliptic
curve cryptosystems over Fy, (p is 100 bit or more) in a
practical time.

We show one example of isogenous elliptic curves.
In the example of Higher Security Case (Sect. 4),

Py (X) = X?% + 5541101568 X + 6262062317568
= (X - )X —71) (mod p),
where

7 = 760 05728 64609 57768 47381 80826 68707 53232,

J1 = 941 35454 81437 34548 84305 49544 34722 50927.

Then we construct an elliptic curve Ey/F, with j-
invariant j; and #E5(Fp,) = N, where N is divisible
by a 126-bit prime. We get

Ey :y2 :m3—|—A1z+B1,
where
A1 = 427 82780 40718 49464 98718 92250 95650 88061,

B = 852 35581 42494 63749 09708 38291 16714 27283.

The j-invariants of two elliptic curves E, Ej/Fpizr 4
are not equal but they have the same N rational points.
So E and Ey can construct two different cryptosystems,
implemented by the same fundamental operations.
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6. Conclusions

In order to give fast and secure cryptosystems, we have
proposed E/F, (p = 2° — s: s is a small integer)
and shown examples of E/F, for two Mersenne primes
p = 2107 _ 1 and p = 2" — 1. We have shown a
general algorithm can construct such an elliptic curve
cryptosystem in time

O((10gp)2—4—2kL(\/5)2\/§+O(1))7
where L(z) = exp (v/Iogzloglog ). We also show that

there exist enough elliptic curve cryptosystems, each of
which is constructed in this time. These results mean
that we can offer enough many isogenous elliptic curve
cryptosystems over F, whose size is 100-bit or more in
a practical time.
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