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PAPER Special Section on Cryptography and Information Security

Elliptic Curves Suitable for Cryptosystems

SUMMARY Koblitz ([5]) and Miller ([6]) proposed a
method by which the group of points on an elliptic curve over a
finite field can be used for the public key cryptosystems instead
of a finite field. To realize signature or identification schemes by
a smart card, we need less data size stored in a smart card and
less computation aniount by it. In this paper, we show how to
construct such elliptic curves while keeping security high.

key words: public-key, elliptic curves, smart card

1. Introduction

Public key cryptosystems based on the discrete loga-
rithm problem on an elliptic curve (EDLP) can offer
small key length cryptosystems. If an elliptic curve is
chosen to avoid the Menezes-Okamoto-Vanstone reduc-
tion ([9]), then the only known attacks on EDLP are
the Pollard p—method ([11]) and the Pohlig-Hellman
method ([10]). So up to the present, such elliptic curve
cryptosystems on £ /F, are secure if # F(F,) is divisible
by a prime only more than 30 digits ([3]).

If we use an elliptic curve E/F, for digital signa-
ture or identification by a smart card ([12]), stored data
size, computation amount for signature generation and
public key size should be as small as possible. In or-
der to reduce public key size, we may publish only the
z-coordinate xz(P) of a public key P and one bit nec-
essary to recover the y-coordinate y(P) of P, instead
of publishing P whose size i3 double of the definition
field F,. But it will cause the computation amount to
recover y(P).

In this paper, we investigate an elliptic curve suit-
able for cryptosystems, in the sense that it requires less
data size and less computation, while maintaining the
security. We also show the advantage of our ellip-
tic curve in the case of the Schnorr’s digital signature
scheme on an elliptic curve.

This paper is organized as follows. Section 2 sum-
marizes the addition formula of an elliptic curve ([ 13]).
Section 3 describes the Schnorr signature on an ellip-
tic curve, and show the data size and the computa-
tion amount for two cases, the basic version and the
reducing-data version. Section 4 discusses the elliptic
curve which gives cryptosystems that reduce both of data
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sizes and the computation amount.
2. Addition Formula of Elliptic Curve

Cryptosystems on an elliptic curve E/F,, for example
the Diffie-Hellman key distribution and ElGamal cryp-
tosystems, require the computation of kP (P € E(F,)).
We will discuss the computation amount of kP. For
simplicity, we neglect addition, subtraction and multi-
plication by a small constant in F, because they are
much faster than multiplication and division in Fy.

Let K be a finite field F, of characteristic + 2,3.
An elliptic curve over K is given as follows,

E:y*=2%+az+b (a,be K, 4a® +276% + 0).

Then the set of K-rational points on F (with a special
element O at infinity), denoted E(K), is a finite abelian
group, where

E(K) = {(z,y) € K?|y* = 2® + ax + b} U {O}.

For the curve E, the addition formulas in the affine
coordinate are the following. Let P = (z1,71), Q@ =
(z2,y2) and P + @ = (z3,y3) be points on E(K).

¢ Curve addition formula in affine coordinates (P +

+Q)
r3 = /\2—$1 — T2,
ys = A(z1 —z3) — 1, (1
\ = Y2—u ;
Tg — 21
e Curve doubling formula in affine coordinates (P =
Q)
z3 = A2 — 2x1,
ys = Az1 — z3) — y1, (2)
322 +a
= T

The formula (1) requires two multiplications and one
division in K, while the formula (2) requires three
multiplications and one division in K. The compu-
tation amount of division in K is more than that of
multiplication in X. So we often use the projective
coordinates to avoid divisions in K. The addition

formulas in the projective coordinates are the follow-
illg. Let P = (Xl,Yl,Zl), Q = (XQ,}/%,ZQ) and
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P + Q = (X3a1/-3)Z3)-
e Curve addition formula in projective coordinates

(P +=Q)
X3 = ’UA,
Vs = u(v? X175 — A) — %Y1 Zo, (3)
Zg = 7}3Z1Z2,

where v = YéZl - Y1Z2,’Z) = X2Z1 —X1Z2,t = XQZl +
X]_Z2, A= UZZ]_ZQ — ’Uzt;
e Curve doubling formula in projective coordinates

(P=0Q)
X3 = 2h8,
Ys = w(4B — h) — 8Y1%s?, 4)
Z3 = 853, ‘

where w = aZ;® 4+ 3X,%,s = 17,,B = X Yis,h =
w? — 8B. The formula (3) requires 15 multiplications,
while the formula (4) requires 12 multiplications. For
the use of cryptosystems, we may set z(P) = Z; to one
in the formula (3). Then the formula (3) requires 12
multiplications.

Subtractions are as expensive as additions over el-
liptic curves. So the computation amount of kP by the
addition-subtraction method ([2],[8]) is less than that
by the binary method, while both methods need memory
storage only for P. We assume to compute kP by the
addition-subtraction method. Then the computation re-
quires n times of curve doubling and % times of curve
adding on the average, where n = |K|. Computation
of kP in the projective coordinate requires one division
and two multiplications in the final stage. As long as
the ratio of the computation amount of division in K to
that of multiplication in K is larger than 9, the compu-
tations in the projective coordinates are faster than that
in the affine coordinates for n equal to 100 or more.
Here we assume to compute kP in the projective co-
ordinate by the addition-subtraction method and com-
pute the power residue by the binary method in order to
compare the computation amount of Schnorr signature
scheme on a finite field and on an elliptic curve.

3. Elliptic Curve Cryptosystems

If E(K) and a basepoint P € E(K) are carefully cho-
sen, then the only known attacks on the cryptosystems
are the square root attacks. EDLP on such F to the
base P is secure up to the present ([3]), if the order of
P, ord(P), is divisible by more than a 30-digit prime.
Here we summarize the Schnorr signature on such an
elliptic curve and establish a basis for evaluation of the
elliptic curve proposed in the next chapter.

Let M € Z be a message. User A sends the message
M to user B with her or his signature of M.

99

e Initialization

— system parameter
o E:y*=x+azx+b (a,b€ F,; pisaprime
of n(= 97) bits).
o P € E(F,)
above).
o l=ord(P) (I is m(= 97) bits).
— a one-way hash function

h:ZyxZ—{0,---,2" -1},

: a basepoint (chosen as the

where ¢ is the security parameter.

e Key generation
User A randomly chooses an integer s , a secret key,
and makes public the point Py = —sP as a public
key.

e Signature generation

1 Pick a random number k € {1,...,I} and com-
pute

R =FkP = (rg,ry). (5)
Here r, = z(R) and ry = y(R).
2 Compute e := h(r,, M) € {0,---,2% — 1},

3 Compute y = k + se
signature (e, y).

(mod I) and output the

e Signature verification

1 Compute R = yP + ePs = (75,75) and check
that e = h(75, M).

As we described in Sect.2, the computation of kP re-
quires m curve doublings and % curve additions on
the average, where k is a m-bit number. Extending the
addition-subtraction method to the computation in the
verification, we can calculate yP +eP4 in m curve dou-
blings and §(m — t) + 3¢ curve additions on the aver-
age with precomputations of £(P =+ P,4), which require
about the same computation amount as one curve ad-
dition.

Here we set n,m = 128. Then the known at-
tack on such an elliptic curve cryptosystem requires
at least 26 elliptic curve operations. This is roughly
equal to that of the original Schnorr on F, (p is 512
bits), since the known attack on the original Schnorr
requires O(exp +/logploglogp) finite field operations.
If lower security is allowed, then n,m can be replaced
by a smaller number like 97. For the security parameter,
here we set ¢t = 128. Of course if we use EC versions
for identification, we can set ¢ = 20.

We will present two versions of Schnorr signature
on an elliptic curve. One is the basic Schnorr signature
on an elliptic curve described above, called Basic EC
version. Another is called Reducing data EC version.
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Table 1 Comparison of data size (in bits).
|| System Key | Secret Key || Public Key H Signature size
Basic EC version 640 128 256 256
Reducing data EC version 641 128 129 256
Finite field version 1164 140 512 268

Table 2

Comparison of computation amount (in # of 512-bit modular multiplications).

Signature Generation | Signature Verification ’

Basic EC version
Reducing data EC version
Finite field version

129 151
141 175
210 242

In this version, only z(P4) and the least significant bit
of y(P4) are published as a public key to reduce the
data size. The same is done for the basepoint P. On the
other hand, the original Schnorr signature scheme on
F,, called Finite field version (p is 512 bits, the security
parameter ¢ = 128) roughly has the same security as that
on the above elliptic curves. So the size of the definition
field of Finite field version is four times as large as that
of Basic and Reducing data EC versions.

We compare Basic EC version, Reducing data EC
version and Finite field version, with respect to data
size. Table 1 shows the comparison.

e Basic EC version

The system key is a,p, P, and [ (640 bits). The secret
key is s (128 bits). They are stored in a smart card.
So the data size stored in a smart card is 768 bits. The
public key is (P4) (256 bits) and the signature is e and
y (256 bits).

¢ Reducing data EC version

In this version, we have to publish one more parameter

"b" of E as a system key to recover a point by the z--

coordinate of the point and the least significant bit of
the y-coordinate of the point. It requires power residue
to recover the y-coordinate of P and increases compu-
tation for signature. The system key is a, b, p, z(P),
the least significant bit of y(P) and ! (641 bits). The
secret key is s (128 bits). So the data size stored in a
smart card is 769 bits. It is almost equal to that of Ba-
sic EC version. The public key is #(P4) and the least
significant bit of y(P4) (129 bits) and the signature is e
and y (256 bits).
o Finite field version ‘
The system key of Finite field version is a set of the def-
inition field, the basepoint and the order of basepoint
(1164 bits), where the size of the definition field is 512
bits and the order of basepoint is 140 bits. The secret
key is 140 bits. So the data size stored in a smart card
is 1304 bits.

The size of the definition fields of both EC versions
is reduced to 25% of Finite field version. But the stored
data size is not so much reduced (59%). This is because

an elliptic curve point has 2 coordinates and we need a
parameter to decide F.

Let us compare the three cases with respect to
the computation amount. We assume the computa-
tion method that we described in Sect.2. Table 2
shows the comparison of the computation amount of
signature generation and verification. Here we assume
m(n) = (n/t)?m(t), where m(n) denotes the amount
of work to perform one modular multiplication whose
modulus size is n bits. We assume the ratio of the com-
putation amount of division in K to that of multipli-
cation in K to 10. We see the computation amount
of signature generation of Reducing data EC version is
reduced to 67% of Finite field version. It is not so re-
duced as the size of the definition field. This is because
the computation amount of one elliptic curve addition
is much more than that of one multiplication in the
same definition field and we need 195m(128) to recover
a basepoint.

We see that both EC versions seem to be better than
Finite field version for both points of the data size and
the computation amount. But actually they are not so
efficient considering the less size of the definition field
of E. For the stored data size, the ratio of the stored
data size to the definition field for both EC versions
is 6. On the other hand, for Finite field version, the
ratio is 2.5. For the computation amount, one elliptic
curve addition requires about 12 multiplications. If we
require higher security, for example ¢ = 160, then we
will have to construct an elliptic curve over at least a
160-bit finite field. Then the advantage for EC versions
shown in Table 1 and 2 decreases.

In the next section, we construct an elliptic curve
cryptosystem, which has
(1) the less ratio of the stored data size to the definition
field than 6;

(2) the same public key size as Reducing data EC ver-
sion;

(3) the less computation amount than that of Basic EC
version.

It will be also best implementation for the higher secu-
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Table 3 Integers d and j-invariant j4.
| d ( Jd
3 0
11| (= 25)
19 | (—25%3)3
43 | (—26%3x5)3
67 | (=25 %3%x5x%11)3
163 | (—2% %3 %523 %29)3

rity parameter.
4. Elliptic Curves Suitable for Cryptosystems

If E(F,) and the basepoint P € E(F,) are appropri-
ately chosen, then the only known attacks on the cryp-
tosystems are the square root attacks. We first discuss.a
method to construct such elliptic curves and then inves-
tigate what elliptic curve among them is suitable for im-
plementation with respect to less data size (key length)
and less computation amount.

4.1 Decision of the Class of Elliptic Curves

One method to avoid the recent attack is to construct
EDLP on E/F, with p elements ([7]). We describe
a modified method to decide the class of such elliptic
curves. There are two phases for the decision of E/F,
with p elements.

The first phase is to find an appropriate prime p.
Such pis a form of p = db?+db-+ %L for an integer b and
d=3 (mod 4), where d is not divisible by any square
of a prime. Here we use d € {3,11,19,43,67,163}.
Such integers d enable us to construct easily the j-
invariant jg of E/F, with p elements for the prime p,
which is uniquely determined by d. For more informa-
tion on this, we refer the reader to[7]. Table 3 lists
integers d and the j-invariant jg.

Once the prime p = db®+db-+ %=L and jg are given,
then the next phase is to decide the class of E/F), with
p elements. There is a little difference between the case
of d = 3 and others. First we investigate the case of
d € {11,19,43,67,163}. Then the elliptic curves over
F, with the j-invariant j4 are given as follows.

Feg:y? =2* + 3aqz + 2c3ay, (6)

where ag = szsd—ﬁ and cis any element in F;;. For each

d, we can classify {F.q4lc € F;} into two equivalence
classes of twists, namely

&q={Ecdlc € Fy, <—> =1}
and

€'y ={B.alce F}, (g) = -1},
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Table 4 Integers d and ay.
L d |0
11 3x7
19 |3
43 2x5%7

67 3x5%7x11%31
163 | 2% 3% 5% Tk 11 19%23%29% 127

where <;TC;> denotes the Legendre symbol. Then only

one of the two classes gives the elliptic curves with p
elements. A general condition to decide the class was
described ([1]). In our case, the condition can be sim-
plified as follows.

Theorem 1: Let p be a prime represented by p = db? +
db + £ (b is an integer) for d € {11,19,43,67,163}.
Then the class which gives elliptic curves with p ele-
ments is determined as:

£, if <%> -1,
p

g, if (ﬂ) —1,
p

where a4 is an integer determined by d. Table 4 shows
the values of ay.

Now we get the following procedure to decide the
class of elliptic curves with p elements.

Procedure 1

1 Search a large prime p such that p = db? + db + 42
(b is an integer) for d € {11, 19, 43,67,163}.

2 Calculate (%) If (%) = —1, then &, is the class.

Else if (%) =1, then £'4 is the class.

Next we will investigate the case of d = 3. Then
the elliptic curves over F), (p = 3b% + 3b + 1) with the
j-invariant j; are given as follows.

Ee:y? =23 +¢ (V¢ € F). (7N

In this case, we can classify {E¢|§ € F'} into six equiv-
alence classes of twists, namely

&, ={E¢l € Fy, <§>6 = (—w)'} (0<i<5),

where w = lHT V=3 and (%) denotes the sixth power
6

residue symbol. Then exactly one of the six classes gives
the elliptic curves with p elements. We have a next for-
mula on the number of rational points of the elliptic
curves (7).

Theorem 2: ([4]) Letp =1 (mod 3) and p = =7
with Z[w] 2 # =2 (mod 3). Then
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#E(Fp)=p+1+ <g> ™+ (4—£> . (8)
T )g T /g
Using the formula (8), the condition to decide the class
can be given as follows.
Theorem 3: Let p be a prime represented by p = 3b% +
3b+ 1 (b is an integer). Then the class which gives
elliptic curves with p elements is determined as:

&1 if b=0,2,4 (mod 6),

&y if b=1,3,5 (mod 6).

Proof: We prove only the case of b = 1 (mod 6).
As for the other cases, we can do the same way. Let
m={(2b+ 1w+ (b+1). Then p = 77 and 7 = 2
(mod 3). Since (%), = w, we get that #F¢(Fp,) = p if
and only if

<§> w27r+<§> WwT = —1,
/e /e

that is, tr(w (%) T) = —1. So we get (%) = —w?
6 6

This means that the class which gives elliptic curves

with p elements is 3 5. O

Now we get the following procedure to decide the
class of elliptic curves with p elements.

Procedure 2

1 Search a large prime p such that p = 3> +3b+ 1 (b
is an integer).

21Ifb=0,2,4
b=1,3,5

(mod 6), then &5 is the class. Else if
(mod 6), then &35 is the class.

We have seen that the time to decide the class of
E/F, with p elements depends on the time finding p =
db® +db + £ for d € {3,11,19,43,67,163}. We can
easily find such a prime. In fact we were convinced
experimentally that finding a prime p = db? + db + 47111
in the range of 30—90 digits is as easy as finding a prime
in that range. So we can easily decide the class of E/F,
with p elements which gives secure cryptosystems.

4.2 Selection of an Elliptic Curve and a Basepoint

Elliptic curve cryptosystems require the computation of
kP, where P = (Xy,Yy,1) is a fixed point called base-
point. It is accomplished by repeated doubling, adding
and subtracting of P. If we can select a basepoint P
with a small z-coordinate X; or a small y-coordinate
Y;, the amount of computation of kP will be reduced.
Especially in the case of signature and identification
by a smart card, reducing of total data size stored in a
smart card and the computation amount by a smart card
is important. If fewer parameters represent an elliptic
curve and a basepoint, the data stored in a smart card is

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 1 JANUARY 1994

reduced. Furthermore we wish to recover P easily from
the parameters.

In the last section, we have decided the class of el-
liptic curves which gives the secure cryptosystems. Note
that any elliptic curve E/F, of the class and any base-
point P € E(F),) give cryptosystems with the same se-
curity. We will discuss how to select E of the class and
P in E suitable for cryptosystems, in the sense that it
reduces computation amount of kP and necessary data
size to be stored. We will classify d into two cases, d = 3
and others.

e Proposed scheme A
First we deal with the case of

d € {11,19,43,67,163}.

For a given p = db®+db+ d%zl, we know which class, &
or &'y, gives an elliptic curve with p elements in Sect. 4.1.
Without loss of generality, we will discuss the case of
Eq. Let yo = o3 + 3aqwo + 2a4 for zop € F,. Then we
get one elliptic curve in £; and the basepoint following

).
a3 Eyy4, Eyp.a 2 P = (y0%0,%5), 9

where (%}) = 1. If yo satisfies the condition of (9)

for zo = 0, then we get £&; > F,, 4 and Ey, g 3 P =
(0,4a4%). In fact such yq satisfies the condition of (9) if
and only if

(y_o> _ (2&) ~1.

p p

Except for d = 19, there exists p = db? + db + 4L
which satisfies (%) = 1. Combining the condition

on p to decide a class (i.e. (%) = —1 or 1), we obtain
that such an elliptic curve over F), exits if and only if

(%) = —1 in both cases, £; and £4. Table 5 shows

the value of Gy. .
We were also convinced experimentally that, for

Vp = db? +db+ ¢ (d € {11,43,67,163}), such an
elliptic curve exists with a probability of about one half.
Here is one example for a 128-bit prime in the case of
d=1L

E : y?=2%+12a%2 +16a*; E(F,) 3 P = (0,4d%),

p = 1701 41183 46046 92395 60785 96622 40717 16369,

a 527 15357 39869 82616 07887 30307 87012 55349.

Table 5 Integers d and &4.
IER

11 3%7

43 3x%7

67 | 7%31

163 | 7% t1%19:%127
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Table 6 Data size of Proposed schemes (in bits).

| | System Key | Secret Key || Public Key | Signature size |

Proposed scheme A
Proposed scheme B

256(201)
131 (76)

128 129 256
128 129 256

Table 7
cations).

Computation amount of Proposed schemes (in # of 512-bit modular multipli-

| | Signature Generation | Signature Verification |

Proposed scheme A
Proposed scheme B

121 158
105 142

Let us use this elliptic curve F,, 4 and basepoint
P = (0,4a4?) for Schnorr signature, where Ey,a=F
and a = aq. We further assume that the public key P4
is represented by x(P4) and the least significant bit of
y(Pa). The computation of kP requires the addition to
the basepoint P. The addition is calculated in 9 modu-
lar multiplications because we can neglect terms for the
multiplications by X; = 0 in the formula (3). So the
computation amount of kP is reduced to 1932m(128).
The computation of yP + eP4 requires &(m — t) 4 2¢
curve additions to £P on the average. So the compu-
tation amount of yP 4 ePy is reduced to 2316m(128).
We can recover the basepoint in one modular multipli-
cation, only if we store a4. Since ord(P) equals p, the
system key is ag and p (256 bits). Table 6-shows the
data size and Table 7 shows the computation amount.
The data size stored in a smart card is reduced to one
half of that of Reducing data EC version and Basic EC
version. The public key size is the same as that of Re-
ducing data EC version.

The computation amount of the signature genera-
tion is reduced by 6% (resp. 14%) of that of Basic EC
version (resp. Reducing data EC version). The compu-
tation amount of the signature verification is reduced
by 10 % of that of Reducing data EC version. It is
increased by 5 % of that of Basic EC version. This is
because we need one power residue to recover one’s pub-
lic key in the signature verification. If we publish P,
instead of z(P4) and the least significant bit of y(P,4)
as a public key, then the computation amount of the
signature verification is reduced by 3% of that of Basic
EC version. Even in this case, the public key size is
only 50% of Finite field version.

We can choose a prime p and an elliptic curve E/F,
as follows.

E : y* =2%412d%2 + 16a%; E(F,) 3 P = (0,4a2),
p = 2128 _ 89 25388 84800 47273 94087

a 1887 65172 00252 43003 83780 59753 00282 08521

I

The form of p simplifies the arithmetic modulo p and
we can store p with only 73 bits. Of course, the partic-
ular form of p provides no disadvantage on the security
for now.

¢ Proposed scheme B

Next we deal with the case of d = 3. For a given
p = 3b% 4+ 3b + 1, we know which class, & or &3,
gives the elliptic curve with p elements in Sect.4.1. We
only discuss the case of £ 1. As for the other case, we
can do in the same way. Let yo = z¢® + £ for ¢ and
Zo € Fy,. Then an elliptic curve E/F,, with p elements
and a basepoint P is given as follows,

Beys - y* =2’ +Eyo’; Eeys(Fp)2 P = (Zowo, ¥07),

where (%) = —w and yo € F,**. In this case, there
6
doesn’t exist an elliptic curve with the point whose z-
coordinate equals O because of £ ¢ F,*%. But we can
select a small £ such that (%) = —w and a small z,
6

such that yg = 2o + ¢ € Fp*2. Here is one example for
a 128-bit prime.

E : y*=2%+3x4% FE(F,) > P=(4,16),

p = 1701 41183 46046 92480 63157 20930 49376 39647

(zo =1, £=3)

I

Let us use this elliptic curve E¢ys and basepoint
P = (zoyo,yo?) for Schnorr signature, where Egyg =F,
zo = 1 and £ = 3. We further assume that one’s public
data Py is represented by «(P,4) and the least significant
bit of y(£4). Then the addition to P = (zoyo,y0?) =
(X1,Y1) is accomplished in 9 modular multiplications
because we can neglect the multiplications by a small
constants X; and Y; in the formula (3). Furthermore the
simple equation of E reduces the computation amount
of doubling. It is accomplished in 10 modular multi-
plications. This reduced computation amount of dou-
bling makes the total computation amount of scheme B
smaller than that of scheme A. As for the computation
amount of kP, it is reduced to 1676m(128). The com-
putation amount of yP+-ePy is reduced to 2060m(128).
As for the recovering the basepoint, we can recover it
in a negligible computation amount only if we store z
and £ whose data size is enough small. As for the data
size, the data size of 2 and ¢ is neglected and ord(P)
equals p. So the size of system parameters zy, & and
p of Schnorr signature scheme on such E is about the
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same as that of the definition field. Table 6 shows the
data size and Table 7 shows the computation amount.
We see that the elliptic curves and the basepoints
in Proposed scheme B give good properties for the cryp-
tosystems, especially in the application of digital signa-
ture and identification by a smart card. The data size
stored in a smart card is reduced to one third of that of
Reducing data EC version and Basic EC version. The
public key size is the same as that of Reducing data EC
version. The computation amount of the signature gen-
eration is reduced by 19% (resp. 26%) of that of Basic
EC version (resp. Reducing data EC version). The com-
putation amount of the signature verification is reduced
by 6% (resp. 19%) of Basic EC version (resp. Reducing
data EC version). If we publish P4 as a public key, then
the computation amount of the signature verification is

reduced by 14% of that of Basic EC version.
In the same way as Proposed scheme A, we can
choose a prime p and an elliptic curve E/ I}, as follows.

E : y?>=2®+3%4% E(F,)> P =(4,16),
p = 2128 _ 86 61755 49264 58706 00985
1, £=3)

(zo

The form of p simplifies the arithmetic modulo p and
we can store p with only 73 bits.

We have seen that we can reduce both of stored
data size and computation amount in elliptic curve cryp-
tosystems by the above schemes A and B. Those schemes
do not change parameters which relate to security. In
other words, they keep the size of the greatest prime
divisor of the order of basepoint and satisfy the con-
dition to avoid the recent attack. Therefore they pro-
vide no disadvantage on the security. We have also seen
that Proposed scheme B is more suitable than Proposed
Scheme A in both points of stored data size and com-
putation amount. But the idea of Proposed scheme B is
effective only for d = 3. The idea of Proposed scheme
A is effective for any d as long as p = db? + db + 4L

2a _
and (Td) — 1 hold.
5. Conclusion

Elliptic curve cryptosystems often require the compu-
tation of kP, where P is a fixed basepoint. We have
proposed the elliptic curves and basepoints suitable for
cryptosystems, in the sense that they require less data
size and less computation amount for kP. Especially
if we use the Proposed version B in Schnorr signature
scheme by a smart card, we have seen that

(1) the data size stored in a smart card is reduced to one
third of that of Basic EC version and Reducing data EC
version;

(2) the data size of public key is reduced to one half of
that of Basic EC version and is the same as Reducing
data EC version;

(3) the computation amount of the signature generation
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is reduced by 19% (resp. 26%) of that of Basic EC ver-
sion (resp. Reducing data EC version);

(49)The computation amount of the signature verifica-
tion is reduced by 6% (resp. 19%) of Basic EC version
(resp. Reducing data EC version);

(5)In the case where we publish the point P, as a public
key, the computation amount of the signature verifica-
tion is reduced by 14% of that of Basic EC version.
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