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[PAPER

Special Section on Cryptography and Information Security |

Elliptic Curve Cryptosystems Immune to Any Reduction
into the Discrete Logarithm Problem

SUMMARY In 1990, Menezes, Okamoto and Vanstone
proposed a method that reduces EDLP to DLP, which gave an
impact on the security of cryptosystems based on EDLP. But this
reducing is valid only when Weil pairing can be defined over the
m-torsion group which includes the base point of EDLP. If an
elliptic curve is ordinary, there exists EDLP to which we cannot
apply the reducing. In this paper, we investigate the condition
for which this reducing is invalid.

key words: public-key, discrete logarithms, elliptic curves

1. Introduction

Koblitz® and Miller'? described how the group
of points on an elliptic curve over a finite field can be
used to construct public key cryptosystems. The secu-
rity of these cryptosystems is based on the elliptic curve
discrete logarithm problem (EDLP). The best algo-
rithm that has been known for solving EDLP is only
the square root attacks?®(®  Recently Menezes,
Okamoto and Vanstone™® proposed a noble method
(the MOV reduction) to reduce EDLP on an elliptic
curve E defined over a finite field F; to the discrete
logarithm problem (DLP) in a suitable extension field
of F,. If EDLP on E/F, isreduced to DLP in a small
extension field of F,, we must construct £ over an
enough large field to realize a secure cryptosystem. It
is no good for the fast implementation. To achieve a
secure and fast cryptosystem, Beth and Schaefer,® and
Koblitz® discussed the case where the extension degree
of a finite field, in which EDLP is reduced to DLP, is
large enough.

The MOV reduction is constructed by a pairing,
called the Weil pairing, defined over an m-torsion
subgroup of an elliptic curve. If an elliptic curve is
supersingular, the Weil pairing is defined over any
m-torsion subgroup of it and we can apply the MOV
reduction. On the other hand, if an elliptic curve is
ordinary (non-supersingular), there exists an m-
torsion subgroup on which the Weil pairing can’t be
defined. Our main motivation for this work is to study
EDLP on such an m-torsion group of an ordinary
elliptic curve.

Our result of this paper is the following.
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» For any elliptic curve E defined over F,-, we can
reduce EDLP on E to EDLP, to which the MOV
reduction is applicable in an expected polynomial
time (Theorem 3).
* For a certain ordinary elliptic curve E defined over
F,, there exists EDLP on E which makes any
embedding to DLP in any extension field of F;
inapplicable (Theorem 4). Then such EDLP on
E/F, (p is a large prime) is secure enough for all
known attacks.
+ We give a procedure that enables us to construct
such an elliptic curve in a practical time on a 32
bits personal computer.
After briefly reviewing some facts of the elliptic curves
(Sect.2), we outline the MOV reduction (Sect.3).
Section 4 studies the case where we cannot apply the
MOV reduction and shows Theorem 3 and Theorem 4.
Section 5 constructs ordinary elliptic curves E defined
over any finite field F, that makes reducing EDLP on
E to DLP by embedding impossible.
Notation
p: a prime
r: a positive integer
g: a power of p
Fy: a finite field with g elements
K: a field (including a finite field)
ch(K): the characteristic of a field X
K: a fixed algebraic closure of K
E: an elliptic curve

If we remark a field of definition K of E, we write

E/K.
# A: the cardinality of a set A
o(t): the order of an element ¢ of a group

2. Background on Elliptic Curves

We briefly describe some properties of elliptic
curves®? that we will use later. In the following, we
denote a finite field F, by K.

» The j-invariant

Let E/K be an elliptic curve given by the equa-

tion, called the Weierstrass equation,

E: y'+aixy+asy=x"+ a:x*+ aux+ ae

(@, a3, @3, as, GEK).



MIYAJI: ELLIPTIC CURVE CRYPTOSYSTEMS IMMUNE TO ANY REDUCTION INTO DLP

The j-invariant of E, denoted j (E), is an element of K

determined by a, s, az, a4 and . It has important

properties as follows.

(j-1) Two elliptic curves are isomorphic (over K) if
and only if they have the same j-invariant.

(j-2) For any element j,& K, there exists an elliptic
curve defined over K with j-invariant equal to j,.
For example, if =0, 1728 and ch(K) =5, j(E)
equals j,, where

3jo

2,
1728—j, X F M

. 2_ ,.3
E: y"=x"+ 728y

* The Group Law

A group law is defined over the set of points of an
elliptic curve, and the set of points of an elliptic curve
forms an abelian group. We denote the identity ele-
ment (). The set of K-rational points on the elliptic
curve E, denoted E(K), is the set

E(K)={(x,y)EK¥y*+ axy+ ey =x*+ azx*
+ax+a} U{O}.

E (K) is a subgroup of E and a finite abelian group.
So we can define the discrete logarithm problem over it
(Definition 1).
» Twist of E/K

A twist of E/K is an elliptic curve that is isomor-
phic to E over K. We idntify two twists if they are
isomorphic over K. The set of twists of E/K, modulo
K-isomorphism, is denoted Twist (E/K). If ch(K) >
3 and j(E)=0,1728, Twist(E/K) 1is canonically
isomorphic to K*/K*?,
Remark 1: Let cA(K) >3 and j(E)=0,1728. Then
two elliptic curves E/K and E,/K given below are the
representative elements of Twist (E/K),

E: y*=x*+ ayx+ as,
E;: y*=x*4 aic’x+ asc®, (2)

where c& K*\ K*2,
+ The Weil pairing

For an integer m =0, the m-torsion subgroup of
E, denoted E[m], is the set of points of order m in E,

E[m]={PEE|mP=0)}.

We fix an integer m =2, which is prime to p=ch(K).
Let 1m be the subgroup of the m-th roots of unity in K.
The Weil e,-Pairing is a pairing defined over

en: E[m]X E[m]— pn.

+ Number of Rational Points

As for # E(K), the following Hasse’s theorem
gives a bound of the number of rational points on an
elliptic curve.
Theorem 1:
Then

(Hasse) Let E/K be an elliptic curve.
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l# E(K)—q—1|=2/4q.

Let# E (K) =g+ 1—aq. If K=F,, we further have the
next theorem by Deuring.®

Theorem 2: (Deuring) Let @, be any integer such
that |ap| <24/ p. Letting k(d) denote the Kronecker
class number of d, there exist k (a3 —4p) elliptic curves
over Fp with number of points p+1— a,, up to isomor-
phisms.

3. Reducing EDLP to DLP in a Finite Field

We briefly describe the MOV reduction of EDLP

via Weil pairing.*¥ First we give the definition of
EDLP.
Definition 1®: Let E/F, be an elliptic curve and P
be a point of E (F;). Given a point REE (F;), EDLP
on E to the base P is the problem of finding an integer
x such that xP=R if such an integer x exists.

In the following, we denote a finite field F, by K
and fix an elliptic curve E/K and a point PEE (K).
We further assume that o(P)=m is prime to p=
ch(K).

The subgroup {P>C E (K) generated by a point P
can be embedded into the multiplicative group of a
finite extension field of K. This embedding is con-
structed via Weil pairing. It is the essence of the MOV
reduction. We will mention about the embedding
briefly.

Let @ be another point of order m such that E[m]
is generated by P and Q. Let K7 be an extension field
of K containing /,. We can define a homomorphism

[ (P>—KT*
by setting
f (nP)=en(nP, Q).

From the definition of Weil pairing, it follows easily
that f is an injective homomorphism from {P)> into
K7™*. So the subgroup <{P> of E is a group isomor-
phism to the subgroup u, of K™*.

With the above homomorphism f, the MOV
reduction reduces EDLP to DLP as follows. We can
check whether RECP)> or not in a probabilistic
polynomial time. So we assume that R&<P)>. Then
the above injective homomorphism f from <P} into
K7™* can change the problem, EDLP on E, to finding
an integer x such that f (R) =f (P)* for a given f (R),
f(P)EK’", namely DLP on K'. In this way, we can
reduce EDLP to DLP in an extension field K" of K.
Note that this reducing is invalid if m is divisible by p
=ch(K) because the above injective homomorphism
cannot be defined in the case. The next section investi-
gates this case.
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4. Inapplicable Case

Definition 2: Let E/F; be an elliptic curve. If E has
the properties E[p‘]|= (© for all integer =1, then we
say that E is supersingular. Otherwise we say that E
is ordinary.

Remark 2: Let E be a supersingular elliptic curve.
The definition of supersingular says that o(T) is prime
to ch(K)=p for all TEE(K).

In the following, we denote a finite field F; by K,
where g is set large enough to be secure against the
sequare root attacks, and fix an elliptic curve E/K and
a point PEE(K). We further assume that o (P) =m
is divisible by p=ch(K). From the above remark, it
follows that E is ordinary. We will describe EDLP on
such a point of an ordinary elliptic curve in the next
two subsections.

4.1 Ordinary Elliptic Curves Over Fyr

Let us see the case of g=2". Let m be expressed
by m=2'% (k is an integer prime to 2, ¢ is a positive
integer). Then EDLP on E to the base P is finding an
integer x such that R=xP for given REE(K) (Sect.
2). As we assume that g.c.d(m, 2) &1, we can’t apply
the MOV reduction directly to this case. So we extend
the MOV reduction as follows.

Theorem 3: (The extended reducing method) For
any elliptic curve E/F; and any point PEE (Fyr), we
can reduce EDLP on E (to the base P), in an expected
polynomial time, to EDLP that we can apply the MOV
reduction to and whose size is same as or less than the
original EDLP.

Proof: We prove only the case whehe k& has a large
prime factor. Let P'=2‘P, R"=2°R. Then in a
probabilistic polynomial time, we can check whether
R'&{P"> or not Ref.(13). If R"<P’), then RELPD.
So we assume that R"E<{P’)>. Since o(P’) =k is prime
to 2, we can apply the MOV reduction to this case.
Namely, we can work in a suitable extension field of K
and find an integer x” such that R’=x"P’. Then we get
2(R—x'P)=(. If we assume that RE{P), we get
(R—x'P)&<{P>. From the group theory, it follows
easily that a finite cyclic group <{P> has only one
subgroup whose order divides m=#<{P>. So we get
(R—x'P)&<kP>. Now we change the base P of
EDLP into kP, then we have only to find an integer x”
such that R—x"P=x"(kP). Since #<{kP) is 2¢, we can
easily find an integer x” with Pohlig-Hellman’s
method.® So we can find an integer x by setting x=
x'+x"k (mod m). O

We summarize the extended reducing method as
follows.
step 1: Find a non-trivial subgroup <2'P>C<(P)
whose order is prime to 2=ch(K).
step 2: Embed <2°P) into the multiplicative group of
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a suitable extension field of K via an injective
homomorphism constructed by Weil pairing.

step 3: Change EDLP on E to the base P into EDLP
on E to the base kP. (Since all of the prime factors of
#<kP> are small, we can easily solve such EDLP.)
Remark 3: We proved Theorem 3 for a field F»». We
can extend the theorem to a field Fp» if we can generate
tables of the discrete logarithm in a polynomial time in
the element size.

4.2 Ordinary Elliptic Curves Over Fp

We investigate the case of ¢g=p, where p is a large
prime. Let m be expressed by m=p‘k (k is an integer
prime to p, ¢ is a positive integer). From Hasse’s
theorem (Sect. 2), there is a bound of # E(K). So the
integer m must satisfy that (m—p—1) <2/ p.

The next lemina is easy to prove.

Lemma 1: Let p be a prime more than 7 and E/F, be
an ordinary elliptic curve. We assume that there is a
point PEE (K) whose order is divisible by p. Then
the point P has exactly order p. Furthermore E (K) is
a cyclic group generated by P.

Lemma 1 says that non-trivial subgroup of E (K)
is only itself. So we cannot apply the extended reduc-
ing method in Sect.4.1 to EDLP on E. We assume that
E (K)=<P> can be embedded into the multiplicative
group of a suitable extension field K" of K via any
way instead of Weil pairing. At this time we can
reduce EDLP on E (to the case P) to DLP on K.
But, for any integer #, there isn’t any subgroup of K™*,
whose order is p. So we cannot embed {P)> into the
multiplicative group of any extension field of K.

The next theorem follows the above discussion.
Theorem 4: For an elliptic curve E/F, such that
#t E (Fp) =p and any point P== (& of E (F;,), we cannot
reduce EDLP on E (to the base P) to DLP in any
extension field F,» of F, by any embedding <P} into
the multiplicative group of Fpr. (]

5. Constructing Elliptic Curves

In this section, we describe the method of con-
structing elliptic curve E/F, with p elements of Theo-
rem 4. In the following, let p be a large prime. We get
the next result by Hasse’s theorem and Deuring’s theo-
rem (Sect.2).

Lemma 2. Let k(d) denote the Kronecker class
number of d. There exist k(1 —4p) elliptic curves E/
Fp with p elements, up to isomorphism. []

Because of k(1 —4p) =1, we get that there exists at
least one elliptic curve E/F, with p elements for any
given prime p. Now we mention how to construct such
an elliptic curve E/F, generally. Original work con-
cerning this was done by Deuring 9@

Let d be an integer such that 4p—1=5%d (b is an
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integer). Then there is a polynomial P,(x) called
class polynomial.®? The class polynomial P,(x) has
the following properties.

(c-1) Py(x) is a monic polynomial with integer
coeflicients.

(c-2) The degree of P;(x) equals the class number of
an order O; of an imaginary quadratic field. (For a
definition of the order, see Ref.(17) and for the class
number, see Ref.(10).)

(c-3) P4(x)=0 splits completely modulo p.

Let jo be a root of Py(x) =0 (modulo p). Then j,
gives the j-invariant of an elliptic curve E/F, with p
elements. For any elliptic curve, there are at most six
twists modulo Fp-isomorphism and one of them is just
an elliptic curve with p elements. Next we discuss how
to find such a curve among all twists in a practical way.

For each twist E; of E/F, with j-invariant j,, fix
arbitrary point X;= (0 of E.(F,) and calculate pX;. If
pX:= (0O, then E;(F,) has exactly p elements. This
follows Sect.4.2. So we can decide which of the at
most 6 twists of E/F, has an order p in a polynomial
time of the element size.

Now we get the following procedure to construct
such an elliptic curve.

Procedure

(p-1) Choose an integer d.

(p-2) Search a large prime p such that 4p—1=>5d for
an integer b.

(p-3) Calculate a class polynomial Py(x).

(p-4) Find a root & F, of P;(x)=0(mod p).

(p-5) Construct an elliptic curve E/F, with j-
invariant j, by (1).

(p-6) Construct all twists of E/F, by (2).

(p-7) For the first twist E; of E/Fy, fix arbitrary point
X+ (O of E,(Fp) and calculate pX;. If pX;== (0, then
try the next twist. If pX;= @, then E,(F,) has exactly
p elements.

In step (p-1), we can choose an integer d such that
O; has a small class number from a list."® This is
because the degree of P,(x) becomes small and we can
construct P, (x) easily. Table 1 lists some examples of
d and a root of P;(x) whose degree equals 1. If we use
d in Table 1 for the step (p-1), there are only two
twists in the step (p-6). So in the step (p-7) we have
only to calculate pX; for one twist E;. If pX;= (9, then
E.(Fp) has exactly p elements. If not, then the other
has exactly p elements.

In step (p-3), we need a prime p=(b?’d+1)/4.
There is a conjecture that there are infinitely many

Table 1 Integers d and the root j of P;(x)=0(mod p).

d |j

11| (=2%)3
19 | (=2°#3)°

43 [(=2°%3x5)°

67 [ (=253 5% 11)°
163 | (—=2% % 3+ 5% 23 4 29)°
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primes p=(b*d+1) /4.©®

In order to make EDLP on E/F, insolvable by
the square root attacks, the prime p must be more than
30 digits. For this range of p, the procedure enables us
to construct such an elliptic curve in a practical time
on a 32 bit personal computer. We show an example
for the case d=163.
Example (d=163)
(p-2) With a deterministic primality test,®® we
search a prime represented by

4p—1=163 * b*
for an integer b. As a result, we get
p=100000000000088850197895528571,
4p—1=163 * 49537740461829%,
(p-5) Using Eq.(1), we get
E: y*=x*+a % x+b
with
a=69539837553085885644029440781,
5=21802102936259342347911085254.
(p-6) Using Eq.(2), we get the twist E; of E/F),
E: y*=x+a% x+b
with
a1=43531628057513197797823922759,
b =63587736557778697031371252331.
(p-7) Let E (Fp) 2X = (x0, yo) and
E (Fp) 2X,=(x1, 1) where
X0=0,
J0=12971938705191708351900354586,
x1=27229586870506933835795892372,
n=7702158417267369660619109104.
Calculate pX, pX; and we get
pXi=0,pX=+0.
So E\/F,, generated by X, has an order p.

Using the above E;/F, and X;, we construct
EDLP on E; to the base X;. Then up to the present, it
is secure for all considerable attacks. We implemented
the procedure to construct such elliptic curves E/F,
on a 32 bit personal computer (20 MHz). It took the
average 59.9 seconds to construct such E;/F), in the
range of p&[10%,4 % 10®]. We found the running
time of the procedure is dominated by the step (p-2).
If we use a probabilistic primality test’¥ in the step
(p-2), the running time would be faster.

For other cases of d, we could construct such
elliptic curves in 65.2~83.2 seconds. The difference in
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the running time for the different integer d should be
further investigated.

6. Conclusion

We have clarified the condition for which the
MOV reduction is invalid. For a small prime p, we
have proved that we can reduce EDLP on E/Fpr, in an
expected polynomial time, to EDLP that we can apply
the MOV reduction to and whose size is same as or less
than the original EDLP (theorem 3). For a large p, we
have proved that EDLP on E/F, cannot be reduced to
DLP in any extension field of F, by any embedding
(theorem 4). We have also given a procedure to
construct an elliptic curve in the sense of theorem 4.
With the procedure we have shown we can construct
an elliptic curve E/F, that can be used for secure
cryptosystems in a practical time on a 32 bits computer.
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