JAIST Repository
https://dspace.jaist.ac.jp/

K Generalized MMM-algorithm| Secure ag:
DPA, and RPA

Author(s) Miyaji, Atsuko

o Lecture Notes in Computer| Science, y

Citation
282-296

Issue Date 2007

Type Journal Article

Text version aut hor

URL http:/7 /7 hdl handle.net/ 10119/ 4438
This is the author-createfd version ¢
At suko Mivyaji, Lecture Nofes in Comj

Rights 4817/ 2007, 2007, 282-296.[The origine

: i s available at www. sprinperlink. col
http://www. springerlink.cpm/content/
2m8/
I nformation Security and Lryptol ogy

o 10th I nternational Confprence Seol

Description .
November 29-30, 2007 prpceedings |/
Nam, Gwangsoo Rhee (eds.)

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Generalized MMM-algorithm Secure against
SPA, DPA, and RPA

Atsuko Miyaji *

Japan Advanced Institute of Science and Technology
{miyaji}@jaist.ac.jp

Abstract. In the execution on a smart card, elliptic curve cryptosys-
tems have to be secure against side channel attacks such as the simple
power analysis (SPA), the differential power analysis (DPA), and the
refined power analysis (RPA), and so on. MMM-algorithm proposed by
Mamiya, Miyaji, and Morimoto is a scalar multiplication algorithm se-
cure against SPA, DPA, and RPA, which can decrease the computational
complexity by increasing the size of a pre-computed table. However, it
provides only 4 different cases of pre-computed tables. From the practical
point of view, a wider range of time-memory tradeoffs is usually desired.
This paper generalizes MMM-algorithm to improve the flexibility of ta-
bles as well as the computational complexity. Our improved algorithm is
secure, efficient and flexible for the storage size.

keywords elliptic curve, DPA, RPA, SPA

1 Introduction

Elliptic Curve Cryptosystems: The elliptic curve cryptosystem (ECC) cho-
sen appropriately can offer efficient public key cryptosystems [1]. Thus, elliptic
curve cryptosystems have been desired in various application such as a smart
card, whose memory storage and CPU power are very limited. The efficiency of
elliptic curve cryptosystems depends on the implementation of scalar multipli-
cation kP for a secret key k and an elliptic-curve point P.

Side Channel Attacks on ECC: Side channel attacks monitor power con-
sumption and even exploit the leakage information related to power consump-
tion to reveal bits of a secret key k although & is hidden inside a smart card [1].
There are two types of power analysis, the simple power analysis (SPA) and the
differential power analysis (DPA). SPA makes use of such an instruction per-
formed during a scalar multiplication that depends on the data being processed.
DPA uses correlation between power consumption and specific key-dependent
bits. The refined power analysis (RPA) over ECC is one of DPA, which exploits
a special point with a zero value such as (0,y) or (z,0) and reveals a secret key

* This study is partly supported by Grant-in-Aid for Scientific Research (B), 17300002.
and Yazaki Memorial Foundation for Science and Technology.

[9]. RPA is also called a Goubin-type attack. Not all elliptic curves are vulner-
able against RPA, but some curves in [18] are vulnerable against these attacks.
There exist countermeasures against SPA, DPA, and RPA in [3,16,14]. This
paper revisits the algorithm proposed by Mamiya, Miyaji, and Morimoto [14],
which is called MMM-algorithm?, here.

Overview of MMM-algorithm: MMM-algorithm uses a random initial point
(RIP) R, computes kP + R by dividing a scalar k into h x 1 blocks with a table
of pre-computed points based on the blocks, subtracts R from a result, and, fi-
nally, gets kP, where kP + R is computed from left to right without any branch
instruction dependent on the data being processed. A random initial point at
each execution of kP makes it impossible for an attacker to control a point P
as he needs since any point or register used in addition formulae is different at
each execution. Thus, MMM-algorithm is not only secure against SPA, DPA,
and RPA but also efficient scalar multiplication with a precomputed table. How-
ever, it provides only 4 available tables of 9, 15, 27, or 51 field elements?. Note
that MMM-algorithm with a table of 51 field elements is the most efficient in
a 160-bit elliptic curve even if more memory space is allowed to use. From the
practical point of view, the memory space allowed to use or the time complex-
ity required for cryptographic functions depends on each individual application.
Thus, in some application, MMM-algorithm might not be the best.

Our Contribution: In this paper, we generalize MMM-algorithm by dividing
a scalar k into h x v blocks and optimize the computation method of kP + R
to improve flexibility of tables as well as computational complexity, while being
secure against SPA, DPA, and RPA. It is called Generalized MMM-algorithm in
this paper, GMMM-algorithm in short. We also analyze the computational com-
plexity of GMMM-algorithm theoretically. Furthermore, we explore each best
coordinate between affine, (modified) Jacobian, mixed coordinate, etc [6] for
each division h x v of GMMM-algorithm according as the ratio of I /M, where
I/M represents the ratio of complexity of modular inversion against modular
multiplication. As a result, even in the same division as MMM-algorithm, our
optimization on coordinates can reduce the computational and memory com-
plexity since such optimization was not investigated in MMM-algorithm [14].
In facts, GMMM-algorithm with a table of 7 or 38 field elements can reduce
the computational complexity of MMM-algorithm with a table of 9 or 51 field
elements by 19% or 13.2% over for the range of I /M between 4 and 11, respec-
tively; and GMMM-algorithm with a table of only 19 field elements can work
faster than MMM-algorithm with a table of 51 field elements under the above
range of I /M. Thus, GMMM-algorithm is significantly efficient and flexible even
when the storage available is very small or rather large.

This paper is organized as follows. Section 2 summarizes the known facts on
elliptic curves and also reviews MMM-algorithm. Section 3 presents our GMMM-
algorithm and analyzes the computational complexity theoretically. Section 4
compares our results with the previous results.

! In their paper, MMM-algorithm is called BRIP or EBRIP.
2 More precisely, it uses 3, 5, 9, 17 elliptic-curve points in Jacobian coordinates.

2 Preliminaries

This section summarizes some facts of elliptic curves such as coordinate systems
and side channel attacks against elliptic curves, which refers to [6, 1].

2.1 Elliptic Curve

Let F, be a finite field, where p > 3 is a prime. The Weierstrass form of an
elliptic curve over F, in affine coordinates is described as

E/F, :y* =2® +ax +b (a,b € F,,4a® + 27b* £ 0).

The set of all points P = (z,y) € F, x F, satisfying E with the point at
infinity O, denoted by E(F,), forms an abelian group. Let P, = (x1,y:1) and
P, = (z3,y2) be two points on E(F,) and P;s = P, + P, = (x3,y3) be the sum.
Then the addition formula Add (resp. doubling Dbl) in affine coordinate can be
described by three modules of Add,(Py, P2), Add|(a), and Addy (Py, P2, A) (resp.
Dbl,(P1), Dbli(a) and Dblni(Pi, A)) as in [15]. Each module means preparation
for 1 inversion, computation of 1 inversion and computation without inversion,
respectively. Then the addition formulae are given as follows.

Add(Py, P») (P # £P) DblI(P)
Addp(Pl,Pg)Z Q@ =Ty — T Dblp(Pl) a = 2y1
Add(): A =1 Dbli(a): A =1
Addni(Pr, Py, A): vy = (Y2 —y1)A Dblni(P1,A): vy = (3z% + a)\
x3 =7 — 21 — T x3 =7 — 21,
ys =v(@1 —a3) — ys =v(@1 —a3) —

Let us denote the computational complexity of an addition (resp. a doubling)
by t(A+.A) (resp. t(2.A4)) in affine coordinate and multiplication (resp. inversion,
resp. squaring) in [, by M (resp. I, resp. S), where A means affine coordinates.
For simplicity, it is usual to neglect addition, subtraction, and multiplication
by small constant in F, to discuss the computation amount. Then we see that
t(A+A) =1+2M + S and t(2A) = I +2M + 2S. For the sake of convenience,
let us denote the computational complexity of Add, and Addy; (resp. Dbl, and
Dblni) by t(A + A)nr (resp. t(24),1), which represents the total computational
complexity of an addition (resp. doubling) without inversion.

Both addition and doubling formulae in affine coordinate need one inversion
over F,, which is more expensive than multiplication over F,. Affine coordinate
is transformed into Jacobian coordinate, where the inversion is free. We set
v =X/Z% and y = Y/Z?, giving the equation

E;:Y?=X%4aXZ*+b25.

Then, two points (X,Y, Z) and (r*X,r?Y,rZ) for some r € F} are recognized as
the same point. The point at infinity is transformed to (1, 1,0). The doubling and
addition formulae in Jacobian coordinate are represented in [6]. The computation
time of addition (resp. doubling) in Jacobian coordinate are t(J+J) = 12M +4S

(resp. t(2J) = 4M + 6S), where J means Jacobian coordinate. Regarding the
iterated doubling, that is the computation of 2% P, the iterated doubling formula
in Jacobian coordinate [10] can work efficiently with ¢(2¥7) = 4wM + (4w +2)S.

In addition to affine and Jacobian coordinates, there exists their combination
coordinate, called mixed coordinate [6]. In the case of mixed coordinate, let us
denote by t(C! + C? = C?) the time for addition of points in coordinates C! and
C? giving a result in coordinates C3, and by #(2C! = C?) the time for doubling a
point in coordinates C! giving a result in coordinates C2. Their performance is
summarized in Table 2.1.

Table 2.1. Computational complexity of addition and doubling of elliptic curve

| |c0mputational complexity” |c0mputational complexity|
t(A+ A=) 4M +2S t2A=7) 2M + 4S8
tA+T =J) 8M + 3S t(2J) 4M +6S
A+ A) OIM +S+1 t(2A) OM +25+1
T+) 12M + 48 t(2¥7) dwM + (4w +2)S
H(JT+T=A 15M +55+ 1 t(J — AT 3SM+S+1

t . the computational complexity of transformation from Jacobian to affine coordinate.
The computational complexity without inversion is denoted by t(J — A)y;.

Let us discuss the difference between these coordinates. Regarding additions,
we could roughly estimate that t(A+ A =7) <t(A+T =T) <t(A+A) <
t(J + J). This means an addition in mixed coordinate is considerably fast but
that of Jacobian coordinate is rather slow. Therefore, an addition of Jacobian
coordinate had better be avoided. Regarding doublings, we could roughly esti-
mate that t(24 = J) < t(27) < #(2A). This means a doubling in Jacobian
coordinate is considerably fast but that of affine coordinate is rather slow, which
had better be avoided.

The major problem in affine coordinate is that it requires 1 inversion when
it is executed. However, an addition of affine coordinate should be revisited if
we consider the above fact of ¢(A4 + A) < t(J + J). Furthermore, if several
additions or doublings are executed in parallel, then we can make use of the
following Montgomery’s trick [17] to reduce the total number of inversions.

Algorithm 1 (Minv[n]) Montgomery’s trick

Input: «ag, - ,apn-1,p

Output: agl mod p, - - - ,a;il mod p

1. AOZCMO

2. For i=1ton—1: \; = \;_1a; mod p.

3. I=X\' modp

4. For i=n—1to 0: \;=I\;_imodp. [=Ia; modp
5. Output {Xo, - -, An_1}

The Montgomery’s trick Minv[n] works with 3(n —1) multiplications and 1 inver-
sion to compute n inversions, whose computation time is denoted by ¢(Minv[n]) =
3(n — 1)M + I. Therefore, if several additions or doublings in affine coordinates
are executed in parallel, then the total number of inversions can be reduced
to 1 by executing Add,(P;,P) and Dbl,(P;) in parallel, applying the Mont-
gomery’s trick to execute Add|(«) and Dbl|(«) simultaneously, and finally exe-
cuting Addni(Py, Py, \) and Dbly (P, A) in parallel.

2.2 Power analysis

There are two types of power analysis, SPA and DPA, which are described in
[1]. RPA is one of DPA, which uses characteristic of some elliptic curve to have
a special point [9].

Simple Power Analysis: SPA makes use of such an instruction performed dur-
ing a scalar multiplication that depends on the data being processed. In order
to be resistant to SPA, any branch instruction of scalar multiplication should
be eliminated. There are mainly two types of countermeasures: the fixed pro-
cedure method and the indistinguishable method. The fixed procedure method
deletes any branch instruction conditioned by a secret scalar k such as the add-
and-double-always algorithm. The indistinguishable method conceals all branch
instructions of scalar multiplication algorithm by using indistinguishable addi-
tion and doubling operations, in which dummy operations are inserted.
Differential Power Analysis: DPA uses correlation between power consump-
tion and specific key-dependent bits. In order to be resistant to DPA, power
consumption should be changed at each new execution. There are mainly 3
types of countermeasures, the randomized-projective-coordinate method (RPC),
the randomized curve method (RC), and the exponent splitting (ES) [3]. RPC
uses Jacobian or Projective coordinate to randomize a point P = (z,y) into
(r?z,r3y,r) or (rz,ry,r) for a random number r € [F;, respectively. RC maps
an elliptic curve into an isomorphic elliptic curve by using an isomorphism map of
(z,y) to (x, Py) for ¢ € Fy. ES splits a scalar and computes kP = rP+(k—r)P
for a random integer r.

Refined Power Analysis: RPA reveals a secret key k by using a special elliptic-
curve point with a zero value, which is defined as (z,0) or (0,y). These special
points of (z,0) and (0,y) can not be randomized by RPC or RC since they
still have a zero value such as (r?z,0,7) (resp. (rz,0,7)) and (0,73y,r) (resp.
(0,7y,r)) in Jacobian (resp. Projective) coordinate after conversion. ES can re-
sist RPA because an attacker cannot handle an elliptic curve point in such a way
that a special point with zero value can appear during an execution.

2.3 A review of Mamiya-Miyaji-Morimoto-Algorithm

We briefly review MMM-algorithm [14]. Assume that the size of the underlying
filed and the scalar k£ are n bits. MMM-algorithm first chooses a random initial
point (RIP) R, computes kP+ R from left to right without any branch instruction

dependent on the data being processed, subtracts R from a result, and gets kP.
By using a random initial point at each execution of exponentiation, any point or
any register used in addition formulae changes at each execution, which prevents
an attacker from controlling a point P itself as he needs. Thus, it is resistant to
SPA, DPA, and RPA3.

Let us briefly review MMM-algorithm (See Figure 1). First divide n bits into
h blocks and choose a random point R € E(F,). Then, MMM-algorithm com-

11T TR+ (kpyyg o ovvvee - E ko) P
putes kP + R by representing kP + R to ()R+ (1 A 1 0)
b b
and executing the (h + 1)-simultaneous scalar multiplication, where b = [£].

The simultaneous scalar multiplication first constructs a table of (2" — 1) points
T[0, s] for an h-bit integer s = Z?;()l 52" (s¢ € {0,1}),

h—1
T[0,s] =) s:2"P - R,
=0

and then repeats 1 addition to a table point 70, s] and 1 doubling from left to
right in a b-bit block. The following is the detailed algorithm. In this paper, we
also denote the algorithm by h-MMM-algorithm where we want to describe the
number of divisions h.

Algorithm 2 (h-MMM-algorithm)

Input: k= E?;()l k[i]2t, P

Output: kP

0. kj =Ygy k[bl +512¢ (j€{0,---,b—1}).

1. T'[0] =randompoint().

Table construction

2. Compute B[i] = 2"P for 0<i < (h—1).

3. Compute T0,s] = ?:_01 s¢B[f] — T[0] for an h-bit integer
5= E?;()l 502¢ (s € {0,1}). Therefore, T[0,0] = —T0].

Main computation

4. For j=b—1 to 0: T[0] =2T[0] + T[0, k;].

5. Output T[0] + T[0,0].

3 Generalized MMM-Algorithm

In this section, we give the generalized MMM-algorithm to improve the flexibility
of tables as well as computational complexity, while it can resist SPA, DPA, and
RPA. Our idea is inspired by an exponentiation algorithm with a fixed point [13,

% An SPA in the chosen-message-attack scenario [19] that uses a point P with order 2
is applied to MMM-algorithm. However, we can easily avoid this attack by checking
2P # O before computing kP.

b bits

Fig. 1. MMMe-algorithm

12]*. Let k be n bits, h and v be positive integers, [%] = a, and [%] = b. Let us
also use notation such as t(24 = J), t(2¥J), t(J = A)nr1, t(Minv[n]), and so
on, defined in Section 2.

3.1 Algorithm Intuition

MMM-algorithm computes kP + R by dividing & into h x 1 blocks and executing
the (h + 1)-simultaneous-scalar multiplication of b-bit numbers, where [3] = a
and [$] = b. Our target is to generalize MMM-algorithm by dividing % into
h x v blocks and executing the (h+ 1)-simultaneous-scalar multiplication of b-bit
numbers. Therefore, MMM-algorithm is a special case of our generalization with
(h,v) = (h,1).

Then, the issues to resolve are: how to embed a random point R into A X v
blocks efficiently; and how to find the optimal (h,v) for the generalized MMM-
algorithm together with the best coordinates. Regarding the former issue, one
way is to use v random points R;, compute kP + R; + --- R,, and subtract
Ry + -+ + R, from a result. Another way, which reduces the computational
complexity, is to use a random point R in the same way as MMM-algorithm,
compute kP + vR, and subtract vR. Regarding the latter issue, the best com-
bination of coordinates in table construction, table points themselves, and main
computation should be investigated for each (h,v) from the point of view of both
computational and memory complexity.

3.2 GMMM-algorithm

Here we show the generalized MMM-algorithm, which is called GMMM-algorithm
in this paper. The brief idea of GMMM-algorithm is described in Figure 2.

* The fixed-point exponentiation algorithm divides an exponent k into h x v blocks
and makes a pre-computed table based on the blocks. The application to elliptic
curves is discussed in [5]. MMM-algorithm could be considered as a combination of
the exponentiation algorithm with h X 1 blocks and a random initial point.

Algorithm 3 ((h,v)-GMMM-algorithm)

Input: k= E?:_Ol k[i]2¢, P

Output: kP

0. kij =S4y klal+j +bi]2 ((i,5) € {0,-++ ,v =1} x {0, ,b—1}).

1. For i=0 to v—1: R[i] =randompoint().

Table Construction

2. Compute B[i,(] =2¢*t"P for 0<i<(v—1) and 0< ¢ < (h—1).
Then B[0,0] = P.

3. Compute T7i,s] = ?:_01 s¢B[i,¢] — R[i] for 0<i< (v—1) and an h-bit
integer s = Z?;()l 5¢2¢. Then T[i,0] = —RJ[i] for 0<i< (v—1).

Main computation

4. Initialization: T[0] = R[0]+ -+ R[v—1]. T[1] = -T]0].

5. For j=b—1 to 0 by —1

main-loop: T'[0] = 2T[0] + Ef;ol TT[i, ki]-

6. Finalization: T[0] =T1[0] + T[1].
7. Output T[0].
O[T -~ TJp[T - T[T - TJR[T - T
e
h .
< P a bits .
N
—> —>
\b bits bbim/
—~
v
Fig. 2. Generalized MMM-algorithm
Remark:

1. To reduce the computational and memory complexity, 1 random point R
would be used instead of v points {R[i]}. In this case, the initialization step in
Algorithm 3 is changed to T'[0] = vR; and only T'[0,0] = —R in the step 3 in
Algorithm 3 is kept during the execution.

2. In the current GMMM-algorithm, one fixed power-consumption pattern is
observed for any k with a bit length of n < buh for the sake of a brief description.
However, GMMM-algorithm can be described in such a way that 1 addition is
saved for the first buv — a rounds if the (v — 1)-th block are not full.

3. GMMM-algorithm can also work with two divisions of (hy,v;) X (ha,vs) to

give the further wide range of time-memory tradeoffs, which will be shown in
the final version of this paper.

Theorem 1 (Correctness). GMMM-algorithm can compute kP correctly for
a given elliptic-curve point P and a scalar k = Z?;()l k[i]2¢.

proof: For elliptic-curve points P, R[0],- -, R[v—1] and a scalar k, set BJi, (] =
2¢+0iP for 0 < i < (v—1) and 0 < £ < (h— 1) T[i,s] = ;7—01 szB[' (] — RJi] for
0 <i < (v—1) and an h-bit integer s = Zz o 5028 iy = L k[al + j + bi]2*
((i,5) € {0,-++ v = 1} x {0,--- ,b — 1}), and T[0] = R[0] +-- -+ R[v — 1]. Then,
by describing 1 as a (b + 1)-bit integer such as 1 = 111--- 11, we get

b

b—1v—1 /h—1
kP + R[0]+ -+ Rlv— 1] = T[0] + > _ (Z klal 4 bi + j]2°¢T0 I p — 2jR[i]>
j=0 i=0 \¢=0

— v— h—1
=T1[0] + Z 2y (Z E[al + bi + j]2°¢F%P — RJi])
7=0

i= =0
b—1 v—1
=T[O]+ Y 20> T[i,kij].
j=0 i=0

Therefore, the main-loop in GMMM-algorithm computes kP + R[0]+- - -+ R[v—
1] and, thus, GMMM-algorithm can compute kP correctly. O

Theorem 2 (Security). GMMM-algorithm is secure against SPA, DPA, and
RPA.

proof: GMMM-algorithm lets the power-consumption pattern be fixed regard-
less of the bit pattern of a secret key k, and thus it is resistant to SPA. GMMM-
algorithm makes use of a random initial point at each execution and let all
variables {T'[i, s]} be dependent on the random point. Thus, an attacker cannot
control a point in such a way that it outputs a special point with a zero-value
coordinate or zero-value register. Therefore, if { R[¢]} is chosen randomly by some
ways, GMMM-algorithm can be resistant to DPA and RPA. O

In order to enhance the security against address-bit DPA® (ADPA) and an SPA
in the chosen-message-attack scenario, the same discussion as MMM-algorithm
holds in GMM-algorithm.

3.3 The Optimal Division with the Best Coordinate
Both MMM- and GMMM-algorithms aim at a random-point scalar multipli-
cation and, thus, each execution starts with the table construction. Therefore,

5 ADPA is one of DPA, which uses the leaked information from the address bus and
can be applied on such algorithms that fix the address bus during execution.

10

both are evaluated by the total complexity of the table construction and main
computation. MMM-algorithm has employed Jacobian coordinate in the whole
procedures. Therefore, any pre-computed point is given in Jacobian coordinate as
well as any computation being done in Jacobian coordinate. However, it should
be revisited. Because the computational complexity of addition in Jacobian co-
ordinate is considerably large even if iterated doublings in Jacobian coordinate
compute the table construction efficiently (see Table 2.1).

Let us investigate the optimal (h,v) with the best coordinates in GMMM-
algorithm by separating two phases of table construction and main computation.
The table-construction phase computes, first, hv base points Bl[i, £] by iterated
doublings and, then, (2" — 1 — hv) points of T[i,s] = Y.i_q s¢Bli,{] — R[i] by
only additions. As for the iterated doublings, Jacobian coordinate is the best
coordinate as we have described the above. However, the base points themselves
should be converted into affine coordinate to reduce the computational com-
plexity of the next computation of T[i, s]. For the conversion from Jacobian to
affine coordinate, we can apply Montgomery trick (Algorithm 1). Then, all base
points BJi, f] can be transformed into affine coordinate with the computational
complexity of 3(2hv — 3)M + (hv — 1)S + I. The computation of T[4, s] can be
executed simultaneously for each hamming weight of s = Z?;Ol 5¢2¢. Therefore,
affine coordinate with the Montgomery trick would be the best. By the above two
procedures, we get a pre-computed table with affine coordinate. On the other
hand, the main computation repeats additions to each pre-computed point T'[z, s]
with affine coordinate and 1 doubling. Therefore, there exist two methods. One
is mixed coordinate, in which main computation is done in Jacobian coordinate
while pre-computed points are given in affine coordinate. The other is affine
coordinate with the Montgomery trick, in which main computation is done in
affine coordinate by applying the Montgomery trick in each iteration. Then, only
1 inversion is required in each iteration.

Let us summarize the above discussion as follows:

— Table construction:
e Repeated-doubling phase: Jacobian coordinate,
e Simultaneous-addition phase: affine coordinate with the Montgomery
trick,
— Main computation:
e case 1: mixed coordinates of Jacobian and affine coordinates,
e case 2: affine coordinate with the Montgomery trick.

The best combination of coordinates depends on (h,v) and the ratio of I/M,
which will be shown in Section 3.4.
3.4 Performance

Let us discuss the memory and computational complexity of (h,v)-GMMM-
algorithm in both cases 1 and 2, where the case 1 constructs a table by repeated
doublings in Jacobian coordinate and simultaneous additions in affine coordinate

11

with the Montgomery trick and executes the main computation in mixed coordi-
nates of Jacobian and affine coordinates; and the case 2 constructs a table in the
same way as the case 1 and executes the main computation in affine coordinate
with the Montgomery trick. To make the discussion simple, we assume that 1
random point is used for 1 execution in the same way as MMM-algorithm.

As for the memory complexity, a table with (2" — 1)v points are required,
which are represented in affine coordinate in both cases. In addition, 3 points of
T[0,0], T[0], and T'[1] are used. All these points are given in affine coordinate in
the case 1, while, in the case 2, only T'[0, 0] is given in affine coordinate and the
others are given in Jacobian coordinate.

Let us investigate the computational complexity by separating two phases of
the table construction and the main computation. First, let us discuss the table
construction phase, in which both cases 1 and 2 employ the same procedure. The
table construction consists of the repeated-doubling part and the simultaneous-
addition part. The repeated-doubling part computes {B[i, ¢]} by executing the
iterated doublings in Jacobian coordinate and transforming their results in Jaco-
bian coordinate to affine coordinate. Thus, the total computational complexity
of the repeated-doubling part is

t(2A = J)+t(28v=D+alh=D=1 7y L (ho—1)t(T — A)pr+t(Minv[hvo — 1)) if vh # 1.

In the case of vh = 1, we can skip the repeated-doubling part. The simultaneous-
addition phase computes T'[i, s] = ?;01 s¢Bl[i, ¢] — RJ[i] simultaneously for each
hamming weight of s = Z:ol 5¢2¢. Therefore, it starts with the hamming weight
1 of s, that is, computes {B[i, £] — R[i]}¢,; simultaneously by executing additions
in affine coordinate together with Montgomery’s trick. Thus, the total compu-
tational complexity of the simultaneous-addition part is

Zzh; <v (?) HA + A)ns + t(Minv[o (f;)])) ,

where (}:) means the combination to choose i elements from A elements. Then,
we’ve got a precomputed table in affine coordinate.

Let us discuss the main-computation phase, in which each case employs each
different procedure. The main-computation phase consists of initialization, main
loop, and finalization (step 4, 5, and 6 in Algorithm 3, respectively). Let us focus
on the case 1, that is the mixed coordinates of Jacobian and affine coordinates.
The computational complexity of the main loop is

a-t(T+A=7T)+b-t(27).

The computational complexity of initialization (resp. finalization) is that to com-
pute T'0] = vR for R in affine coordinate giving a result in Jacobian coordinate
(resp. T'[0] + T'[1] of points in Jacobian coordinate giving a result in affine coor-
dinate).

Let us focus on the case 2 of affine coordinate with the Montgomery trick.
As for the computation of the main-loop, a tournament structure with v + 2

12

(0] T[0] 70, ko] T[1, k5] T —2,ky—2;] Tv—1ks-1,;]

v+ 2 leaves

Fig. 3. Main computation of GMMM-algorithm in the case 2

leaves is applied, where v points of T'[i, k; ;] and doubling points of T'[0] are in
the leaf of the tournament structure (see Figure 3). We pairwise add points at
leaves with a common parent, give its sum to the parent node, and carry out
these procedures at each level to the root. By applying the Montgomery’s trick
to each level, only 1 inversion is required in each level. The simplest case is the
binary tree case, which is described in [15]. Then, the computational complexity
of the main loop is

a-t(A+ A)nr +b-t(2A)ns + b - t(TournaMinv[v + 2]),

where ¢(TournaMinv]v + 2]) denotes the computational complexity to get all in-
versions of (v + 2)-point summation according to the tournament structure with
(v + 2) leaves. The computational complexity of initialization (resp. finalization
) is that to compute T'[0] = vR of R in affine coordinate giving a result in affine
coordinate (resp. T'[0]+T'[1] of points in affine coordinate giving a result in affine
coordinate).

The above discussion is summarized in the following theorem.

Theorem 3. The total computational complezity of (h,v)-GMMDM-algorithm

with 1 random point, Comp, is given as follows:

1. In the case 1: mized coordinates in the main computation,

Comp = t(2A = J) + (22~ Fe=D=1 7y 4 (hy — 1)t(T — A)nr + t(Minv[hv — 1])
+ Y0y (0 A+ A + t(Minv[v (D)) + t(vA = T)
+a-t(TJT+A=T)+b-t2T)+t(T+T =A) (if vh #1).

Comp =t(A+A)+a-t(T+A=T)+b-t27)+t(T + A= A) (ifvh=1).

2. In the case 2: affine coordinate with the Montgomery’s trick in the main

computation

Comp = t(2A J) 4 (26 DFeth=D=1 7y 4 (hy — 1)t(T = A)nr + t(Minv[hv — 1])
+ 20 () HA+ A)ur + t(Minv[o(D)])) + t(vA)
+a-t(A+A)nr +b-t(2A)nr +b - t(TournaMinv[v + 2]) + t(A + A) (if vh # 1),

where [3] = a, [2] = b, and t(vA) (resp. t(vA = [J)) denote the time to

13

compute v-multiple points in affine coordinate giving a result in affine (resp.
Jacobian) coordinate.

4 Comparison

In this section, we compare our algorithm with the previous countermeasures to
SPA, DPA, and RPA, those are ES [3], randomized window algorithm [16], LRIP
[11], and MMM-algorithm [14]. Here, M, S, or I represents the computation
amount of modular multiplication, square, or inversion, respectively. In order to
make comparison easier, the computation complexity is also estimated in terms
of M and I by assuming that S = 0.8M as usual and that S = 0.8M and
I =4M or I = 11M (typically the ratio® I/M is between 4 and 11). Memory
complexity is evaluated by the number of finite-field elements, where 1 point in
Jacobian (resp. affine) coordinate consists of 3 (resp. 2) field elements.

Table 4.1 shows the computational and memory complexity of GMMM-
algorithm with cases 1 and 2 in the case of a 160-bit scalar. These are ar-
ranged in ascending order of memory. Therefore, if we focus on either case of
GMMM-algorithm, these are also arranged in descending order of computational
complexity. However, the case 1 has advantage over the case 2 if the ratio of in-
version over multiplication is rather large and, thus, better case depends on the
ratio of I/M. We also compute a break-even point for the borderline between
both cases. The break-even point shows I /M when the computational complex-
ity of GMMM-algorithm with the case 1 is equal to that with the case 2 under
S =0.8M. Thus, if I/M is smaller than the indicated value, GMMM-algorithm
with the case 2 is more efficient than that with the case 1. For example, (3, 1)-
GMMM with the case 1 is more efficient than (3,2)-GMMM with the case 2 if
and only if I/M > 8.4. Each division of (1,1), (2,1), (3,1) or (4,1)-GMMM-
algorithm corresponds to that of 1, 2, 3, or 4-MMM-algorithm, respectively. The
difference is: MMM-algorithm uses Jacobian coordinate in the whole execution
but GMMM-algorithm with the case 1 employs mixed coordinate. Note that
GMMDM-algorithm with the case 2 can not be applied to these cases.

Table 4.2 shows the computational and memory complexity of previous algo-
rithms in the case of a 160-bit scalar, where Jacobian coordinate is used for the
whole computation and a result is transformed into affine coordinate according
to their original proposals.

By generalizing MMM-algorithm to GMMM-algorithm, we see that more
flexibility, that is a wider range of time-memory tradeoffs, can be realized. Fur-
thermore, the optimization of coordinates can reduce both the computational
complexity and memory even if both MMM and GMMM-algorithms use the
same division. In fact, GMMM-algorithm performs better than any previous
method under the above realistic assumptions concerning the ratio I/M. For
example, (1,1)-GMMDM-algorithm with the case 1 can reduce the computational

6 Generally, the ratio of /M depends on the algorithm used and the size and type of
the finite field. The ratio in [7,2] (resp. [6]) is between 4 and 10 (resp. 4 and 11) .
So here we adopt the wider range. A discussion on the ratio can be found in [4].

14

complexity of 1-MMM-algorithm by 19% over for the range of I/M and also
reduce the memory size. (4,1)-GMMM-algorithm with the case 1 can reduce the
computational complexity of 4-MMM-algorithm by 13.2% over for the range of
I/M and also reduce the memory by 25.4 %. Note that 4-MMM-algorithm is the
most efficient case in MMM-algorithm?. However, even (2, 2)-GMMM-algorithm
with the case 2 or (3,1)-GMMM-algorithm with the case 1 can work faster than
4-MMM-algorithm under the range of I/M < 7.9 or 49.3 and also reduce the
memory by 64.8% or 62.8%, respectively.

Table 4.1. Performance of GMMM-algorithm (160 bits)

division (h,v) Computational complexity Memory*|I/M*
case 1 or 2 S=08M I=4M I =11M

(1, l)T-Case 1| 1933M + 14455 + 21 3089M + 2I| 3097M 3111M 7
(1,2)-case 2 |1052M + 648S + 1641(1570.4M + 1641|2226.4M 3374.4M 10
(1,2)-case 1 | 1945M + 1294S + 3I| 2980.2M + 3I|2992.2M 3013.2M 12 8.8
(2, 1)T—case 1| 1305M + 1051S + 41| 2145.8M + 41|2161.8M 2189.8M 14
(2,2)-case 2 881M + 6545 + 85I| 1404.2M + 851(1744.2M 2339.2M 18
(2,2)-case 1 1334M + 9805 + 41 2118M + 41| 2134M 2162M 20 8.8
(3, l)T-Case 1| 1128M +934S + 51| 1875.2M + 51|1895.2M 1930.2M 22
(3,2)-case 2 873M + 6725 + 60I| 1410.6M + 60I|1650.6M 2070.6M 34 8.4
(4,1)-case 1| 1051M + 8655 + 61| 1743M + 61| 1767M 1809M| 38
(4,2)-case 2 919M + 6825 +47I| 1464.6M + 4711652.6M 1981.6 M 66 6.8

LA They correspond to h-MMM-algorithm. By # field elements. * : break-even point
Table 4.2. Comparison of known countermeasures (160 bits)

Computational complexity Memory
S=08M |[I=11M
ES [3] 2563M + 16015 + I|3843.8M + I|3854.8M | 14°
strengthened window [16]{1643M + 1298S + I|2681.4M + I|2692.4M| 15
LRIP [11] 2563M + 12835 + I|3589.4M + I1|3600.4M 12
1-MMM [14] 2563M + 16015 + I|3843.8M + I|3854.8 M 9
2-MMM 1651M + 11395 + I12562.2M + I|2573.2M 15
3-MMM 1395M + 1007S + I|2200.4M + I|2211.4M 27
4-MMM 1315M + 947S + 1|2072.4M + 1|2073.4M 51

®: Strictly, it needs 4 elliptic curve points and 2 field elements.

5 Conclusion
In this paper, we have generalized MMM-algorithm, which is the secure scalar
multiplication with using a random initial point. Our improved algorithm is sig-

T 5-MMM-algorithm is not as efficient as 4-MMM-algorithm although it requires more
memory than 4-MMM-algorithm.

15

nificantly efficient and flexible and can work efficiently even when the storage
available is very small or quite large. We have also given the formulae of the
computational complexity for any division of the proposed algorithm theoreti-
cally, which helps developers to choose the best division suitable for the storage
available.

References

1.

10.

11.

12.

13.

14.

15.

R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman
& Hall/CRC, 2006.

I. F. Blake, G. Seroussi, and N. P. Smart, FElliptic Curves in Cryptology, LMS
265(1999), Cambridge University Press.

M. Ciet and M. Joye, “(Virtually) Free randomization technique for elliptic curve
cryptography”, Proceedings of ICICS2003, LNCS 2836(2003), Springer-Verlag,
348-359.

M. Ciet, M. Joye, K. Lauter, and P. L. Montgomey, “Trading inversions for multi-
plications in elliptic curve cryptography”, Designs, Codes and Cryptography, Vol.
39, No. 2(2006), Springer Netherlands, 189-206.

H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponentiation”, Pro-
ceedings of ICICS’97, LNCS 1334(1997), Springer-Verlag, 282-290.

H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponentiation us-
ing mixed coordinates”, Advances in Cryptology-Proceedings of ASIACRYPT’98,
LNCS 1514(1998), Springer-Verlag, 51-65.

C. Doche, T. Icart, and D. R. Kohel, “Efficient scalar multiplication by isogeny
decompositions”, Proceedings of PKC2006, LNCS 3958, 191-206.

K. Eisentrager, K. Lauter, and P. L. Montgomey, “Fast elliptic curve arith-
metic and improved Weil pairing evaluation”, Proceedings of CT-RSA2003, LNCS
2612(2003), Springer-Verlag, 343-354.

L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems”,
Proceedings of PKC2003, LNCS 2567(2003), Springer-Verlag, 199-210.

K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara, “Fast implementa-
tion of public-key cryptography on DSP TMS320C6201”, Proceedings of CHES’99,
LNCS 1717(1999), Springer-Verlag, 61-72.

K. Itoh, T. Izu, and M. Takenaka, “Efficient countermeasures against power analy-
sis for elliptic curve cryptosystems”, Proceedings of CARDIS 2004, Kluwer, 99-114.
C. H. Lim and P. J. Lee, “More flexible exponentiation with precomputation”, Ad-
vances in Cryptology-Proceedings of Crypto’94, LNCS 839(1994), Springer-Verlag,
95-107.

N. Pippenger, “On the evaluation of powers and related problems (preliminary
version)”, 17th annual symposium on foundations of computer science, IEEE Com-
puter Society, 1976, 258—263.

H. Mamiya, A. Miyaji and H. Morimoto. “Secure elliptic curve exponentiation
against RPA, ZRA, DPA, and SPA.” IEICE Trans., Fundamentals. vol. E89-A,
No0.8(2006), 2207-2215.

P. K. Mishra, P. Sarkar, “Application of Montgomery’s trick to scalar multipli-
cation for EC and HEC using fixed base point”, Proceedings of PKC2004, LNCS
2947, 41-57.

16

16

17.

18.

19.

. B. Moller, “Parallelizable elliptic curve point multiplication method with resis-
tance against side-channel attacks”, Proceedings of ISC2002, LNCS 2433(2002),
Springer-Verlag, 402-413.

P. L. Montgomery, “Speeding the Pollard and elliptic curve methods for factoriza-
tion”, Mathematics of Computation, 48(1987), 243-264.

Standard for efficient cryptography group, specification of standards for efficient
cryptography. Available from: http://www.secg.org

S. M. Yen. W. C. Lien, S. Moon, and J. Ha, “Power analysis by exploiting chosen
message and internal collisions - Vulnerability of checking mechanism for RSA-
Decryption”, Proceedings of Mycrypt 2005, LNCS 3715(2005), Springer-Verlag,
183-195.

