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On the Success Probability of χ2-attack on RC6

Atsuko Miyaji� and Yuuki Takano

Japan Advanced Institute of Science and Technology.
{miyaji, ytakano}@jaist.ac.jp

Abstract. Knudsen and Meier applied the χ2-attack to RC6. The χ2-attack
can be used for both distinguishing attacks and key recovery attacks. Up
to the present, the success probability of key recovery attack in any χ2-
attack has not been evaluated theoretically without any assumption of
experimental results. In this paper, we discuss the success probability of
key recovery attack in χ2-attack and give the theorem that evaluates the
success probability of a key recovery attack without any assumption of
experimental approximation, for the first time. We make sure the accu-
racy of our theorem by demonstrating it on both 4-round RC6 without
post-whitening and 4-round RC6-8. We also evaluate the security of RC6
theoretically and show that a variant of the χ2-attack is faster than an ex-
haustive key search for the 192-bit-key and 256-bit-key RC6 with up to 16
rounds. As a result, we succeed in answering such an open question that a
variant of the χ2-attack can be used to attack RC6 with 16 or more rounds.

Keywords : block cipher, RC6, χ2 attack, statistical analysis

1 Introduction

The χ2-attack makes use of correlations between input (plaintext) and output
(ciphertext) measured by the χ2-test. The χ2-attack was originally proposed
by Vaudenay as an attack on the Data Encryption Standard (DES) [14], and
Handschuh et al. applied that to SEAL [4]. The χ2-attack is used for both dis-
tinguishing attacks and key recovery attacks. Distinguishing attacks have only
to handle plaintexts in such a way that the χ2-value of a part of ciphertexts
becomes significantly a high value. On the other hand, key recovery attacks
have to rule out all wrong keys, and single out exactly a correct key by using the
χ2-value. Therefore, key recovery attacks often require more work and memory
than distinguishing attacks.

RC6 is a 128-bit block cipher and supports keys of 128, 192, and 256 bits [12].
RC6-w/r/b means that four w-bit-word plaintexts are encrypted with r rounds by
b-byte keys. In [3, 8], theχ2-attacks were applied to RC6. They focused on the fact
that a specific rotation in RC6 causes the correlations between input and output,
and estimated their key recovery attack directly from results of a distinguishing
attack [8]. Theχ2-attacks to a simplified variant of RC6 such as RC6 without pre-
� Supported by Inamori Foundation.



or post-whitening or RC6 without only post-whitening are further improved in
[11] or [5], respectively. We may note that key recovery attacks in [11, 5] differ
from that in [8]: The variance of χ2-value is taken into account to recover a key
in [11, 5] but not in [8]. They also pointed out the significant difference between
the distinguishing attack and the key recovery attack: The distinguishing attack
succeeds if and only if it outputs high χ2-value, but the key recovery attack
does not necessarily succeed even if it outputs high χ2-value. In fact, their key
recovery attack can recover a correct key in the high probability with a rather
lower χ2-value. This indicates that the security against the key recovery attack
cannot be estimated directly from that against the distinguishing attack. Table 1
summarizes the previous results on RC6.

Table 1. Attacks on RC6

Attack Target RC6 Rounds #Texts
Linear Attack [1] RC6 16 2119

Multiple Linear Attack [15] 192-bit-key RC6 141 2119.68

χ2 Attack [8] 128-bit-key RC6 12 294

192-bit-key RC6 14 2108

256-bit-key RC6 15 2119

χ2 Attack [11] 128-bit key RC6W2 17 2123.9

χ2 Attack [5] 128-bit key RC6P3 16 2117.84

Our result 192-bit-key RC6 16 2127.20

256-bit-key RC6 16 2127.20

1: A weak key of 18-round RC6 with 256-bit key can be recovered by 2126.936 plaintexts
with the probability of about 1/290.
2: RC6W means RC6 without pre- or post-whitening.
3: RC6P means RC6 without post-whitening.

Theoretical analysis on χ2-attack has been done by [16, 10]. In [16], the av-
erage of χ2-value based on the distinguishing attack [8] on RC6 is theoretically
computed, which enables to compute the necessary number of plaintexts for the
χ2-value with a certain level. As a result, the necessary number of plaintexts for
distinguishing attacks can be estimated theoretically in each round. However,
this cannot evaluate the success probability of key recovery attacks directly since
there is the significant difference between the distinguishing attack and the key
recovery attack as mentioned above. On the other hand, theoretical difference
between a distinguishing attack and a key recovery attack on RC6 without
post-whitening [5] has been discussed in [10]. They make use of the idea of the
theoretical and experimental complexity analysis on the linear cryptanalysis [6,
13] to fit it in the theoretical and experimental complexity analysis on the χ2-
attack. They also present the theorem to compute the success probability of key
recovery attacks by using the results of distinguishing attack, and, thus, they
can succeed to estimate the security against key recovery attack on RC6 with



rather less work and memory. However, their estimation requires experimental
results of distinguishing attacks. Up to the present, the success probability of
key recovery attack in χ2-attack has not been evaluated theoretically without
any assumption of experimental results.

In this paper, we investigate the success probability of key recovery attack
in χ2-attack, for the first time, and give the theorem that evaluates the success
probability of a key recovery attack without any experimental result. First we
deal with a key recovery attack on RC6 without post-whitening [5] and give the
theorem that evaluates the success probability theoretically. We make sure the
accuracy of our theorem by comparing our approximation with the experimen-
tal results [5]. With our theory, we also confirm that 16-round 128-bit-key RC6
without post-whitening can be broken, which reflects the experimental approx-
imation [5]. Then we improve the key recovery attack to work on RC6 itself.
The primitive extension to RC6 are shown in [5], but it does not seem to work.
We give the theorem that evaluates the success probability of the key recov-
ery attack on RC6 theoretically. We also demonstrate our theorem on 4-round
RC6-8 and make sure the accuracy by comparing our approximation with the
experimental results. With our theory, we confirm that 16-round 192-bit-key and
256-bit key RC6 can be broken. As a result, we can answer the open question of
[8], that is, whether χ2-attack can be used to attack RC6 with 16 or more rounds.

This paper is organized as follows. Section 2 summarizes the notation, RC6
algorithms, the χ2-test, and statistical facts used in this paper. Section 3 reviews
the χ2-attack against RC6 without post-whitening and the theoretical relation
between a distinguishing attack and a key recovery attack. Section 4 presents
the theorem of success probability of key recovery attacks on RC6 without post-
whitening and investigates the accuracy by comparing the approximations of
success probability to 4-round RC6 without post-whitening with implemented
results. Section 5 improves the key ercovery algorithm on RC6 without post-
whitening to that on RC6 and presents the theorem of success probability of the
key recovery attacks on RC6. We investigate the accuracy by demonstrating the
key recovery algorithm on RC6-8. We also discuss the applicable round of key
recovery attack. A conclusion is given in Section 6.

2 Preliminary

We summarize the χ2-test, statistical facts, and RC6 algorithms[12], used in this
paper.

2.1 Statistical Facts

We make use of the χ2-statistics [9] to distinguish a distribution with an un-
known probability distribution p from an expected distribution with a proba-
bility distribution π. Let X = X0, ...,Xn−1 be a sequence of ∀Xi ∈ {a0, · · · , am−1}
with unknown probability distribution p, and Naj (X) be the number of X which



takes on the value aj. The χ2-statistic of X which estimates the distance be-
tween the observed distribution and the expected distribution π = (π1, · · · , πm)
is defined:

χ2 =

m−1∑
i=0

(N(ai) − nπi)2

nπi
. (1)

After computing the χ2-statistic of X, we decide which hypothesis holds.⎧⎪⎪⎨⎪⎪⎩H0 : p = π (null hypothesis)
H1 : p � π (alternate hypothesis)

(2)

The following Theorems 1 and 2 on χ2-statistic are known.

Theorem 1 ([17]). When H0 is true, χ2 statistic given by equation (1) follows χ2

distribution whose freedom is m − 1 approximately. In addition, the expected mean or
variance is calculated by EH0 (χ2) = m − 1 or VH0 (χ2) = 2(m − 1), respectively.

Theorem 2 ([17]). When H1 is true, χ2 statistic given by equation (1) follows non-
central χ2 distribution whose freedom is m − 1 approximately. In addition, the mean
or variance is computed by EH1 (χ2) = m − 1 + nθ or VH1 (χ2) = 2(m − 1) + 4nθ,
respectively, where nθ so called noncentral parameter is nθ = n

∑m−1
i=0

(πi−P(ai))2

πi
, where

P(ai) is the probability of occurence of ai.

In our case of which distinguishes a non-uniformly random distribution
from uniformly random distribution [7–9], the probability π is equal to 1

m and,
thus, equation (1) is simply described as follows.

χ2 =
m
n

m−1∑
i=0

(
ni − n

m

)2
. (3)

Table 2 presents threshold for a 63 degrees of freedom. For example, (level, χ2
63)

= (0.95, 82.53) in Table 2 means that the value of the χ2-statistic exceeds 82.53 in
the probability of 5% if the observation X is uniform.

Table 2. χ2-distributions with a 63 degree of freedom

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
χ2

63 62.33 65.20 68.37 72.20 77.75 82.53 92.01

Let us describe other statistical facts together with the notation.

Theorem 3 (Central Limit Theorem [2]). Choose a random sample from a popula-
tion which mean or variance is µ or σ2, respectively. If the sample size n is large, then



the sampling distribution of the mean is closely approximated by the normal distribu-
tion, regardless of the population, where the mean or variance is given by µ or σ2/n,
respectively.

We also follow commonly used notation: the probability density and the cu-
mulative distribution functions of the standard normal distribution are denoted
by φ(x) andΦ(x); the probability of distribution X in the range X ≤ I is denoted
by Pr(X ≤ I); and N is used for the normal distributions. The probability den-
sity function of the normal distribution with the mean µ and the variance σ2,
N(µ, σ2), is given by the following equation,

φ(µ,σ2)(x) =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
.

2.2 Block cipher RC6

Before showing the encryption algorithm of RC6, we give some notation.
{0, 1}k : k-bit data

lsbn(X) : least significant n-bit of X;
msbn(X) : most significant n-bit of X;

⊕ : bit-wise exclusive OR;
a≪ b : cyclic rotation of a to the left by b-bit;

Si : i-th subkey (S2i and S2i+1 are subkeys of the i-th
round);

r : number of rounds;
(Ai,Bi,Ci,Di) : input of the i-th round ;

(A0,B0,C0,D0) : plaintext;
(Ar+2,Br+2,Cr+2,Dr+2) : ciphertext after r-round encryption;

f (x) : x × (2x + 1);
F(x) : f (x) (mod 232)≪ 5;
x||y : concatenated value of x and y.

The detailed algorithm of RC6 is given:

Algorithm 1 (RC6 Encryption Algorithm)
1. A1 = A0; B1 = B0 + S0; C1 = C0; D1 = D0 + S1;

2. for i = 1 to r do: t = F(Bi); u = F(Di); Ai+1 = Bi;

Bi+1 = ((Ci ⊕ u)≪ t) + S2i+1; Ci+1 = Di; Di+1 = ((Ai ⊕ t)≪ u) + S2i;

3. Ar+2 = Ar+1 + S2r+2; Br+2 = Br+1; Cr+2 = Cr+1 + S2r+3; Dr+2 = Dr+1.

Parts 1 and 3 of Algorithm 1 are called pre-whitening and post-whitening,
respectively. A version of RC6 is specified as RC6-w/r/b. In this paper, we
simply write RC6 if we deal with RC6-32. We also call the version of RC6
without post-whitening to, simply, RC6P.

2.3 A Transition Matrix

A transition matrix describes input-output transition, which was introduced in
[14] and applied to RC6-8 and RC6-32 in [16]. In [16], the transition matrix can



compute the expected χ2-values on lsb5(Ar+2)||lsb5(Cr+2) when plaintexts with
lsb5(A0) = lsb5(C0) = 0 are chosen, which is denoted by TM in this paper. So TM
also gives the probability of occurence of lsb5(Ar+2)||lsb5(Cr+2). We apply TM to
compute the expected χ2-values and the variance on lsb3(Ar+2)||lsb3(Cr+2) when
plaintexts with a fixed value of lsb5(B0) = lsb5(D0) are chosen.

3 χ2 Attack on RC6P

In this section, we review χ2-attack on RC6P [5] and the success probability [10],
which is computed by using the result of distinguishing attack.

Intuitively, the key recovery algorithm fixes some bits out of lsbn(B0)||lsbn(D0),
checks the χ2-value of lsb3(Ar)||lsb3(Cr) and recovers lsb2(S2r)||lsb2(S2r+1) of r-
round RC6P. Let us set:
(yb, yd) = (lsb3(Br+1), lsb3(Dr+1)), (xc, xa) = (lsb5(F(Ar+1)), lsb5(F(Cr+1))),
(sa, sc) = (lsb2(S2r), lsb2(S2r+1)) and s = sa||sc, where xa (resp. xc) is the rotation
amounts on Ar (resp. Cr) in the r-th round.

Algorithm 2 ([5])
1. Choose a plaintext (A0,B0,C0,D0) with (lsb5(B0), lsb5(D0)) = (0, 0)
and encrypt it.

2. For each (sa, sc), decrypt yd||yb with a key 0||sa, 0||sc by 1 round to
za||zc, which are denoted by a 6-bit integer z = za||zc.

3. For each s, xa, xc, and z, update each array by incrementing
count[s][xa][xc][z].

4. For each s, xa, and xc, compute χ2[s][xa][xc].
5. Compute the average ave[s] of {χ2[s][xa][xc]}xa,xc for each s and output

s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

We may note that Algorithm 2 can be easily generalized to recover an e-bit
key for an even e. In such a case, z is an (e+ 2)-bit number, on which χ2-value is
computed. The success probability of Algorithm 2 is derived theoretically from
Theorem 4, where the success probability means the probability of recovering a
correct key in Algorithm 2.

Theorem 4 ([5]). Let n ≥ 10 and r ≥ 4. The success probability Ps of Algorithm 2 on
r-round RC6P with 2n plaintexts can be evaluated by using the distribution ofχ2-values
in the distinguishing attack as follows,

Ps =
∫ ∞

−∞
fc[r,n](x) ·

(∫ x

−∞
fw[r,n](u)du

)2e−1

dx, (4)

where fc[r,n](x) or fw[r,n] is a probability density function of distribution of χ2-values on
a correct or wrong key in Algorithm 2, given by

fc[r,n](x) = φ(µd[r−1,n−10],σ2
d[r−1,n−10]/2

10)(x) (5)



or
fw[r,n](x) = φ(µd[r+1,n−10],σ2

d[r+1,n−10]/2
10)(x), (6)

respectively, and µd[r,n](σ2
d[r,n]) is mean (variance) of distribution of χ2-values on

lsb3(Ar+1)||lsb3(Cr+1) of r-round RC6P with lsb5(B0)||lsb5(D0) = 0 by using 2n plain-
texts.

4 Success Probability of χ2 Attack on RC6P

This section gives the theorem to compute the success probability of Algorithm
2 without any assumption of distinguishing attack.

4.1 Theoretical Mean and Variance of χ2-values

To compute the success probability of Algorithm 2 without any experimental
results of distinguishing attack, we have to compute the mean and variance,
µd[r,n] and σ2

d[r,n], theoretically, that is, we have to compute θr. In our case, θr is
given as

θr = 26
∑(

P(lsb3(Ar+1)||lsb3(Cr+1)) − n
26

)2
, (7)

where the summation is over lsb3(Ar+1)||lsb3(Cr+1) ∈ {0, 1}6 and P(lsb3(Ar+1)||
lsb3(Cr+1)) is the probability of occurrence of lsb3(Ar+1)||lsb3(Cr+1). Thus, θr can
be given by computing P(lsb3(Ar+1)||lsb3(Cr+1)) and derived theoretically by TM
in Section 2, which follows the discussion below.

Algorithm 2 is based on such a distinguishing attack that chooses lsb5(B0) =
lsb5(D0) = 0 and computes the χ2-value on lsb3(Ar+1)||lsb3(Cr+1) which are out-
puts of r-round RC6P. Therefore we can apply TM to our distinguishing attack
by assuming that (A1,B1,C1,D1) is a plaintext since A1 = B0,C1 = D0, and both
B1 and D1 are random number. On the other hand, we compute the χ2-value on
(e + 2)-bit lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1) in e-bit-key-recovery Algorithm 2, whose
probability of occurrence is derived by using TM from the following Lemma 1.

Lemma 1. The probability of occurrence of lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1), denoted by
P(lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1)), is computed from the probability of occurrence of
lsb5(Ar+1)||lsb5(Cr+1) as follows

P(lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1)) =
2β−1∑
i=0

2β−1∑
j=0

P(i||lsbe/2+1(Ar+1)|| j||lsbe/2+1(Cr+1)),

where β = 5 − (e/2 + 1) and e is an even integer from 2 to 10.

Proof. Lemma 1 holds because

lsb5(Ar+1)||lsb5(Cr+1)
= msbβ(lsb5(Ar+1))||lsbe/2+1(Ar+1)||msbβ(lsb5(Cr+1))||lsbe/2+1(Cr+1).



Table 3. χ2-values of 3- or 5-round RC6P

3 rounds 5 rounds
#texts Theoretical Experimental #texts Theoretical Experimental

mean variance mean variance mean variance mean variance
28 63.20 126.82 63.18 126.50 224 63.20 126.80 63.30 125.72
29 63.41 127.64 63.27 126.78 225 63.40 127.60 63.43 128.48
210 63.82 129.29 63.79 125.02 226 63.80 129.19 63.72 128.94
211 64.64 132.57 64.33 130.48 227 64.60 132.34 64.50 132.11
212 66.29 139.14 65.92 139.85 228 66.19 138.78 66.16 141.22

We show theoretical and experimental results of mean and variance of χ2-
values of 3- or 5-round RC6P in Tables 3, respectively. Experiments are done
by using 100 keys × 100 kinds texts. We see that both mean and variance of
χ2-value can be computed theoretically.

4.2 Success Probability of Algorithm 2 on RC6P

By using the theoretical mean and variance in Section 4.1, the success probability
of Algorithm 2 is proved as follows.

Theorem 5. The success probability of e-bit-key-recovery Algorithm 2 of r-round RC6P
is given as follows,

Psrc6p,e(n) =∫ ∞

−∞
φ((k−1)+mθr−1 ,(2(k−1)+4mθr−1)/210)(x)·

(∫ x

−∞
φ((k−1)+mθr+1 ,(2(k−1)+4mθr+1)/210)(u)du

)2e−1

dx,

(8)

where 2n is the number of texts; m = 2n−10; k = 2e+2; mθr is r-round non-central
parameter; and e is an even integer from 2 to 10.

Proof. Ps in Theorem 4 is derived by mean µd[r,n] and variance σ2
d[r,n] of distri-

bution of χ2-values, which are computed by non-central parameter from The-
orem 2. On the other hand, θr is computed by using Lemma 1. Thus we get
Psrc6p,e(n).

Table 4 shows the success probability of Algorithm 2. According to Table 4,
the theoretical estimation gives the upper bound of results. It seems rather rough
upper bound. We will discuss the reason in Section 5.



Table 4. Theoretical and experimental success probabilities of 4-round RC6P (e = 4).

# texts 218 219 220 221 222

Theoretical 0.16 0.31 0.70 0.99 1.00
Experimental 0.10 0.17 0.34 0.75 1.00

4.3 Applicable Round of RC6P

By computing θr of each round r, we derive the number of texts to recover a
correct key by Algorithm 2. We approximate Equation (8) to reduce the compu-
tation amount to get (8) for an even large e.

Theorem 6. The sufficient condition for Psrc6p,e(n) ≥ 0.95 is given as

P̃src6p,e(n) ≥ 1 − 1
20(2e − 1)

, (9)

where

P̃src6p,e(n) =∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x) ·

∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx;

m = 2n−10; k = 2e+2; mθr is r-round non-central parameter; and e is an even integer
from 2 to 10.

Proof. We show that n satisfied with Equation (9) is sufficient for Psrc6p,e(n) ≥
0.95. First of all, we consider the following equation

F(e) =
(
1 − 1

20(2e − 1)

)2e−1

.

When e ≥ 1, F(e) is a monotonically increasing function, satisfies F(e) ≥ 0.95 and

lim
e→∞

(
1 − 1

20(2e − 1)

)2e−1

≈ 0.951.

On the other hand, Equation (8) becomes

Psrc6p,e(n) =∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x) ·

(∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du

)2e−1

dx

≥
(∫ ∞

−∞
φ(k−1+mθr−1 ,(2(k−1)+4mθr−1)/210)(x) ·

∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx

)2e−1



Thus, if m = 2n−10 satisfies(∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x) ·

∫ x

−∞
φ(k−1+mθr+1 ,(2(k−1)+4mθr+1)/210)(u)du dx

)2e−1

≥ F(e),

then Psrc6p,e(n) ≥ 0.95. Therefore, if n satisfies

P̃src6p,e(n) =∫ ∞

−∞
φ(k−1+mθr−1 ,(2(k−1)+4mθr−1)/210)(x) ·

∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx

≥ 1 − 1
20(2e − 1)

,

then Psrc6p,e(n) ≥ 0.95.

Table 5. Theoretical and estimated #texts for Psrc6p,4(n) ≥ 0.95 or Ps ≥ 0.95.

Theoretical (Th.6) Estimated (Th.4)
round # texts Work ‡ # texts Work ‡

4 220.69 224.69 †221.60 †225.60

6 236.73 239.67 237.64 241.64

8 252.76 256.76 253.68 257.68

10 268.79 272.79 269.72 273.72

12 284.81 288.81 285.76 289.76

14 2100.82 2104.82 2101.80 2105.80

16 2116.83 2119.77 2117.84 2121.84

18 2132.85 2136.85 2133.88 2137.88

† : experimental result [5]
‡ : the number of incrementing cnt.

Here we set e = 4. Table 5 shows theoretical and experimental number of
texts necessary for Psrc6p,e(n) ≥ 0.95 in each r round. From Table 5, Algorithm 2
is faster than exhaustive search for 128-bit-key RC6P with up to 16 rounds. It
corresponds with the previous experimental result [5]. Our theorem estimates
the number of texts necessary for recovering r-round RC6P with the success
probability of more than 95% to

log2(#texts) = 8.01r − 11.63. (10)

On the other hand, it is estimated in [5] heuristically as

log2(#texts) = 8.02r − 10.48. (11)

We see that both estimations are pretty close each other.



Table 6. Theoretical and experimental success probability of 4-round RC6P-8 by using
Algorithm 2.

# texts Theoretical Experimental
212 0.742 0.228
213 1.000 0.481
214 1.000 0.888
215 1.000 1.000

4.4 Success Probability of Algorithm 2 on RC6P-8

We also demonstrate our theorem on 4-round RC6P-8 whose word size is 8-bit.
Table 6 shows the theoretical and experimental results of Algorithm 2 on RC6P-
8. In the same way as 4-round RC6P, we see that theoretical estimation gives the
upper bound of experimental results.

5 χ2 Attack against RC6

This section improves Algorithm 2 to a key recovery attack against RC6, Algo-
rithm 3, and then gives the theorem that computes the success probability. We
also implement Algorithm 3 on 4-round RC6-8 and demonstrate the accuracy
of the theorem. Furthermore we also discuss the difference between Theorem 5
and 7 in view of accuracy.

5.1 Key Recovery Algorithm and Theoretical Success Probability

The primitive extension of Algorithm 2 to a key recovery attack on RC6 is
to decrypt ya||yd for each key candidate of s, S2r+2 and S2r+3, which is shown
in [5]. Apparently it is rather straightforward since it means that it decrypts
each ciphertext by each 268 key. So we improve Algorithm 2 such that it does
not have to decrypt each ciphertext. Before showing the algorithm, let us use
the following notation:
U = {u ∈ {0, 1}32|msb5(u × (2u + 1)) = 0}, (ua, uc) ∈ U × U, ta = Ar+2 − ua, tc =
Cr+2 − ua,
v = lsb5(B0)||lsb5D0, z = lsb3(Br+2)||lsb3(Dr+2).

Algorithm 3
1. Choose a plaintext (A0, B0, C0, D0) and encrypt it to (Ar+2, Br+2,

Cr+2, Dr+2).
3. For each (ua, uc), compute both ta and tc and update each array by

incrementing count[ta][tc][v][z].
4. For each ta, tc and v, compute the χ2-value χ2[ta][tc][v].
5. Compute the average ave[ta][tc] of {χ2[ta][tc][v]}v for each ta, tc and

output ta, tc with the highest ave[ta][tc] as S2r+2, S2r+3.



Algorithm 3 computes the χ2-value on 6-bit z, which follows the idea of
Algorithm 2. Compared with [8], in which the χ2-value is computed on 10-bit
data, Algorithm 3 seems to recover a correct key efficiently.

We may note that Algorithm 3 calculates the χ2-value on z = lsb3(Br+2)||
lsb3(Dr+2) by using such plaintexts that make the final-round-notation 0 for
each key candidate. For a correct key, this is exactly equivalent to compute the
χ2-value on lsb3(Ar)||lsb3(Cr), which is output of (r − 1)-round RC6P because
the addition keeps the χ2-value. Thus, we succeed to skip the post-whitening
and get that the probability density function of distribution of χ2-value with
a correct key in r-round RC6 is equal to fc[r,n] defined in Theorem 4. On the
other hand, in the case of wrong keys, this is exactly equivalent to compute the
χ2-value on lsb3(Ar+2)| lsb3(Cr+2), which is output of (r + 1)-round RC6P. Thus,
we get that the probability density function of distribution of χ2-value with a
wrong key in r-round RC6 is equal to fw[r,n] defined in Theorem 4. From the
above discussion, we’ve proved the following theorem.

Theorem 7. The success probability of Algorithm 3 on r-round RC6 is given theoreti-
cally as

Psrc6(n) =∫ ∞

−∞
φ(26−1+mθr−1,(2(26−1)+4mθr−1)/210)(x)·

(∫ x

−∞
φ(26−1+mθr+1,(2(26−1)+4mθr+1)/210)(u)du

)264−1

dx,

(12)

where 2n is the number of texts, m = 2n−20 and mθr is r-round non-central parameter.

Table 7. #texts necessary for Psrc6(n) ≥ 0.95 (From Th.8)

r 4 6 8 10 12 14 16 18
# texts 231.06 247.10 263.13 279.15 295.17 2111.19 2127.20 2143.21

work† 285.06 2101.10 2117.13 2133.15 2149.17 2165.19 2181.20 2197.21

†: a time to increment of cnt.

We approximate Equation (12) to reduce the computation amount to get (12)
in the same way as Theorem 5. Theorem 8 is pretty effective to compute n with
Psrc6(n) ≥ 0.95 since the computation of exponentiation 264 − 1 on an integral
part in (12) is eliminated.

Theorem 8. The sufficient condition for Psrc6(n) ≥ 0.95 is

P̃src6(n) ≥ 1 − 1
20(264 − 1)

,



Table 8. Theoretical and experimental success probability of 4-round RC6-8 (Alg. 3)

# texts 217 218 219 220

Theoretical 0.00 0.05 0.73 1.00
Experimental 0.00 0.04 0.76 1.00

where

P̃src6(n) =∫ ∞

−∞
φ(26−1+mθr−1,(2(26−1)+4mθr−1)/210)(x) ·

∫ x

−∞
φ(26−1+mθr+1,(2(26−1)+4mθr+1)/210)(u)du dx,

m = 2n−20 and mθr is r-round non-central parameter.

Table 7 shows the necessary number of texts and work which make success
probability of Algorithm 3 on RC6 95% or more. The necessary number of texts
is computed by Theorem 8. “Work” means the time to increment of counter
cnt. Note that the number of available texts is bounded by 2128 in Algorithm 3.
Therefore, we see from Table 7 that Algorithm 3 is applicable to 192-bit-key and
256-bit-key RC6 with up to 16 rounds. Thus, our results can answer the open
question of [8], that is whether or not the χ2 attack works on RC6 with 16 rounds
or more.

In [8], they estimated heuristically that 192-bit-key or 256-bit-key RC6 are
broken up to 14 or 15 rounds by their key recovery algorithm, respectively.
We’ve now proved theoretically that 192-bit-key and 256-bit-key RC6 can be
broken in up to 16 rounds. In Algorithm 3, we recover both post-whitening
keys at once. As a result, the number of work is #texts× 227×2, and thus it works
on an 128-bit-key RC6 with up to 8 rounds. But we can reduce the amount of
work by recovering either post-whitening key at once to #texts × 227. Then it
works on 128-bit-key RC6 with up to 12 rounds, which will be shown in the
final paper.

5.2 Success Probability of Algorithm 3 on RC6-8

We also demonstrate Theorem 7 on 4-round RC6-8. Table 8 shows the theoretical
and experimental results. We see that theoretical estimation gives a pretty good
approximation compared with Table 6. Let us discussion the reason. In Algo-
rithm 2, we assume that the χ2-values of wrong keys in r-round RC6P equals
that in (r + 1)-round RC6P to estimate Psrc6p,e(n). However, this is exactly upper
bound of χ2-values of wrong keys. In the case of Algorithm 3, the χ2-values of
wrong keys in r-round RC6 are equal to that in (r+ 1)-round RC6P. Thus, we see
that theoretical estimation of Theorem 7 is much better than that of Theorem 5.



6 Concluding Remarks

In this paper, we have improved the χ2-attack on RC6P to the χ2-attack on RC6
and proved the theorems that evaluate the success probability in bothχ2-attacks.
The derived formulae can be computed efficiently and provide a theoretical
analysis of the success probability in the χ2-attack. We have also demonstrated
that our theorems can estimate success probability in χ2-attacks against 4-round
RC6P, RC6P-8, and RC6-8. Furthermore we have shown theoretically that our
χ2-attack is applicable to 192-bit-key and 256-bit-key RC6 with up to 16 rounds
by using 2127.20 plaintexts.
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