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On the Success Probability of x?-attack on RC6

Atsuko Miyaji* and Yuuki Takano

Japan Advanced Institute of Science and Technology.
{miyaji, ytakano}@jaist.ac.jp

Abstract. Knudsen and Meier applied the y*-attack to RC6. The x*-attack
can be used for both distinguishing attacks and key recovery attacks. Up
to the present, the success probability of key recovery attack in any x*-
attack has not been evaluated theoretically without any assumption of
experimental results. In this paper, we discuss the success probability of
key recovery attack in y*-attack and give the theorem that evaluates the
success probability of a key recovery attack without any assumption of
experimental approximation, for the first time. We make sure the accu-
racy of our theorem by demonstrating it on both 4-round RC6 without
post-whitening and 4-round RC6-8. We also evaluate the security of RC6
theoretically and show that a variant of the y*-attack is faster than an ex-
haustive key search for the 192-bit-key and 256-bit-key RC6 with up to 16
rounds. As a result, we succeed in answering such an open question that a
variant of the y2-attack can be used to attack RC6 with 16 or more rounds.

Keywords : block cipher, RC6, x? attack, statistical analysis

1 Introduction

The x2-attack makes use of correlations between input (plaintext) and output
(ciphertext) measured by the x2-test. The y2-attack was originally proposed
by Vaudenay as an attack on the Data Encryption Standard (DES) [14], and
Handschuh et al. applied that to SEAL [4]. The x?*-attack is used for both dis-
tinguishing attacks and key recovery attacks. Distinguishing attacks have only
to handle plaintexts in such a way that the y>-value of a part of ciphertexts
becomes significantly a high value. On the other hand, key recovery attacks
have to rule out all wrong keys, and single out exactly a correct key by using the
x?-value. Therefore, key recovery attacks often require more work and memory
than distinguishing attacks.

RC6 is a 128-bit block cipher and supports keys of 128, 192, and 256 bits [12].
RC6-w/r/b means that four w-bit-word plaintexts are encrypted with r rounds by
b-byte keys. In [3, 8], the y>-attacks were applied to RC6. They focused on the fact
that a specific rotation in RC6 causes the correlations between input and output,
and estimated their key recovery attack directly from results of a distinguishing
attack [8]. The y?-attacks to a simplified variant of RC6 such as RC6 without pre-
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or post-whitening or RC6 without only post-whitening are further improved in
[11] or [5], respectively. We may note that key recovery attacks in [11,5] differ
from that in [8]: The variance of x*-value is taken into account to recover a key
in [11,5] but not in [8]. They also pointed out the significant difference between
the distinguishing attack and the key recovery attack: The distinguishing attack
succeeds if and only if it outputs high x2-value, but the key recovery attack
does not necessarily succeed even if it outputs high x?-value. In fact, their key
recovery attack can recover a correct key in the high probability with a rather
lower x?-value. This indicates that the security against the key recovery attack
cannot be estimated directly from that against the distinguishing attack. Table 1
summarizes the previous results on RC6.

Table 1. Attacks on RC6

Attack Target RC6 Rounds|#Texts
Linear Attack [1] RC6 16 |21
Multiple Linear Attack [15]|192-bit-key RC6 147 21968
X2 Attack [8] 128-bit-key RC6 12 2%
192-bit-key RC6 14 |21
256-bit-key RC6 15 [2IP
Z Attack [11] 128-bit key RC6W?| 17 |20
X2 Attack [5] 128-bit key RC6P? 16 [|21784
Our result 192-bit-key RC6 16 217720
256-bit-key RC6 16 2172

1: A weak key of 18-round RC6 with 256-bit key can be recovered by 212696 plaintexts
with the probability of about 1/2%.

2: RC6W means RC6 without pre- or post-whitening.

3: RC6P means RC6 without post-whitening.

Theoretical analysis on x*-attack has been done by [16,10]. In [16], the av-
erage of x2-value based on the distinguishing attack [8] on RC6 is theoretically
computed, which enables to compute the necessary number of plaintexts for the
x?-value with a certain level. As a result, the necessary number of plaintexts for
distinguishing attacks can be estimated theoretically in each round. However,
this cannot evaluate the success probability of key recovery attacks directly since
there is the significant difference between the distinguishing attack and the key
recovery attack as mentioned above. On the other hand, theoretical difference
between a distinguishing attack and a key recovery attack on RC6 without
post-whitening [5] has been discussed in [10]. They make use of the idea of the
theoretical and experimental complexity analysis on the linear cryptanalysis [6,
13] to fit it in the theoretical and experimental complexity analysis on the x*-
attack. They also present the theorem to compute the success probability of key
recovery attacks by using the results of distinguishing attack, and, thus, they
can succeed to estimate the security against key recovery attack on RC6 with



rather less work and memory. However, their estimation requires experimental
results of distinguishing attacks. Up to the present, the success probability of
key recovery attack in y*-attack has not been evaluated theoretically without
any assumption of experimental results.

In this paper, we investigate the success probability of key recovery attack
in yZ-attack, for the first time, and give the theorem that evaluates the success
probability of a key recovery attack without any experimental result. First we
deal with a key recovery attack on RC6 without post-whitening [5] and give the
theorem that evaluates the success probability theoretically. We make sure the
accuracy of our theorem by comparing our approximation with the experimen-
tal results [5]. With our theory, we also confirm that 16-round 128-bit-key RC6
without post-whitening can be broken, which reflects the experimental approx-
imation [5]. Then we improve the key recovery attack to work on RC6 itself.
The primitive extension to RC6 are shown in [5], but it does not seem to work.
We give the theorem that evaluates the success probability of the key recov-
ery attack on RC6 theoretically. We also demonstrate our theorem on 4-round
RC6-8 and make sure the accuracy by comparing our approximation with the
experimental results. With our theory, we confirm that 16-round 192-bit-key and
256-bit key RC6 can be broken. As a result, we can answer the open question of
[8], that is, whether y?-attack can be used to attack RC6 with 16 or more rounds.

This paper is organized as follows. Section 2 summarizes the notation, RC6
algorithms, the x?-test, and statistical facts used in this paper. Section 3 reviews
the x?-attack against RC6 without post-whitening and the theoretical relation
between a distinguishing attack and a key recovery attack. Section 4 presents
the theorem of success probability of key recovery attacks on RC6 without post-
whitening and investigates the accuracy by comparing the approximations of
success probability to 4-round RC6 without post-whitening with implemented
results. Section 5 improves the key ercovery algorithm on RC6 without post-
whitening to that on RC6 and presents the theorem of success probability of the
key recovery attacks on RC6. We investigate the accuracy by demonstrating the
key recovery algorithm on RC6-8. We also discuss the applicable round of key
recovery attack. A conclusion is given in Section 6.

2 Preliminary

We summarize the y2-test, statistical facts, and RC6 algorithms[12], used in this
paper.

2.1 Statistical Facts

We make use of the y2-statistics [9] to distinguish a distribution with an un-
known probability distribution p from an expected distribution with a proba-
bility distribution n. Let X = X, ..., X,,—1 be a sequence of VX; € {ag,--* ,am-1}
with unknown probability distribution p, and N, (X) be the number of X which



takes on the value a;. The x2-statistic of X which estimates the distance be-
tween the observed distribution and the expected distribution 7 = (7q, - - - , )
is defined:

mZ N(a,) —nm; )2

@™
i=0
After computing the x*-statistic of X, we decide which hypothesis holds.
Hp:p=m (null hypothesis) o)
H;:p#m (alternate hypothesis)

The following Theorems 1 and 2 on y2-statistic are known.

Theorem 1 ([171). When Hy is true, x* statistic given by equation (1) follows x*
distribution whose freedom is m — 1 approximately. In addition, the expected mean or
variance is calculated by Ep,(x*) = m — 1 or Vi, (x?) = 2(m — 1), respectively.

Theorem 2 ([17]). When H is true, x* statistic given by equation (1) follows non-
central x? distribution whose freedom is m — 1 approximately. In addition, the mean

or variance is computed by Ep,(x?) = m — 1 + n6 or Vg, (x?) = 2(m — 1) + 4n0,
m-1 (m;—P(a;))?

- , where

respectzvely, where n0O so called noncentral parameter is n0 = n ) ;-
P(a;) is the probability of occurence of a;.

In our case of which distinguishes a non-uniformly random distribution
from uniformly random distribution [7-9], the probability 7 is equal to < and,
thus, equation (1) is simply described as follows.

m—1

e-28h-2f

i=0

Table 2 presents threshold for a 63 degrees of freedom. For example, (level, x2,)
=(0.95, 82.53) in Table 2 means that the value of the y?-statistic exceeds 82.53 in
the probability of 5% if the observation X is uniform.

Table 2. x*-distributions with a 63 degree of freedom

[Cevel[050 0.60 0.70 0.80 090 0.95 099 |
[ A2, [6233 65.20 68.37 72.20 77.75 82.53 92.01]

Let us describe other statistical facts together with the notation.

Theorem 3 (Central Limit Theorem [2]). Choose a random sample from a popula-
tion which mean or variance is y or o, respectively. If the sample size n is large, then



the sampling distribution of the mean is closely approximated by the normal distribu-
tion, regardless of the population, where the mean or variance is given by u or o/n,
respectively.

We also follow commonly used notation: the probability density and the cu-
mulative distribution functions of the standard normal distribution are denoted
by ¢(x) and @(x); the probability of distribution X in the range X < I is denoted
by Pr(X < I); and N is used for the normal distributions. The probability den-
sity function of the normal distribution with the mean u and the variance o2,
N (u, %), is given by the following equation,

! ex _(x—y)z
o2 P 202 |’

P, (X) =

2.2 Block cipher RC6

Before showing the encryption algorithm of RC6, we give some notation.
{0, 1}¥ : k-bit data
Isb,(X) : least significant n-bit of X;
msb, (X) : most significant n-bit of X;
@ : bit-wise exclusive OR;
a << b : cyclic rotation of a to the left by b-bit;
S; : i-th subkey (S»; and Sy;41 are subkeys of the i-th
round);
r: number of rounds;
(A;, Bi, C;, D;) : input of the i-th round ;
(Ao, Bo, Cp, Do) : plaintext;
(Ays2, Bri2, Cria, Drio) @ ciphertext after r-round encryption;
fx):xx(2x+1);
F(x): f(x) (mod 2%2) < 5;
x|ly : concatenated value of x and y.
The detailed algorithm of RC6 is given:

Algorithm 1 (RC6 Encryption Algorithm)
1. A1 =Ap; Bi=Bo+Sy; Ci1=Co; Di=Dg+5p;
2. for i=1 to r do: t=F(B;); u=F(D;); Ais1 =Bi;
Bit1 = (Ci®u) << t) + Spip1; Civ1 = Dj; Dip1 = (A @ t) << u) + Sy;;
3. Apr2 = Arr1 +S2425 Bri2 = Bry1; Cr2 = Cry1 + 520435 Diyy2 = Diyas

Parts 1 and 3 of Algorithm 1 are called pre-whitening and post-whitening,
respectively. A version of RC6 is specified as RC6-w/r/b. In this paper, we
simply write RC6 if we deal with RC6-32. We also call the version of RC6
without post-whitening to, simply, RC6P.

2.3 A Transition Matrix

A transition matrix describes input-output transition, which was introduced in
[14] and applied to RC6-8 and RC6-32 in [16]. In [16], the transition matrix can



compute the expected x>-values on Isbs(A,42)|[1sbs(C,+2) when plaintexts with
Isbs(Ag) = Isbs5(Co) = 0 are chosen, which is denoted by TM in this paper. So TM
also gives the probability of occurence of 1sbs(A;,.2)|[lsbs(Cr.2). We apply TM to
compute the expected x?-values and the variance on Isbs(A,+)|[1sbs(C,.2) when
plaintexts with a fixed value of Isbs(By) = Isb5(Dy) are chosen.

3 x? Attack on RC6P

In this section, we review y2-attack on RC6P [5] and the success probability [10],
which is computed by using the result of distinguishing attack.

Intuitively, the key recovery algorithm fixes some bits out of Isb ,(Bo)||lsb,, (Do),
checks the y?-value of Ishz(A,)||lsbs(C,) and recovers Isb,(Sy,)||Isba(Sa41) of 7-
round RC6P. Let us set:

(Yb, Ya) = (Isb3(Br+1), Isb3(Dy+1)), (xc, Xa) = (Isbs(F(Ar+1)), 1sbs(F(Cr41))),
(a,5c) = (Isba(S2r),1sb2(S2r+1)) and s = s,lls., where x, (resp. x.) is the rotation
amounts on A, (resp. C;) in the r-th round.

Algorithm 2 ([5])

1. Choose a plaintext (Ao, By, Co, Dy) with (1sbs(Bg), 1sbs(Dg)) = (0,0)
and encrypt it.

2. For each (s;s:), decrypt y,lly, with a key Olls;, Ollsc by 1 round to
Zallze, which are denoted by a 6-bit integer z = z,||z..

3. For each s, x;, X., and z, update each array by incrementing
count/[s][x,][x.][z].

4. For each s, x,, and x., compute x2[s][x.][x.].

5. Compute the average ave[s] of {x?[s][x.][xc]}s,r. for each s and output
s with the highest ave[s] as 1sby(Sz/)||1sba(S2/41)-

We may note that Algorithm 2 can be easily generalized to recover an e-bit
key for an even e. In such a case, z is an (e + 2)-bit number, on which y?-value is
computed. The success probability of Algorithm 2 is derived theoretically from
Theorem 4, where the success probability means the probability of recovering a
correct key in Algorithm 2.

Theorem 4 ([5]). Let n > 10 and r > 4. The success probability Ps of Algorithm 2 on
r-round RC6P with 2" plaintexts can be evaluated by using the distribution of x*-values
in the distinguishing attack as follows,

® x 2-1
Ps = I ff[r,n](x)-( I fw[y,n](u)du) dx, @)

where fuyn)(X) OF fuprn) is a probability density function of distribution of x*-values on
a correct or wrong key in Algorithm 2, given by

Jetrm () = Qi)(yd[,_l,n_lo],02[,,1,,,10] /219 (%) ®)



or
ﬂu[r’”](x) = (P(,Ud[rﬂ,n710]’0§[r+1,n—10]/210)(x)’ (6)

respectively, and [ud[r,n](oﬁ[r ) i mean (variance) of distribution of x2-values on
Isb3(Ar+1)IIsb3(Cr11) of r-round RC6P with Isbs(Bo)||lsbs(Do) = 0 by using 2" plain-
texts.

4 Success Probability of x* Attack on RC6P

This section gives the theorem to compute the success probability of Algorithm
2 without any assumption of distinguishing attack.

4.1 Theoretical Mean and Variance of y2-values

To compute the success probability of Algorithm 2 without any experimental
results of distinguishing attack, we have to compute the mean and variance,
Hdprm) and Gﬁ[nn]’ theoretically, that is, we have to compute 0. In our case, 0, is
given as

2
6,=2° )" (PlIsbs(Allsbs(Cro) = 3¢ )

where the summation is over lsbz(A,41)||lsb3(C,+1) € {0,1}° and P(Isb3(A,41)ll
Isb3(Cy+1)) is the probability of occurrence of 1sb3(A.+1)l|lsb3(Crr1). Thus, 6, can
be given by computing P(Isb3(A,+1)|[lsb3(C;+1)) and derived theoretically by TM
in Section 2, which follows the discussion below.

Algorithm 2 is based on such a distinguishing attack that chooses Isbs(Bo) =
Isbs(Do) = 0 and computes the x>-value on Isb3(A,41)|[1sbs(C,+1) which are out-
puts of r-round RC6P. Therefore we can apply TM to our distinguishing attack
by assuming that (A1, B1, C1, D) is a plaintext since A; = By, C1 = Dy, and both
By and D; are random number. On the other hand, we compute the x?-value on
(e + 2)-bit Isbe/o+1(Ars+1)ll1sbe/2+1(Cri1) in e-bit-key-recovery Algorithm 2, whose
probability of occurrence is derived by using TM from the following Lemma 1.

Lemma 1. The probability of occurrence of Isbejo+1(Ar+1)|lIsbej241(Crs1), denoted by
P(Isbejp+1(Are1)lIsbes241(Cre1)), is computed from the probability of occurrence of
Isbs(Ay+1)|lIsbs(Cr+1) as follows

261261

P(Isbepsa (Area)llsberpa(Crn)) = Y | Y Plillsbeaa(Ara)Illsbea1(Crin)),

i=0 j=0
where p =5 —(e/2 + 1) and e is an even integer from 2 to 10.
Proof. Lemma 1 holds because

Isbs(A+1)I1sbs(C;+1)
= meﬁ (Isb5(Ar+1))l |15be/2+1 (Ar)l |me/3 (Isb5(Cy+1))l |15be/2+1 (Cri1)-



Table 3. y2-values of 3- or 5-round RC6P

3 rounds 5 rounds
#texts| Theoretical || Experimental ||#texts| Theoretical || Experimental
mean |variance||mean|variance mean |variance|mean|variance

28 163.20] 126.82(63.18] 126.50|| 2% [63.20| 126.80(63.30] 125.72
29 |63.41| 127.64|63.27| 126.78|| 2% |63.40| 127.60| 63.43| 128.48
210 163.82| 129.29|63.79| 125.02| 2% |63.80| 129.19||63.72| 128.94
211 164.64| 132.57| 64.33| 130.48|| 2% |64.60| 132.34|64.50| 132.11
212 166.29| 139.14|165.92| 139.85|| 2% |66.19| 138.78|/66.16| 141.22

We show theoretical and experimental results of mean and variance of x?-
values of 3- or 5-round RC6P in Tables 3, respectively. Experiments are done
by using 100 keys x 100 kinds texts. We see that both mean and variance of
x?-value can be computed theoretically.

4.2 Success Probability of Algorithm 2 on RC6P

By using the theoretical mean and variance in Section 4.1, the success probability
of Algorithm 2 is proved as follows.

Theorem 5. The success probability of e-bit-key-recovery Algorithm 2 of r-round RC6P
is given as follows,

Psrc6p,€(n) =

= x 2¢-1
f ¢<<k—1>+me,--1,<2<k—1)+4me,--1)/210>(x)'( f ¢<<k—1>+me,.+1,<2<k—1>+4me,-+1>/zw)(“)du) dx,
(8)

where 2" is the number of texts; m = 2"19;, k = 22, m0, is r-round non-central
parameter; and e is an even integer from 2 to 10.

Proof. Ps in Theorem 4 is derived by mean pgy,, and variance GZW] of distri-

bution of x>-values, which are computed by non-central parameter from The-
orem 2. On the other hand, 6, is computed by using Lemma 1. Thus we get

PSrcép,e(n)- u

Table 4 shows the success probability of Algorithm 2. According to Table 4,
the theoretical estimation gives the upper bound of results. It seems rather rough
upper bound. We will discuss the reason in Section 5.



Table 4. Theoretical and experimental success probabilities of 4-round RC6P (e = 4).

# texts 218 2191 2200 21 722
Theoretical |0.16]0.31{0.70{0.99(1.00
Experimental|0.10/0.17|0.34(0.75|1.00

4.3 Applicable Round of RC6P

By computing 0, of each round r, we derive the number of texts to recover a
correct key by Algorithm 2. We approximate Equation (8) to reduce the compu-
tation amount to get (8) for an even large e.

Theorem 6. The sufficient condition for Ps,cep,.(n) > 0.95 is given as

1

—_ P
Psrcép,e(n) = 1 20(26 — 1)/ (9)

where
Psrcép,e(n) =

00 X
f Plk—14m0, 1 2(k-1)+4m0,_)/210)(X) * f Pl—14m0,11,2(k—1)+4m0,1)/210) (W) AU dx;

m = 210 o = 2¢%2. 140 is r-round non-central parameter; and e is an even integer
from 2 to 10.

Proof. We show that n satisfied with Equation (9) is sufficient for Ps,cep.(1) >
0.95. First of all, we consider the following equation

1 2°~1
fo-(1-mEs)

When e > 1, F(e) is a monotonically increasing function, satisfies F(e) > 0.95 and

1 201
On the other hand, Equation (8) becomes

Psrcép,e(n) =

00 X 2°~1
f ¢(k—1+m9,._1,(2(k—1)+4m9,_1)/210)(x)'( f ¢(k—1+m9,.+1,(2(k—1)+4m6,+1)/210)(u)du) dx

= x 21
Z( f Plk=14m0, 1 2(k=1)+4m0,_1)/210)(X) - f Plk=14m0,1,2(k=1)+4m0,,,)/210) (1)UL dx)



Thus, if m = 2710 gatisfies

) x 20-1
( f ¢(k—1+m9,,1,(2(k—1)+4m9,,1)/210)(9()‘ f ¢(k—1+m9m,(2(k—1)+4m9,+1)/2"’)(“)511/‘ dx)
> F(e),

then Ps,cep(17) = 0.95. Therefore, if n satisfies
Psrcép,e(n) =
00 X
f Plk—14m0,1,2(k-1)+4m0,_)/210)(X) * f Plk—14m0,11,2(k—1)+4m0,1)/210) (W) du dx

s1o 1
20(2¢ - 1)

then Ps,c6p(11) > 0.95. [ |

Table 5. Theoretical and estimated #texts for Ps;p4(n) > 0.95 or Ps > 0.95.

Theoretical (Th.6)||Estimated (Th.4)

round |[# texts]  Work F|[# texts] Work ¥
2 52069 S2T69 ([ T52160 560

6 23673 23967|| 93764 24164

8 25276 95676(|  53.68 257,68
10 | 287 7279|9972 7372
12 | osesi 98881|| 98576 28976
14 | 10082 910482|| 10180 210580
16 | o11683 211977 || 511784 12184
18 | 13285 13685 || 513388 13788

1 : experimental result [5]
1 : the number of incrementing cnt.

Here we set ¢ = 4. Table 5 shows theoretical and experimental number of
texts necessary for Ps,c6p,€(n) > 0.95 in each r round. From Table 5, Algorithm 2
is faster than exhaustive search for 128-bit-key RC6P with up to 16 rounds. It
corresponds with the previous experimental result [5]. Our theorem estimates
the number of texts necessary for recovering r-round RC6P with the success
probability of more than 95% to

logy(#texts) = 8.01r — 11.63. (10)
On the other hand, it is estimated in [5] heuristically as
logy(#texts) = 8.02r — 10.48. (11)

We see that both estimations are pretty close each other.



Table 6. Theoretical and experimental success probability of 4-round RC6P-8 by using
Algorithm 2.

# texts| Theoretical||Experimental
212 0.742 0.228
213 1.000 0.481
24 1.000 0.888
215 1.000 1.000

4.4 Success Probability of Algorithm 2 on RC6P-8

We also demonstrate our theorem on 4-round RC6P-8 whose word size is 8-bit.
Table 6 shows the theoretical and experimental results of Algorithm 2 on RC6P-
8. In the same way as 4-round RC6P, we see that theoretical estimation gives the
upper bound of experimental results.

5 x* Attack against RC6

This section improves Algorithm 2 to a key recovery attack against RC6, Algo-
rithm 3, and then gives the theorem that computes the success probability. We
also implement Algorithm 3 on 4-round RC6-8 and demonstrate the accuracy
of the theorem. Furthermore we also discuss the difference between Theorem 5
and 7 in view of accuracy.

5.1 Key Recovery Algorithm and Theoretical Success Probability

The primitive extension of Algorithm 2 to a key recovery attack on RC6 is
to decrypt yllys for each key candidate of s, Sy,» and Sy.43, which is shown
in [5]. Apparently it is rather straightforward since it means that it decrypts
each ciphertext by each 2% key. So we improve Algorithm 2 such that it does
not have to decrypt each ciphertext. Before showing the algorithm, let us use
the following notation:

U = {u € {0,1}*msbs(u x Qu + 1)) = 0}, (us, ute) € U X U, t; = Apyp — g, te =
Cr+2 — Uy,

v = Isbs(Bo)|llsbs Do, z = 1sb3(By+2)lllsbs(Dr+2).

Algorithm 3

1. Choose a plaintext (Ap, By, Co, Dg) and encrypt it to (A2, Bri2,
Cr+21 Dr+2)-

3. For each (u, u;), compute both #, and ¢, and update each array by
incrementing count[f,][t][v][z].

4. For each t,, t. and v, compute the y?-value x?[t.][t:][v].

5. Compute the average ave[t,|[t.] of {X’[t.][t:][v]}s for each ¢, t. and
output f,, t. with the highest ave[t,][t.] as Soi+2, Sor43-



Algorithm 3 computes the y-value on 6-bit z, which follows the idea of
Algorithm 2. Compared with [8], in which the x*-value is computed on 10-bit
data, Algorithm 3 seems to recover a correct key efficiently.

We may note that Algorithm 3 calculates the y*-value on z = Isbs(B,.2)l|
Isb3(Dr4+2) by using such plaintexts that make the final-round-notation 0 for
each key candidate. For a correct key, this is exactly equivalent to compute the
x?-value on lsbs(A,)|[1sbs(C,), which is output of (r — 1)-round RC6P because
the addition keeps the x2-value. Thus, we succeed to skip the post-whitening
and get that the probability density function of distribution of x*-value with
a correct key in r-round RC6 is equal to f,, defined in Theorem 4. On the
other hand, in the case of wrong keys, this is exactly equivalent to compute the
x>-value on Isb3(A,2)| Isb3(C,42), which is output of (r + 1)-round RC6P. Thus,
we get that the probability density function of distribution of x*-value with a
wrong key in r-round RC6 is equal to fy, defined in Theorem 4. From the
above discussion, we’ve proved the following theorem.

Theorem 7. The success probability of Algorithm 3 on r-round RC6 is given theoreti-
cally as

Ps;6(n) =

00 X 2041
f ¢(26—1+m9,1,(2(26—1)+4m9,1)/210)(95)‘( f ¢(26—1+m9,+1,(2(26—1)+4m9,+1)/2‘0)(1’l)d”) dx,
(12)

where 2" is the number of texts, m = 2"~ and m0, is r-round non-central parameter.

Table 7. #texts necessary for Ps,(1) > 0.95 (From Th.8)

r 4 6 8 10| 12| 14| 16| 18
# texts| 23106 | D¥710| p83.13[ H7915[ 995.17 | 1111912720 [ T43.21

28506 210110 211713 2133.15 2149.17 2165.19 2181.20 219721

work?

*: a time to increment of cnt.

We approximate Equation (12) to reduce the computation amount to get (12)
in the same way as Theorem 5. Theorem 8 is pretty effective to compute n with
Ps,6(n1) > 0.95 since the computation of exponentiation 2% _ 1 on an integral
part in (12) is eliminated.

Theorem 8. The sufficient condition for Ps,(n) > 0.95 is

1

Psy6(n) 21 - 2025 - 1)’



Table 8. Theoretical and experimental success probability of 4-round RC6-8 (Alg. 3)

# texts 217 { 218 { 219 1 220
Theoretical |0.00/0.05|0.73|1.00
Experimental|0.00{0.04(0.76|1.00

where
13;706 (Tl) =

00 X
f P26-14m6, 1,(2(25-1)+4m0, 1)/210)(X) * f DRO-141m0,11,(2(26-1)+4m6),,1)/210)()du dx,
m = 220 and mO, is r-round non-central parameter.

Table 7 shows the necessary number of texts and work which make success
probability of Algorithm 3 on RC6 95% or more. The necessary number of texts
is computed by Theorem 8. “Work” means the time to increment of counter
cnt. Note that the number of available texts is bounded by 2% in Algorithm 3.
Therefore, we see from Table 7 that Algorithm 3 is applicable to 192-bit-key and
256-bit-key RC6 with up to 16 rounds. Thus, our results can answer the open
question of [8], that is whether or not the x? attack works on RC6 with 16 rounds
or more.

In [8], they estimated heuristically that 192-bit-key or 256-bit-key RC6 are
broken up to 14 or 15 rounds by their key recovery algorithm, respectively.
We’ve now proved theoretically that 192-bit-key and 256-bit-key RC6 can be
broken in up to 16 rounds. In Algorithm 3, we recover both post-whitening
keys at once. As a result, the number of work is #texts X 272, and thus it works
on an 128-bit-key RC6 with up to 8 rounds. But we can reduce the amount of
work by recovering either post-whitening key at once to #texts x 2%7. Then it
works on 128-bit-key RC6 with up to 12 rounds, which will be shown in the
final paper.

5.2 Success Probability of Algorithm 3 on RC6-8

We also demonstrate Theorem 7 on 4-round RC6-8. Table 8 shows the theoretical
and experimental results. We see that theoretical estimation gives a pretty good
approximation compared with Table 6. Let us discussion the reason. In Algo-
rithm 2, we assume that the x?-values of wrong keys in r-round RC6P equals
that in (7 + 1)-round RC6P to estimate Ps,c(17). However, this is exactly upper
bound of x*-values of wrong keys. In the case of Algorithm 3, the x*-values of
wrong keys in r-round RC6 are equal to that in (r + 1)-round RC6P. Thus, we see
that theoretical estimation of Theorem 7 is much better than that of Theorem 5.
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Concluding Remarks

In this paper, we have improved the x*-attack on RC6P to the x>-attack on RC6
and proved the theorems that evaluate the success probability in both y*-attacks.
The derived formulae can be computed efficiently and provide a theoretical
analysis of the success probability in the y2-attack. We have also demonstrated
that our theorems can estimate success probability in x2-attacks against 4-round
RC6P, RC6P-8, and RC6-8. Furthermore we have shown theoretically that our
Xx?-attack is applicable to 192-bit-key and 256-bit-key RC6 with up to 16 rounds
by using 2!720 plaintexts.
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