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A Fully-Functional group signature scheme over
only known-order group

Atsuko Miyaji and Kozue Umeda

1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, 923-1292, Japan
{kozueu, miyaji}@jaist.ac.jp

Abstract. The concept of group signature allows a group member to
sign message anonymously on behalf of the group. In the event of a
dispute, a designated entity can reveal the identity of a signer. Previ-
ous group signature schemes use an RSA signature based membership
certificate and a signature based on a proof of knowledge(SPK) in or-
der to prove the possession of a valid membership certificate. In these
schemes, SPK is generated over an unknown-order group, which requires
more works and memory compared with a publicly-known-order group.
Recently, a group signature based on a known-order group is proposed.
However, it requires an unknown-order group as well as a known-order
group. Furthermore, unfortunately, it does not provide the function of
revocation. In this paper, we propose the group signature scheme based
on only publicly-known-order groups. Our scheme improves the Nyberg-
Rueppel signature to fit for generating membership certificates and uses
SPKs over a cyclic group whose order is publicly known. As a result,
our scheme reduces the size of group signature and the computational
amount of signature generation and verification.

1 Introduction

A group signature proposed by Chaum and van Heyst[10], allows a group member
to sign messages anonymously on behalf of the group. A group signature has a
feature of tracing, that is, the identity of a signer can be revealed by a designated
entity in case of dispute. A group signature consists of three entities: group
members, a group manager, and an escrow manager. The group manager is
responsible for the system setup, registration and revocation of group members.
The escrow manager has an ability of revealing the anonymity of signatures with
the help of a group manager.

A group signature consists of six functions, setup, registration of a user,
revocation of a group member, signature generation, verification, and tracing,
which satisfy the following features:

Unforgeability : Only group members are able to generate a signature on a
message;

Exculpability : Even if the group manager, the escrow manager, and some of
group members collude, they can not generate a signature on behalf of other
group members;
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Anonymity : Nobody can identify a group member who generated a signature
on a message;

Traceability : In the case of a dispute, the identity of a group member is revealed
by the cooperation of both the group manager and the escrow manager;

Unlinkability : Nobody can decide whether or not two signatures have been
issued by the same group member;

Revocability : In the case of withdrawal, the group manager can revoke a mem-
ber, and a signature generated by the revoked member can not pass the
verification;

Anonymity after revocation : Nobody can identify a group member who gener-
ated a signature on a message even after a group member was revoked;

Unlinkability after revocation : Nobody can decide whether or not two signa-
tures have been issued by the same group member even after a group member
was revoked.

The efficiency of a group signature scheme is considered by the size of public key
and signature, the work complexity of signature generation and verification, and
administration complexity of revocation and registration of a group member.

Various group signature schemes have been proposed[5, 6, 9, 8, 1, 4, 16, 3, 7,
2]. These group signature schemes are classified into two types, a public-key-
registration type, and a certificate-based type. In the former type, [5, 6] are con-
structed by using only known-order groups. However, in their schemes, both a
group public key and the signature size depend on the number of group mem-
bers. It yields a serious problem for large groups. In the latter type, [9, 8, 1, 4,
16, 7, 3, 2] give a membership certificate to group members, and the group sig-
nature is based on the zero-knowledge proof of knowledge(SPK) of membership
certificate. Therefore, neither a group public key nor signature size depends on
the number of group members. In these previous certificate-based type group
signature schemes, the membership certificate has used an RSA signature over
an unknown-order group, and, thus, the size of group signature becomes huge.

In this paper, we present an efficient group signature scheme based on a
Nyberg-Rueppel signature. This is the first scheme that is constructed on only
known-order groups and that realizes the full features of unforgeability, excul-
pability, anonymity, traceability, unlinkability, and revocability. As a result, the
signature size and computation amount of signature generation and verifica-
tion are reduced. We also give the security proof of membership certificate and
group signature. Furthermore, our scheme also applies the Certificate Revocation
List(CRL)-based revocation which proposed by Ateniese and Tsudik[3] with a
slightly few additional work.

This paper is organized as follows. In the next section, we provide an overview
of related work. In Section 2, we summarize some notations and definitions used
in this paper. In Section 3, we propose our new group signature scheme. Section 4
discusses the security of our scheme. Features and efficiency of our scheme are
analyzed in Section 5. Finally, Section 6 concludes our paper.
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1.1 Related work

Various certificate-based type group signature schemes have been proposed in
[1, 3, 4, 7–9, 16]. These schemes are based on the following mechanisms. A user,
denoted by Mi, who wants to join the group, chooses a random secret key xi,
and computes yi = f(xi), where f is a suitable one-way function. Mi commits to
yi (for instance, Mi signed on yi) and sends both yi and the commitment to the
group manager denoted by GM, who returns Mi with a membership certificate
ceri = SigGM(yi). To sign a message m on behalf of the group, Mi encrypts yi to
ci using the public key of the escrow manager denoted by EM, and generates a
signature based on the proof of knowledge which shows the knowledge of both xi

and ceri such that ceri = SigGM(f(xi)). The verification is done by checking the
signature of knowledge. The escrow manager can easily reveal the anonymity of
a group signature by decrypting ci.

These group signature schemes are classified into two types, a public-key-
registration type and a certificate-based type. Public-key-registration type group
signature schemes[5, 6] use only known-order groups and can easily realize the
revocation by removing the group member’s public key. However, both a group
public key and the signature size depend on the number of group members. It
becomes serious if we apply them on large group. On the other hand, the group
signature schemes of certificate-based type must make the member’s certificate
invalid when they revoke member. However, since the previous schemes [9, 8, 1, 2]
do not provide any function of revocation, they can not realize the feature of re-
vocability. The schemes [4, 16, 3, 7] provide the function of revocation. In Song’s
scheme[16], a membership certificate is valid for a limited period. Therefore, each
group member has to update his/her membership certificate in each time period.
Camenisch and Lysyanskaya’s scheme[7] needs to update a membership certifi-
cate in both cases of registration and revocation. Thus, their scheme requires
additional cost to manage the valid member although their verification does not
depend on the number of registered or revoked member. Bresson and Stern’s
scheme[4] uses a CRL to realize revocation. CRL is a public list of information
related with revoked-member certificates. This scheme does not have to update a
membership certificate, but the size of group signature and the cost of signature
generation and verification depends on the number of revoked members. Ate-
niese and Tsudik proposed quasi-efficient solution for CRL-based revocation[3].
CRL-based revocation scheme is based on the following mechanisms. The group
manager computes Vj = f ′(cerj) for each revoked member Mj by using a suit-
able one-way function f ′ and publishes Vj together with the current CRL. In
the signing phase, a signer Mi also sends T = f ′′(f ′(ceri)) with a signature by
using a suitable one-way function f ′′. In the verification phase, a verifier checks
that T 6= f ′′(Vj) for ∀Vj ∈ CRL. The signature size and the cost of signature
generation does not depend on the number of revoked members, but the cost of
verification depends on the number of revoked members. To sum up, there are
certificate-update-based revocation and CRL-based revocation. In the former,
the cost of verification does not depend on the number of revoked members, but
each group member needs to update a membership certificate. In the latter, each
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group member does not need to update a membership certificate, but the cost
of verification depends on the number of revoked members.

In the certificate-based type group signature schemes, the membership cer-
tificate has used an RSA signature over an unknown-order group, and thus the
size of group signature becomes huge. Recently, Nyberg-Rueppel signature was
applied to a group signature[2]. However, their scheme requires an unknown-
order group and must hide the membership certificate by a random value in
order to satisfying the feature of anonymity and unlinkability. Thus, although
a known-order group is introduced, it suffers from much work complexity and
complicated interaction. Furthermore, since it does not provide the function of
revocation, much administrative complexity might be required in order to revoke
a member.

1.2 Our contribution

Our proposed scheme is constructed on only known-order groups and that re-
alizes full feature of unforgeability, exculpability, traceability, unlinkability, and
revocability. In our scheme, a membership certificate is generated by Nyberg-
Rueppel signature, and the features of anonymity and unlinkability are realized
by zero-knowledge proof of knowledge which does not have to be hidden by
a random value in contrast to [2]. Thus, our group signature is rather simple
than [2]. As a result, the signature size and computation amount of signature
generation and verification are reduced from [2]. Furthermore, our scheme also
provides the CRL-based revocation with a slightly few additional work to group
members. We also give the security proof of membership certificate and group
signature.

2 Preliminaries

2.1 Notation

In this section, we summarize facts used in this paper. Let the empty string be
0̃. For a set A, a ∈R A means that a is chosen randomly and uniformly from A,
and A \ {a} means that A − {a} = {x ∈ A|x 6= a}. For a group G 3 g, ord(g)
means order of g in G. The bit length of a is denoted by |a|. Let c[j] be the j-th
bit of a string c. We use a collision resistant hash function H : {0, 1}∗ → {0, 1}k.

2.2 Proof of knowledge

A signature based on a zero-knowledge proof of knowledge(SPK), denoted by
SPK{(α1, · · · , αw) : Predicates}, is used for proving that a signer knows
α1, · · · , αw satisfying Predicates. We borrow three SPKs over known-order groups
from [11, 15, 6], SPK of representations and a double discrete logarithm.

Let q, p and p̃ be primes with q|(p − 1) and p|(p̃ − 1). We use two cyclic
groups Gp of order q with Gp ⊂ Z∗p and Gp̃ of order p with Gp̃ ⊂ Z∗p̃.
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Definition 1. Let g1, · · · , gu, y1, · · · , yv ∈ Gp. An SPK proving the knowledge
of representations of y1, · · · , yv to the base g1, · · · , gu on a message m ∈ {0, 1}∗
is denoted as

SPK{(α1, · · · , αw) : y1 =
J1∏

j=1

g
αa1j

b1j
mod p ∧ · · · ∧ yv =

Jv∏

j=1

g
αavj

bvj
mod p }(m),

where Ji ∈ [1, · · · , u] are the number of bases of yi, aij ∈ [1, · · · , w] are indexes of
the elements αaij

, and bij ∈ [1, · · · , u] are indexes of the bases gbij
, which consists

of a set of (c, s1, · · · , sw) ∈ {0, 1}k×Zw
q satisfying c = H(g1|| · · · ||gu||y1|| · · · ||yv||

yc
∏J1

j=1 g
sa1j

b1j
mod p|| · · · ||yc

v

∏Jv

j=1 g
savj

bvj
mod p||m).

If a signer knows x1, · · · , xw ∈ Zq such that y =
∏J1

j=1 g
xa1j

b1j
mod p, · · · , yv =

∏Jv

j=1 g
xavj

bvj
mod p, then a signature on a message m can be computed as follows:

1. choose random exponents rd ∈ Z∗q for 1 ≤ d ≤ w,

2. compute c = H(g1|| · · · ||gu||y1|| · · · ||yv||
∏J1

j=1 g
ra1j

b1j
mod p|| · · · || ∏Jv

j=1 g
ravj

bvj

modp||m) and
3. compute sd = rd − cxd mod q for 1 ≤ d ≤ w.

Definition 2. Let g̃, ỹ ∈ Gp̃ and g ∈ Gp. An SPK proving the knowledge of
double discrete logarithm of ỹ to the base g̃ and g on a message m ∈ {0, 1}∗ is
denoted as

SPK{(α) : ỹ = g̃gα

mod p̃ }(m),

which consists of a set of (c, s1, · · · , sk) ∈ {0, 1}k × Zk
q satisfying c = H(g||g̃||ỹ||

(ỹc[1]g̃1−c[1])gs1 mod p̃|| · · · || (ỹc[k]g̃1−c[k])gsk mod p̃||m).

A signer who knows the secret key x ∈ Zq with ỹ = g̃gx

mod p̃ can compute a
signature (c, s1, · · · , sk) = SPK{(α) : ỹ = g̃gα

mod p̃ }(m) on a message m as
follows:

1. choose random exponents rj ∈ Z∗q for 1 ≤ j ≤ k,
2. compute c = H(g||g̃||ỹ||g̃gr1 mod p̃|| · · · ||g̃grk mod p̃||m), and
3. compute sj = rj − c[j]x mod q for 1 ≤ j ≤ k.

3 Proposed scheme

We present the group signature scheme based on a Nyberg-Rueppel signature
after we define a new SPK and a new problem based on DLP, and modify the
Nyberg-Rueppel signature.
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3.1 New SPK of a common discrete logarithm over different groups

Let us define a new SPK which proves the knowledge of a common discrete
logarithm over different groups. Let P be a product pq of prime p and q|(p− 1),
P̃ be a prime with P |(P̃ − 1). We also use two cyclic groups GP of order q with
GP ⊂ Z∗P and GP̃ of order P with GP̃ ⊂ Z∗

P̃
.

Definition 3 (SPK of a common discrete logarithm over different groups).
Let g, y ∈ GP with ord(g) = ord(y) and g̃, ỹ ∈ GP̃ with ord(g̃) = ord(ỹ). An SPK
proving the knowledge of common discrete logarithm of y to the base g and ỹ to
the base g̃ on a message m ∈ {0, 1}∗ is denoted as

SPK{(α) : y = gα mod P ∧ ỹ = g̃α mod P̃ ∧ α ∈ ZP }(m),

which consists of a set of (c, s) ∈ {0, 1}k × ZP satisfying c = H(g||y||g̃||ỹ||
ycgs mod P ||ỹcg̃s mod P̃ ||m).

If a signer knows such an integer x ∈ ZP that both y = gx mod P and ỹ =
g̃x mod P̃ hold, a signature on a message m corresponding to public keys y and
ỹ can be computed as follows:

1. choose a random exponent r ∈ Z∗P ,
2. compute c = H(g||y||g̃||ỹ||gr mod P ||g̃r mod P̃ ||m), and
3. compute s = r − cx mod P .

Lemma 1. The interactive protocol corresponding to SPK{(α) : y = gα mod
P ∧ ỹ = g̃α mod P̃ ∧ α ∈ ZP }(m) is a honest-verifier perfect zero-knowledge
proof of knowledge of common discrete logarithm of y to the base g and ỹ to the
base g̃.

Proof : The proof on the perfect zero-knowledge part is quite standard. We
restrict our attention to the proof of knowledge part. By using the fact that the
equivalent protocol[15] is a proof of knowledge, it is sufficient to show that the
knowledge extractor can compute the witness once he has found two accepting
sets (t1, t2, c, s) and (t1, t2, c′, s′). Since both t1 = ycgs = yc′gs′ (mod P ) and

t2 = ỹcg̃s = ỹc′ g̃s′ (mod P̃ ) hold, we have y = g
s′−s
c−c′ (mod P ) and ỹ = g̃

s′−s
c−c′

(mod P̃ ). From these equations, we have
{

xq = s′−s
c−c′ mod q,

xp = s′−s
c−c′ mod p

.

On the other hand, we can compute such an integer x ∈ ZP that
{

x ≡ xq mod q

x ≡ xp mod p

by using Chinese Remainder Theorem. Then both y = gx mod P and ỹ = g̃x

mod P̃ hold. Therefore, SPK{(α) : y = gα mod P ∧ ỹ = g̃α mod P̃ ∧ α ∈
ZP }(m) is a honest-verifier perfect zero-knowledge proof of knowledge of com-
mon discrete logarithm of y to the base g and ỹ to the base g̃. ¤
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3.2 The multiple discrete logarithm problem

Before presenting our scheme, we define the Multiple Discrete Logarithm Prob-
lem(MDLP), which is used for the security proof of our scheme. Let k be a
security parameter, q and p be primes with |q| = k and q|(p−1), P be a product
of q and p, g1, g2 and g3 be elements in Z∗P with order q.

Problem 1 (MDLP) Given ZP and g1, g2 and g3 ∈ Z∗P with order q such
that the discrete logarithms based on each other element are unknown, find a
pair (x1, x2, x3) ∈ ZP × Zq × Zq such that x1g

x1
1 gx2

2 = gx3
3 (mod P ).

Assumption 1 (MDL Assumption) There is no probabilistic polynomial-time
algorithm P that can solve the Problem 1.

3.3 The modified Nyberg-Rueppel signature scheme

Let us summarize the original Nyberg-Rueppel signature scheme[14]. For a q-
order element g ∈ Z∗p, a signer chooses his secret key x ∈R Zq and computes his
public key y = gx mod p. A signature (r, s) ∈ Zp × Zq on a message m ∈ Z∗p
is computed as r = mg−w mod p and s = w − rx mod q for a random integer
w ∈R Zq, which is verified by recovering the message m as m = ryrgs mod p.

Message recovery signature schemes are subject to an existential forgery, in
which an attacker cannot control a message. In a sense, it is not a serious problem
because we can avoid such a forgery by restricting a message to a particular
format. However, suppose that we want to use it for a membership certificate
of DLP-based key like m = gt mod p. Then, by using a valid signature for a
message m = gt mod p with a known discrete logarithm t, it is easy to obtain a
forged signature for some known message m′ = gt′ mod p, in which an attacker
can control a message of m′. Therefore, we must remove such a defect from the
original Nyberg-Rueppel signature to generate a membership certification of a
DLP-based key.

In order to generate a membership certificate of a DLP-based key securely,
we introduce another base h ∈ Z∗p with order q such that the discrete logarithm
of h to the base g is unknown. We restrict the message space for Nyberg-Rueppel
signature to {ht mod p | t ∈ Zq}. In our scheme, GM or Mi computes each public
key as y = gxGM mod p or zi = hxi mod p, respectively. Then, a membership
certificate (ri, si) ∈ Zp × Zq of Mi’s public key zi = hxi mod p is given as
zi = riy

rigsi (mod p).

3.4 Functional description

A group signature scheme with CRL-based revocation consists of the following
procedures:

Setup: A probabilistic polynomial-time algorithm that on input a security pa-
rameter k outputs the group public key Y (including all system parameters),
the secret key S of the group manager, and the initial certificate revocation
list CRL.
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Registration: A protocol between the group manager and a user that registers
a user as a new group member. The group manager outputs the renewed
member list ML. The user outputs a membership key with a membership
certificate.

Revocation: A probabilistic polynomial-time algorithm that on input the re-
newed revoked member list RML outputs a renewed certificate revocation
list CRL corresponding to RML.

Sign: A probabilistic polynomial-time algorithm that on input a group public
key Y, a membership key, a membership certificate, and a message m outputs
a group signature σ.

Verification: A boolean-valued algorithm that on input a message m, a group
signature σ, a group public key Y, and a current certificate revocation list
CRL returns 1 if and only if σ was generated by some valid group member.

Tracing: An algorithm that on input a valid group signature σ, a group public
key Y, the group manager’s secret key, and the member list ML outputs
the identity of a signer.

3.5 Scheme intuition

Our scheme must permit Mi to prove knowledge of his membership certificate
(ri, si) corresponding his membership key xi without revealing any information
of xi, ri or si. However, there has not been any SPK which proves the knowledge
of the membership certificate directly. So, we modify Nyberg-Rueppel signature
as follows. Let P̃ be a prime with P |(P̃ − 1), P = pq and q|(p− 1) and q-order
elements g1 and g2 ∈ Z∗P . GM issues a membership certificate (Ai, bi) of Mi’s
public key zi = gxi

2 mod P as gxi
2 = Aiy

Aigbi
1 (mod P ). This exactly means

that our membership certificate is based on MDLP. To forge a valid membership
certificate is equivalent to solve MDLP. Under the Assumption 1, it is difficult
to find a set of {xi, (Ai, bi)} such that gxi

2 = Aiy
Aigbi

1 mod P without knowing
the discrete logarithm of g1, g2 and y based on each other elements. Therefore,
the membership certificate (Ai, bi) corresponding to a membership key xi can
be obtained by only the interactive protocol between GM and Mi. In the signing
phase, we employ a base g̃ ∈ Z∗

P̃
with order P to protect any information of

the membership certificate (Ai, bi) and corresponding membership key xi, Mi

computes a random base T = g̃W mod P̃ for a random integer W ∈R ZP and
generates a signature based on the proof of knowledge of {xi, (Ai, bi)} such that
T g

xi
2 = TAiy

Aig
bi
1 mod P̃ holds. This can be constructed by using SPK which

defined in Section 2.2.

3.6 Our group signature scheme

We present a new group signature scheme with CRL-based revocation, which
uses only known-order groups. Let k be the security parameter and the initial
member list ML, the initial revoked member list RML and the initial member-
ship certificate revocation list CRL be null.
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Setup(k)
1. Choose a random k-bit prime q, a random prime p of such that q|(p− 1)

and set P = pq.
2. Choose a random prime P̃ of such that P |(P̃ − 1).
3. Set each cyclic subgroup GP ⊂ Z∗P with order q and GP̃ ⊂ Z∗

P̃
with

order P .
4. Choose random elements g1, g2, g3 and g4 ∈R GP \ {1} such that the

discrete logarithms based on each other elements are unknown.
5. Choose a random element g̃ ∈R GP̃ \ {1}.
6. Compute y1 = gxGM

1 mod P and y2 = gxGM
3 mod P for a secret key

xGM ∈R Zq.
7. Output the group public key Y = {q, P, P̃ , g1, g2, g3, g4, g̃, y1, y2} and the

secret key S = {xGM}.
Registration(Y, S, ML)

1. Mi chooses a membership key xi ∈R Zq, sets zi = gxi
2 mod P , and sends

zi with σi = SPK{(α) : zi = gα
2 mod P }(0̃) to GM1.

2. GM checks the validity of σi, chooses a random integer wi ∈R Zq,
computes Ai = zig

−wi
1 mod P and bi = wi − AixGM mod q, and sends

(Ai, bi) ∈ ZP × Zq to Mi through a secure cannel.
3. GM adds (Ai, bi) with Mi’s identity IDi to the member list ML.
4. Mi verifies that Aiy

Ai
1 gbi

1 = zi (mod P ).
5. GM outputs the renewed member list ML = {(IDi, Ai, bi)}.
6. Mi possesses a membership key xi and a membership certificate (Ai, bi) ∈
ZP × Zq.

In order to revoke a new subset of members whose revoked member list is
RML = {(ID, b)} with |RML| = u, GM renews the certificate revocation
list CRL by running the following Revocation protocol.

Revocation(RML)
1. Choose a new revocation base g4 ∈R GP \ {1} and update Y.
2. Compute Vj = g

bj

4 mod P for bj ∈ RML (1 ≤ j ≤ u).
3. Output the renewed certificate revocation list CRL = {Vj | 1 ≤ j ≤ u}.

Sign(Y, g4 xi, Ai, bi, m)
1. Choose a random integer w ∈R Zq.

2. Compute T1 = g̃gw
3 mod P̃ , T2 = T

g
bi
4

1 mod P̃ , T3 = gbi
3 gw

4 mod P ,
T4 = Aig

w
3 mod P , and T5 = yw

2 mod P .
3. Generate

σ1 = SPK{(α1, α2) : T1 = g̃g
α2
3 mod P̃ ∧ T2 = T

g
α1
4

1 mod P̃ ∧
T3 = gα1

3 gα2
4 mod P }(m)

= (c1, s11, · · · , s1k, s21, · · · , s2k) ∈ {0, 1}k × Z2k
q

as follows:
1 We can also add an interactive protocol to make a member’s secret key jointly by a

member and GM.
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– choose random integers ω1j , ω2j ∈R Zq for 1 ≤ j ≤ k,
– compute

• t1j = g̃g
ω2j
3 mod P̃ , t2j = T

g
ω1j
4

1 mod P̃ , and t3j = g
ω1j

3 g
ω2j

4 mod
P for 1 ≤ j ≤ k,

• c1 = H(g3||g4||g̃||T1||T2||T3||t11|| · · · ||t1k||t21|| · · · ||t2k||t31|| · · · ||t3k

||m),
• s1j = ω1j − c1[j]bi mod q and s2j = ω1j − c1[j]w mod q for 1 ≤

j ≤ k.
4. Generate

σ2 = SPK{(α3, α4, α5, α6) : α3 ∈ ZP ∧ T3 = gα4
3 gα6

4 mod P ∧
T4 = y−α3

1 g−α4
1 gα5

2 gα6
3 mod P ∧ T5 = yα6

2 mod P ∧ g̃T4 = Tα3
1 mod P̃ }(m)

= (c2, s3, s4, s5, s6) ∈ {0, 1}k × Z3
q × ZP

as follows:
– choose ω3 ∈R ZP , ω4, ω5, ω6 ∈R Zq,
– compute

• t4 = gω4
3 gω6

4 mod P , t5 = y−ω3
1 g−ω4

1 gω5
2 gω6

3 mod P , t6 = yω6
2 mod

P , and t7 = Tω3
1 mod P̃ ,

• c2 = H(g1||g2||g3||g4||g̃||y1||y2||T1||T3||T4||T5||t4||t5||t6||t7||m),
• s3 = ω3−c2Ai mod P , s4 = ω4−c2bi mod q, s5 = ω5−c2xi mod q

and s6 = ω6 − c2w mod p.
5. Output a group signature σ = {T1, T2, T3, T4, T5, σ1, σ2}.

Verification(Y, CRL, m, σ)
1. Check the validity of σ1 and σ2.
2. If T

Vj

1 6= T2 mod P̃ for ∀Vj ∈ CRL, then accept the signature otherwise
reject the signature.

Tracing(xGM, ML, σ)
1. Recover Ai by Ai = T4/T

1/xGM
5 mod P .

2. Identify a signer Mi from Ai by using the member list ML.
3. Output the signer’s identity IDi.

In our scheme, in order to realize the features of anonymity and unlinkability,
GM has to keep ML secretly and send a membership certificate to a group
member through a secure cannel. This assumption is required in the CRL-based
revocation as in [3]. To reduce the features of anonymity and unlinkability to
GM, GM may be separated to two managers, the group manager and the es-
crow manager by applying techniques of multi-party computation to generate a
membership certificate.

4 Security consideration

We use two different signature schemes in our group signature scheme. One is the
modified Nyberg-Rueppel signature scheme that generates the membership cer-
tificate, and the other is SPK that generates the group signature. In this section,
we consider the security of a membership certificate and the group signature.
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4.1 Security proof on the membership certificate

The security of the membership certificate in our scheme is based on the diffi-
culty of the MDLP. We show the membership certificate is secure against any
probabilistic polynomial-time adversaries.

Let us define one more security assumption. For the security parameter k,
primes p and q with |q| = k and q|(p−1), P = pq and g1, g2, g3 ∈ Z∗P with order
q, a set of solutions of Problem 1 is denoted as

X (ZP , g1, g2, g3) = {(x1, x2, x3) ∈ ZP × Zq × Zq | x1g
x1
1 gx2

2 = gx3
3 (mod P )}

where the discrete logarithms of g1, g2, and g3 based on each other element is
not known.

Problem 2 (Strong-MDLP) Given ZP , g1, g2, and g3 ∈ Z∗P such that the
discrete logarithm based on each other element is not known and any subset
X ⊂ X (ZP , g1, g2, g3) with the polynomial order |X|, find a pair (x1, x2, x3) ∈
ZP × Zq × Zq such that x1g

x1
1 gx2

2 = gx3
3 (mod P ) and (x1, x2, x3) 6∈ X.

Assumption 2 (Strong-MDLP Assumption) There is no probabilistic
polynomial-time algorithm P that can solve the Problem 2.

More formally, the following experiment is executed with algorithm A.

Break-strong-MDLP(A, k, q, P, g1, g2, g3)
1. Choose a polynomial-order subset X ⊂ X (ZP , g1, g2, g3).
2. (x1, x2, x3) ← AX(k, g1, g2, g3, q, P ).
3. If (x1, x2, x3) ∈ ZP×Zq×Zq, gx3

3 = x1g1
x1g2

x2 (mod P ), and (x1, x2, x3) 6∈
X

then return 1,
else return 0.

The strong MDLP assumption is that the maximum success probability of Break-
strong-MDLP(A, k, q, P, g1, g2, g3) over all the probabilistic polynomial-time ad-
versary is negligible in k.

By using Assumption 2, we can formalize the security of the membership
certificate as follows. Let us define A be a probabilistic polynomial-time oracle
Turing machine, which gets input Y and runs with a membership certificate oracle
OC(t,Y,S, ·), which on input z ∈ Z∗P outputs a membership certificate (A, b).
The adversary A may query the oracle adaptively. Eventually, adversary outputs
a new membership certificate (A′, b′) for a public key z′ and the corresponding
membership key x′. The adversary wins if z′ was not queried and A′yA′g1

b′ = z′

(mod P ). More formally, the following experiment is executed with the algorithm
A.

Adversary (A, k)
1. Set (S,Y) ← Setup(k)
2. Set (A′, b′, z′, x′) ← AOC(k,Y)
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3. If A′yA′g1
b′ 6= z′ (mod P ) or z′ was queried to OC,

then return "adversary failed",
else return "adversary succeeded".

From the above discussion, the security of our certificate is proved as follows.

Theorem 1. Let A be a probabilistic polynomial-time adversary of time com-
plexity τ with at most Q queries to an oracle OC. If the adversary successfully
forges a new certificate, then there exists an adversary B performing an attack
against the strong MDLP with at least the same advantage. Furthermore the time
complexity of B is at most τ .

4.2 Security proof on the group signature

We show the security of the group signature.

Theorem 2. The interactive protocol underlying the group signature scheme
is a honest-verifier perfect zero-knowledge proof of knowledge of a membership
certificate and corresponding membership key. Furthermore, it proves that the
a pair (T4, T5) encrypts the membership certificate under the group manager’s
public key y2.

Proof : The proof that the perfect zero-knowledge part is quite standard. We
restrict our attention to the proof of knowledge part. By the properties of the
SPK protocol, the signer can produce values of α1, α2, α3, α4, α5 and α6 such
that

T1 = g̃g
α2
3 mod P̃ (1)

T2 = T
g

α1
4

1 mod P̃ (2)
T3 = gα1

3 gα2
4 = gα4

3 gα6
4 mod P (3)

T4 = y−α3
1 g−α4

1 gα5
2 gα6

3 mod P (4)
T5 = yα6

2 mod P (5)

g̃T4 = Tα3
1 mod P̃ (6)

α3 ∈ ZP (7)

hold, in which α1 = α4 and α2 = α6 hold from Equation (3). Thus, Equations (1)
and (2) represent

T1 = g̃g
α6
3 mod P̃ (8)

and

T2 = T
g

α4
4

1 mod P̃ . (9)

From Equations (4) and (8), we can rewrite Equation (6) as

g̃y
−α3
1 g

−α4
1 g

α5
2 g

α6
3 = (g̃g

α6
3 )α3 (mod P̃ )

⇔ y−α3
1 g−α4

1 gα5
2 gα6

3 ≡ gα6
3 α3 (mod P )

⇔ gα5
2 ≡ α3y

α3
1 gα4

1 (mod P ). (10)
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Thus, a set of {α5, (α3, α4)} is coincident with the valid membership certificate
and corresponding membership key. From using Equation (10), Equation (4)
represents

T4 = α3g
α6
3 (mod P ).

Thus, a pair of (T4, T5) is an encryption of α3 by the group manager’s public
key y2. Therefore, the group signature is a honest-verifier perfect zero-knowledge
proof of knowledge of a membership certificate and corresponding membership
key, and it proves that the a pair (T4, T5) is an encryption of the membership
certificate by the group manager’s public key y2.

5 Analysis of our scheme

5.1 Features

Here we show that our scheme satisfies all features necessary for group signatures.

Unforgeability : From the proof of Theorem 2, a set of (T1, T2, T3, T4, T5) is an
unconditional binding commitment to a valid membership certificate (Ai, bi)
and corresponding membership key xi. Under the Assumption 2, it is infea-
sible to find a certificate (Ai, bi) corresponding a membership key xi without
knowledge of the group manager’s secret key. Therefore, only group members
who have a valid membership certificate are able to generate a signature on
a message;

Exculpability : GM knows a member’s membership certificate, but he can not
get any information about the corresponding membership key xi. Hence,
even if GM colludes with some group members, they cannot sign on behalf
of Mi.

Anonymity : Assuming that the functionH is a random function, the SPKs of σ1

and σ2 do not leak any information since their interactive counterparts are
based on the honest-verifier perfect zero-knowledge. To decide whether some
group member with certificate (Ai, bi) generated, it is required to decide
whether logg̃ T1 = T4/Ai, logT1

T2 = gbi
4 or logg4

T3/gbi
3 = logg3

T4/Ai =
logy2

T5. However, these are impossible under the decision Diffie-Hellman
assumption[12], and hence anonymity is guaranteed.

Traceability : When the signature is valid, (T4, T5) is coincident with the en-
cryption of the membership certificate Ai, which can be uniquely recovered
by GM. Therefore, a member can be traced in case of dispute. On the other
hand, in order to impersonate another signer with (A′i, b

′
i), they must forge

the membership certificate (A′i, b
′
i). Under the Assumption 2, it is infeasible.

Unlinkability : In order to decide whether or not two signatures {T1, T2, T3, T4,
T5, σ1, σ2} and {T ′1, T ′2, T ′3, T ′4, T ′5, σ′1, σ

′
2} were generated by the same group

member, we need to decide whether or not logg̃ T1/T ′1 = T4/T ′4, (logT1
T2)/

(logT ′1
T ′2) = 1 or logg4

T3/T ′3 = logg3
T4/T ′4 = logy2

T5/T ′5 holds. However,
these are impossible under the decision Diffie-Hellman assumption[12], and
hence group signatures are unlinkable each other.
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Revocability : Each group signature must prove the knowledge of bi with T2 =

T
g

bi
4

1 mod P̃ , where GM publishes revoked member’s membership certificate
as V = gb

4 mod P̃ . Therefore, if a signer is a revoked member (i.e., bi = b),
then TV

1 = T2 mod P̃ for some V holds. The verifier can check the equation
and judge whether the signer has been revoked or not. In order to forge the
group signature that passes verification, a revoked member must substitute
another b′ for a part of membership certificate b, but it is impossible under
Assumption 2. We can say that a revoked member can not generate a valid
group signature.

Anonymity after revocation : A CRL certificate, however do not leak any infor-
mation of group member. Therefore nobody can identify a group member
who generated a signature on a message even after a group member was
revoked.

Unlinkability after revocation : In order to decide whether or not two signatures
σ and σ′ based on different-time CRL CRL and CRL′ were generated by the
same member Mj whose certificate is in CRL′, we need to decide whether
or not logg4

logT1T2 = log g′4V
′
j holds. However, this is impossible under

the decision Diffie-Hellman assumption[12], and thus group signatures are
unlinkable even after a group member was revoked.

5.2 Efficiency

We compare our scheme with previous schemes [3] from the viewpoints of both
computational work and signature size in Table 1. Let P or q be 1200 or 160 bits,
respectively. Here M denotes the computational work of a multiplication over an
1200-bit modulus. We assume the binary method or the extended binary method
to compute the exponentiation or multiple exponentiations[13], respectively.

Table 1 shows that our scheme reduces both of signature size and verification
work by about 1/3 than [3], maintaining the same security level. Furthermore,
our scheme is slightly more efficient than even the group signature scheme based
on known-order cyclic groups proposed by G. Ateniese and B. de Medeiros[2],
which does not satisfy the feature of revocability as mentioned in Section 1.
Although revocability can be easily added in a simple way[3], it just increases
both the signature size and computational work. Our scheme is optimized under
such a condition that realizes all features, including the revocability. Therefore,
our scheme is much better than a scheme combined [2] with the revocation
function of [3].

Since our scheme uses the SPK of double discrete logarithms, it seems to
require much computational work in contrast to group signature schemes with
revocation[5, 6] which do not use SPK of double discrete logarithms. However,
their group public key and signature size depend on the number of group mem-
bers, and thus these schemes are less efficient than our scheme for large groups
like of 1000 members.
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Table 1. Comparison of the efficiency

Work Signature Size
Sign Verification Signature

[2] with [3] 2020.3× 103 M (2031.3 + 1.8u)× 103 M 101.6 KByte

[5](1) 200n + 760M 200(n + 1) M 380 + 20n KByte

Our scheme 705.1× 103 M (700.4 + 1.8u)× 103 M 31.3 KByte

(1) The number of group member denoted by n.

6 Conclusion

We have proposed the group signature with CRL-based revocation. In our scheme,
the membership certificate is constructed by using improved Nyberg-Rueppel
signature with appendix. As a result, the signature size and computational work
of signature generation and verification can be reduced because all secret data
can be computed by using the knowledge of order of group.

Our scheme uses the proof of knowledge involving double discrete logarithm
in the same way as previous group signatures, which requires many computa-
tional work. Furthermore our scheme uses a membership certificate based on a
special assumption of Multiple DLP. Developing a membership certificate based
on standard assumptions is a challenging open problem. Another interesting
open question is to find the relation ship among the Multiple DLP, DLP.

References

1. G. Ateniese and J. Camenisch and M. Joye and G. Tsudik, ”A practical and prov-
ably secure Coalition-Resistant group signature scheme”, Advances in Cryptology-
Proceedings of CRYPTO2000, LNCS 1880(2000), pp. 255-270.

2. G. Ateniese and B. de Medeiros, ”Efficient group signatures without trapdoors”,
Cryptology ePrint Archive, available from
http://citeseer.nj.nec.com/ateniese02efficient.html.

3. G. Ateniese and G. Tsudik, ”Quasi-efficient revocation of group signatures”, In the
proceeding of FC2002, 2002.

4. E. Bresson and J. Stern, ”Group signatures with efficient revocation”, In proceed-
ing of PKC2001, LNCS 1992(2001), pp. 190-206.

5. J. Camenisch, ”Efficient and generalized group signature”, Advances in
Cryptology-Proceedings of EUROCRYPT’97, LNCS 1233(1997), pp. 465-479.

6. J. Camenisch, ”Group signature schemes and payment systems based on the dis-
crete logarithm problem”, PhD thesis, vol. 2 of ETH-Series in Information Security
an Cryptography, Hartung-Gorre Verlag, Konstanz, 1998, ISBN 3-89649-286-1.

7. J. Camenisch and A. Lysyanskaya, ”Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials”, Advances in Cryptology-Proceedings
of CRYPTO2002, LNCS 2442(2002), pp. 61-76.

8. J. Camenisch and M. Michels, ”A group signature scheme based on an RSA-
variant”, preliminary version in Advances in Cryptology - ASIACRYPT’98, Tech.
Rep., RS-98-27, BRICS, 1998.



16 K.Umeda and A.Miyaji

9. J. Camenisch and M. Stadler, ”Efficient group signature schemes for large group”,
Advances in Cryptology-Proceedings of CRYPTO’97, LNCS 1296(1997), pp. 410-
424.

10. D. Chaum and E. van Heyst, ”Group signatures”, Advances in Cryptology-
Proceedings of EUROCRYPT’91, LNCS 547(1991), pp. 257-265.

11. D. Chaum, J. H. Evertse and J. van de Graaf, ”An improved protocol for demon-
stration possession of discrete logarithms and some generalizations”, Advances in
Cryptology-Proceedings of EUROCRYPT’87, LNCS 304(1987), pp. 127-141.

12. W. Diffie and M. E. Hellman, ”New directions in cryptography”, IEEE Transaction
on Information Theory IT-22, 1976, pp. 664-654.

13. D. E. Knuth, ”The Art of Computer Programming”, Addison-Wesley Publishing
Co.,, 1981.

14. K. Nyberg and R. A. Rueppel, ”Message recovery for signature scheme based on
the discrete logarithm problem”, Advances in Cryptology-Proceedings of EURO-
CRYPT’94, 1994, pp. 182-193.

15. C. P. Schnorr, ”Efficient signature generation for smart cards”, Journal of Cryp-
tology, Vol. 4(3), 1991, 239-252.

16. D. Song, ”Practical Forward-Secure group signature schemes”, In proceeding of
2001 ACM Symposium on Computer and Communication Security, 2001.


