JAIST Repository

https://dspace.jaist.ac.jp/

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

K Java Obfuscation with a Theoretical
Building Secure Mobile Agpents

Author(s) Sakabe, Yusuke; Soshi, Mapakazu; Mi

o Lecture Notes in Computer| Science,

Citation
103

Issue Date 2003

Type Journal Article

Text version aut hor

URL http:/7 /7 hdl handle.net/ 101119/ 4446
This is the author-created version
Yusuke Sakabe, Masakazu Spshi, Atsu
Lecture Notes in Computer| Science,

Rights 2003, 89-103.The original publicati
avail able at www.springer]ink.com,
http:// www. springerlink.cpm/content
81 n
Communications and multimpdia secur
techniques for network angd data pro

Description | FI P-TC6 TC1l1 Internationpl Confere
Tori no, I'taly, October 2-0B, 2003
Antonio Lioy, Daniele Mazgocchi (ed

y
‘

(

/

1
I

Java Obfuscation with a Theoretical Basis for
Building Secure Mobile Agents

Yusuke Sakabe'*, Masakazu Soshi®, and Atsuko Miyaji'

School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, JAPAN
{y-sakabe,soshi,miyaji}@jaist.ac.jp

Abstract. In this paper we propose novel techniques to obfuscate Java
programs for developing secure mobile agent systems. Our obfuscation
techniques take advantage of polymorphism and exception mechanism
of object-oriented languages and can drastically reduce the precision of
points-to analysis of the programs. We show that determining precise
points-to analysis in obfuscated programs is NP-hard and the fact pro-
vides a theoretical basis for our obfuscation techniques. Furthermore, in
this paper we present some empirical experiments, whereby we demon-
strate the effectiveness of our approaches.

Keywords: mobile agents, security, obfuscation, static analysis, com-
putational complexity

1 Introduction

In recent years mobile agent systems have been paid much attention to as a new
computing paradigm. Here a mobile agent is a program that migrates through
several hosts and performs a specific job on behalf of users. They can not only
move to other hosts, but can also offer advanced computing services such as
information retrieval and cooperative computation with other agents. In addi-
tion because a mobile agent is self-contained, i.e., it is accompanied by resources
necessary for execution, it can run on a host offline. Consequently, mobile agent
systems can realize a promising computing environment for next generations,
in particular an infrastructure suitable for electronic commerce. In such an ap-
plication area, security is of critical importance since the mobile agents process
sensitive data of users on behalf of them.

In order to attain security for mobile agent systems, we must provide pro-
tection against the two kinds of attacks: (i) attacks by malicious agents and (ii)
attacks by malicious hosts. The problem of the former attacks has been well un-
derstood and thus various countermeasures are available, e.g., sandbox security
technologies, cryptographic techniques such as encryption, digital signatures, or
authentication protocols. On the other hand, few attempts have been made so
far on solutions to the latter problem. Hence we can hardly find any established

* The author is currently with Sony Corporation, Network Application & Content
Service Sector.

techniques to solve the problem, except for those with some dedicated hardware.
For instance, encryption cannot be used to solve the problem since encrypted
mobile agents must be eventually decrypted into executable forms and then be-
come vulnerable against the attacks mounted by malicious hosts!.

In order to solve the problem, obfuscation of agent programs is very promis-
ing [2,1]. Therefore in this paper we propose novel methods to protect mobile
agents via software obfuscation. The proposed methods are to obfuscate Java
since Java is one of the most excellent object-oriented languages for developing
mobile agents. We believe that our obfuscation techniques are easily applicable
to other object-oriented languages such as C++.

Software obfuscation has been vigorously studied so far [3,2,1,4-6]. Unfor-
tunately previous software obfuscation techniques share a major drawback that
they do not have a theoretical basis and thus it is unclear how effective they are.

In order to mitigate such a situation, Wang et al. proposed a software obfus-
cation technique based on the fact that aliases in a program drastically reduce
the precision of static analysis of the program [6]. However, their approach is
limited to the intraprocedural analysis. Since a program consists of many proce-
dures in general, we must conduct interprocedural analysis whether or not it is
obfuscated. Hence Ogiso et al. proposed obfuscation techniques with the use of
function pointers and arrays, which greatly hinder interprocedural analysis [5].
Their work is very promising since it succeeds in providing theoretical basises
for the effect of obfuscation techniques. However, unfortunately, the techniques
in [5, 6] cannot straightforwardly apply to object-oriented languages, especially,
to Java.

Our obfuscation techniques take advantage of polymorphism and exception
handling mechanism of Java, which can drastically reduce the precision of static
analysis of the obfuscated programs and thus make them significantly harder to
understand and to modify. Hence in mobile agent systems developed in Java,
the techniques can provide protection against attacks by malicious hosts.

More technically, our obfuscation techniques are based on the difficulty of
points-to analysis?, which can be proved to be NP-hard [8]. Therefore, we can
also provide a theoretical basis to the techniques. This is one of the great ad-
vantages of our approaches over other related work.

We plan to build secure mobile agent systems with our proposed methods and
are now conducting various experiments and implementations. In this paper we
present, some of empirical evaluation, whereby we demonstrate the effectiveness
of our approaches.

The rest of the paper is structured as follows. In Sect. 2, we introduce poly-
morphism and exception in Java to describe our approaches. Next in Sect. 3,
we discuss related work to ours and point out their drawbacks. In order to solve
them, we propose new obfuscation techniques in Sect. 4, and we theoretically

! In this paper, due to space limitation, we cannot go into the details of the problem
of attacks by malicious hosts. Refer to [1] for further details.

2 See also [7] for the difficulty of conducting static analysis in Java in cases other than
ours.

evaluate our techniques in Sect. 5. In Sect. 6 we show empirical experiments of
the techniques. Finally we conclude this paper in Sect. 7.

2 Java

Our obfuscation techniques take advantage of functions of Java as an object-
oriented language such as polymorphism, exceptions, and so on. Therefore, before
going into details of the techniques, in this section we explain about the functions
that we use.

2.1 Object-Oriented Languages

Object-orientation is the framework to describe a program with objects and
messages. Object-oriented language have advantages over traditional languages
such as C from the viewpoint of the cost for reuse or maintenance of programs.

Object-oriented languages mainly consist of the following three foundations:

1. encapsulation: integrates data and routines,
2. inheritance: defines a hierarchical relationships among objects, and
3. polymorphism: handles different functions by a unique name.

While these functions often make it easier to implement programs for large
scale or advanced application, the behavior of the program is likely to be more
complex. As a result, the analysis of object-oriented programs often becomes
more difficult. Our proposed obfuscation techniques exploit this fact.

In the rest of this section, we describe about Polymorphism on Java and
Ezxception with subtyping, which are ingeniously used in our proposed obfuscation
techniques.

2.2 Polymorphism on Java

Polymorphism is one of the fundamental mechanisms of object-oriented lan-
guages, which can “handle different functions by a unique name.” Especially in
Java, we can implement polymorphism by the following features;

1. method override with class subtyping,
2. interface, or
3. method overload.

We explain how to implement polymorphism with interface and method over-
load, which are used for our obfuscation techniques.

interface F {
public void m();
}

class A implements F {
public void m() { System.out.println("I’m A"); }
}

class B implements F {
public void m() { System.out.println("I’m B"); }

}

{
F obj;
obj = new AQ);
cl: obj.m();
obj = new B();
c2: obj.mQ);

}

Fig. 1. Example of Interface

Interface Fig. 1 is an example of the use of interface. The variable obj is
defined as the type of interface F, therefore obj can be an instance of a class
that implements interface F. When this code is executed, the string “I'm A” is
printed at the program site c1, because obj is an instance of class A. And at the
site ¢2, the program prints “I'm B” because obj is an instance of class B there.

Here notice that the code obj.m() at cl is identical to the one at c2, al-
though, different methods are called according to the class types of obj. That
behavior is not decided at the time that the program is compiled, but is dynam-
ically decided when it is executed.

static void m(int arg) { System.out.println("int"); }
static void m(char arg) { System.out.println("char"); }

{ int i=0; char c=0;
cl: m(i);
c2: m(c);

Fig. 2. Example of Overloading

Method Overloading Next in Fig. 2, we show a Java code that performs
method overloading. At the site ¢l and c2, methods of the same name m are
called. The difference between them is the type of the arguments, which is int
at site c1 and char at c2. Consequently the string printed on the terminal is

“int” and “char”, respectively. If there are some methods with the same name,
the type or the number of the arguments determine which method is called.

2.3 Exception

class El1 extends Exception {}
class E2 extends Exception {}

{
int d, u;
1: d=1;
try {
2: method();
// may throw an exception El1 or E2
}
catch (El el) { 3: d=4; }
catch (E2 e2) { 4: d=3; }
5: u = d;
}

Fig. 3. Example of Exception

Java uses exceptions to provide error-handling capabilities. An exception is
an event that occurs during program execution, which disrupts the normal flow
of instructions. In Java programs, throw and catch (and finally) statements are
used to handle exceptions. In order to utilize exceptions, at first we define a class
for each error type, then throw/catch the instance of the class.

Fig. 3 is a simple example of how to use exceptions in Java codes. If the
method () called at the site 2 may throw an exception E1 or E2, the value of
d substituted for u at the site 5 changes dependently on which exception was
thrown, or whether the exception was thrown or not. Thus, operation of the
program containing exception exhibits non-deterministic property.

3 Related Work

In this section, we discuss some of existing approaches to solve the problem of
attacks by malicious hosts.

Sander and Tshudin proposed mobile cryptography for the problem [9]. In
mobile cryptography, we can develop programs that perform operation on en-
crypted data. It has an advantage that the security is provable, although, it
cannot be applicable to general agent programs but only to those of a rather
specific form. Hence it is of very limited use for practical situations. For other
cryptographic approaches, see also [10].

Now protection of mobile agents with software obfuscation is being paid much
attention to. Therefore below we present obfuscation techniques proposed so far,
some of which are not limited to security for mobile agent systems.

Hohl proposed the concept of ‘time-limited blackbox security’, which pro-
vides tamper-resistance for mobile agents by software obfuscation techniques
until a prescribed time limit [1]. For other obfuscation approaches, Mambo pro-
posed obfuscation techniques in which frequency distributions of instructions
in obfuscated programs are made as uniformly as possible by limiting available
instructions for obfuscation [4].

Unfortunately previous software obfuscation techniques share a major draw-
back that they do not have a theoretical basis and thus it is unclear how effective
they are.

In order to mitigate such a situation, Wang et al. proposed a software obfusca-
tion technique based on the fact that aliases in a program drastically reduce the
precision of static analysis of the program [6]. However, their approach is limited
to the intraprocedural analysis. Since a program consists of many procedures in
general, whether or not it is obfuscated, we must conduct interprocedural analy-
sis. Hence Ogiso et al. proposed obfuscation techniques with the use of function
pointers and arrays, which greatly hinder interprocedural analysis [5]. Their work
is very promising since they are successful in providing the theoretical basis for
the effect of obfuscation techniques.

Unfortunately the techniques in [5,6] cannot straightforwardly apply to
object-oriented languages, especially, to Java, because they require the use of
pointers or goto statements, which are not supported in Java3. Therefore we
need new obfuscation techniques that can be applicable to Java.

4 Proposed Obfuscation Techniques

From the discussions so far, in this section we shall propose new software obfus-
cation techniques using object-oriented features of Java.

4.1 Use of Polymorphism

As described in Sect. 2.2, polymorphism is one of the fundamental mechanisms
of object-oriented languages, which can handle different functions by a unique
name. While polymorpihsm makes it easy to implement complicated algorithms,
it also makes the behavior of the created programs more complicated. Conse-
quently it is difficult to analyze those program. We apply such a feature to our
obfuscation techniques.

Our obfuscation procedures with respect to polymorphism on Java are given
below. They consist of three phases: (1) Introduction of method overloading, (2)

3 Collberg et al. proposed some obfuscation techniques using object-oriented fea-
tures [2], however their techniques are limited to rather simple ones, e.g., disturbance
of class hierarchies. Furthermore they do not provide any theoretical basis about how
effective their techniques are.

Introduction of interfaces and dummy classes, and (3) Change types and new
sentences. Below, the procedures are concisely described because of space limi-
tation. Also notice that although the example programs below that result from
obfuscation are intentionally not so obfuscated for the purpose of explanation,
it is not difficult to transform a program into any more obfuscated form.

(1) Introduction of method overloading At first, we introduce new classes Ag and
Rt as preparation. The instance of Ag is used to preserve method? arguments,
and Rt is to preserve return values. Then we pick some classes randomly, and we
create new classes Agl~Agn derived from Ag, where n is the maximum number
of methods contained in the picked classes.

Next, we change the name of every method contained in the classes into the
same name. Then we change the type of return value for every method into
type Rt, and change the type of the arguments into a type of subclasses of Ag.
In this step, the numbers of the arguments of the methods are made to be the
same. Class Rt manages information of return types and values, and class Ag
and its subclasses manage argument types and values. Moreover, when two or
more classes are chosen, some number of dummy methods are added so that the
number of the methods of each class becomes the same.

Fig. 4 is an example of definition changes of methods described above. In
that case class A and B are chosen, then the name of every method in two classes
changes into ‘m’, and a dummy method is added to class B. Finally all return
types are changed into Rt, and the arguments into Agl~Ag3. Here, notice the
method calc of class A. Although the method originally require two arguments
of type int, it changes into ‘m(Ag2)’, which requires one argument of type Ag2.
Moreover the return type of calc is changed from int into Rt. Therefore, to
maintain the semantics of the original program, we need to modify the method
call and the method itself. This process is illustrated in Fig. 5. The constructor of
Ag2 requires two int arguments, and getRetValue(int z) returns int value.
They correspond to the arguments and the return value of original method calc,
respectively. We apply this transformation for each method call.

(2) Introduction of interfaces and dummy classes In this step we newly in-
troduce interface, and dummy classes if needed. The interface defines methods
transformed in step (1), and we make targeted classes to ‘implements’ this
interface. Moreover, we newly create classes that play no role (i.e., dummy).
These dummy classes also need to implement the interface defined immediately
before. If dummy classes are not needed for some reasons (for example, due to
performance the program requires), we can cancel to introduce dummy classes.

As continuation of the example given by (1), we show an example in Fig. 6.
The interface I defines three methods that have the same name ‘m’ and return
type Rt, and the arguments of each method are Agl, Ag2, and Ag3 respectively.

* In Java there are two types of method, instance method and static(class) method,
and our procedure does not count static methods. Hereinafter a ‘method’ means
instance method.

classRt{...}
classAg{...}
class Agl extends Ag { ...}
class A { class B {
int display(); float show(); class Ag3 extends Ag{ ...}
int calc(int, int); float move(float, float); .
void run(); class A { class B {
} Rt m(Agl); // display Rtm(Agl); // show
} Rt m(Ag2); // calc Rt m(Ag2); // move
Rt m(Ag3); // run Rt m(Ag3); // *dummy
} }

Fig. 4. Change definitions of methods

/l'in class A
1 in class A public Rt m(Ag2 p) { // calc
C . . intx,y, z;
puit;lltczl.nt calc(int x, int y) { Xx=p.getArg(0);
' y=p.getArg(1);
return z; Rt p = new Rt(z);
} return;
- }
{
intx,y, z; {
Athe_a = new A(); intx,y, z,
Athe_a = new A();
z = the_a.calc(x, y); Rtr; Ag2 p;
} p = new Ag2(X, y);
r = the_a.m(p);
z = r.getRetValue(z);
}

Fig. 5. Modify method and method call

Furthermore, we add the declaration of implementation to class A and B. Class
C has the same method as class A and B.

(8) Change types and new sentences Finally, we change types of instance vari-
ables of targeted classes into the type of interface introduced in the step (2).
And for every new sentence which creates the reference of the targeted class, we
put the new sentence into if-sentence with another new sentences.

Fig. 7 is an example of that conversion. EXP_TRUEF is the condition ex-
pressions that is always true such as x*(x+1)%2==0 or y* (y+1)*(y+2) %6==0.
Hence the semantics of the original program is maintained. However, generally
speaking, in static analysis it is very difficult to evaluate such expressions and
this results in difficulty in determining the execution paths in the presence of

interface | { Rt m(Agl); Rt m(Ag2); Rt m(Ag3); }
class Aimplements I { class B implements | {
Rt m(Agl); Rt m(Agl);
Rt m(Ag2); Rt m(Ag2);
Rt m(Ag3); Rt m(Ag3);
} }
/I *dummy
class C implements | {
Rt m(Agl);
Rt m(Ag2);
Rt m(Ag3);
}

Fig. 6. Definition of new Interfaces and Classes

{
{ lins;
- . if(EXP_TRUE) ins = new A();
Athe_a = new A(); else if(EXP_FALSE) ins = new B();

e I H = .
the_a.run(): » else ins = new C();

Ag3 p = new Ag3()
} ins.m(p);

Fig. 7. Change Types and new sentences

if-statements® Needless to say, such condition expressions can be made arbi-
trarily complicated as long as the original semantics is retained. Therefore the
if-statements make it difficult to determine the reference variable ins points to.

4.2 Use of Exception

In this section, we propose another obfuscation technique using exception, which
is independent of the technique in Sect. 4.1. Although exceptions are to provide
error-handling as explained in Sect. 2.3, of course, they can be inserted in any
site of a program. Our technique converts if-sentences to try/catch-sentences as
instances.

% Here static analysis of a program is conducted under the assumption that all ex-
ecution paths within procedures, without regard to interprocedural paths, are ex-
ecutable. This assumption is commonly found in the literature and is often called
‘meet over all paths’ [11].

class exp_base extends Exception { }
class exp_1 extends exp_base { }

{ class exp_n extends exp_base { }
if(EXP1){S1} {
else if(EXP2) { S2} | exp_base e;
else if(l EXPn-1) { Sn-1} try { throw e }
else {Sn} catch (exp_lel){S1}

catch (exp_2e2){S2}

cat.(-:-h (Enen){Sn}

Fig. 8. Use of Exceptions

Here, we consider an if-sentence in Fig. 8, where EX Py, EXP;, ..., EXP,_
are appropriate condition expressions, and Sy, Ss, ..., S,_1 are sequences of
sentences. Now we introduce exception classes exp_base, exp_1, exp_2, ..., expn,
where exp_1~exp_n are subclasses of exp_base. Then we convert the if-sentence
to the try/catch-sentence as shown in the right side in Fig. 8. The variable
e should be an instance of an appropriate exception class so that obfuscated
sentences execute equivalently to the original if-sentence.

4.3 Example of Obfuscation

At the end of Sect. 4, for completeness of the description of this section, we show
in Fig. 9 an example of obfuscation to which all obfuscation techniques apply.

5 Complexity Evaluation

Our obfuscation techniques described in Sect. 4 substantially impede precise
points-to analysis. In this section, we support this claim by presenting a proof
in which we show that statically determining precise points-to is NP-hard.

Theorem 1: In the presence of classes which implement interfaces, method calls
by the instances of the classes, and at the same time in the presence of method-
overloadings, the problem of precisely determining if there exists an execution
path in a program on which a given instance points to a given method at a point
of the program is NP-hard 6.

Proof: The proof of Theorem 1 is by reduction from the 3-SAT problem [8]
6 For further backgrounds behind the way of this proof, see [11].

classRt{...}
class Ag{...}
class Agl extends Ag{ ... }
class Ag2 extends Ag { ... }

class A { class Ag3 extends Ag { ... }
int display();
int calc(int, int); interface | { Rt m(Ag1l); Rtm(Ag2); Rt m(Ag3); }
id ;)))
void run(y class A implements | { class B implements | { class C implements | {
class B { Rt m(Agl); Rt m(Ag1); Rt m(Ag1);
float show(); Rt m(Ag2); Rt m(Ag2); Rt m(Ag2);
float move(float, float); Rt m(Ag3); Rt m(Ag3); Rt m(Ag3);
) } } }
{
{ intx,y, z; floats,t;
intx,y, z; floats,t; linsl, ins2; Ag p; ex_base e;
A the_a = new A(); if(x*(x+1)%2==0) e = new ex_1(); else if(x/y==z) e = new ex_2();
else e = new ex_3();
z = the_a.calc(x, y);
try { throw e } catch(ex_1 el) { ins1 = new A(); } catch(ex_2 e2) {ins1 = new B(); }
B the_b = new B(); catch(ex_3 e3) { ins1 = new C(); }
s = the_b.move(t);
p = new Ag2(x, y); r = ins1.m(p); z = r.getRetValue(z);
}
if(x*x<0) e = new ex_1(); else if(y*(y+1)*(y+2)&6==0) e = new ex_2();

else e = new ex_3();

try { throw e } catch(ex_1 el) { ins2 = new A(); } catch(ex_2 e2) {ins2 = new B(); }
catch(ex_3 e3) { ins2 = new C(); }
p = new Ag2(t); r = ins2.m(p); s = r.getRetValue(s);

Fig. 9. Example of Obfuscation

for Ay (liq V li2 V 1;3) with propositional variables {vi,vs,...,vm }, where I;;
is a literal and is either v, or Ty for some k (1 < k < m). The reduction is
specified by the program in Fig. 10, which is polynomial in the size of the 3-SAT
problem. The conditionals are not specified in the program since we assume that
all paths are executable. As will be seen later, paths through the code between
L1 and L2 represent truth assignments for the propositional variables. The truth
assignment on a particular path is encoded in the points-to relationship of certain
variables in the program. Paths between L2 and L3 then encode in the points-to
relationship whether or not the truth assignment resultant from the path to L2
satisfies /\?:1 (li71 V li72 \Y li73).

If we interpret v; pointing to b_true as the propositional variable v; being
true, then any path from L1 to L2 uniquely determines one truth assignment.
Furthermore, the converse is also true, namely, every truth assignment corre-
sponds to exactly one execution path as just mentioned.

Now consider the path from L2 to L3. If the truth assignment for a path from
L1 to L2 satisfies the formula then every clause has at least one literal which is
true. Pick the path from L2 on which each clause assigns b_ture to c. Then
each assignment corresponds to ¢ = b_true.and(b_true) and c must point to
b_true at L3. However if the formula is unsatisfiable then every truth assignment

has a clause, say (I;1 V1;2 V1;3), where all these three literals are false. This
implies l; 1, l; 2, and [; 3 all point to b_false. Because every path from L2 to L3
must go through the statement

if(-) ¢ = c.and(l;;) else if(-) ¢ = c.and(l;3) else ¢ = c.and(l;3);
¢ must point to b_false on all paths to L3 and thus ¢ never points to b_true.
Therefore 3-SAT is polynomial reducible to the problem of Theorem 1 and this
completes the proof.

6 Empirical Evaluation

In this section we present application of our obfuscation procedures to four
programs, RC6, compress, MD5 and FFT. Table 1 shows the difference between
the hierarchy/call graphs of the original programs and those of the obfuscated
programs. In the rows for a hierarchy graph, ‘#nodes’ represents the sum of the
classes and the interfaces, and ‘#edges’ represents the sum of subclassing and
implements edges. Furthermore, in the rows of a call graph, ‘#nodes’ represents
the number of call sites, and ‘#edges’ represents the number of ‘to method
nodes’. Here, we can readily see from the table that the increase of the numbers of
edges is greater than those of nodes, while the number of edges usually increases
in proportion to the number of nodes. In the original call graphs, the numbers
of nodes and edges are almost the same, which means that all the call sites and
target methods correspond one to one. On the other hand, in the call graphs of
the obfuscated programs, the number of edges is 3.4 times the number of nodes
on average. Therefore, some call sites have two or more candidates of methods,
and these result give a good evidence that precision of analysis is much reduced
by our obfuscation techniques.

We have evaluated performance degradation due to the obfuscation, as
indicated in Table 2. The experiments were conducted on a Sun Ultra
5(UltraSPARC-IT 400Mhz) with Solaris 8 (SunOS 5.8). Programs were compiled
and executed by Java version 1.3.1. Each execution time was the average of 1000
times execution. The average rate of execution times of obfuscated programs
over the original programs is 1.3, which is not so great as the rise in source codes
or class files. Therefore, our obfuscation techniques do not degrade performance
so much.

Note that these are results of applying our obfuscation procedures just once.
If needed we can apply the procedures two or more times, then it will provide
further obfuscated programs.

7 Conclusion

In recent years mobile agent systems have been paid much attention to as a
new computing paradigm. However, for advanced application such as electronic
commerce, the agent systems are of little value unless their security is ensured.
Especially it is significantly important to provide protection for mobile agents
against attacks by malicious hosts.

Table 1. Change of hierarchy and call graphs

program Before Obfuscation|After Obfuscation|ratio
Hierarchy |#nodes 3 21 7.0
compress|Graph #edges 2 30 15.0
Call Graph|#nodes 30 74 2.5

Fedges 30 274 9.1

Hierarchy |#nodes 5 23 4.6

RC6 Graph Fedges 4 33 8.3
Call Graph|#nodes 18 7 4.3

#edges 18 297 16.5

Hierarchy |#nodes 10 33 3.3

MD5 Graph Fedges 9 42 4.7
Call Graph|#nodes 194 667 3.4

#edges 202 1775 8.8

Hierarchy |#nodes 7 25 3.6

FFT Graph #edges 6 41 6.8
Call Graph|#nodes 86 318 3.7

Fedges 86 1057 12.3

In order to solve the problem, obfuscation of agent programs is very promis-
ing. Unfortunately previous software obfuscation techniques share a major draw-
back that they do not have a theoretical basis and thus it is unclear how effective
they are. Therefore, in this paper we propose novel obfuscation techniques for
Java. We believe it is fairly easy to apply the techniques to other object-oriented
languages such as C++.

Our obfuscation techniques take advantage of polymorphism and exception
mechanism and can drastically reduce the precision of points-to analysis of the
programs. We have shown that determining precise points-to analysis in obfus-
cated programs is NP-hard and the fact provides a theoretical basis for our obfus-
cation techniques. Furthermore, in this paper we have presented some empirical
experiments. The results show the effectiveness of our obfuscation approaches.

References

1. Hohl, F.: Time limited blackbox security: Protecting mobile agents from malicious
hosts. In Vigna, G., ed.: Mobile Agents Security. Volume 1419 of Lecture Notes in
Computer Science. Springer-Verlag (1998) 92-113

2. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical Report 148, Department of Computer Science, the University of
Auckland, Auckland, New Zealand (1997)

3. Aucsmith, D.: Tamper resistant software: An implementation. In Anderson, R.J.,
ed.: Information Hiding: First International Workshop. Volume 1174 of Lecture
Notes in Computer Science., Springer-Verlag (1996) 317-333

4. Mambo, M., Murayama, T., Okamoto, E.: A tentative approach to constructing
tamper-resistant software. In: New Security Paradigm Workshop. (1997) 23-33

10.

11.

Table 2. Change of program size and execution time

program Before Obfuscation|After Obfuscation|ratio
program |source[#tlines] 126 332 2.6
compress|size class file[byte] 2906 12056 4.2
execution time[sec] 0.57 0.69 1.2

program |source[#lines] 561 853 1.5

RC6 size class file[byte] 6039 18414 2.0
execution time[sec] 0.70 0.78 1.1

program |source[#lines] 762 2142 2.8

MD5 size class file[byte] 11257 43462 3.9
execution time[sec] 0.61 0.92 1.5

program |source[#tlines] 874 2185 2.5

FFT size class file[byte] 11260 37158 3.3
execution time[sec] 0.66 0.99 1.5

Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.: Software obfuscation on a theoretical
basis and its implementation. IEICE Transactions on Fundamentals E86-A (2003)
176-186

Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: Ob-
structing static analysis of programs. Technical Report CS-2000-12, Department
of Computer Science, University of Virginia (2000)

Chatterjee, R., Ryder, B.G., Landi, W.: Complexity of points-to analysis of Java in
the presence of exceptions. IEEE Transactions on Software Engineering 27 (2001)
481-512

Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory
of NP-completeness. W. H. Freeman and Co. (1979)

. Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts.

In Vign, G., ed.: Mobile Agents and Security. Volume 1419 of Lecture Notes in
Computer Science. Springer-Verlag (1998) 44-60

Kotzanikolaou, P., Burmester, M., Chrissikopoulos, V.: Secure transactions with
mobile agents in hostile environments. In: Information Security and Privacy: Fifth
Australasian Conference on Information Security and Privacy, ACISP 2000. Vol-
ume 1841 of Lecture Notes in Computer Science., Springer-Verlag (2000) 289-297
Myers, E.W.: A precise inter-procedural data flow algorithm. In: Conference record
of the 8h ACM Symposium on Principles of Programming Languages (POPL).
(1981) 219-230

interface Bool {
public Bool and(Bool arg);
}

class True implements Bool {
public Bool and(Bool arg) { return arg; }
}

class False implements Bool {
public Bool and(Bool arg) { return this; }
}

class theorem {
Bool b_true, b_false;
Bool c;

void var(Bool vy, Bool 771) {
if(-) var(v;, D1, b_true, b_false);
else var(vy, 71, b_false, b_true);

}

void var(Bool w1, Bool T1, Bool w2, Bool %3) {
if(-) var(vi, »1, v2, Uz, b_true, b_false);
else var(vi, U1, v2, U2, b_false, b_true);

}

void var(Bool wv;, Bool w;, Bool vy, Bool 72, ... Bool v,

Bool Tp,) {
L2:
if(-) ¢ = l1,1 else
if(-) ¢ = l1,2 else ¢ = l1,3;
if(-) ¢ = c.and(l2,1) else
if(-) ¢ = c.and(l22) else ¢ = c.and(l2,3);
if(-) ¢ = c.and(l,,1) else
if(-) ¢ = c.and(l,2) else ¢ = c.and(l, 3);
L3: }

public theorem() {
b_true = new True();
b_false = new False();

L1: if(-) var(b_true, b_false); else var(b_false, b_true);

}

public static void main(String[] args) {
new theorem();

}

Fig. 10. 3-SAT solution iff (¢, b_true) in Interprocedural Points-to Analysis

