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Efficient and unconditionally secure verifiable
threshold changeable scheme

Ayako Maeda0, Atsuko Miyaji and Mitsuru Tada

School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST),
Asahidai 1-1, Tatsunokuchi, Nomi, Ishikawa 923-1292, JAPAN.

Abstract. In this paper, we describe how to construct an efficient and
unconditionally secure verifiable threshold changeable scheme, in which
any participants can verify whether the share given by the dealer is
correct or not, in which the combiner can verify whether the pooled
shares are correct or not, and in which the threshold can be updated
plural times to the values determined in advance. An optimal threshold
changeable scheme was defined and given by Martin et. al., and an un-
conditionally secure verifiable threshold scheme was given by Pedersen.
Martin’s scheme is based on Blakley’s threshold scheme whereas Peder-
sen’s is based on Shamir’s. Hence these two schemes cannot directly be
combined. Then we first construct an almost optimal threshold change-
able scheme based on Shamir’s, and after that using Pedersen’s scheme,
construct a unconditionally secure verifiable threshold scheme in which
the threshold can be updated plural times, say N times. Furthermore,
our method can decrease the amount of information the dealer has to be
publish, comparing with simply applying Pedersen’s scheme N times.

1 Introduction

In a secret sharing scheme, a secret is broken into several pieces so that certain
subsets of those pieces can reconstruct the secret. In a protocol, a dealer has a
secret, and breaks it into several pieces called shares. An entity given a share
is called a participant, a shareholder or a member simply. In this paper, we
adopt the term participant. The entity to gather shares and recover the secret, is
called the combiner. Basically, a secret sharing is regarded as a strategy for some
important data protection. On the other hand, it is useful also for multiparty
computation, for example, electronic auction, electronic voting, and so on.

As the most popular secret sharing schemes, we can see Shamir’s polynomial-
based scheme [Sha79] and Blakley’s geometry-based scheme [Bla79]. In that
scheme, a secret is broken into n pieces so that the secret can reconstruct with
any t (≤ n) pieces, and not so that any (t− 1) pieces can determine the secret.
Such a t is called the threshold of the scheme. Also we call such secret sharing
schemes with the property given above (t, n)-threshold schemes.
0 Current affiliation of the first author: Alpha systems corporation.



There are some threshold schemes in which the threshold can be changed
without reconstructing the system [TTO99,MPSW99]. In this paper, we gener-
ically call such schemes threshold changeable schemes. In [TTO99] and in the
first part of [MPSW99], after the initial setting, no secure channels is required,
and the schemes before and after the threshold is changed are set to be perfect.
However the required share size, precise to say the entropy of each share, has to
be equal to or greater than the twice of that of the secret. Hence if we construct
a scheme in which the threshold can be changed N times, the required share
size is equal to or greater than (N +1) times of that of the secret. On the other
hand, in the latter part of [MPSW99], an optimal (t, n)-threshold scheme that is
threshold changeable to t′ (> t) is defined, and a concrete construction is actually
given. (As described later, we write as a (t → t′, n)-threshold changeable scheme
instead of writing as a (t, n)-threshold scheme that is threshold changeable to t′.)
In that kind of a threshold changeable scheme, the scheme after the threshold
change sacrifices the perfect security, but is an optimal (t−1, t′, n)-ramp scheme.
Furthermore the scheme requires only the share size coinciding with the secret
size. Even in changing the threshold N times, this scheme requires the same size
share as the secret size.

In Section 3, we define a (t → t, n)-threshold changeable scheme, in which the
threshold can be changed N(≥ 1) times, where t = (t1, t2, . . . , tN ) with t < tk
for 1 ≤ k ≤ N . Note that in case N = 1, that scheme has already been defined
by [MPSW99]. Each tk is the threshold after the threshold is changed k times.
The optimal (t → t′, n)-threshold changeable scheme given by [MPSW99] can
easily be extended to be a (t → t, n)-threshold changeable scheme.

In this paper, we discuss to make a (t → t, n)-threshold changeable scheme
verifiable. By the technique by [Ped92], we can make a scheme non-interactive
and unconditionally secure. The optimal (t → t′, n)-threshold changeable scheme
given by [MPSW99] is unfortunately based on [Bla79]. Since Pedersen’s scheme
[Ped92] is based on Shamir’s one [Sha79], it cannot directly be applied to that
optimal (t → t, n)-threshold changeable scheme. Then we first construct, based
on [Sha79], an almost optimal (t → t, n)-threshold changeable scheme. After
that we contrive to make such a scheme verifiable so that the whole scheme
required the dealer to publish much less information including the commitment
than we simply construct a (t → t, n)-threshold changeable scheme by combining
a (t → t1, n)-threshold changeable, a (t → t2)-threshold changeable scheme, . . .,
and a (t → tN , n)-threshold changeable scheme, and apply, to the whole scheme,
the technique by [Ped92] (N + 1) times for the (t, n)-threshold scheme and for
each (tk, n)-threshold scheme (1 ≤ k ≤ N).

2 Preliminaries

First of all, we review some definitions on secret sharing schemes after giving
our notations. Let s be a secret belonging to a set S. The secret s is broken into



n shares s1, . . . , sn. Let P = {P1, . . . , Pn} be the set of participants. We assume
that each share si is securely distributed to the i-th participant Pi. Let Pi denote
also the set of possible shares for the participant Pi. Similarly, we denote, by A,
the set of the shares the participants in A ⊂ P hold. We say that a set A ⊂ P
of shares can recover the secret s if H(S|A) = 0, where H(∗) denotes Shannon’s
entropy function. Such an A is called an access set. The set consists of all access
sets is called the access structure (of a secret sharing scheme).

2.1 Threshold scheme

A secret sharing scheme which has n participants, and whose access structure
is of the form {A ⊂ P | #A ≥ t} for some t(≤ n), is called a (t, n)-threshold

(secret sharing) scheme. In a (t, n)-threshold scheme, we, in general, have the
following properties: H(S|A) = 0 if #A ≥ t and H(S|A) > 0 otherwise.

Definition 1. A (t, n)-threshold scheme is said to be perfect, ifH(S|A) = H(S)
holds for any set A ⊂ P such that #A < t. A perfect threshold scheme is said
to be ideal, if H(Pi) = H(S) holds for any i (1 ≤ i ≤ n).

We can easily see that Shamir’s scheme [Sha79] is perfect and ideal. The following
theorem states that there exists the lower bound for the share size in a perfect
threshold scheme.

Theorem 1 (in [Sti95]). In a perfect (t, n)-threshold scheme, for any i (1 ≤
i ≤ n), H(Pi) ≥ H(S) holds.

2.2 Ramp scheme

As we can see in Theorem 1, in a perfect threshold scheme, there exists the lower
bound for the share size. That means if H(Pi) < H(S) holds for some i, then
the threshold scheme cannot be perfect. As a compromise between security and
efficiency, a ramp scheme is introduced in [MPSW99].

Definition 2. A (t, n)-threshold scheme is said to be a (c, t, n)-ramp scheme if
it satisfies the following properties:


H(S|A) = 0, if #A ≥ t ;

0 < H(S|A) < H(S), if c < #A < t ;

H(S|A) = H(S), if #A ≤ c.

In a ramp scheme, each share size can be smaller than the secret size. However the
smaller the share size gets, the more the information on the secret is disclosed.

Definition 3. A (c, t, n)-ramp scheme is said to be optimal, if it has the prop-

erty that H(S|A) =
t− r

t− c
H(S) holds for any A ⊂ P such that #A = r and

c ≤ r ≤ t.



It is shown by [JM96], that a (c, t, n)-ramp scheme with the property that

H(Pi) =
H(S)
t− c

holds for each i (1 ≤ i ≤ n) is optimal.

2.3 Threshold changeable scheme

In a secret sharing scheme, it often occurs that the access structure should to be
changed before the secret is reconstructed. Furthermore the dealer may often be
suspended after distributing shares. This is why we need a threshold scheme in
which the threshold can be changed without any dealer assistance, and hereafter
call such a scheme a threshold changeable scheme.

Here in a threshold changeable scheme, the first (t, n)-threshold scheme is
denoted by Π , and the derived (t′, n)-threshold scheme is denoted by Π ′. The
whole scheme is denoted by 〈Π,Π ′〉.

As seen in Definition 4 given above, for a subset A ⊂ P , we denote the
set of the images of respective elements by h∗ by H(A). That is, for A =
{Pi1 , . . . , Pi�

} ⊂ P , we define H(A) as follows:

H(A) := hi1(Pi1 )× hi2(Pi2 )× · · · × hi�
(Pi�

).

Definition 4 (in [MPSW99]). We say that a perfect (t, n)-threshold scheme is
called threshold changeable to t′, if there exist known functions hi for 1 ≤ i ≤ n,
such that H(S|H(A)) = 0 for any A ≥ t′, and H(S|H(A)) > 0 for any #A < t′

where A ⊂ P . (In this paper, we simply write as a perfect (t → t′, n)-threshold

changeable scheme instead of a perfect (t, n)-threshold scheme that is threshold
changeable to t′.)

In the definitions given above, each known function hi has to satisfy the property
that for any Pi (1 ≤ i ≤ n), H(Pi|hi(Pi)) > 0 holds not so that si can uniquely
figured out from s′i. In this paper, we call each si a full share (or share simply),
and each hi(si) a subshare.

Though [TTO99] presents an efficient way to derive Π ′ from Π both of which
are perfect, in that scheme, the functions {hi} do not satisfy the property given
above. Hence when the threshold is changed, the corresponding secret also has
to be simultaneously changed. Since we need to change not the secret but the
threshold, we focus the methods given by [MPSW99]. The method given by
the first part of [MPSW99] presents a threshold changeable scheme in which
both Π and Π ′ are perfect. But that method requires each share of a threshold
changeable scheme to be quite large. Concrete to say, letting α and β denote
the secret size and the share size, respectively, we have β ≥ 2α holds in such
a threshold changeable scheme. Hence as described in the following section, if
we extend a threshold changeable scheme so that the threshold can be changed
plural times, say N(≥ 2) times, then the required share size β is equal to or
greater than (N +1) times of the secret size, i.e. β ≥ (N +1)α. For efficiency of



the whole scheme, we aim at a perfect threshold changeable scheme in which Π

is ideal as the latter part of [MPSW99] even if the perfect security is lost.
We can easily see that a perfect (t → t′, n)-threshold changeable scheme

〈Π,Π ′〉, in which Π is a (t, n)-threshold scheme and Π ′ is a (t′, n)-threshold
scheme, has the property that H(S|H(A)) = 0 if #A ≥ t′ and H(S|H(A)) =
H(S) if #A < t, since #A < t implies H(S) ≥ H(S|H(A)) ≥ H(S|A) = H(S).

2.4 Efficiency measure

Let 〈Π,Π ′〉 be a perfect (t → t′, n)-threshold changeable scheme. Then the
efficiency of such a scheme can be measured by the followings:

(1) The maximum and average size of the share which needs to be stored by
participants, and which is denoted by H(Pi) for 1 ≤ i ≤ n;

(2) The amount of information which needs to be derivered for reconstruction of
the secret at the pooling time, and denoted by

∑
i∈AH(hi(Pi)) for A ⊂ P

where #A = t′;
(3) The size of shares after update of the threshold denoted by H(hi(Pi)) for

1 ≤ i ≤ n.

Theorem 2 (in [MPSW99]). Let 〈Π,Π ′〉 be a perfect (t → t′, n)-threshold
changeable scheme using functions {hi}1≤i≤n. Then the followings hold:

(1) H(Pi) ≥ H(S) holds for each i (1 ≤ i ≤ n);

(2)
∑

i∈AH(hi(Pi)) ≥ t′

t′ − t+ 1
H(S) holds for every A ⊂ P with #A = t′;

(3) max1≤i≤n{H(hi(Pi))} ≥ 1
t′ − t+ 1

H(S) holds.

Note that max1≤i′≤n{H(hi′(Pi′ ))} = H(hi(Pi)) for each i (1 ≤ i ≤ n), if {hi}
is common among the participants, and if all Pi’s come from the same domain
with the same probability.

Definition 5 (in [MPSW99]). We say that a perfect (t → t′, n)-threshold
changeable scheme that is threshold changeable to t′ is optimal, if each bound
in Theorem 2 is met with equality.

Corollary 1. If a perfect (t → t′, n)-threshold changeable scheme 〈Π,Π ′〉, is
optimal, then Π is ideal and then Π ′ is an optimal (t− 1, t′, n)-ramp scheme.

In addition to the definition given above, we define the slightly loose property
of a threshold changeable scheme.

Definition 6. Let 〈Π,Π ′〉 be a perfect (t → t′, n)-threshold changeable scheme
using functions {hi}1≤i≤n. Then the whole scheme is defined to be almost opti-

mal if the following holds:



(1) H(Pi) = H(S) holds for each i (1 ≤ i ≤ n);

(2) 0 ≤ ∑
i∈AH(hi(Pi)) − t′

t′ − t+ 1
H(S) ≤ c1 holds for every A ⊂ P with

#A = t′ and some c1 ≥ 0 independent of H(S) or n;

(3) 0 ≤ max1≤i≤n{H(hi(Pi))} − 1
t′ − t+ 1

H(S) ≤ c2 holds for some c2 ≥ 0

which does not depend upon H(S), t, t′ or n.

From the definition, we can immediately see that an optimal threshold change-
able scheme is an almost optimal one in a special case c1 = c2 = 0.

2.5 Verifiable secret sharing scheme

A verifiable secret sharing scheme enables each participant to check whether
her share given by the dealer is indeed correct, or not, and also the combiner
to check whether each pooled share is indeed correct, or not. A verifiable secret
sharing scheme is applied as tools for secure multi-party computation and for key
management. In this paper, we extend our proposed threshold changeable scheme
to be verifiable using the method given by [Ped92], since it provides unconditional
security and non-interactivity among the dealer and the participants.

3 Threshold scheme with N -time threshold changeability

In this section, we first extend a perfect (t → t′, n)-threshold changeable scheme
〈Π,Π ′〉 to a perfect (t → t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉,
where t = (t1, . . . , tN ) with t < tk for each k (1 ≤ k ≤ N) and with tk �= tk′

for k �= k′. In such a scheme, without the dealer assistance, the threshold can
be changed one after another, that is, from t to t1, from t1 to t2, and so on1 ,
under the assumption that the secret has not been recovered before the threshold
is changed, and that no share has been pooled. We name each derived (tk, n)-
threshold scheme Πk. The dealer publishes a set of functions {h(k)

i }1≤k≤N so
that the participants can compute their subshare for {Πk}1≤k≤N by themselves.
For a participant Pi given a share si, her subshare forΠk is computed as h(k)

i (si).
For a set A ⊂ P , the set of their subshares for Πk is denoted by H(k)(A), that
is, we define H(k)(A) as follows:

H(k)(A) := h
(k)
i1

(Pi1)× h
(k)
i2

(Pi2 )× · · · × h
(k)
i�

(Pi�
),

where A = {Pi1 , Pi2 , . . . , Pi�
}. Note that the thresholds (t1, . . . , tN ) have to be

determined in advance, since we assume that the dealer is suspended after the
initial setting of the scheme. Formally, a (t → t, n)-threshold changeable scheme
is defined as follows.
1 We may regard this kind of scheme as one in which the threshold can be changed to
an arbitrary values among {t1, t2, . . . , tN} each of which is, in advance, determined.



Definition 7. Let t be (t1, . . . , tN ) with tk > t for each k (1 ≤ k ≤ N). A

(t → t, n)-threshold changeable scheme is a (t, n)-threshold scheme, in which
for 1 ≤ i ≤ n and 1 ≤ k ≤ N , there exist known functions h

(k)
i such that

H(S|H(k)(A)) = 0 for any A ≥ tk, and H(S|H(k)(A)) > 0 for any #A < tk
where A ⊂ P .
The properties of “optimal” and “almost optimal”, can be defined also for a
perfect (t → t, n)-threshold changeable scheme.

Definition 8. A perfect (t→ t,n)-threshold changeable scheme 〈Π,Π1,...,ΠN 〉
is said to be optimal (or almost optimal), if each threshold changeable scheme
〈Π,Πk〉 (1 ≤ k ≤ N) is optimal (or almost optimal, respectively), and if for
distinct k and k′, Πk and Πk′ are independent of each other, that is, if it holds
that I(h(k)

i (Pi);h
(k′)
i (Pi)) = 0 for any k and k′ with k �= k′.

The equation I(h(k)
i (Pi);h

(k′)
i (Pi)) = 0 means that the subshare for Πk gives

no information on the subshare for Πk′ . In the following, we construct a perfect
(t → t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉 based on [Sha79], in
which Π is ideal. From now on, we omit the subscript of h(k)

i and write as
h(k), since in this paper, {h(k)

i } is common among the participants for each k

(1 ≤ k ≤ N). By defining {h(k)} as in Section 3.2, the following (t → t, n)-
threshold changeable scheme can be shown to be almost optimal.

3.1 Construction of a perfect threshold changeable scheme with
N-time threshold changeability

Let n be the number of participants. For simplicity, we assume that the thresh-
olds t and t = (t1, . . . , tN) with t < tk ≤ n for 1 ≤ k ≤ N , satisfy (2 ≤)t < t1 <

t2 < · · · < tN ≤ n. Let q be a prime of the length L such that L is a multiple
of lcm(t1 − t + 1, . . . , tN − t + 1). Note that the prime q satisfies q = 2L − ε

with ε < 2L−1. Then for the secret s ∈ ZZq, the dealer constructs a perfect
(t → t, n)-threshold scheme as follows:

(i) First the dealer constructs Shamir’s (t, n)-threshold scheme for the secret
s ∈ ZZq. That means, the dealer chooses a degree at most (t− 1) polynomial
f(x) = a0,1x + a0,2x

2 + · · ·+ a0,t−1x
t−1 ∈ ZZq[x] with f(0) = s. Each (full)

share si for Pi is defined to be f(i) (mod q).
(ii) The dealer provides N public function {h(k)}1≤k≤N such that for all i and

k, H(h(k)(Pi)|Pi) = 0 and H(Pi|h(k)(Pi)) > 0, (1 ≤ i ≤ n, 1 ≤ k ≤ N).
(A concrete example of the set {h(k)} is given the following subsection.) For
each participant Pi, her subshare s

(k)
i for the (tk, n)-threshold scheme Πk, is

defined by h(k)(si).
(iii) To construct Π1 from Π , the dealer figures out the polynomial f1(x) for a

(t1, n)-threshold scheme Π1 using f(x). f1(x) is of the form:

f1(x) = f(x) + a1,tx
t + a1,t+1x

t+1 + · · ·+ a1,t+n−1x
t+n−1,



where each coefficient a1,j (t ≤ j ≤ t + n − 1) is found by the n equations
f1(i) = h(1)(si) (1 ≤ i ≤ n). Here we define as follows:

f s
1 := f(x) + atx

t + · · ·+ at1−1x
t1−1;

fp
1 := f1(x)− f s

1(x).

Then if the polynomial fp
1 (x) is open, the (secret) polynomial f1(x) can be

disclosed by any t1 subshares from {h(1)(i)}1≤i≤n.
(iv) For k (1 ≤ k ≤ N − 1), to construct Πk+1 from Πk, the dealer figures out

the polynomial fk+1(x) for Πk+1 using f s
k(x). fk+1(x) is of the form:

fk+1(x) = f s
k(x) + ak+1,tk

xtk + · · ·+ ak+1,tk+n−1x
tk+n−1,

where the n coefficients ak+1,j (tk ≤ j ≤ tk + n − 1) are found by the n

equations fk+1(i) = h(k+1)(si) (1 ≤ i ≤ n). Here we similarly define as
follows:

f s
k+1(x) := f s

k(x) + ak+1,tk
xtk + · · ·+ ak+1,tk+1−1x

tk+1−1;

fp
k+1(x) := fk+1(x)− f s

k+1(x).

(v) The dealer securely distributes each si to Pi, and publishes N polynomials
fp
1 (x), . . . , f

p
N (x) and the N functions h(1), . . . , h(N) which derive the sub-

shares from shares.

If no threshold changing has happened, the combiner recovers the secret s by
gathering any t (full) shares sij (1 ≤ j ≤ t) as well as in Shamir’s scheme. On
the other hand, in case that the combiner attempts to recover the secret in the
scheme Πk (1 ≤ k ≤ N), she gathers any tk subshares s(k)

i�
(1 ≤ � ≤ tk). Then

the secret s can be figured out by the following formula which resembles so-called
Lagrange polynomial interpolation:

s =
tk∑

j=1

(
s
(k)
ij

− fp
k (ij)

) ∏
1≤�≤tk

� �= j

�

�− j
.

Note that in the scheme given above, Π1 is constructed using Π , and each Πk

(2 ≤ k ≤ N) is constructed usingΠk−1. On the other hand, we can also construct
〈Π,Π1, . . . , ΠN 〉 by the way that every Πk (1 ≤ k ≤ N) is constructed using
Π , not using the previous Πk−1. Such a scheme is, however, less efficient in
the viewpoint of the amount of information the dealer has to publish, than the
scheme we have just constructed in this subsection. We show the detail in Section
5.

3.2 Example of the functions {h(k)}
As far as we construct the scheme given in the previous subsection, we cannot
make any 〈Π,Πk〉 (1 ≤ k ≤ N) exactly optimal. If we constructed the scheme on



a field ZZα
q′ with a prime q′ and α being a multiple of lcm(t1−t+1, . . . , tN −t+1),

then we could make each 〈Π,Πk〉 exactly optimal. But in that case, we cannot
efficiently apply the technique by [Ped92] to that threshold changeable scheme.
In a (t → t, n)-threshold changeable scheme, if Π is ideal, then the possible
frequency N of threshold changing is restricted as the following proposition
states:

Proposition 1. In a (t → t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉,
if Π is ideal, and if the whole scheme is (almost) optimal, then the possible
frequency N of the possible thresholds satisfy

∑N
k=1 1/(tk − t+ 1) ≤ 1.

Proof. Since Π is ideal, we have the following:

H(S) = H(Pi) ≥ H(P (1)
i ) + · · ·+H(P (N)

i )

≥
(

1
t1 − t+ 1

+ · · ·+ 1
tN − t+ 1

)
H(S),

for each i (1 ≤ i ≤ n), which is what we claim.

For example in case t1 = t+1, t2 = t+2 and t3 = t+5, since
∑3

k=1 1/(tk−t+1) =
1, the correlation yields among {P (k)

i } if the threshold is changed more than
four times. Hereafter we implicitly assume that for the set of the thresholds
{t, t1, . . . , tN} and the number N of the threshold changing satisfy the statement
of the previous proposition.

Now we define the functions h(k) (1 ≤ k ≤ N) as follows. Note that q is of
the length L and that L is a multiple of lcm(t1 − t+ 1, . . . , tN − t+ 1).

– For an element x ∈ ZZq, h(1)(x) is the substring of x from the first (rightmost)
bit to the (L/(t1 − t + 1))-th bit. That is, for x ∈ ZZq, we define h(1)(x) :=
x (mod 2L/(t1−t+1)).

– Define Tk to be
∑k

�=1 1/(t� − t + 1). For an element x ∈ ZZq and k (2 ≤
k ≤ N), h(k)(x) is the substring of x from the (1 + LTk−1)-th bit to (LTk)-
th bit. That is, for x ∈ ZZq and k (2 ≤ k ≤ N), we define h(k)(x) :=⌈ x

2LTk−1

⌉
(mod 2L/(tk−t+1)).

In the following, we show that the proposed (t → t, n)-threshold changeable
scheme using functions {h(k)} given above, is almost optimal.

Proposition 2. The (t → t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉
in Section 3.1, is almost optimal, if it uses the functions {h(k)} given above.

Proof. We will prove that our scheme satisfies the conditions in Definition 8,
that is, the conditions (1), (2) and (3) in Definition 6 and the condition that for
k and k′ with k �= k′, Πk and Πk′ are independent of each other.

The first condition (1) follows immediately from the fact that Π is just
Shamir’s scheme.



Next we show the third condition. Since we suppose that q is a prime such
that q = 2L − ε with ε < 2L−1, then we have the following:

H(S) = log(2L − ε) ≥ log(2L − 2L−1) = L− 1.

Furthermore from H(h(k)(Pi)) ≤ L/(tk − t+ 1) for each k (1 ≤ k ≤ N), we can
get the following:

0 ≤ H(h(k)(Pi))− H(S)
tk − t+ 1

≤ L

tk − t+ 1
− L− 1
tk − t+ 1

=
1

tk − t+ 1
≤ 1

2
.

Hence the third condition is satisfied. The second one is immediately obtained
from the third one.

Finally, the last condition that I(h(k)(Pi);h(k′)) = 0 for each k, k′ with k �= k′,
comes from the fact that for any x ∈ ZZq, the strings h(k)(x) and h(k′)(x) are
indeed disjoint.

4 Efficient VSS for (t → t, n)-threshold changeable
scheme

In this section, we make the (t → t, n)-threshold scheme 〈Π,Π1, . . . , ΠN 〉 veri-
fiable. Denote, by Πv, the verifiable (t, n)-threshold scheme derived by making
Π verifiable. Also for each k (1 ≤ k ≤ N), denote, by Πv

k , the verifiable (tk, n)-
threshold scheme derived by making Πk verifiable. To provide the unconditional
security and non-interactivity among the entities for verification, we adopt Ped-
ersen’s technique [Ped92]. Of course, by constructing Π and Πk’s independently
and by applying that technique to Π and each Πk, we can accomplish our pur-
pose, but here we contrive to make the amount of information the dealer has to
publish, by applying [Ped92] to the very (t → t, n)-threshold changeable scheme
given in the previous section.

How to set up the parameters q, t, tk (1 ≤ k ≤ N), N and {h(k)} (1 ≤ k ≤ N)
is exactly the same as the previous section. In addition to those parameters, we
let p be a prime such that q divides p−1 and such that q2 < p holds2 , and let α
and β be order-q elements in ZZ∗

p. Those two bases α and β should be randomly
picked up by the dealer, or should be chosen by some trusted third party, not
so that logα β may be known to any entities joining the scheme. Note that for
s and u belonging to ZZq, the dealer can find another pair (s′, u′) ∈ ZZq × ZZq

such that αsβu = αs′
βu′

(mod p) if and only if she knows the discrete logarithm
logα β under the modulo p.

In the following, we describe how to construct an almost optimal (t → t, n)-
threshold changeable scheme with verifiability.
2 Usually we let p and q be a 1024-bit prime and a 160-bit prime, respectively. Hence
this assumption q2 < p restricts quite little for p and q.



(i) First the dealer constructs a perfect and verifiable (t, n)-threshold scheme Π
just like [Ped92]. That means for a secret s ∈ ZZq, the dealer randomly picks
up a degree at most (t − 1) polynomial f(x) ∈ ZZq[x] such that f(0) = s,
and also picks up a random u ∈ ZZq and a degree at most (t− 1) polynomial
g(x) ∈ ZZq[x] such that g(0) = u. The full share for Pi is defined by f(i).
Also ui is defined by g(i) and called a twin share for Pi. Here let f(x) =
s + a0,1x + . . . + a0,t−1x

t−1 and g(x) = u + b0,1x + . . . + b0,t−1x
t−1. The

commitments E0, E1, . . . , Et−1 for (s, u), (a0,1, b0,1), . . . , (a0,t−1, b0,t−1) are
defined by E0 := E(s, u) and Ej := E(a0,j , b0,j) (1 ≤ j ≤ t − 1), where for
x, y ∈ ZZq, E(x, y) := αxβy (mod p).

(ii) For each i and k (1 ≤ i ≤ n, 1 ≤ k ≤ N), the dealer computes s(k)
i and

u
(k)
i defined by h(k)(si) and h(k)(ui), respectively. Each s

(k)
i and each u

(k)
i

are called a subshare and a twin subshare, respectively.
(iii) To construct Πv

1 from Πv, the dealer figures out the polynomials f1(x) and
g1(x) of the form:

f1(x) = f(x) + a1,tx
t + · · ·+ a1,t+n−1x

t+n−1;

g1(x) = g(x) + b1,tx
t + · · ·+ b1,t+n−1x

t+n−1,

where the n coefficients a1,j and the n coefficients b1,j (t ≤ j ≤ t + n − 1)
are determined by the n equations f1(i) = s

(1)
i and by the n equations

g1(i) = u
(1)
i , respectively. Here we define as follows:

f s
1(x) := f(x) + a1,tx

t + · · ·+ a1,t1−1x
t1−1;

fp
1 (x) := f1(x)− f s

1(x).

Similarly we define gs
1(x) := g(x) + b1,tx

t + · · · + b1,t1−1x
t1−1 and gp

1 (x) :=
g1(x)− gs

1(x). For each j (t ≤ j ≤ t1 − 1), the commitment Ej for (a1,j , b1,j)
is defined by E(a1,j , b1,j).

(iv) For k (1 ≤ k ≤ N − 1), to construct Πv
k+1 from Πv

k , the dealer figures out
the polynomials fk+1(x) and gk+1(x) using f s

k(x) and gs
k(x), respectively.

fk+1(x) and gk+1(x) are of the form:

fk+1(x) = f s
k(x) + ak+1,tk

xtk + · · ·+ ak+1,tk+n−1x
tk+n−1;

gk+1(x) = gs
k(x) + bk+1,tk

xtk + · · ·+ bk+1,tk+n−1x
tk+n−1,

where the n coefficients ak+1,j and the n coefficients bk+1,j (tk ≤ j ≤ tk +
n − 1) are determined by the n equations fk+1(i) = s

(k+1)
i and by the n

equations gk+1(i) = u
(k+1)
i , respectively. Here we define as follows:

f s
k+1(x) := f s

k(x) + ak+1,tk
xtk + · · ·+ ak+1,tk+1−1x

tk+1−1;

fp
k+1(x) := fk+1(x)− f s

k+1(x).



Similarly we define gs
k+1(x) := gs

k(x) + b1,tk
xt + · · · + bk+1,tk+1−1x

tk+1−1

and gp
k+1(x) := gk+1(x) − gs

k+1(x). For each j (tk ≤ j ≤ tk+1 − 1), the
commitments Ej for (ak+1,j , bk+1,j) are defined by E(ak+1,j , bk+1,j).

(v) The dealer securely distributes each (si, ui) to Pi, and publishes the 2n
polynomials {fp

k (x)}1≤k≤N and {gp
k(x)}1≤k≤N , {h(k)}1≤k≤N and the com-

mitments {Ej}0≤j≤N .

Each participant Pi given (si, ui) can verify whether her share and twin share
are correct, or not, by the following verification:

E(si, ui) =
t−1∏
j=0

Eij

j (mod p),

and also can, for each k (1 ≤ k ≤ N), verify whether each pair (s(k)
i , u

(k)
i ) of her

subshares and twin subshares is correct, or not, by the following verification:

E(s(k)
i − fp

k (i), u
(k)
i − gp

k(i)) =
tk−1∏
j=0

Eij

j (mod p).

In recovering the secret, the combiner can similarly verify whether the full shares
or the subshares she has gathered, are correct, or not, by the verification given
above.

5 Efficiency of the proposed scheme

In this section, we estimate the efficiency of the proposed verifiable threshold
changeable scheme with N -time threshold changeability. For simple description,
we name the various types of the schemes as follows:

Scheme-I: A verifiable (t→t, n)-threshold changeable scheme 〈Πv, Πv
1 , . . . , Π

v
N 〉

in which Π and all Πk (1 ≤ k ≤ N) are independently constructed by
using Shamir’s method, and in which Pedersen’s technique is independently
applied to Π and each Πk.

Scheme-II: A verifiable (t→t,n)-threshold changeable scheme 〈Πv,Πv
1 , . . . ,Π

v
N 〉

in which each (t → tk, n)-threshold changeable scheme 〈Π,Πk〉 (1 ≤ k ≤ N)
is independently constructed, and in which Pedersen’s technique is indepen-
dently applied to each 〈Π,Πk〉.

Scheme-III: The proposed verifiable (t → t, n)-threshold changeable scheme
〈Πv, Πv

1 , . . . , Π
v
N 〉 we have constructed in Section 4.

In the following, we show the efficiency for the dealer. Precisely, we, in Fig-
ure 1, show the amount of information she has to securely distributed and the
amount of information she has to publish, in Scheme-I, in Scheme-II and in
Scheme-III, respectively. As seen in Figure 1, to be sure that Scheme-I is su-



Scheme
By-SC

(×H(S))

COP

(× log q)

Commitment

(× log p)
Security

I 2(N + 1) 0 t+

N∑
k=1

(tk−1) Π : perfect (t, n)-TS

Πk : perfect (tk, n)-TS

II 2 2

N∑
k=1

(n−tk+1) t+

N∑
k=1

(tk−1) Π : perfect (t, n)-TS

Πk : (t − 1, tk, n)-RS

III 2 2(nN + t − tN ) max1≤k≤N tk

Π : perfect (t, n)-TS

Πk : (t − 1, tk, n)-RS

By-SC : The amount of information per one participant, which the dealer has to dis-
tribute by some secure channel.

COP : The amount of information of the coefficients of the open polynomials {fp
k (x)}

and {gp
k (x)}, which the dealer has to publish to control the thresholds.

Commitment : The amount of information of the commitments, which the dealer has
to open for verification of the full shares and the subshare.

Security : The security of the schemes Π, Π1, . . . , ΠN as threshold schemes. The
terms “TS” and “RS” stand for “threshold scheme” and “ramp scheme”, respec-
tively.

Fig. 1. Comparison of the efficiency of Scheme-I,II,III

perior to the others in view of the security of each Πk, but that scheme re-
quires much more amount of information to be securely distributed. Since in
Scheme-II and Scheme-III, such amount does not depend upon the number of
the frequency of the threshold changing, we discuss Scheme-II and Scheme-III.

Denote, by AII and AIII, the total amount of information the dealer has to
publish in Scheme-II and in Scheme-III, respectively.

Proposition 3. Suppose that t ≥ 2, tk > 2 (1 ≤ k ≤ N) and p, q are prime
such that q|(p − 1) and such that q2 < p. Then AIII < AII holds. That means
Scheme-III is more efficient than Scheme-III in view of the amount of infor-
mation the dealer has to publish.

Proof. First note that we may let max1≤k≤N tk = tN without loss of generality.
From the definition, we have

AII =

(
t+

N∑
k=1

(tk − 1)

)
log p+ 2

(
N∑

k=1

(n− tk + 1)

)
log q;

AIII = tN log p+ 2(nN + t− tN ) log q.

Then we can get the following:

AII −AIII =

(
t+

N−1∑
k=1

tk −N

)(
log p− log q2

)
,



which is necessarily positive, since p > q2 and t +
∑N−1

k=1 tk − N > 2N − N =
N > 0.

6 Conclusion

Remember that a (t → t, n)-threshold changeable scheme simply constructed by
an optimal (t, n)-threshold scheme that is threshold changeable to t′ given by
[MPSW99], cannot be efficiently made verifiable by the technique [Ped92]. Then
in this paper, we have constructed a (t → t, n)-threshold changeable scheme
〈Π,Π1, . . . , ΠN 〉 based on Shamir’s threshold scheme. This is an almost opti-
mal (t → t, n)-threshold changeable scheme, and can be easily made a verifi-
able (t → t, n)-threshold changeable scheme with unconditional security and
non-interactivity among the entity for verification. As seen in the primitive one
(Scheme-I) in Figure 1, the perfect security of each Πk (1 ≤ k ≤ N) requires
much more size full shares to be securely distributed. On the other hand, though
in the proposed scheme (that is, Scheme-III), each scheme Πk (1 ≤ k ≤ N)
sacrifices the perfect security, the entropy of the full share does not depend upon
the number of the frequency of the threshold changing. Furthermore we decrease
the amount of information the dealer has to publish by constructing Πk using
Πk−1 (1 ≤ k ≤ N), whereΠ0 := Π . This difference is indicated by the inequality
AII −AIII > 0 appearing Proposition 3 in Section 5.
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