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Matsushita Electric Industrial Co. , LTD.
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Abstract. Koblitz ([5]) and Miller ([6]) proposed a method by which
the group of points on an elliptic curve over a finite field can be used for
the public key cryptosystems instead of a finite field. To realize signature
or identification schemes by a smart card, we need less data size stored
in a smart card and less computation amount by it. In this paper, we
show how to construct such elliptic curves while keeping security high.

1 Introduction

Public key cryptosystems based on the discrete logarithm problem on an elliptic
curve (EDLP) can offer small key length cryptosystems. If an elliptic curve is
chosen to avoid the Menezes-Okamoto-Vanstone reduction ([9]), then the only
known attacks on EDLP are the Pollard p—method ([11])and the Pohlig-Hellman
method ([10]). So up to the present, such elliptic curve cryptosystems on E/F,
are secure if #E(F,) is divisible by a prime only more than 30 digits ([3]).

If we use an elliptic curve E/F, for digital signature or identification by a
smart card ([12]), data size and computation amount of signature generation
should be as small as possible. We may publish only the z-coordinate z(P) of a
public key P and one bit necessary to recover the y-coordinate y(P) of P since
the public key of an elliptic curve point is 2 times as large as the definition
field F,. Then we can reduce the data size to one half. But it will cause the
computation amount to recover y(P).

In this paper, we investigate an elliptic curve suitable for cryptosystems, in
the sense that it requires less data size and less computation, while maintaining
the security. We also show the advantage of our elliptic curve in the case of the
Schnorr’s digital signature scheme on an elliptic curve.

This paper is organized as follows. Section 2 summarizes the addition formula
of an elliptic curve ([13]). Section 3 describes the Schnorr signature on an elliptic
curve, and show the data size and the computation amount for two cases, the
basic version and the reducing-data version. Section 4 discusses the elliptic curve
which gives cryptosystems that reduce both of data sizes and the computation
amount.

2 Addition formula of Elliptic curve

Cryptosystems on an elliptic curve E/F,, for example the Diffie-Hellman key
distribution and ElGamal cryptosystems, require the computation of kP (P €



E(Fy)). We will discuss the computation amount of kP. For simplicity, we neglect
addition, subtraction and multiplication by a small constant in F;, because they
are much faster than multiplication and division in Fj.

Let K be a finite field Fj, of characteristic # 2,3. An elliptic curve over K is
given as follows,

E:y> =2+ax+b (a,b€ K,4a® + 27b* £ 0).

Then the set of K-rational points on E (with a special element O at infinity),
denoted E(K), is a finite abelian group, where E(K) = {(z,y) € K?|y* =
23 +ax+b}U{O}. For the curve E, the addition formulas in the affine coordinate
are the following. Let P = (x1,y1), Q@ = (z2,y2) and P+ Q = (x3,y3) be points
on E(K).

¢ Curve addition formula in the affine coordinates (P # Q)

1’3:A2—1'1—1'2,

ys = AMz1 — x3) — 1, (1)
\ = Y2 — U1 :
o — T1

¢ Curve doubling formula in the affine coordinates (P = ()

I3 = AZ — 21‘1,

ys = Az1 — x3) — Y1, (2)
- 33 + a
241

The formula ( 1) requires two multiplications and one division in K, while the
formula ( 2) requires three multiplications and one division in K. The compu-
tation amount of division in K is more than that of multiplication in K. So
we often use the projective coordinates to avoid divisions in K. The addition
formulas in the projective coordinates are the following. Let P = (Xy,Y1,Z1),
Q = (X2,Y2,75) and P + Q = (X3, Y3, Z3).

e Curve addition formula in the projective coordinates (P # +Q)

X3 - ’UA,
Yz = u(v?X,Z5 — A) — 031 Zs, (3)
Z3 = U321Z2,

where u = Y&Zl _}/iZQ,/U = X2Z1 —X1Z2,t = X2Z1 +X1Z2, A= ’LL2Z1Z2 —’Uzt;
e Curve doubling formula in the projective coordinates (P = Q)

X3 = 2hS,
Y3 = w(4B — h) — 8Y;%s?, (4)
Z3 = 883,

where w = aZ,? + 3X,%,s = Y1 Z,,B = X Y15, h = w? — 8B. The formula (3)
requires 15 multiplications, while the formula ( 4) requires 12 multiplications.



For the use of cryptosystems, we may set z(P) = Z; to one in the formula ( 3).
Then the formula ( 3) requires 12 multiplications.

Subtractions are as expensive as additions over elliptic curves. So the com-
putation amount of kP by the addition-subtraction method ([2, 8]) is less than
that by the binary method, while both methods need memory storage only for
P. We assume to compute kP by the addition-subtraction method. The com-
putation by the addition-subtraction requires n times of curve doubling and %
times of curve adding on the average, where n = |K|. Computation of kP in
the projective coordinate requires one division and two multiplications in the
final stage. Since n is larger than about 100, the computations in the projective
coordinates are faster than that in the affine coordinates if the ratio of the com-
putation amount of division in K to that of multiplication in K is larger than 9.
In order to compare the computation amount of Schnorr signature scheme on a
finite field and on an elliptic curve, we assume to compute kP in the projective
coordinate by the addition-subtraction method and compute the power residue
by the binary method.

3 Elliptic curve cryptosystems

If E(K) and a basepoint P € E(K) are carefully chosen, then the only known
attacks on the cryptosystems are the square root attacks. EDLP on such E to
the base P is secure up to the present ([3]), if the order of P, ord(P), is divisible
by more than a 30-digit prime. Here we summarize the Schnorr signature on
such an elliptic curve and establish a basis for evaluation of the elliptic curve
proposed in the next chapter.

Let M € Z be a message. User A sends the message M to user B with her
or his signature of M.

— Initialization
e system parameter
o E:y’=2%4+axr+0b (a,b€ F,;pisa prime of n(> 97) bits).
o P e E(F),) : a basepoint (chosen as the above).
o I =ord(P) (I is m(> 97) bits).
e a one-way hash function h : Z; x Z — {0,---,2" — 1}, where ¢ is the
security parameter.
— Key generation
User A randomly chooses an integer s , a secret key, and makes public the
point P4 = —sP as a public key.
— Signature generation
1 Pick a random number k € {1,...,1} and compute

R=FkP = (rq,ry). (5)

Here 7, = z(R) and ry = y(R).
2 Compute e := h(r,, M) € {0,---,2" —1}.
3 Compute y = k + se (mod !) and output the signature (e, y).



— Signature verification
1 Compute R = yP + eP4 = (7;,7,) and check that e = h(75, M).

As we described in Section 2, the computation of kP requires m curve doublings
and 7 curve additions on the average, where k is a m-bit number. Extending
the addition-subtraction method to the computation in the verification, we can
calculate yP + eP,4 in m curve doublings and %(m —t)+ %t curve additions on
the average with precomputations of (P £ P,4), which require about the same
computaion amount as one curve addition.

Here we set n,m = 128. Then the known attacks on such an elliptic curve
cryptosystems requires at least 204 elliptic curve operations. This is roughly
equal to that of the original Schnorr on F), (p is 512 bits). If lower security is
required, then n, m can be replaced by a smaller number like 97. For the security
parameter, here we set ¢t = 128.

We will present two versions of Schnorr signature on an elliptic curve. One
is the basic Schnorr signature on an elliptic curve described above, called Basic
EC version. Another is called Reducing data EC version. In this version, only
x(Pa) and the least significant bit of y(Pa) are published as a public key to
reduce the data size. The same is done for the basepoint P. On the other hand,
the original Schnorr signature scheme on F),, called Finite field version (p is 512
bits, the security parameter t=128) roughly has the same security as that on the
above elliptic curves. So the size of the definition field of Finite field version is
four times as large as that of Basic and Reducing data EC versions.

We compare Basic EC version, Reducing data EC version and Finite field
version, with respect to data size. Table 1 shows the comparison.
¢ Basic EC version
The system key is a,p, P, and ! (640 bits). The secret key is s (128 bits). They
are stored in a smart card. So the data size stored in a smart card is 768 bits.
The public key is (P4) (256 bits) and the signature is e and y (256 bits).

e Reducing data EC version

In this version, we have to publish one more parameter "b” of E as a system
key to recover a point by the z-coordinate of the point and the least significant
bit of the y-coordinate of the point. It requires power residue to recover the
y-coordinate of P and increases computation for signature. The system key is
a, b, p, (P), the least significant bit of y(P) and ! (641 bits). The secret key is
s (128 bits). So the data size stored in a smart card is 769 bits. It is almost equal
to that of Basic EC version. The public key is (z(P4) and the least significant
bit of y(P4)) (129 bits) and the signature is e and y (256 bits).

e Finite field version

The system key of Finite field version is a set of the definition field, the basepoint
and the order of basepoint (1164 bits), where the size of the definition field is
512 bits and the order of basepoint is 140 bits. The secret key is 140 bits. So the
data size stored in a smart card is 1304 bits.

The size of the definition fields of both EC versions is reduced to 25% of
Finite field version. But the stored data size is not so reduced (59%). This is
because an elliptic curve point has 2 coordinates and we need a parameter to



decide E.

Let us compare the three cases with respect to the computation amount. We
assume the computation method that we described in Section 2. Table 2 shows
the comparison of the computation amount of signature generation and verifi-
cation. Here we assume m(n) = (n/t)?m(t), where m(n) denotes the amount of
work to perform one modular multiplication whose modulus size is n bits. We
assume the ratio of the computation amount of division in K to that of multi-
plication in K to 10. We see the computation amount of signature generation of
Reducing data EC version is reduced to 67% of Finite field version. It is not so re-
duced as the size of the definition field. This is because the computation amount
of one elliptic curve addition is much more than that of one multiplication in
the same definition field and we need to recover a basepoint.

We see that both EC versions seem to be better than Finite field version for
both points of the data size and the computation amount. But actually they
are not so efficient considering the less size of the definition field of E. For
the stored data size, the ratio of the stored data size to the definition field for
both EC versions is 6. On the other hand, for Finite field version, the ratio is
2.5. For the computation amount, one elliptic curve addition requires about 12
multiplications. If we require higher security, for example ¢t = 160, then we will
have to construct an elliptic curve over at least a 160-bit finite field. Then the
advantage for EC versions shown in Table 1 and 2 decreases.

| ||System Key|Secret Key||Public Key||Signature size

Basic EC version 640 128 256 256
Reducing data EC version 641 128 129 256
Finite field version 1164 140 512 268

Table 1. Comparison of data size(in bits)

| |Signature Generation|Signature Verification

Basic EC version 129 151
Reducing data EC version 141 175
Finite field version 210 242

Table 2. Comparison of the computation amount(number of 512-bit modular multi-
plications)

In the next section, we construct an elliptic curve cryptosystem, which has



(1)the less ratio of the stored data size to the definition field than 6;
(2)the same public key size as Reducing data EC version;

(3)the less computation amount than that of Basic EC version.

It will be also best implementation for the higher security parameter.

4 Elliptic curves suitable for Cryptosystems

If E(F,) and the basepoint P € E(F},) are appropriately chosen, then the only
known attacks on the cryptosystems are the square root attacks. We first discuss
amethod to construct such elliptic curves and then investigate what elliptic curve
among them is suitable for implementation with respect to less data size (key
length) and less computation amount.

4.1 Decision of the class of elliptic curves

One method to avoid the recent attack is to construct EDLP on E/F, with p
elements ([7]). We describe a modified method to decide the class of such elliptic
curves. There are two phases for the decision of E/F, with p elements.

The first phase is to find an appropriate prime p. Such p is a form of p =
db® + db + % (b is an integer) for d € {3,11,19,43,67,163}. Such integers d
enable us to construct easily the j-invariant jq of E/F, with p elements for the
prime p, which is uniquely determined by d. Table 3 lists integers d and the
j-invariant jq.

Idljd

3

11( 25)3

19 [(—2°% % 3)?

43 |(=2% % 3 % 5)3

67 [(—2° %3 % 5% 11)°
163[(—2° * 3 % 5 % 23 % 29)°

Table 3. Integers d and j-invariant jgq

Once the prime p = db® + db+ % and jy are given, then the next phase is to
decide the class of E/F,, with p elements. There is a little difference between the
case of d = 3 and others. First we investigate the case of d € {11,19,43,67,163}.
Then the elliptic curves over F}, with the j-invariant j4 are given as follows.

Jd

E.q:y>=1°+3c 2¢° =
ed Y T° +9caqx + 2c”aq, aq 1728 — j,

(Ve € F).



For each d, we can classify {E. 4|c € F;'} into two equivalence classes of twists,
namely

Eq= {Ec7d|c € F;, (g) = ]_} and £'d = {Ecyd|c S F;, (f)) = —].},

5]

where (5) denotes the Legendre symbol. Then only one of the two classes gives

the elliptic curves with p elements. A general condition to decide the class was
investigated ([1]). In our case, the condition can be simplified as follows.

Theorem 1. Let p be a prime represented by p = db> +db+ % (b is an integer)
for d € {11,19,43,67,163}. Then the class which gives elliptic curves with p

elements is determined as:
«
&y if (—d> =1,
p

£y if (%> =1,
p

where ag s an integer determined by d. Table 4 shows the values of ayq.

| d |ad
11 3%7
19 (3
4312 5% 7

67 |3*5*7*11*31
163|2*3*5*7%¥11%¥19%23*29%127

Table 4. Integers d and aq

Now we get the following procedure to decide the class of elliptic curves with
p elements.

Procedure 1

1 Search a large prime p such that p = db® + db + % (b is an integer) for
d e {11,19,43,67,163}.

2 Calculate (%) If (%) = —1, then &; is the class. Else if (%) = 1, then
&', is the class.

Next we will investigate the case of d = 3. Then the elliptic curves over Fj,
(p = 3b*> + 3b+ 1) with the j-invariant j4 are given as follows.

Ee:y> =2+ ¢ (Vee F)). (6)



In this case, we can classify {E¢|c € F '} into six equivalence classes of twists,
namely

-1++-3

2=,

o= (e € £, () = (-} 0i<s0-
6

where (%) denotes the sixth power residue symbol. Then exactly one of the six

6
classes gives the elliptic curves with p elements. We have a next formula on the
number of rational points of the elliptic curves ( 6).

Theorem?2 ([4]). If p =1 (mod 3), let p = 77 with 7 € Z[w] and © = 2
(mod 3). Then

#EE(Fp)=p+1+<g>67r+<i—£>6ﬁ (7)

Using the formula ( 7), the condition to decide the class can be given as follows.

Theorem 3. Let p be a prime represented by p = 3b*> +3b+ 1 (b is an integer).
Then the class which gives elliptic curves with p elements is determined as:

((:3’1 Zf b= 0,2,4 (mod 6),
((:375 Zf b= 1,3,5 (HlOd 6)

Proof. We prove only the case of b =1 (mod 6). As for the other cases, we can
do the same way. Let 7 = (2b+1)w+ (b+1). Thenp =77 and # =2 (mod 3).
Since (1), = w, we get that #FE¢(F,) = p if and only if

<§> w2ﬂ'+<§> ww = —1,
T/ 6 T/

that is, tr(w (5) T) = —1. So we get (%) = —w?. This means that the class
6 6

6

™

which gives elliptic curves with p elements is &3 5.

Now we get the following procedure to decide the class of elliptic curves with
p elements.

Procedure 2

1 Search a large prime p such that p = 3b> + 3b + 1 (b is an integer).

2 Ifb=0,2,4 (mod 6), then & ; is the class. Elseif b =1,3,5 (mod 6), then
&35 is the class.

We have seen that the time to decide the class of E/F, with p elements
depends on the time finding p = db® + db + L for d € {3,11,19,43,67,163}.
We can easily find such a prime. In fact we were convinced experimentally that
finding a prime p = db® + db + % in the range of 30 ~ 90 digits is as easy as
finding a prime in that range. So we can easily decide the class of E/F, with p
elements which gives secure cryptosystems.



4.2 Selection of an elliptic curve and a basepoint

Elliptic curve cryptosystems require the computation of kP, where P = (X1,Y3,1)
is a fixed point called basepoint. It is accomplished by repeated doubling, adding
and subtracting of P. If we can select a basepoint P with a small z-coordinate
X, or a small y-coordinate Y7, the amount of computation of kP will be re-
duced. Especially in the case of signature and identification by a smart card,
reducing of total data size stored in a smart card and the computation amount
by a smart card is important. If fewer parameters represent an elliptic curve and
a basepoint, the data stored in a smart card is reduced. Furthermore we wish to
recover P easily from the parameters.

In the last section, we have decided the class of elliptic curves which gives
the secure cryptosystems. Note that any elliptic curve E/F,, of the class and any
basepoint P € E(F),) give cryptosystems with the same security. We will discuss
how to select E of the class and P in FE suitable for cryptosystems, in the sense
that it reduces computation amount of kP and necessary data size to be stored.
We will classify d into two cases, d = 3 and others.

e Proposed scheme A

First we deal with the case of d € {11,19,43,67,163}. For a given p =
db? + db + %, we know which class, £; or £y, gives an elliptic curve with p
elements in Section 4.1. Without loss of generality, we will discuss the case of
Eq. Let yo = o3 + 3agzo + 2a4 for xp € F,. Then we get one elliptic curve in &;
and the basepoint following ( 8).

€43 Eyya, Eyya> P = (yOZUO:yg) if <%> =1 (8)

If yo satisfies the condition of ( 8) for zyp = 0, then we get £q4 > Ey, 4 and
Ey,.a > P =(0,4a4%). In fact such yo satisfies the condition of ( 8) if and only if

()-C9-

Except for d = 19, there exists p = db® + db + % which satisfies (%) =1.
Combining the condition on p to decide a class (i.e. (%) = —1 or 1), we obtain

that such an elliptic curve over F), exits if and only if (%) = —1 in both cases,

Eq and &'y, Table 5 shows the value of 3.

We were also convinced experimentally that, for Vp = db? + db + % (d €
{11,43,67,163}), such an elliptic curve exists with a probability of about one
half. Here is one example for a 128-digit prime in the case of d = 11.

E : y* = 2% +12a°r + 16a*; E(F,) 3 P = (0,4a?),
p = 1701 41183 46046 92395 60785 96622 40717 16369,
a = 52715357 39869 82616 07887 30307 87012 55349.



11 (37
43 137
67 |7*31
163|7*¥11*19*127

Table 5. Integers d and 34

Let us use this elliptic curve E,, 4 and basepoint P = (0,4a,®) for Schnorr
signature, where F,, 4 = E and a = aq4. We further assume that the public key
P, is represented by z(P,4) and the least significant bit of y(P4). The compu-
tation of kP requires the addition to the basepoint P, which is calculated in
9 modular multiplications. So the computation of kP requires 1932m(128). We
can recover the basepoint in one modular multiplication, only if we store aq4.
Since ord(P) equals p, the system key is aq and p (256 bits). Table 6 shows the
data size and Table 7 shows the computation amount. The data size stored in
a smart card is reduced to one half of that of Reducing data EC version and
Basic EC version. The public key size is the same as that of Reducing data EC
version.

The computation amount of the signature generation is reduced by 6% (resp.
14%) of that of Basic EC version (resp. Reducing data EC version). The com-
putation amount of the signature verification is reduced by 10 % of that of
Reducing data EC version. It is increased by 5 % of that of Basic EC version.
This is because we need one power residue to recover one’s public key in the
signature verification. If we publish P, instead of z(P4) and the least signifi-
cant bit of y(P,4) as a public key, then the computation amount of the signature
verification is reduced by 3% of that of Basic EC version. Even in this case, the
public key size is only 50% of Finite field version.

We can choose a prime p and an elliptic curve E/F), as follows.

E : y? = 2% +12d%x + 16a*; E(F,) > P = (0,4d?),
p = 2128 — 89 25388 84800 47273 94087
a = 1887 65172 00252 43003 83780 59753 00282 08521

The form of p simplifies the arithmetic modulo p and we can store p with only 73
bits. Of course, the particular form of p provides no disadvantage on the security
for now.

e Proposed scheme B

Next we deal with the case of d = 3. For a given p = 3b? + 3b + 1, we know
which class, £, or &35, gives the elliptic curve with p elements in Section 4.1.
We only discuss the case of £ 1. As for the other case, we can do in the same way.



An elliptic curve E/F, with p elements and a basepoint P is given as follows,
Ee:y® = + &yo’; Ee(F,) 3 P = (2oy0,40°),
(V¢ such that <§> = —w, Yyo = 20> + £ € F,*?).
PJ/g

In this case, there doesn’t exist an elliptic curve with the point whose z-coordinate
equals 0 because of ¢ ¢ Fp*2. But we can select a small ¢ such that (%) = —w
6

and a small zo such that yo = o> +€ € Fp*Q. Here is one example for a 128-digit
prime.

E :y*=2>+3%4% E(F,) > P = (4,16),

p = 1701 41183 46046 92480 63157 20930 49376 39647

(1’0 = ]-> E = 3)

Let us use the elliptic curve E¢ and the basepoint P = (zoyo,yo?) for Schnorr
signature. We further assume that one’s public data Py4 is represented by x(P4)
and the least significant bit of y(P4). Then the addition to P = (zoyo,yo>) =
(X1,Y1) is accomplished in 9 modular multiplications because we can neglect
the multiplications by a small constants X; and Y;. Furthermore the simple
equation of E reduces the computation amount of doubling. It is accomplished
in 10 modular multiplications. As for the computation amount of kP, it requires
1676m(128). As for the recovering the basepoint, we can recover it in a negligible
computation amount only if we store zg and £ whose data size is enough small.
As for the data size, the data size of zp and & is neglected and ord(P) equals
p. So the size of system parameters zg, £ and p of Schnorr signature scheme on
such E is about the same as that of the definition field. Table 6 shows the data
size and Table 7 shows the computation amount.

We see that the elliptic curves and the basepoints in the case of d = 3 give
good properties for the cryptosystems, especially in the application of digital
signature and identification by a smart card. The data size stored in a smart
card is reduced to one third of that of Reducing data EC version and Basic EC
version. The public key size is the same as that of Reducing data EC version. The
computation amount of the signature generation is reduced by 19% (resp. 26%)
of that of Basic EC version (resp. Reducing data EC version). The computation
amount of the signature verification is reduced by 6% (resp. 19%) of Basic EC
version (resp. Reducing data EC version). If we publish P4 as a public key, then
the computation amount of the signature verification is reduced by 14% of that
of Basic EC version.

In the same way as Proposed scheme A, we can choose a prime p and an
elliptic curve E/F, as follows.

E :y?*=2"+3%4% E(F,)>P=(4,16),
p = 2'2% _ 86 61755 49264 58706 00985
(1'0 = ]-7 6 = 3)

The form of p simplifies the arithmetic modulo p and we can store p with only
73 bits.



||System Key|Secret Key||Public Key||Signature size

Proposed scheme A 256(201) 128 129 256
Proposed scheme B 131 (76) 128 129 256

Table 6. Data size of the Proposed schemes(in bits)

| | Signature Generation | Signature Verification|

Proposed scheme A 121 158
Proposed scheme B 105 142

Table 7. Computation amount of the Proposed schemes (number of 512-bit modular
multiplications)

5 Conclusion

Elliptic curve cryptosystems often require the computation of kP, where P is a
fixed basepoint. We have proposed the elliptic curves and basepoints suitable for
cryptosystems, in the sense that they require less data size and less computation
amount for kP. Especially if we use the Proposed version B in Schnorr signature
scheme by a smart card, we have seen that

(1) the data size stored in a smart card is reduced to one third of that of Basic
EC version and Reducing data EC version;

(2) the data size of public key is reduced to one half of that of Basic EC version
and is the same as Reducing data EC version;

(3) the computation amount of the signature generation is reduced by 19% (resp.
26%) of that of Basic EC version (resp. Reducing data EC version);

(4)The computation amount of the signature verification is reduced by 6% (resp.
19%) of Basic EC version (resp. Reducing data EC version);

(5)In the case where we publish the point P4 as a public key, the computation
amount of the signature verification is reduced by 14% of that of Basic EC ver-
sion.
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