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We study the optical absorption, especially the �far-� infrared absorption by phonons, of
semiconducting and metallic nanospheres. In the nanoscopic sphere, phonons as well as states of
electronic excitations are quantized by confinement. It is also known that in the nanoscopic
geometry, the confined electron-phonon interaction has a different form from the usual one in the
bulk. First, we analyze the phonon and electron contributions to the dielectric response of
nanospheres like ��q ,��=�ph�q ,��+�el�q ,�� or 1/��q ,��=1/�sc−ph�q ,��+1/�el�q ,�� from the
confined electron-phonon interaction for three cases: the intrinsic semiconductor, the doped
semiconductor, and the metal. From the dielectric response, the optical absorption spectra are
calculated within the semiclassical framework concentrating on the �far-� infrared region and
compared to the spectra without imposing confinement. Nontrivial differences of the spectra with
confined phonons stem from two features: the electron-phonon coupling matrix has a different form
and the phase space q of the confined phonon is reduced because of its quantization to qn. Finally,
size distribution effects in an ensemble of isolated nanospheres are briefly discussed. Those effects
are found to be important in metallic spheres with rapid sweepings of resonances by a small change
of the sphere size. © 2006 American Institute of Physics. �DOI: 10.1063/1.2199851�

I. INTRODUCTION

Optical responses of small nanoscopic particles are very
different from those of the bulk materials, as a result of the
surface effects. For an immediate example, it is well known
that silver nanoparticles are yellow and gold nanoparticles
red in their states of aqueous sol. These properties have been
of vital interest for a long time and extensively studied in
recent years.1,2 It was Mie in 1908 �Ref. 3� who presented a
solution to such optical problems of spherical particles by
directly solving Maxwell’s equations. To date, Mie’s classi-
cal theory with suitable extensions still deserves attention in
promoting renewed theoretical investigation of optical �elec-
tromagnetic� characteristics of small particles.

In a system of small size, a particular importance
is found in the nonlocal relationship between the electric
field E and the electric displacement D, D�r ,��
=�dr���r ,r� ;��E�r� ,��, where ��r ,r� ;�� is the nonlocal
dielectric function of the sphere.4 Starting from the above
relation, the dynamical polarizability giving the optical ab-
sorption has been semiclassically calculated basically fol-
lowing Mie’s theory for both semiconductors and metals.5–8

On the other hand, Eckardt9 has led the pure quantum me-
chanical study for the metallic sphere using the local density
approximation �LDA� for the self-consistent spherical jel-
lium model, where it is found that excitations of single
electron-hole pairs are much stronger and collective modes
are slightly redshifted compared to the semiclassical treat-
ments. Nevertheless, the semiclassical Mie theory is still
highly valuable and useful because it is the exact solution to

Maxwell’s equations for the sphere. Recently, with various
preparations of samples by advanced fabrication techniques,
there evolves a need to understand the role of the surround-
ing environment in determining the optical properties.10,11

Electron-phonon coupling is an important ingredient in
determining transport processes, inelastic electron scattering,
optical properties, and so on.12 Many works on optical ab-
sorption have been performed in the exciton energy range
�for semiconducting spheres� or plasmon energy range �for
metallic spheres�, while infrared or far-infrared absorption
has been relatively unexplored, where phonons would be ex-
pected to play a role. It has been reported that the electron-
phonon coupling in the nanosphere has a different form from
the bulk case because of the quantum confinement arising
from a given geometry. For polar materials �such as com-
pound semiconductors�, Klein et al.13 and Nomura and
Kobayashi14 have studied how the longitudinal optical �LO�
phonons are confined and quantized and derived an expres-
sion of the confined electron-LO phonon coupling. They
have also examined the size dependence of the Huang-Rhys
parameters S, S=�q��q�2 /�LO for the sphere,15 where �q is
the electron-phonon coupling strength and �LO is the fre-
quency of LO phonon.

In this paper, we study the optical absorption of nano-
scopic spheres by accounting for confined phonons. Here,
only confined s-wave phonons are considered. It is expected
that phonon contributions would result in an appreciable en-
hancement of the optical absorption in the infrared or far-
infrared region for both confined and unconfined phonon
cases. However, differences should become important be-
cause of two features. One is that the coupling strength ofa�Electronic mail: lee.jaedong@nims.go.jp
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confined phonons depends on the sphere radius or other
quantities in a different way from that of unconfined
phonons. The other is that, for a very small sphere, the phase
space allowed for q is strongly suppressed when considering
a confinement. Of course, one could expect that as the radius
increases both results become identical. In order to incorpo-
rate the phonon effect to the optical absorption, we analyze
the phonon contribution to the dielectric response �ph�q ,��
from the confined electron-phonon interaction and then find
the total dielectric response of the sphere ��q ,��. Dielectric
response makes it possible to evaluate the dynamical polar-
izability rather straightforwardly within the semiclassical
approach.5–8 We adopt the semiclassical formalism devel-
oped by Fuchs and co-workers,7 merit of which is its wide
applicability to any kinds of materials if only the dielectric
responses of the corresponding materials are known. Thus
we apply the formalism to three kinds of materials: an intrin-
sic �undoped� semiconductor, a doped semiconductor, and a
metal.

The present article is organized as follows. First we start
from the Fröhlich Hamiltonian for a bulk polar material and
then discuss the confined electron-phonon interaction for the
three different cases of an intrinsic �undoped� semiconductor,
a doped semiconductor, and a metal in Sec. II. In the section,
phonon contributions to the dielectric response �ph�q ,�� are
obtained for each different material. In Sec. III, we evaluate
the optical absorption of nanosphere with respect to its radius
from the far-infrared region ���LO� to ��pl �plasmon fre-
quency for a metal or a doped semiconductor� or ��ex �ex-
citon frequency for an undoped semiconductor�. The results
are compared to cases with unconfined phonons. We also
briefly discuss the effects of the size distribution in the opti-
cal absorption of a collection of metallic spheres. Finally, in
Sec. IV, we give concluding remarks.

II. CONFINED PHONON COUPLING AND DIELECTRIC
RESPONSE �ph„q ,�…

The coupling between electron and LO phonon can be
very large in a polar solid such as an ionic crystal or semi-
conductor, where the polarization set up by exciting LO
phonons causes an electric field which scatters electron. In
this section, beginning with a brief explanation of the
Fröhlich Hamiltonian for a bulk polar material, we derive the
electron-phonon coupling and analyze its contribution to the
dielectric response �ph�q ,�� for several different cases of
nanospheres. Here it is worth discussing the validity of the
form of �ph�q ,�� for the nanosystem. The nonlocal dielectric
function ��q ,�� from the Fourier transform of ��r−r� ,�� is
a consequence of the isotropy of the medium. It is clear that
such an isotropy is broken by a surface or an interface of the
nanosystem. Nevertheless, our treatment may be justified by
the recent reports by Delerue et al.16 and Giustino and
Pasquarello.17 Delerue et al. have demonstrated that the
static bulk screening can be effective at distances of the order
of just a few Fermi wavelengths from the boundary through
investigating the screened field in Si layers. In addition,

Giustino and Pasquarello have reported that, in similar Si
slabs, the high-frequency permittivity closely matches the
bulk value beyond 13 Si monolayers �about 18 Å�.

A. Fröhlich Hamiltonian

It is well known that the interaction between electrons
and bulk LO phonons, the so-called Fröhlich Hamiltonian, is
written as18

H = �
q

	2��LO

�1/2q

 1

��

−
1

�0
�1/2

�
k

ck
†ck+q�a−q + aq

†� , �1�

where ck
†�ck+q� and aq

†�a−q� are the electron creation �annihi-
lation� and phonon creation �annihilation� operators, respec-
tively. �0 is the low-frequency dielectric constant, �� is from
the interband electronic transitions, and �LO is the frequency
of the LO phonon. � is the volume of the system. H can be
expected to be most suitably applied to the conduction bands
of a �bulk� semiconductor. Now we can find the dielectric
function by investigating the effective interaction between
electrons,

Veff�q,�� =
4�/q2

��q,��
=

vq

��q,��
, �2�

where ��q ,�� corresponds to the total dielectric response.
Diagrams of electron-electron scattering and electron-
phonon scattering can be summed by writing down the com-
bined interaction W�q ,�� of the Coulomb interaction and the
electron-phonon interaction as

W�q,�� = vq/�� + Vph�q,�� , �3�

and the screened effective interaction Veff�q ,�� becomes

Veff�q,�� =
W�q,��

1 − W�q,��P�q,��
, �4�

where P�q ,�� is the polarization function of electrons. Put-
ting the total dielectric response as a sum of the phonon and
electron contributions, i.e.,

��q,�� = �ph�q,�� + �el�q,�� , �5�

one can find

�ph�q,�� = vq/W�q,�� . �6�

The next step is to find W�q ,�� from the specific Hamil-
tonian H. It is clear that Vph�q ,�� out of W�q ,�� can be
interpreted as the product �Mq�2D0�q ,��, where Mq is the
electron-phonon scattering vertex,

Mq =
	2��LO

q

 1

��

−
1

�0
�1/2

,

and D0�q ,�� is Green’s function of the corresponding pho-
non, i.e.,

D0�q,�� =
2�LO

�2 − �LO
2

in the present case. Then Vph�q ,�� becomes
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Vph�q,�� = vq

�LO
2

�2 − �LO
2 
 1

��

−
1

�0
� . �7�

By substituting Eq. �7� into Eq. �6�, we finally find a well-
known �ph�q ,�� for polar materials,18

�ph�q,�� = ��

�2 − �LO
2

�2 − �TO
2 , �8�

where �TO is the frequency of the transverse optical �TO�
phonon. Note that in deriving Eq. �8�, we have used the
Lyddane-Sachs-Teller �LST� relation of

�LO
2

�TO
2 =

�0

��

.

B. Nanosphere of an intrinsic „undoped…
semiconductor

Exciton states play an important role in the understand-
ing of interband transitions in intrinsic semiconductors.
Klein et al.13 and Nomura and Kobayashi14 have investigated
the exciton-LO phonon coupling in semiconductor microc-
rystallites with phonon confinement effects included. Start-
ing with the Fröhlich Hamiltonian, they found the electric
potential ��r� induced by spherical LO phonons alm�q� �or
alm�q�†� to be

��r� = �
lm

�
q

f l�q��alm�q�jl�qr�Ylm�	,
� + H.c.� �9�

and have incorporated additional boundary conditions, one
of which is for a freestanding sphere. It corresponds to the
condition � ·u=0 at the surface, where u is the displacement,
and leads to a vanishing potential �=0 at the surface,

jl�qR� = 0,

where jl�x� is the spherical Bessel function of order l and R
is the radius of the sphere, in terms of which q is quantized
as qln. f l�q� is also slightly changed from the Fröhlich Hamil-
tonian into

f l�q� = Bq

	2��LO

�1/2q

 1

��

−
1

�0
�1/2

, �10�

where Bq is the normalization constant satisfying
BqBq��drjl�qr�Ylm

* �	 ,
�jl��q�r�Yl�m��	 ,
�=�qq��ll��mm�, that

is, Bq
2=2/ �R3jl+1

2 �qR��. For the s-wave phonon, we have

simply Bq=	2q /R1/2. Hereafter we treat only the s-wave
�l=0� phonon, unless specified otherwise. qln can then be
assigned as qn=n� /R. � is a volume of the sphere. Now we
can write down the exciton-LO phonon interaction Hamil-
tonian by assuming the charge density �ex

c �r� for a Wannier
exciton confined inside the sphere, from Eqs. �9� and �10�,

H =� dr ��r��ex
c �r� .

As shown above, for the exciton-LO phonon coupling, it
is of importance to precisely determine the wave functions of

an electron and a hole. In fact, this topic has already been
widely investigated.19 Performing an explicit integration for
H, we find

H = �
n

	2��LO

�1/2qn

 1

��

−
1

�0
�1/2

��

�

�
��qn��

†���a�qn� + a�qn�†� , �11�

where �

†���� denotes the operator for creating �annihilating�

an exciton with the quantum number 
��� and the scattering
matrix ��q� is, keeping only 
=�=1s exciton states and con-
sidering the simplest hydrogenic states,

�ex
c �r� =

1

���ha0�3e−2r/�ha0 −
1

���ea0�3e−2r/�ea0,

�12�

��q� 
	2

3
qR
 1

�1 + q2�h
2a0

2/4�2 +
1

�1 + q2�e
2a0

2/4�2� ,

where �e and �h are defined as mh
* / �me

*+mh
*� and me

* / �me
*

+mh
*�, respectively. me

* and mh
* are the effective masses of the

electron and the hole, respectively. We define aex��ea0,
where a0= �� /��aB �aB=0.53 Å, i.e., Bohr radius� for
Coulomb attraction −1/��r� between electron and hole and
� is a reduced mass, �=me

*mh
* / �me

*+mh
*�. The electric poten-

tial induced by LO phonon is given by the difference be-
tween contributions of electron �re=�er; r=re−rh� and hole
�rh=−�hr�, from which we can express �ex

c �r� as
the difference between electron’s and hole’s14,19 like
� dr����hr�−���er�����r��2=�dr ��r��ex

c �r�, where ���r��2
=e−2r/a0 / ��a0

3� for 1s exciton state.20 Furthermore it is based
on the hydrogenic wave function of an exciton, that is, an
exciton is so weakly confined in a sphere that the envelop
function of an exciton is kept as in the bulk. Hence our
model will be hereafter applied to R�aex. For a plane-wave
phonon interacting with the same exciton, we obtain the
slightly different matrix

��q� 

1

�1 + q2�h
2a0

2/4�2 −
1

�1 + q2�e
2a0

2/4�2 . �13�

Although Eqs. �12� and �13� show similar matrix behaviors,
one may note an important conceptual difference. Let us
think of the limit of reducing the radius R with aex=R fixed.
Reducing the sphere size leads to an increasing overlap of
the electron and hole wave functions �i.e., aex→0� and fi-
nally makes ��q�→0, in the case of unconfined coupling.21

On the contrary, however, in the case of the confined cou-
pling, the same reduction in size should lead to an increasing
coupling of short wavelength phonons �q�1/aex�, which
compensates an increasing overlap of the electron and hole
wave functions.

Now we analyze the phonon contribution to the dielec-
tric response exploiting Eq. �6�;

�ph�q,�� =
����2 − �LO

2 �
��2 − �LO

2 � + ���q��2��LO
2 − �TO

2 �
, �14�

where in a case of the confined model, Eq. �12� should be
used for ��q�, while in a case of the unconfined model, Eq.
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�13� should be used for ��q�. Later, for a calculation of the
optical contributions of �ph�q ,��, �2 in Eq. �14� may be
replaced by ���+ i�ph�. On the other hand, we will adopt the
dielectric response of the electronic part �the exciton dielec-
tric function in the present case� from the hydrodynamic
model,7,10

�ex�q,�� =
fp

2

�ex
2 + Dq2 − ��� + i��

, �15�

where fp is the oscillator strength, �ex is the exciton energy,
D=�ex/M �M: the exciton mass�, and � is the damping con-
stant. The total dielectric response is then ��q ,��
=�ph�q ,��+�ex�q ,��.

C. Nanosphere of a doped semiconductor

We deal with a semiconductor which is doped enough to
give a degenerate electron gas. The intraband transition in
such a heavily doped semiconductor is usually treated like a
metal. Following the same route as for the sphere of an in-
trinsic semiconductor, H can be readily written as

H = �
n

	2��LO

�1/2qn

 1

��

−
1

�0
�1/2

��

�

�
��qn�c

†c��a�qn� + a�qn�†� , �16�

where c

†�c�� is now the electron operator as in Eq. �1�. Con-

sidering that conduction electrons are also confined inside
the sphere, the scattering matrix ��q� should be, originally,

��q;k,k�� =
�1/2

	4�
BqBkBk��

0

R

dr r2j0�qr�j0�kr�j0�k�r� .

�17�

For R→� in Eq. �17�, an integration of ��q ;k ,k�� gives
� /	6 only when k�= �k+q�, otherwise it vanishes. For a fi-
nite R, ��q ;k ,k�� is evaluated by keeping k=kF and taking an
average over an angle between k and q of k�= �k+q�, with
which ��q ;k ,k�� is reduced to ��q�. Figure 1 shows the nu-
merical integration of ��q�. The integral depends on the
doped electron density. The more electrons, the faster ���q��2
approaches �2 /6. Incidentally, values of ���q��2 in the l=1

channel are smaller by at least an order of magnitude. Of
course, in the unconfined model, ���q��2 should be 1. By the
way, a similar definition is found for the Huang-Rhys
parameter15 S, which also characterizes a strength of
electron-phonon coupling. An essential difference is that
S estimates an interaction energy of phonon with the ground
state electron density, S� �1/�LO��q Bq

2��0
R dr r2j0�qr�

��j0��r /R��2�2, but ���q��2 in Eq. �17� estimates a coupling
strength of phonon with the electron density near the Fermi
surface. Due to such a difference, ���q��2 increases with R
and approaches a limiting value, but S decreases with R and
approaches a limiting value with small additional
structures.22

The phonon contribution �ph�q ,�� is formally identical
to Eq. �14� for an intrinsic semiconductor except that ���q��2
of Eq. �17� should be used. Taking the electronic contribution
�el�q ,�� from the hydrodynamic model,7,10 we finally have

��q,�� =
����2 − �LO

2 �
��2 − �LO

2 � + ���q��2��LO
2 − �TO

2 �

−
�pl

2

��� + i�� − �2q2 , �18�

where �pl is the plasmon energy, � is the damping constant,
and �2= �3/5�vF

2 �vF: the Fermi velocity�.

D. Nanosphere of a metal

For a metallic nanosphere, the situation is rather similar
to the doped semiconductor. One can arrive at the metallic
electron-phonon interaction by replacing �LO with �ip,
where �ip is the ion plasma frequency, and also by setting
�1/��−1/�0�1/2 to 1. In other words, we now have �TO=0 in
the metal. The ion plasma frequency �ip is related to the
plasmon frequency �pl by

�ip
2 =

Zm

M
�pl

2 .

Z is the valence of the ion and m and M are the electron and
ion masses, respectively. The long wavelength excitation of
the coupled system of ions and conduction �free� electrons is
the acoustic phonon, which is also readily understood from
the polar coupling on an equal footing with the doped semi-
conductor: �2=�TO

2 + ��LO
2 −�TO

2 � /��q�. Accounting for the
electron screening by realizing the static dielectric function
��q�→�pl

2 /�2q2 �using �el�q ,�� out of Eq. �18�; �2= 3
5vF

2�,
we have in the metallic case limq→0 ��q�=	�ip /�pl�q. Now,
for the metallic nanosphere with confined excitations, we
write H as follows:

H = �
n

	2��ip

�1/2qn
�

�

�
��qn�c

†c��a�qn� + a�qn�†� . �19�

The scattering matrix ��q� is defined in the same way as that
of the doped semiconductor. But in the metallic case, for
example, we have rs=2.07 for Al, which is an extremely high
density compared to the case of the doped semiconductor. In
this case, we can have practically ��q�=� /	6 unlike the
doped semiconductor.

FIG. 1. Behavior of ���q��2 for a doped semiconductor nanosphere with
respect to �a� the radius �R� of the sphere for a fixed rs=40 and �b� the
electron density �rs� for a fixed R=3 nm. Here rs is the electron density
parameter defined by 4�rs

3 /3=1/n �n: electron density�, that is, rs=20, rs

=40, and rs=60 correspond to the electron densities of n�2�1020, �2.5
�1019, and �7.4�1018 cm−3, respectively. The calculation is done by tak-
ing an angular average for k=kF �kF: Fermi wave vector� in Eq. �17�. The
thick solid line is the value of �2 /6 for R→�.
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In the metallic case, the typical energy scale of �pl is
much larger than �ip. In this case, it is conventional �al-
though not necessarily required� to separate the electron-
electron part and the electron-phonon part like

1

��q,��
=

1

�sc−ph�q,��
+

1

�el�q,��

rather than ��q ,��=�ph�q ,��+�el�q ,��. Here we note that
�el�q ,�� is

�el�q,�� = 1 −
�pl

2

��� + i�� − �2q2 .

In the present case, �sc−ph�q ,�� describes the screened
electron-phonon interaction. By the argument given in Sec.
II A, one may find

1

�sc−ph�q,��
=

1

vq

Mq
2���q��2

�el�q,��2 D�q,�� , �20�

where Mq is 	2��ip /q. In Eq. �20�, D�q ,�� is the interacting
phonon Green’s function,

D�q,�� =
2�ip

��2 − �ip
2 − 2�ipMq

2���q��2P�q,��/�el�q,���
,

�21�

and P�q ,�� is the electron polarization function, P�q ,��
= �1−�el�q ,��� /vq. Because of the apparent separation of
energy scales of electron and phonon, one may simplify
the expression by putting �=0 in P�q ,�� and �el�q ,�� in
Eq. �21�.

E. Quantization in dielectric responses

The quantization of phonons by confinement has been
described in detail in former sections, through which the ma-
trix elements by the confined electron-phonon coupling have
been calculated. We also consider that electronic excitations
are quantized for the confined model. Cini and Ascarelli23

have obtained an extended RPA �i.e., random phase approxi-
mation� expression starting from confined single electron
wave functions with km=m� /L in a cubic box of side L,
which is given as a summation of approximate delta func-
tions centered at q=qn �qn=n� /L�. A general treatment of
the spherical model is complicated and cumbersome. The
electronic susceptibility ��q ,�� out of ��q ,��−1=1
+v�q���q ,�� includes contributions of all orders l.24 Collec-
tive excitations would be subject to the spherical wave quan-
tization. For the low energy branch of excitations, we can
assume the s-wave quantization because qn=n� /R for the s
wave allows smaller value of qn �i.e., smaller excitation en-
ergy� for a given n than any other order spherical wave. It
should be noted that Cini and Ascarelli’s cubic box model
has been introduced to avoid difficulties in a treatment of a
spherical model. Wood and Aschcroft6 have further devel-
oped the cubic model by arguing that energy and general
behavior of a cube and a sphere will differ only by geometric
factors of the order of 1. This signifies that the detailed quan-
tization condition depending on the geometry is not so cru-

cial that the dielectric responses of a spherical particle have a
similar quantized structure with those of a cubic particle.

Following Cini and Ascarelli,23 we propose that, within
the spherical quantization, the spectral function of the sys-
tem, i.e., �−Im�1/�confined�q ,���, be written as

− Im
 1

�confined�q,��� 
 −
�

R
�
qn

Im
 1

��q,�����q − qn� ,

which may be directly measured by electron energy loss
spectroscopy �EELS�. It should be given as a sum of contri-
butions from discrete modes of qn by the spherical quantiza-
tion. By the Kramers-Kronig relation, the real part of
1 /�confined�q ,�� is

Re
 1

�confined�q,��� = 1 −
�

R
�
qn

��q − qn�

+
�

R
�
qn

Re
 1

��q,�����q − qn� .

The above expressions for Re�1/�confined�q ,��� and
Im�1/�confined�q ,��� trivially give 1/�confined�q ,��=1 for
q�qn. Accordingly, 1 /�confined�q ,�� can be written down as

1

�confined�q,��



�

R
�
qn


 1

��q,��
− 1���q − qn� + 1, �22�

where ��q ,��=�ph�q ,��+�el�q ,��, or 1 / ���qn ,���
=1/�sc−ph�q ,��+1/�el�q ,�� with the confined electron-
phonon coupling, as obtained in the previous sections. It is
worth noting that 1 /�confined�q ,�� self-evidently satisfies the
Kramers-Kronig relation, which implies that the related sum
rule such as f-sum rule can be obeyed.18

III. OPTICAL ABSORPTION

A. Response of a single sphere

We consider a single sphere of radius R. Its response to
the arbitrary electric field is characterized by polarizabilities
�l, where l is the pole order of the external electric field. By
solving Maxwell’s equations for an isolated sphere in
vacuum with the usual boundary conditions,25 i.e., � ·D=0
and ��E=0, Fuchs and co-workers7 developed a semiclas-
sical theory and obtained the result for the polarizability of
order l,

�l��� =
l�El − 1�

l�El + 1� + 1
R2l+1, �23�

where, accounting for the nonlocal dielectric response, El is
given by

El
−1 =

2

�
�2l + 1�R�

0

�

dq
�jl�qR��2

��q,��
. �24�

If we neglect the nonlocality in Eq. �23�, i.e., ��q ,��=����,
we obtain the polarizability from a simple substitution of
El=���� in Eq. �23�. Finally, the optical absorption is ob-
tained by taking the imaginary part of the polarizability, i.e.,
−Im��l����. In the following sections, Eq. �24� is applied for
the calculation of the absorption in the unconfined model
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using the dielectric function with the unconfined electron-
phonon coupling and with continuous q’s. In Secs. II B–II D,
we have provided expressions of the dielectric functions with
both unconfined and confined electron-phonon couplings. On
the other hand, for a case of the confined model, we explore
another formula extended from the semiclassical framework
of Fuchs and co-workers7 with 1/��q ,�� replaced by
1/�confined�q ,�� in Eq. �24�. El

−1 is then changed to

El
−1 = 2�2l + 1��

n

�jl�qnR��2 1

��qn,��
, �25�

where we have exploited a trial relation of �n�jl�qnR��2

=�n�jl�n���2=1/ �2�2l+1��.26 In Eq. �25�, ��qn ,�� should be
one with the confined electron-phonon coupling. One may
find a continuous approach of Eq. �25� to Eq. �24� with in-
creasing sphere radius R.

If we assume a uniform electric field E=E���ẑ, only the
dipolar component �l=1� survives. For l=1, the polarizabil-
ity �1 is proportional to R3. In this study, we always consider
only the dipole absorption and give the optical absorption as
−Im��1���� /R3 unless otherwise mentioned. By the way, it
is, in principle, straightforward to go to higher polar absorp-
tion.

B. Nanosphere of an intrinsic „undoped…
semiconductor

We investigate the optical absorption including the infra-
red region for a ZnSe sphere. The total dielectric response of
the sphere should be given as a sum of �ph�q ,�� and
�ex�q ,�� from Eqs. �14� and �15�. But in �ph�q ,�� we re-
place �2 by ���+ i�ph�. Corresponding to a ZnSe nano-
sphere, we employ values for various parameters: fp /�ex

=0.074, D /c2=6.173�10−6 �c is the speed of light�,
�ex/�ex=0.01 and �ex=2.8 eV from Ref. 27; and �LO

=30.5 meV, �TO=25.7 meV, ��=5.9, me
*=0.171, mh

*=0.60,
and �ph/�ex=10−5 from Ref. 28. The evaluated value of aex

for ZnSe is aex
2.6 nm. But in the study, we regard aex as a
free parameter �adopting the others from ZnSe parameters�
and examine the absorption behavior with respect to R and
aex.

Figure 2 shows the absorption of a ZnSe sphere confin-
ing a single exciton in the infrared region. Peaks in the ab-
sorption spectra are determined by Re�E1����+2=0 from
Eqs. �22� and �25�, not by Re�E1����=0. Resonances by
Re�E1����+2=0 should be noticed to be the excitations
arising from the presence of the surface. A single resonance
peak is dominant in the infrared absorption spectra for a
ZnSe sphere and its position depends on R and aex through
the electron-phonon matrix ��̃�q��2. We further note
that Re�E1����+2=0 can be readily satisfied near
Re�E1����→−�, i.e., Re�E1

−1����=0. Unless the sphere is
too small, we can write down an equation determining the
surface resonance,

1

6
��2 − �LO

2 � + ��LO
2 − �TO

2 ��
n

��̃�qn��2�jl�qnR��2 
 0.

In this equation, the second term is positive definite and thus
the zero should always be found to be less than �LO. One can

check from Fig. 2 that the resonance peaks are always less
than 0.011 �=�LO/�ex�. In the figure, we compare the optical
absorption of the sphere with confined and unconfined
electron-phonon couplings for various R’s with a fixed aex.
Two noticeable differences are found. One is the redshift of
phonon peaks in the confined model, where the redshift is
strengthened as R gets smaller. The other is the absorption
strength. The absorption with confined phonons is found to
be stronger than that with unconfined phonons by about two
orders of magnitude. Besides, it may also be worth noticing
that the phonon absorption for R=aex=1.5 nm in Fig. 2�a�
and that for R=aex=3 nm in Fig. 2�c� are almost identical.
The same is also found in Figs. 2�b� and 2�d�. We realize that
��̃�qn��2 should be simplified for R=aex as

��̃�qn��2 =
2

3
�n��2
 1

�1 + 0.2852n2�2/4�2

−
1

�1 + n2�2/4�2�2



2

3

162

�n��6
 1

0.2854 − 1�2

when n � 1,

where n should be 1,2,3,¼ and 0.285 is me
* /mh

*. That is, in
��̃�qn��2 when R=aex, one cannot find any dependence on R
�or aex�. It is natural that the absorption is vanishingly small
in the limit of R�aex. By the way, Chamberlain et al.29 have
studied the Raman scattering of CdS nanosphere in the in-
frared region using a continuum model of vibration and elec-
trostatic potential. The difference of their model from ours is
that they have taken into account the coupling between lon-
gitudinal and transverse modes. They have obtained the over-
whelming lowest order phonon peak consistent with the peak
in Fig. 2 and minute higher order structures disappearing
when R�2 nm. The main phonon peak is larger than higher
order structures by several orders of magnitudes and is al-

FIG. 2. Absorption of a ZnSe sphere in the �far-� infrared region for various
R’s and aex=1.5 nm and aex=3 nm. �a� and �c� are for confined electron-
phonon coupling, while �b� and �d� are for unconfined �plane-wave�
electron-phonon coupling.
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most exclusively due to the l=0 electron and hole contribu-
tions arising from interaction with the l=0 phonons, which is
corresponding to our case.

Figure 3 shows the absorption spectra of a ZnSe sphere
in the exciton energy range, ���ex. First, we confirm that
the frequency of the exciton peak increases with decreasing
sphere size.7 A series of small peaks above the exciton peak,
the effect of nonlocal dielectric responses, is observed for
both confined and unconfined excitations. However, in the
case with confined excitations, we have more sharply defined
resonances. For a sphere with a large enough radius, we can
get the same spectra for both types of excitations such that
secondary structures are suppressed.

C. Nanosphere of a doped semiconductor

As shown in Fig. 1, for a case with confined electron-
phonon coupling, the electron-phonon scattering matrix ��q�
depends on the sphere radius and the electron doping con-
centration. The density of doped electrons can be controlled,
but an actual typical density would be 1018–1019 cm−3. We
study the absorption properties of the doped semiconductor
sphere with the sphere radius R and the doped electron den-
sity parameter rs. For GaAs, we collect the material
parameters:30 ��=11.3, m*=0.07, �LO=36 meV, and �TO

=33 meV. The most important energy scale is the plasmon
energy �pl, which is given by �pl

2 =4�n0 /��m* �n0 is the
electron density�. �el /�pl=0.01 and �ph/�pl=10−5 are taken.

Compared to the metallic case �given later�, the plasmon
energy �pl with the typical doping concentration is very
small. Therefore, the energy difference of LO phonons and
plasmons �actual relevant plasmon energy is �pl /	�� rather
than �pl� is so small that they can be mutually coupled into
new modes. Considering the dielectric response in the local

limit of the bulk for the sake of simplicity, the pole structure
of 1 /���� is determined by

��

�2 − �LO
2

�2 − �TO
2 −

�pl
2

�2 = 0,

from which we have two new modes �+���pl� and
�−���TO�. Analogues of these two modes and their branches
of nonlocal peaks are observed in the nanoscopic spheres. If
we assign the leading peaks of each branch to �+ and �− as
indicated in Figs. 4 and 5, one can observe them in the un-
confined case. However, in the confined case, we need intro-
duce a certain cutoff radius Rc and can then have both �+ and
�− only when R�Rc. Rc is determined by the condition that
only a single zero, i.e., �+, is available in the zero structure
of the dielectric response �for simplicity, in the nonlocal
bulk�,

FIG. 3. Absorption of a ZnSe sphere in the exciton energy region. The upper
panel gives the absorption for the confined model and the lower panel for
the unconfined model. Here aex is fixed as aex=1.5 nm. Note that for a better
presentation, data of R=1.5 nm, R=3 nm, R=10 nm, and R=20 nm are
shifted by multiplying by 100, 10, 0.1, and 0.01, respectively.

FIG. 4. Absorption of a doped GaAs sphere for rs=40 �n0�2.5
�1019 cm−3, �pl=0.213 eV� with respect to the sphere radius R. Here we
have �LO/�pl=0.17 and �TO/�pl=0.15. The solid line is for the confined
model and the dashed line for the unconfined model.

FIG. 5. Absorption of a doped GaAs sphere for rs=60 �n0�7.4
�1018 cm−3, �pl=0.112 eV� with respect to the sphere radius R. Here we
have �LO/�pl=0.32 and �TO/�pl=0.29. The solid line is for the confined
model and the dashed line for the unconfined model.
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��

�2 − �LO
2

�2 − �TO
2 −

�pl
2

�2 − �2q2 = 0

for qmin�=� /R�. It is further found that Rc is obtained by
qmin=�TO/�, from which we find Rc=5.1 nm for rs=40 and
Rc=3.4 nm for rs=60. We actually observe that there is no
resonance below �TO in cases of R=3 nm and R=5 nm in
Fig. 4 and R=3 nm in Fig. 5. Nonlocal effects in the dielec-
tric response give a series of phonon absorption peaks in
region �TO����LO for qn’s where �LO

2 ��2qn
2. Also, if

there exist qn’s satisfying �TO
2 ��2qn

2, phonon absorption
peaks are also found for �−����TO. As R increases, qn’s
can more probably satisfy �TO

2 ��2qn
2 and absorption reso-

nances for �−����TO are obtained �see R=10 nm or
R=20 nm in Fig. 5�. However, actual modes in the present
sphere with confined �or unconfined� phonons should be un-
derstood to occur at energies slightly shifted from the above
poles because all the above discussions are provided based
on the simple bulk model only with a quantization of wave
vector. But a qualitative understanding is still possible.

In Figs. 4 and 5, the absorption depends on the electron
density mainly through the plasmon energy �pl. For rs=60
�Fig. 5� compared to rs=40 �Fig. 4�, �pl is closer to and more
strongly coupled to �LO. For this reason, �+ ��0.33�pl;
rs=60 and R=20 nm� in Fig. 5 is a bit shifted from the
leading �surface� plasmon absorption in the system without
phonons, �pl /	��+2=0.274�pl. On the other hand, �+ in
Fig. 4 is 0.28�pl �for rs=40 and R=20 nm�, so the shift is
tiny. Thus the distance between �LO and �pl induces a repul-
sion between �− �redshift� and �+ �blueshift�.

Although the report of phonon absorption in the doped
semiconductor nanosphere, up to our knowledge, is not
available, there is an interesting study of the phonon-assisted
intraband transition in a cubic box modeled for a Si nano-
crystal doped with one electron,31 where intensities of the
zero-phonon line and one-phonon line can be efficiently con-
trolled by the geometry, i.e., size of the box. This work can-
not be directly compared to our result but suggests how to go
beyond our present approach.

D. Nanosphere of a metal

Previously, we have mentioned that metals can be treated
in a similar way to doped semiconductors. Compared to a
doped semiconductor, we note that �LO should correspond to
the ion plasma frequency �ip and �TO should be zero in a
metal. We also note that the density of conduction electrons
is much higher than that in a doped semiconductor. We have
typically rs�O�1�. Here, the optical absorption of an Al
sphere is studied using the dielectric response 1/��q ,�� ex-
plored in Sec. II D, which is, as a matter of fact, obtained
from the free electron gas with the positive jellium back-
ground. For Al, we know rs=2.07 and �pl=15.8 eV and we
estimate the ion plasma frequency �ip=122.8 meV. Also,
�el /�pl=0.01 and �ph/�pl=10−5 are taken.

Unlike the case of a doped semiconductor, the �− mode
does not exist in a metal. Instead, the phonon absorptions are
located in 0����ip. In Fig. 6, we provide the optical ab-
sorption of an Al sphere in the �far-� infrared region. The

far-infrared absorption of various metal nanoparticles has
been a controversial problem since an observation of anoma-
lously enhanced far-infrared absorption in a dilute mixture of
small metal particles.32 A number of possible mechanisms
intrinsic to isolated nanoparticles have been proposed. One
of them is to include the electron-phonon coupling.33,34 Also,
the quantum size effects5,6,35 or magnetic effects �eddy cur-
rent loss�36 were claimed to be responsible. A more realistic
model to take into account the electron density profile has
also been proposed.37

Now we show in Fig. 6 that the absorption in the given
far-infrared energy range is enhanced by a few orders of
magnitude by incorporating the electron-phonon coupling
and is further reinforced by confinement along with the dis-
crete nature. Such strong absorptions are found to be by short
wavelength phonons. It is also found that, near the phonon
absorption edge, an increase in the effective cross section by
short wavelength phonons makes the absorption peaks have
an accumulation point. By the way, it looks evident that long
wavelength phonons hardly absorb the light in the given en-
ergy range, that is,

1

�sc−ph�q,��
�

�ip
2

�pl
4

��2q2�2

�2 − s2q2

in the limit of q→0. s is the sound velocity. In spite of a
formal similarity with the doped semiconductor, such appre-
ciable differences referred to above are distinct in the spec-
tra. Phonon absorptions are also found to depend on the
sphere radius R. The absorption gets weaker on increasing
the sphere size �see Fig. 6�, which is consistent with the
actual situation.38 On increasing the radius, an anomalous
absorption disappears and the classical �Mie� theory without
phonons becomes valid, signifying that phonon contributions
are less important for a larger sphere. This can be understood
from Eq. �23� or �25�; as R→�, contributions from small q’s

FIG. 6. Absorption of an Al sphere in the �far-� infrared region. The solid
line is for the confined model, the dashed line for the unconfined model, and
the dotted line for the confined model without phonon coupling. Note that
the frequency � of � /�pl=0.0001 corresponds to 1.58 meV or 12.7 cm−1.
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�actually q→0� become important by �j1�qR��2 in the inte-
gral of E1

−1, but for small q’s �q→0�, as argued above, the
cross section for the absorption gets suppressed by
−Im�1/�sc−ph�q ,����q3���−sq�. In our model, the far-
infrared absorption converges to classical solution without
phonons at about R
60 nm.

Figure 7 shows the absorption of an Al sphere in the
plasmon energy range for various R’s. It is observed that the
surface plasmon peak shifts to a higher energy on decreasing
the sphere radius. In this energy range, the absorption occurs
predominantly by creating a surface plasmon of ��pl /	3
��pl /	3 is actually the value in the local limit�. Above the
plasmon energy �pl, one sees nonlocal secondary oscilla-
tions. These oscillations become less important as R in-
creases, whereas the primary absorption at ��pl /	3 hardly
changes in its strength.

E. Ensemble of metallic nanospheres with size
distribution

To simulate the realistic situation, one may consider a
medium composed of a random mixture of small particle
constituents with respective dielectric responses �i�q ,��.
Such a nanosphere ensemble can be considered by a random
mixture of homogeneous spheres of different radii. Chylek
and Srivastava39 have proposed a �-type size distribution
function,

n�R� = aR�e−bR,

where R is the sphere radius and a, b, and � are constants
concerning the detailed distribution. From the distribution,
we have the number density n̄ given by

n̄ = �
0

�

dR n�R� = a
��� + 1�

b�+1 ,

where ��z� is the gamma function and the average radius of

the spheres R̄ is

R̄ =
�

b
.

Typically, for a given sample, one knows the average radius

R̄ and the filling factor f corresponding to 4�R̄3n̄ /3. In Fig.
8, we give the far-infrared absorption of an ensemble of Al

spheres with different R̄’s. In n�R�, � is related to the vari-
ance of the distribution and the distribution goes like the

delta function centered at R= R̄ when �→�. Here we put
�=10. In particular, for a system of metallic spheres, the
effect of size distribution can be essential. As seen in Fig. 6,
the �far-� infrared absorption peaks are rapidly oscillating
with the radius R, especially for the confined model. At
� /�pl=0.0001 �corresponding to 1.58 meV or 12.7 cm−1�,
for instance, there exists a set of closely spaced resonances
�absorption peaks� which are swept through if the particle
size changes only by �0.25 nm. From the distribution func-
tion n�R� with a fixed filling factor, it is found that, for

R̄=3 nm, most spheres belong to 2.0 nm�R�4.3 nm

�say, n�2.0 nm�=n�4.3 nm�=0.5n�R̄��; for R̄=5 nm, 3.4 nm

�R�7.1 nm; for R̄=10 nm, 6.7 nm�R�14.2 nm; and for

R̄=20 nm, 13.4 nm�R�28.4 nm. In Fig. 8, we give the
far-infrared absorption spectra averaged over the distribution
n�R� for the confined and the unconfined model with

R̄=3,5 ,10, 20 nm.

FIG. 7. Absorption of an Al sphere in the plasmon energy region. The upper
panel gives the absorption for the confined model and the lower panel for
the unconfined model.

FIG. 8. Far-infrared absorption of an ensemble of isolated Al spheres with
different R’s. The solid line is for the confined model and the dashed line for
the unconfined model. Note the differences in the spectra from two models,
say, for energies of � /�pl�0.001 �corresponding to ��15.8 meV or �
�127 cm−1�. In �c�, experimental results �black dots� for nonclustered Al

composites �R̄=10.3 nm� are given from Ref. 40. Experimental data are
suitably modified in order to fit in our figure scale Ref. 41.
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As a result of the average, a comparison of the absorp-
tion spectra becomes clearer. From Fig. 8, it is clear that the
smaller spheres give the stronger absorption. Further, impor-
tantly, from a comparison between the spectra with and with-
out confinement, we find that the confined phonons give
much stronger far-infrared absorption in the region of very
low energies. In addition, such strong absorption is quite
robust down to � /�pl�0.0001. Such dramatic differences
are due to the fact that, in the confined model, sharp reso-
nances can occur densely even in the far-infrared region with
rapid sweepings by �R�0.25 nm. In the unconfined model,
on the contrary, there exists an energy scale for the absorp-
tion power to abruptly decrease, which depends on the ra-
dius. In Fig. 8�c�, we have tried a direct comparison of our
results with experiment. The experimental results in the
figure40 are the absorption for nonclustered Al particles

�R̄=10.3 nm� for f =0.008. The results agree with experi-
mental observation in a qualitative view of the absorption
strength. They are larger than the model of unconfined
phonons by two orders of magnitude and than the model
without phonons by four orders of magnitude near � /�pl

�0.0001. However, we do not claim that the confined
electron-phonon interaction should be the only mechanism
for the anomalous far-infrared absorption. The immediate
reasons are that the actual experimental points have a large
slope compared to almost constant theoretical results in the
corresponding frequency region and the phonon absorption
edge near �ip is too sharp compared to experiment,1 which
imply that remaining discrepancies should be explained by
adding another mechanism, for instance, the clustering ef-
fects �interaction between nanospheres�, classical magnetic
dipole absorption, realistic dielectric surroundings, or the
quantum mechanical particle-hole pair absorption, or others
not included in this study. It is finally concluded that the
electron-phonon coupling can give strong infrared absorption
and a confinement of phonons can further enhance and sta-
bilize the absorption in the far-infrared energy range for me-
tallic nanospheres.

IV. SUMMARY AND CONCLUSIONS

We have studied the optical absorption of semiconduct-
ing and metallic nanospheres. In the nanoscopic geometry,
relevant excitations in the system are quantized by quantum
confinement. Considering only s-wave components of the
excitations, they are quantized as qnR=n�; n=1,2 , . . . by a
condition of j0�qnR�=0, where j0�x� is the spherical Bessel
function of l=0. It is known that confined phonons interact
with electrons in a different form of interaction compared to
the bulk case. Taking into account such confinement, we
have derived a coupling between electrons and phonons
within spheres made of three different kinds of material: an
intrinsic semiconductor, a doped semiconductor, and a metal.
To investigate the optical absorption of the spheres, we took
advantage of the semiclassical formalism of Fuchs and
co-workers.7 Their formalism is very useful in that it can be
applied to any material with known dielectric response.
However, we should mention a rather fundamental problem

submerged in the formalism. In fact, the semiclassical theory
of Fuchs and co-workers does not properly allow for the
quantization of excitations, even if we have been motivated
to do so due to its considerable merits. The cost of incorpo-
rating quantized excitations into the theory is the unclearness
or arbitrariness of the boundary condition. It should be,
therefore, understood that we have arbitrarily chosen one of
applicable boundary conditions. More extended works to
make clear the effect or importance of boundary conditions
with respect to R may be required.

Let us summarize the work. First, for an intrinsic semi-
conductor sphere, the confinement effects are obvious. The
electron-phonon scattering matrix ��q� has a different form,
which gives the enhanced infrared absorption and the slight
redshift of absorption peak. Second, for a doped semicon-
ductor �say a polaronic metal�, the electron-phonon scatter-
ing matrix ��q� depends on the doped electron density as
well as the sphere radius. Two new branches �especially,
leading absorption edges of them are called �− and �+,
respectively� are developed in terms of a coupling between
plasmon and LO phonon. For spheres of a small radius
�R�Rc; see Figs. 4 and 5�, however, we observe an explicit
absence of the leading low energy absorption edge ��−� due
to the finite smallness of qmin in the confined model. The
continuous phonon absorption band is observed for �TO

����LO by qn’s satisfying qn
2��LO

2 /�2 and also for �−

����TO for qn’s qn
2��TO

2 /�2. Finally, we have studied the
metallic sphere concentrating on the far-infrared energy re-
gion. Due to the electron screening, the ion plasma frequency
��ip� is softened into an acoustic phonon and the phonon
absorption then occurs for ���ip. The short wavelength
phonons provide enhanced �far-� infrared absorption for both
confined and unconfined models. It is important to find that
confined phonons further reinforce the absorption. It now
looks promising that the confined electron-phonon coupling
possibly explains the anomalously enhanced absorption of
various metal spheres. As R increases, the absorption coeffi-
cient decreases. Toward a realistic simulation, one may need
to take into account the effect of size distribution. Assuming
a given system as the random mixture of homogeneous
spheres, we have examined effects of the size distribution of
immersed metallic spheres. Above all, it is interesting and
surprising that a confinement of phonons within a metallic
sphere leads to not only the strongly enhanced absorption but
also quite robust absorption even down to � /�pl�0.0001,
comparable to anomalously strong far-infrared absorption
observed in experiment. However, it is also found that the
detailed absorption behavior still differs from the known ex-
perimental data, which implies that incorporation of another
mechanism as well as the confined electron-phonon interac-
tion could be essential. To conclude, we affirm that the con-
fined electron-phonon interaction should be enlisted among
several possible mechanisms, even though it may not be
enough by itself for a complete understanding of the anoma-
lous experimental observations.
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