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Efficient organic light-emitting diodes with undoped active layers based
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We report on efficient molecular organic light-emitting diode8OLEDS) composed of novel silole
derivatives as an electron transporting layer and an emissive layer. The silole derivative, 2,5-bis-
(2',2"-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene, used for the electron transport
layer exhibits fast electron mobility of 210 4 cn?/Vs at 0.64 MV/cm measured by

the time-of-flight technique. Another silole derivative, 1,2¢bisnethyl-2,3,4,5-tetraphenyl
silacyclopentadienygthane, used for an emissive layer exhibits blue-green fluorescence with an
absolute quantum yield of 973% in the solid state. The devices using silole derivatives show a
very low operating voltage, an external electroluminescence quantum efficiepgydf 4.8 %, and
luminous power efficiency of 9 Im/W at a brightness of 100 cd/ffhis value ofyg, is the best
efficiency achieved for MOLED using undoped emissive and carrier transport layers and is close to
the theoretical limit for a device using a fluorescent emitter2@2 American Institute of Physics.
[DOI: 10.1063/1.1432109

For high-performance organic light-emitting diodes cence(EL) quantum efficiency g, ), it complicates the
(OLEDs9), there are two major issues in material develop-fabrication process and may affect production cost. Thus, it
ment. Materials which offer better electron injection/ would be ideal if one can achieve very high, in an un-
transport properties with respect to the type of electrodes adoped solid film.
structure used in OLEDs, and very high photoluminescence |n this study, we report a detailed study on high-
quantum yield ¢p) in the solid state are highly desirable. performance MOLEDs based on silole derivatives. One
For improving electron injection, it has been demonstratechf the silole derivatives, 1,2-kis-methyl-2,3,4,5-
that the insertion of a thin layer of an alkali métal alkali tetraphenylsilacyclopentadiengthane (2PSB, exhibits a
metal compounds between the cathode and the organic{gg #p, in the vapor deposited solid films. Using these
layer leads to a significant enhancement in electron injectionsjjole derivatives for both electron transport and light emis-
Conversely, few organic compounds exhibit high electrongjon e have fabricated devices with a very low operating
mobility in the amorphOL_Js solid _sFa‘ié_?’ In addmon, _most voltage and a highye, of 4.8% photon/electrowithout dop-
electron_transp_ort materials exhibit dlsper_swe carrier transl—ngl any of the layerg This 7g, is close to the theoretical
port, which indicates the presence of multiple electron trapgimit for a device using a fluorescent emitter.
ping sites. Recently, we have reported that a silole derivative,
2,5-big2’,2"-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenyl sila-
cyclopentadiengPyPySPyPy; exhibits nondispersive and
air-stable electron transport with a high mobility of 2
X 10™4 cm?/V's atE=0.64 MV/cm.” This mobility is more

The chemical structures of the silole derivatives used in
this study are shown in Fig. 1. They were synthesized by a
one-step process from Khenylethynylsilanes based on
the intermolecular reductive cyclization followed by the
Palladium—catalyzed cross coupling with aryl halideThe
trig8- crude products of PyPySPyPy and 2PSP were purified by
recrystallization, column chromatography, and vacuum sub-
limation. Elemental analysis was employed for confirming
the purities of silole derivatives. Cald@bo) for PyPySPyPy

widely used electron transport material,
hydroxyquinolinolaty aluminum(lil) (Algs), in OLEDs?®
For realizing highep, in solid films, doping of a highly
fluorescent or phosphorescent moledgjeesj into the emit-
ting layer (hosh has been accepted as the most effective ap-
proach. Energy transfer from the host to the guest moletules O
and/or direct carrier recombination on the guest moleétiles Q
lead to efficient emission from the guest. Although doping
offers high ¢, and other advantages such as an improve-
ment of temperature dependence of external electrolumines-

o O

3 Author to whom all correspondence should be addressed at: Department of

Chenmistry, Center for Electronic Materials and Devices, Imperial College PyPySPyPy 2PSP
of Science, Technology and Medicine, London SW7 2AY, UK; electronic
mail: h.murata@ic.ac.uk FIG. 1. Chemical structures of the silole derivatives used in this study.
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J (majem’) Alg;. A significant decrease in the operating voltage was
observed in a device based on the silole derivatives. This
reduction in voltage can be explained by the higher electron
mobility of PyPySPyPy relative to that of AJg High elec-
tron mobility of the silole can be attributed to a large electron
affinity (E.A.) due to thes* —7* conjugation in the silole
ring and a high aromaticity of its anionic speciea.large
E.A. is also expected to contribute to the decrease in the
operating voltage due to a lowered electron injection
barrier’® To estimate the electron injection barrier, the ion-
4,4 diamine(TPD) were purchased from H. W. Sands Corp. ization potentials of the silole derivatives and Alavere
and used without further purification. measured by ultraviolet photoemission spectroscopy. By tak-
Light-emitting diodes were prepared on a glass subing into account the shift of the vacuum level at the organic/
strates coated with patterned indium tin oxid&O) elec- Metal substrate interface, we verified that PyPySPyPy shows
trodes. The ITO coated glass substrat&® thickness is 100 & smaller injection barrier for electron injection than that
nm and sheet resistance is about@@q were precleaned ©Of Alds at the organic/metal interfac€.Bright blue-green
and treated with an oxygen plasma. Devices were prepare@Mission § =500 nm) was observed at 2.5 V and a lumi-
by consecutive vapor deposition of a TPD hole transporflance () exceeding 1400 cd/fwas observed at 6.5 VJ(
layer (50 nm, a 2PSP emitting layex20 nm, and a =15 mA/ent), as shown in Fig. @).
PyPySPyPy electron transport lay€30 nm. Mg and Ag Figure 3 shows that the PL and EL spectra are very
(10:1 ratio by weight codeposited through a shadow mask Similar with a slight decrease in the EL spectrum at longer
completed the device fabrication. The thickness of thevavelength. The observed difference between the PL and EL
Mg:Ag film is 100 nm. As a reference, a control device with SPectral shape can be attributed to an optical interferésrce
Algs (70 nm) as an electron transporting/emitting layer wasWweak microcavity effect between the ITO anode and the
fabricated. A quartz crystal microbalance was used to monimetal cathode. If there was no interference in the device, the
tor the rate of deposition of all the layers and estimate theiemission intensity should follow a Lambertian pattern. We
thickness. measured angular dependence of the EL intensity as shown
Current—voltage—luminance measurements of the ddh the inset of Fig. 3. The observed deviation from the Lam-
vices were performed with a Keithley 238 high-currentbertian emission pattern supports the presence of an optical
source measurement unit and a Minolta LS-110 luminancéiterference effect. The emission pattern of the device affects
meter. Thepg, defined as the ratio of the number of photonsthe calculation of total luminance flUX.Hence, it is very
emitted from the device to the number of injected electronsimportant to accurately evaluate the device efficiencies based
was calculated by taking into account both the distribution ofon a corrected emission pattern. A correction factor of 1.2
photon energyi.e., EL spectrpand the angular dependence was used in the calculations of the luminous power effi-
of the EL intensity from the device surfat&The angular ciency and thepg, . The luminous efficiencies of the device
dependence of the EL intensity was measured with a devicesing silole derivatives are 12 Im/W at 10 cdin{V
mounted on a rotating stage. Tig, of 2PSP films, depos- =3.25V) and 9 Im/W at 100 cd/m(V=4.0V). Even at
ited on silica substrates, was measured using an integratirguch higher luminance, the device sustains reasonably high
spheret* All measurements were performed in a glove boxluminous efficiency of 4.3 Im/W1(=1000 cd/rs).

FIG. 2. (a) Current density vs voltagel¢V) characteristics an¢b) lumi-
nance vs current density ¢J) for the devices using PyPySPyPy as an
electron transport layer and 2PSP as an emitting léslesed circlg, and
Alg; as an electron transport/emitting layetosed trianglg

(C3gH30N,4Si): C 79.97, H 5.30, N 9.82; found C 79.80, H
5.26, N 9.59. Calcd%) for 2PSP (GoHseSk): C 87.12, H
6.09, found C 87.00, H 6.10. High purity Algand
N,N’-diphenyl- N,N’-bis (3-methylpheny}1,1’-biphenyl-

filled with a nitrogen atmosphere witki 1 ppm oxygen and
moisture concentrations.
Figure 2a) compares current density vs voltagé—{V)

Figure 4 depicts the dependence mf, on the current
density for the two devices. A maximunyg_ of 4.8%
photon/electron is attained at wide range of current densities

curves of the devices based on the silole derivatives anbetween 0.01 and 1 mA/énand is close to the theoretical
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