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Nondispersive electron transport in Alg 3
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We have studied room temperature electron transport in amorphous films of tris
(8-hydroxyquinolinolatp aluminum (lll) (Algs) with the time-of-flight technique. Nondispersive
photocurrent transients indicate the absence of intrinsic traps in well-purified films. Exposure of the
films to ambient atmosphere results in highly dispersive transport, indicating that oxygen is a likely
candidate for a trapping site. The mobility was found to obey the Poole—Frenkel law. We use the
correlated disorder model to determine an effective dipole moment far Atgd the corresponding
meridional to facial isomeric ratio. @001 American Institute of Physics.
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Since the first report of an organic light emitting diode tant to understand the nature of trapping since it may lead to
(OLED),! a dramatic improvement has been achieved in the buildup of space charge which results in device degrada-
efficiency and lifetime of these devicésyhich has recently tion.
led to the commercialization of OLED-based flat panel dis-  Electron transport in amorphous organic films takes
plays. This fast-paced progress is partly enabled by our urplace by hopping in a manifold of localized states which is
derstanding of the charge transport properties of organicomposed of the lowest unoccupied molecular orbitals of
semiconductors. Tris (8-hydroxyquinolinolatp aluminum  each molecule. The distribution of energies is normally as-
(Il1) (Algs) was the electron transporter and emitter in thesumed to be Gaussian, with a widththat is of the order of
first OLED! and still remains one of the most widely used. 0.1 eV It has been shown from simulations that a packet of
Early attempts to model its transport characteristics emearriers propagating in such a system can quickly reach ther-
ployed band models with a distribution of trapping levelsmal quasiequilibrium at room temperat&FeThis leads to
below the conduction barfiSuch treatments, however, fail nondispersive spatial evolution of the carrier packet, which is
to capture the identifying characteristics of organic materialsindicative of trap-free charge transport. This behavior has
Due to the structural disorder in AJgand other amorphous been observed in a variety of organic semiconductors.
glasses, transport states are energetically disordered and spa- In this context, electron traps are unoccupied energy lev-
tially localized. The mobilityu in Algs is not constant, but  els positioned lower than the transport manifold by at least a

electric field dependent according ¥ few o. Their introduction will result in the removal of carri-
ers from the transport manifold and will lead to dispersive
= o exp( BVE), (1) current-time curves. Traps may arise due to chemical impu-

rities such as molecular oxygen, which can be removed by
where u is the (extrapolategi zero field mobility ands the  proper purification. Traps may also be present for intrinsic
so-called Poole—FrenkéPF) factor. Reported values for,  reasons, however, as in the formation of dimers in
range from 10° to 10 ‘cn?/Vs depending on sample polyvinylcarbazolé? In the latter case purification will not
preparation, while3 is of the order of 10% (cm/V)%, giving  improve the transport characteristics. In Afgms it has not

an electron mobility between 16 and 10°°cn?/V's under  peen clear whether the traps are intrinsic or extrinsic in na-
typical OLED operating conditions.Recently, loannidis tyre.

et.al.g have shown that Eq1) can account for the field and In this letter we report results from TOF measurements
thickness dependence of the current in Aiéms, as is also  that show nondispersive electron transport in well-purified
the case for conjugated polymérs. Algs, indicative of the absence of intrinsic traps. Exposure of

There is, however, considerable evidence for the presthe Alg, film to atmosphere results in highly dispersive trans-
ence of deep traps in Aldfilms. Dispersive time-of-flight  port, indicating that oxygen is a likely candidate for a trap.
(TOF) measurements have been interpreted to arise fronthe electric field dependence of the mobility in Alig in-
bulk trapping’ and thermally stimulated current studies seeMyestigated and discussed.
to reveal trapping sites with a depth of 0.8 ¥\tt is impor- High purity Algs was purchased from H.W. Sands Corp.
Part of it was used as-received, while the rest was purified
dauthor to whom correspondence should be addressed; electronic maifhree times by train sublimation. For the transport measure-
george@ccmr.cornell.edu ments, films were prepared on prepatterned indium-tin-oxide
YPermanent address: Department of Physics and Astronomy, University c{fITO) coated glass substrates. The ITO substrates were

New Mexico, Albuquerque, NM 87131. .. . - .
OPermanent address: Department of Chemistry, Imperial CollegeCl®@n€d by sonication in a deionized water bath, dried and
London SW7 2AY, UK. exposed to UV/ozone at slightly elevated temperatures. Sub-
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FIG. 1. Time-of-flight electron transients from the as-recei(@rttles and purified (squar_e}sAI_q3 samples. Inget: electric field ergndence of mobility
purified (squaresAlq; samples. The diamonds are data from the as-received’ the @s-receivetircles and purified(squares The line is a fit to Eq(1).
sample af_ter_exposure to atmqsphere. The Iine_s are guides to the eyeand are A typical TOF trace for the purified Algis also shown
teant ;;égi'if:tglétiggfge in slope upon arrival of photoexcited electrong, i * (square The behavior of the photocurrent is dis-
tinctly different from that of the as-received Algample.
After an initial decay the photocurrent shows a plateau, in-
sequently, they were introduced into a glove box, where altlicating that the photoinjected electrons reach thermal qua-
the preparation steps took place in a dry nitrogen atmosphetsequilibrium with the transport manifold in Adg This non-
with <1 ppm oxygen and moisture concentrations. The ordispersive evolution of the electron packet is the signature of
ganic films were deposited by vacuum sublimation attrap-free transport, and supports the conclusion that the dis-
10" ® mbar. The thickness of the films, measured by profilo-persive transport in as-received Alig caused by an extrin-
metry, was in the range of Bm. The device preparation was sic mechanism. Upon exposure of the purified film to the
completed by the deposition of a semitransparent aluminuratmosphere, the TOF traces again became very dispersive
(Al) layer which defined six devices per substrate each witiinot shown herg in a similar fashion to the as-received
an active area of 3 mfn sample.

The mobilities were measured by the photoinduced TOF ~ The difference between the as-received and purified
techniquet® The sample was transported and held in asamples is better illustrated in Fig. 2. The circles are data
custom-made vacuum containefTat 294 K without any ex-  from the as-received sample, which show the characteristic
posure to the atmosphere. The measurements were then featureless decay associated with dispersive transport. In
peated after exposure of the sample to the atmosphere. gharp contrast, the TOF trace from the purified sample
nitrogen laser X =337 nm) with a 10 ns pulse width was (squares indicates trap-free hopping transport. The tail of
used as the excitation source, and was incident on the sampge photocurrent exhibits the characteristic anomalous diffu-
through the ITO electrode that was biased negative with resion observed in amorphous glasses. For the curve shown in
spect to the Al electrode. The dark current was found to b&ig. 1, the tail-broadening parameei=0.5, comparable
negligible under this bias configuration indicating that ITO to that in the electron transporting glass NTDI.
and Al act as noninjectin¢blocking” ) contacts for electron The field dependence of the mobility for the purified
and hole injection, respectively. All TOF traces were re-Sample is shown in the inset of Fig.(flled squares The
corded in the single shot regime. The intensity of the lasefobility was determined from the relationshipu
was kept sufficiently low to avoid space charge effects and™L*/(trr V), whereL is the sample thicknes¥, is the ap-
the response time of the circuit was kept well below thePlied voltage, andrx is the transit time? The mobility is
transit time. All six devices on the same substrate were founfPund to obey Eq(1) for po=2.9x10 ?cn?/Vs and 3
to exhibit similar TOF traces. Although not the subject of the = 7-3X 10 (Cm/V)O'? consistent with literature value$.
present investigation, we should also remark that hole trans- Although Eq.(1) is the well known PF lavi? the mecha-
port was found to be nondispersive, having a mobility of the"iSm behind the electric field dependence of mobility in

order of 10°8 cm?/V/ s, in agreement with that reported in the @Morphous glasses is recognizedt to be due to the PF
literature’ effect, but is instead caused by long-range spatial correla-

A typical TOF trace in the as-received Aldilm is tions_ in tlr;e .energetic disorde_r chareltctelrizing the transport
shown in Fig. 1(circles. The dispersive character of trans- manifold:* Site-energy correlations arise ina natural manner
port is evident in the continuous decay of the photocurrenfS @ result of the unscreened elect_ro§tat|c forces felt by the
(1), which progresses untit~8x10 %s. At that time, injected charge; due to the nonvanishing multlpo!e moments
enough charge has reached the opposite electrode to caus8f4Ne surrounding moleculé§.The longest correlation, aris-
change in slope. The behavior is typical for dispersive trans"d from the charge—dipole interaction, has been shown to
port. Exposure of the sample to ambient atmosphere for judliVe rise to a PF field dependence in the range of fields

2 h has a notable effect on the magnitude and the slope of tfgoPed by experimerif:*® From computer simulations of
eHu‘gppmg transport on a simple cubic lattice of randomly ori-

ented dipole€? it has been shown that the PF slope obeys

(diamonds. After overnight exposure, the photocurrent be- X :
the phenomenological expression

came indiscerniblénot shown herg suggesting a dramatic
increase in charge trapping. B=0.78 (eal o)*?.[ (¢/kT)%?-1.97), 2)
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where the variance increase the magnitude of the escape time, but will not affect
2= (1/3)16.53 (peldme a?)?, 3 its relative field dependendé. _ _

In conclusion, we have observed nondispersive electron
depends on the magnitude of the dipole momgfitandais  transport in a well-purified Algfilm, with no intrinsic traps.
the lattice constant. Since it is the decay of the site-energ¥xposure to ambient atmosphere introduced traps, which
correlation function over lengths which are large comparedjave rise to dispersive transport. The mobility was found to
to the nearest-neighbor hopping distance which causes thghey the Poole—Frenkel law. By comparing the PF slope
JE field dependenc# local fluctuations in the dipole den- with that predicted by the correlated disorder model, we de-
sity due to molecular orientation and packing have little ef-termined an effective dipole moment for Algand the cor-
fect on the PF factor. To determine beta it is sufficient, thereresponding meridional to facial isomeric ratio.

fore, to substitute an effective lattice constant ] . .
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