JAIST Repository

https://dspace.jaist.ac.jp/

Title For mal Analysis of an Anopymous Fai:
Commerce Protocol
Kong, We i i ang; Ogat a, Kaguhiro; Xi i

Author(s) J .q g. g
Futatsugi , Koki chi
The Fourth International Conference

Citation and I nformation Technol ogy, 2004. CI
1107

Issue Date 2004-09

Type Conference Paper

Text version publisher

URL http:// hdl handle.net/ 10119/ 4657
Copyright (c)2004 | EEE. Reprinted f
Il nternational Conference pn Comput el
|l nformation Technol ogy, 2p04. CI T ' (
Sept. This material is popted here
permi ssion of the | EEE. Spch per mi s:
| EEE does not in any way mply | EEE
of any of JAI ST's productp or servi (

Rights or personal use of this mpteri al i s
However, permission to reprint/repul
materi al for advertising pr promot i
or for creating new collefptive wor k:
or redistribution must be|] obtained f
by writing to pubs-permispions @i eece.
choosing to view this docpupment, you
provisions of the copyright | aws pr

Description

AIST

JAPAN
ADVANCED

INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

0-7695-2216-5/04 $20.00 © 2004 IEEE

Formal Analysis of an Anonymous Fair Exchange E-Commerce Protocol

Weigiang Kong', Kazuhiro Ogata'?, Jianwen Xiang', Kokichi Futatsugi'
! Japan Advanced Institute of Science and Technology(JAIST)
weigiang, jxiang, kokichi@jaist.ac.jp
’NEC Software Hokuriku, Ltd.
ogatak@acm.org

Abstract

Fair exchange and anonymity are important
requirements of e-commerce protocols. We have
formally analyzed an e-commerce protocol, which is
claimed to satisfy the two requirements. The protocol,
together with the intruder, has been modeled as an
OTS, a kind of transition system. Then the OTS has
been written in CafeOBJ, an algebraic specification
language. Although most part of the two requirements
can be expressed as safety properties, liveness
properties are needed to fully express them. We have
expressed the safety part of the two requirements in
CafeOBJ and partly verified that the OTS satisfies the
safety part by writing proof scores in CafeOBJ.

1. Introduction

Fair exchange and anonymity are important
requirements of e-commerce protocols. Fair exchange
ensures that either each of a customer and a merchant
involved in an e-commerce transaction obtains the
other’s item (either goods or money), or neither of
them does; Customer’s anonymity ensures that the real
identity of any customer is not revealed during an e-
commerce transaction.

Several e-commerce protocols have been proposed
[1, 2], which are claimed to satisfy fair exchange and/or
customer’s anonymity. Among them is an anonymous
fair exchange e-commerce protocol[1]. The designers
analyze this protocol in an informal way without
considering any intruders and conclude that the
protocol satisfies both requirements. Informal analysis
is not enough especially for security protocols among
e-commerce protocols, which has been demonstrated
by a number of researches[3, 7]. That is why we have
formally analyzed the protocol with the OTS/CafeOBJ

1100

method[8, 9] to show that it does satisfy both
requirements.

The anonymous fair exchange e-commerce protocol,
together with the most general intruder a la Dolev and
Yao[4], has been modeled as an OTS[9]
(Observational Transition System), a kind of transition
system. The OTS has then been written in CafeOBJ[5,
6], an algebraic specification language. Although most
part of fair exchange and customer’s anonymity can be
expressed as safety properties, liveness properties are
needed to fully express them. We have expressed the
safety part of the two requirements in CafeOBJ and
partly verified that the OTS satisfies the safety part by
writing proofs or proof scores in CafeOBJ.

In this paper, we describe the case study, especially
focusing on how to model the protocol, together with
the intruder, as an OTS; and how to write the OTS in
CafeOBJ; and how to express the safety part of the two
requirements in CafeOBJ. We do not describe how to
write proof scores in CafeOBJ in detail (refer to [9] for
the details).

The rest of the paper is organized as follows.
Section 2 outlines the OTS/CafeOBJ method. Section 3
describes an abstract version of the protocol. Section 4
describes the formal model of the protocol. Section 5
describes how to express the safety part of the two
requirements and mentions their verification. Section 6
concludes the paper.

2. The OTS/CafeOBJ Method

CafeOBJ can be used to specify abstract machines
as well as abstract data types. A visible sort denotes an
abstract data type, while a hidden sort the state space of
an abstract machine. There are two kinds of operations
to hidden sorts: action and observation operations. An
action operation can change the state of an abstract
machine. Only observation operations can be used to
observe the inside of an abstract machine. An action

ex{(goods), Sydcc(ex(goods))), erfK”), Sudcc(er(K’)))

: Sylce(PO)),ex(goods), Sydcc(ex(goods))), exs(Maccet), Sydcc(ens(Macct)))

Pl M = TR

pRiaTREE G : gx{goods), Srp(cc(ex(goods)))
ml. C — M : PO, S(cc(PO)), eadCipub)
m2. M — €

ma3. ¢ . — €8 £ca(SAMTI))

m CB — C : edSs(P))

ms. G =M e (SHP))

mé. M — MB : gys(Sp(P))

m7. MB —» M : Sys(ack)

mg. M — C : g(K), Sulcc(K))

Figure 1: The simplified protocol

operation is basically specified with equations by
describing how the value of each observation operation
changes. Declarations of observation and action
operations start with bop, and those of other operations
with op or ops. Declarations of equations start with eq,
and those of conditional ones with ceq. The CafeOBJ
system rewrites a given term by regarding equations as
left-to-right rewrite rules.

We assume that there exists a universal state space
called Y. We also suppose that each data type used has
been defined beforehand, including the equivalence
between two data values v;, v, denoted by v; = v,. A
system is modeled by observing only quantities that are
relevant to the system and how to change the quantities
by state transition from the outside of each state of Y.
An OTS S consists of (0,1, T):

0- A set of observers. Each o€ O is a function o :
Y— D, where D is a data type. Given an OTS S and
two states v, v, € Y, the equivalence between two
states, denoted by v| =s v,, with respect to S is defined
as Yo € O.o(v) = o(v2).

I: The set of initial states such that / c Y.

T: A set of conditional transition rules. Each t € T is
a function t: Y/=s — Y/=s on equivalence classes of Y
with respect to =s. Let t(v) be the representative
element of #([v]) for each ve Y and it is called the
successor state of v with respect to t. The condition ¢,
for a transition rule te T is called the effective
condition. The effective condition is supposed to
satisfy the following requirement: given a state ve Y, if
c¢is false in v, then v =s {(v) .

An OTS is described in CafeOBJ. Observers are
denoted by CafeOBJ observation operators, and
transition rules by CafeOBIJ action operators.

An execution of § is an infinite sequence vy,v,,... of
states satisfying:

e [nitiation: vy€ |.
Consecution: For each i€ {0,1,...}, vy =s H(v;) for
somet € T.

1101

3. The Protocol to be Analyzed

The protocol we have formal analyzed is called an
anonymous fair exchange e-commerce protocol[1].
There are a few properties possessed by this protocol,
while the fair exchange and anonymity are the primary
properties that we want to analyze, so we have
simplified this protocol, but remained the essential
parts of it.

The simplified protocol includes five parties:
customer, merchant, customer’s bank and merchant’
bank and a third party. Each principal (party) is given a
private/public key-pair; the private key is only
available to the owner, while merchant and third party
is known to every customer and the same of their
public keys. Nobody else is possible to know or guess
the relationship between a customer (merchant) and
his/her bank except themselves, and they know each
others’ public key. We also assume that no information
about the identity of the customer is gained by
communicating with the merchant. Although, in
practice, this may be a questionable assumption that
supporting this assumption in an implementation may
involve another party, an anonymizer, which the
customer trusts not to reveal identity information[2].
But in this paper, we only put emphasis on the
mechanism of this protocol and analyze the message
flows of it.

We show the simplified protocol in Figure 1. C, M,
CB, MB and TP stand for a customer, a merchant, the
customer’s bank, the merchant’s bank and third party
respectively. p1, p2 and m1 to m8 are tags of messages
involved in this protocol, where pl and p2 are
considered as preparation phase.

Cryptographic primitives used in the protocol are as
follows:
cc(.): Cryptographic checksum, which ensures the
correctness of inside information.

g,(.): Encryption with principal P’s (one-time)
public key. An exception is for the encrypted

goods, where P equals the key K or K’ used to
encrypt the goods customer purchasing.

e S,(): Digital signature computed with principal
P’s (one-time) private key.

Quantities appearing in the protocol are as follows:

e PO: Purchase order, which contains name of the
goods C is purchasing, the price C is paying, the
pseudo identities of C and name of M.

e Cipub: The one-time public key C created for
current purchasing.

e goods: The goods C is purchasing.

e Macct: Merchant M’s bank account in MB.

MTI: Money transfer instruction, which contains
the amount of money that is being transferred, C’s
bank account in CB that is to be debited and M’s
encrypted bank account that is to be credited
eyvs(Macct).

e P: The payment token, which contains the amount
of money that is being credited and M’s encrypted
account that will be credited &yz(Macct).

e ack: The acknowledgement MB sent to M after
crediting the appropriate account.

e K and K’: the keys used to both encrypt and
decrypt goods. K has a mathematical relation with
K’. By the theory of cross-validation[1], customer
can verify that the product he is about to receive is
the one he will be paying for.

The protocol description is as follows:

pl: M sends TP the goods encrypted with K’ and the

key K’ encrypted with TP’s public key, and the signed

cryptographic checksums of encrypted goods and
encrypted Key.

p2: On receipt of P1, TP sends encrypted goods to

customer C, who wants to buy this goods, and the

signed cryptographic checksum of encrypted goods.

ml: C initiates the transaction by sending M the

purchase order, signed cryptographic checksum of

purchase order using C’s one-time private key and C’

one-time public key used in this transaction, encrypted

with M’s public key.

m2: On receipt of m1, M checks the correctness of PO

and sends C the goods encrypted with K and M’s bank

account encrypted with MB’s public key and signed
cryptographic checksums of PO, encrypted goods and
encrypted bank account using M’s private key.

m3: On receipt of m2, C checks the correctness of PO

and the correctness of encrypted goods (by comparing

the two encrypted goods). Then C sends CB the signed

MTI, encrypted with CB’s public key.

m4: On receipt of m3, CB debits appropriate money

from C’s bank account and creates equivalent payment

token. Then CB sends C the signed P, encrypted with

C’s public key. Here CB signs P using private key Bprv,
which is able to be verified by all banks without
knowing which bank has signed it. This idea is similar
to using a group signature scheme[1].

m5: On receipt of m4, C sends M the signed P,
encrypted with M’s public key.

m6: On receipt of m5, M sends MB the signed P,
encrypted by MB’s public key.

m7: On receipt of m6, MB gets M’s bank account and
credits the payment token into M’s bank account. Then
MB sends an acknowledgement to M.

m8: On receipt of m7, M sends C the key K, encrypted
by C’s one time public key, which can be used to
decrypt the encrypted goods, and the signed
cryptographic checksum of K using M’s private key.

4. Modeling the Protocol

4.1. Assumptions

We suppose that there exists one and only one
legitimate third party and there exists one and only one
legitimate bank for each customer and each merchant
respectively. We also suppose that there exist multiple
malicious (untrustworthy) principals that act as
customers, merchants, banks and third party. The
combination and cooperation of malicious principals is
modeled as the most general intruder a la Dolev and
Yao[4]. The intruder gleans as much information as he
can, fakes messages based on the gleaned information
and sends them to possible principals so as to attack the
protocol. Since we suppose that the cryptosystem used
is perfect, the intruder’s action is limited. What the
intruder can do are as follows:

e Eavesdrop any message flowing in the network.

o Glean any quantity from the message; however the
intruder can decrypt a cipher text only if he/she
knows the key to decrypt.

e Fake and send messages based on the gleaned
information; however the intruder can sign
something only if he/she knows the key to sign,
and cannot predict unknown values such as Cacct.

4.2. Formalization of Messages

Before formalizing messages, we formalize data
types that constitute messages by means of initial
algebra. The following visible sorts and the
corresponding data constructors for those data types
are parts of the whole 43 data types we formalized:

Customer, Merchant, CBank, MBank and Tparty
denote customers, merchants, customers’ banks,

1102

merchants’ banks and third party. Constants ic, im, icb,
imb and itp denote the intruder acting as a customer, a
merchant, a customer’s bank, a merchant’s bank and
third party.

Random denotes the unguessable random numbers.
Cfname denotes the fake name of customer. Given a
customer ¢, a merchant m and a random number 7, the
fake name customer ¢ used to by goods from merchant
m is denoted as cfn(c,m,r), where r makes the fake
name globally unique.

Caccount and Maccount denote customer’s bank
account in CBank and merchant’s bank account in
MBank, respectively. Given a customer ¢ and his fake
name cfn used in current transaction, ¢’s bank account
is denoted as ca(c,cfn). Here why we defined
customer’s fake name in the bank account is because
that by doing this, we can relate customer’s fake name
with his bank account information, which is needed for
us to verify the property we want to analyze. Given a
merchant m, his bank account is denoted as ma(m).
Price denotes the price of the goods.

Po denotes the purchase order. Give a customer c’s
fake name cfn, the name of the goods g, the price of the
goods pri and merchant m, po(g.pri,cfn,m) denotes the
purchase order a customer ¢ sends to the merchant m
using ¢’s fake name cfn.

Key denotes the keys created by the merchant, which
are used to encrypt the goods sent to the third party and
customer. For example, given a fake name of customer
¢fn, a merchant m and a random number r, k(cfn,m,r)
denotes the key created by merchant m for c¢fnn, and r
make the key globally unique.

Encgoods denotes the encrypted goods. Given a goods
g and key k, eg(g,k) denotes the goods encrypted by k.
Ack denotes the acknowledgement.

Sigi (i =pl, p2, p3, 1, 2, 3, 4, 5, 6, 7, 8) denotes
digital signature Sigi(i = p1, p2, p3,1,2,3,4,5,6, 7,
8). Given a cryptographic checksum of encrypted
goods, which is cc(ex{goods)) and the private key of
merchant m, which is mprv, the corresponding Sigp! is
denoted as sigpl(cc(eg(goods)),mprv). The other ten
digital signatures are defined likewise.

Cipheri(i = pl, p2, 1, 2, 3, 4, 5, 6, 7) denotes Cipher
texti(i = pl, p2, 1, 2, 3, 4, 5, 6, 7). Given a goods
goods and the key k’, the corresponding cipherpl is
denoted as encpl(goods,k’). The other eight cipher
texts are defined likewise.

Mti denotes money transfer instruction. Given a price
of goods pri, a customer’s bank account cacct and
cipher4 enc4, mti(pri,cacct,enc4) denotes the money
transfer instruction created by customer.

Ptoken denotes the payment token. Given a price of
goods pri and cipher4 enc4, ptoken(pri,enc4) denotes
the payment token created by customer’s bank.

1103

For each data constructor, such as cipherpl,
projection operators, such as content and key that
return arguments’ values, are also defined. For
example, content(encpl(goods,k’)) = goods and
key(encpl(goods,k")) =k’

After formalization of data types, we begin to
formalize messages. According to the protocol, we
have ten operators (pl, p2 and m1 to m8) to denote or
construct the ten messages in the protocol, which can
be divided into two categories. The result is shown
respectively in Figure 2 and Figure 3.

Message is the visible sort denoting messages. For
each data constructor, projection operators that return
the corresponding arguments are also defined. Such as
for the data constructor ml, we define projection
operators like creatorml, senderml, receiverml,
poml, slml and clml, which return the first
argument, the second argument, the third argument, po,
sigl and cipherl in message 1, respectively. Moreover
predicates pi?(i = 1, 2) and mj2(j = 1, 2, 3, 4, 5, 6, 7,
8) are also defined, which check whether a given
message is a i message, where 7 = 1, 2 or a j message,
wherej=1,2,3,4,5,6,7, 8.

In the first category of messages, which describe the
messages among the customer, merchant and third
party, the first, second and third arguments of each
constructor denote the actual creator (sender), the
seeming sender and the receiver of the corresponding
message. The first argument is meta-information that is
only available to the outside observer of OTS and the
principal that has sent the corresponding message, and
this argument cannot be forged by the intruder, while
the remaining arguments may be forged by the intruder.
Therefore suppose that there exists a message in the
network. It is true that the principal denoted by the first
argument has sent the message; if the first argument is
the intruder and the second one is not, then this
message is a fake message created by the intruder.

In the second category of messages, which describe
the messages between customer (merchant) and the
customer’s (merchant’s) bank, the first and second
argument denotes the actual creator (sender) and
receiver of corresponding message, respectively.
Because, as we have supposed before, nobody else
(such as the intruder) is possible to know or guess the
relationship between a customer (merchant) and his/her
bank. So the only possibility that an intruder can fake
this kind of messages, for example message m3, is a
customer acting as an intruder fakes message m3 and
sends the fake message to his own bank. Therefore, the
value of the first argument in the second category of
messages must be equal to the actual sender of
corresponding messages. Other parts of messages in
category two are defined similarly to the messages in

op pl :Merchant Merchant Tparty Cipherpl Sigpl Cipherp2 Sigp2 -> Message
op p2 : Tparty Tparty Cfname Cipherpl Sigp3 -> Message
op ml : Customer Cfname Merchant Po Sig1 Cipherl -> Message
op m2 : Merchant Merchant Cfname ~ Sig2 Encgoods Sig3 Cipher2 Sigd -> Message
op m5 : Customer Cfname Merchant Cipher5 -> Message
op m8 : Merchant Merchant Cfname Cipher7 Sig8 -> Message

Figure 2: Data constructors denoting the six messages in the first category

op m3 : Customer CBank Cipher3
op m4: CBank Customer Cipher4
op m6 : Merchant MBank Cipher6
op m7 : MBank Merchant Sig7

-> Message
-> Message
-> Message
-> Message

Figure 3: Data constructors denoting the four messages in the second category

the first category, there are also projection operators
that can return corresponding arguments.

4.3. Formalization of the Network

The network is modeled as a bag of messages,
which is used as the storage that the intruder can use by
means of gleaning quantities from the network and
faking messages based on these gleaned quantities. The
network is also used as each principal’s private
memory that reminds the principal to send messages, of
which first arguments are the principal. The emptiness
of the network means that no message has been sent.

The intruder tries to glean 39 kinds of quantities
from the network as much as possible, which include
keys that are used to encrypt goods and other
information, customer’s bank account, money transfer
instruction, encrypted goods, payment token, purchase
order, acknowledgement, cryptographic checksums of
corresponding information, digital signatures ranging
from sigpl to sig8 and cipher texts ranging from
cipherp1 to cipher7, etc.

The collections of above quantities gleaned by the
intruder from the network are denoted by CafeOBJ
operators, parts of which are listed as follows:

op ccipub : Network -> ColCipub

op ckey : Network -> ColKey

op ccacct : Network -> ColCacct

op cmti : Network -> ColMti

op ceg : Network -> ColEncgoods

op cack : Network -> ColAck

op csigpi : Network -> ColSigpi (i=1,2,3)
op csigi : Network -> ColSigi (i=1,...,8)
op cenci : Network -> ColEncpi (i = 1, 2)

op cencpi : Network -> ColEnci (i=1,...,7)

1104

Network is the visible sort denoting networks. ColX
is the visible sort denoting collections of quantities
denoted by visible sort X, in which X denotes the
quantities introduced above. For example, given a
snapshot nw denotes the network, ccipub(nw) and
ckey(nw) denote the collection of Cipub and Keys
gleaned by the intruder from nw.

Those operators are defined with equations. We
give an example of ccipub in Figure 4.

In Figure 4, constant void denotes the empty bag,
which means no message in the network. Operator
\in_ is the membership predicate of collections. The
comma in “MSG,NW?” is the data constructor of bags,
and MSG,NW denotes the network obtained by adding
message MSG to network NW. The first equation says
that initially the only CIPUB that is available to the
intruder is the CIPUB created by intruder himself.
Since CIPUB is only transferred in message ml, so if
there exists message ml in the network, then if the
Cipher] of message m1 is encrypted with the intruder’s
public key and the content of Cipherl is equal to
CIPUB, then CIPUB is available to the intruder, which
is denoted by the second conditional equation.
Otherwise, if these conditions are not satisfied, then the
intruder cannot get CIPUB from current message and
will check network recursively, which is denoted by the
last equation.

Equations defining the remaining data constructors
are written in a similar way.

4.4. Formalization of Trustable Principals

Before modeling the behavior of trustable principals,
we describe the values observable from the outside of
the system. We suppose that the set of used random
numbers and the network are observable. The
observers are denoted by CafeOBJ observation

eq CIPUB \in ccipub(void) = (cocfn(cfnoci(CIPUB)) = ic) .
ceq CIPUB \in ccipub(MSG,NW) = true
if m1?2(MSG) and key(c1lm1(MSG)) = im and content(cIm1(MSG)) = CIPUB .
ceq CIPUB \in ccipub(MSG,NW) = CIPUB \in ccipub(NW)
if not(m1?2(MSG) and key(c1m1(MSG)) = im and content(clm1(MSG)) = CIPUB).

Figure 4: Equations defining ccipub

bop sdpl : System Merchant Tparty Encgoods Key -> System
bop sdp2 : System Customer Tparty Encgoods Random Message -> System
bop sdm1 : System Customer Merchant Price Random Message -> System
bop sdm2 : System Merchant Random MBank Message -> System
bop sdm3 : System Customer CBank = Random Merchant Message Message -> System
bop sdm4 : System CBank MBank Message -> System
bop sdm5 : System Customer Merchant Random Message Message Message Message -> System
bop sdmé6 : System Merchant MBank Message Message Message -> System
bop sdm7 : System MBank Ack Message -> System
bop sdm8 : System Merchant Message Message Message Message Message -> System

Figure 5: Action operators denoting the behavior of trustable principals

op c-sdml : System Customer Merchant Price Random Message -> Bool

eq c-sdm1(S,C,M,PRIL,R,MSG) = (MSG \in nw(S) and p2?2(MSG) and cocfn(receiverp2(MSG)) = C
and cccepl(content(sep3op2(MSG))) = eplop2(MSG)
and tpotpprv(key(sep3op2(MSG))) = senderp2(MSG)) .

ceq ur(sdm1(S,C,M,PRIL. R, MSG)) = ur(S) .
ceq nw(sdm1(S,C,M,PRIL,LR,MSG))

ml(C,cfn(C,M,R),M, po(g(M,cfn(C,M,R),R),PRI,cfn(C,M,R),M),

sigl(ccpo(po(g(M,cfn(C,M,R),R),PRI,cfn(C,M,R),M)),ciprv(cfn(C,M,R),M,R)),
enc l(cipub(cfn(C,M,R),M,R),M)) , nw(S)

if c-sdm1(S,C,M,PRI,R, MSG) .
ceq sdm1(S,C,M,PRLR,MSG)

=S ifnot c-sdm1(S,C,M,PRI,R, MSG) .

Figure 6: Equations defining sdm1

operators ur and nw, respectively, which are declared
as follows:

bop ur : System -> URand

bop nw : System -> Network
where URand is the visible sort denoting sets of
random numbers. The set of used random numbers is
used to generate really fresh random numbers.

The behavior of trustable principals is sending ten
kinds of messages according to the protocol, which is
denoted by ten CafeOBJ action operators. The action
operators are shown in Figure 5.

For each action operators, let c-sdpi (i=1, 2) and c-
sdmy (j=1,...,8) be the operators denoting the condition
on which sdp/ and sdmj can be effectively executed.
Given s, ¢, m, pri, r and msg denote a state of the
system, a customer, a merchant, the price of goods, a
random number and a message, respectively. Let’s see
sdml for example in Figure 6. c-sdml(s,c,m,pri,r,msg)
denotes the condition that customer c¢ has received
message p2 and the content of message p2 is correct.

1105

If the condition is satisfied, then action sdml will add
message ml into the network. Otherwise, this action
does not change the state of the system.

The remaining action operators are defined in a
similar way.

4.5. Formalization of the Intruder

We have defined what information the intruder can
glean from the network, then we describe what
messages the intruder fakes based on the gleaned
information. We suppose that the intruder can fake any
message if the message can be made from the quantities
gleaned by the intruder. However we do not consider
meaningless messages faked by intruder, which will not
attack the protocol.

The intruder’s faking messages are denoted by
CafeOBJ action operators, which are divided into ten
classes, each of which corresponds to faking each type
of message. In this paper, we give an example that

bop fkm11 : System Customer Merchant Random Po Sigl Cipherl
bop fkm12 : System Merchant Customer Po Random Random
bop fkm13 : System Customer Merchant Random Price Random

-> System
-> System
-> System

Figure 7: Action operators denoting the intruder’s faking message ml

op c-fkm12 : System Merchant Customer Po Random Random -> Bool

eq c-fkm12(S,M,C,PO,R1,R)

= not(R1 \in ur(S)) and PO \in cpo(nw(S)) and cfn(C,M,R) \in ccfn(nw(S)) .
ceq ur(fkm12(S,M,C,PO,R1,R)) = R1 ur(S) if c-fkm12(S,M,C,PO,R1,R) .

ceq nw(fkm12(S,M,C,PO,R1,R))

= mI(ic,cfn(C,M,R),M,PO, sigl(ccpo(PO), ciprv(cfn(ic,M,R1),M,R1)),
encl(cipub(cfn(ic,M,R1),M,R),M)) , nw(S)

if c-fkm12(S,M,C,PO,R1,R) .
ceq fkm12(S,M,C,PO,R1,R) =8

if not c-fkm12(S,M,C,PO,R1,R) .

Figure 8: Equations defining fkm12

INV1.1 For any reachable state s, any merchant m,m1,m2, any customer c,cl, any third party #p1, any
random number r, some sigp3, sig2, sig3,sig4, sig7, sig8, encpl,enc2, encS, enc6, encT and any eg,
not(m= imand ¢ = ic) and p2(1p1,tp,cfn(c,m,r),encp1,sigp3) \in nw(s) and
m2(ml,m,cfn(c,m,r),sig2,eg,sig3,enc2,sig4) \in nw(s) and m8(m2,m,cfn(c,m,r),enc7,sig8) \in nw(s)

implies

m5(c1,cfn(c,m,r),m,enc5) \in nw(s) and mé6(m,mb(m),enc6) \in nw(s) and

m7(mb(m),m,sig7) \in nw(s)

INV1.2 For any reachable state s, any merchant m,m1, any customer ¢,cl, any third party #p1, any random
number r, some sigp3, sig2, sig3,sig4, sig7, encpl, enc2, enc5, encb and any eg,
not(m= im and ¢ = ic) and m5(c1,cfn(c,m,r),m,enc5) \in nw(s) and
m6(m,mb(m),enc6) \in nw(s) and m7(mb(m),m,sig7) \in nw(s)

implies

p2(tpl,tp,cfn(c,m,r),encpl,sigp3) \in nw(s) and m2(ml,m,cfn(c,m

,1),sig2,eg,sig3,enc2 sig4) \in nw(s)

INV2 For any reachable state s, any merchant m, any customer c, any random number 7,

ca(c,cfn(e,m,r)) \in cacct(nw(s)) implies (c = ic)

Figure 9: Formal definitions of properties

describes the three action operators for faking message
m1, which are shown in Figure 7. The action operators
are defined with equations, and the equations defining
fkm12 are shown in Figure 8. The condition of fkm12
is denoted as c-fkm12, which demands that the random
number used by intruder is never used before, purchase
order po and customer’s fake name cfn are gleaned by
the intruder. If c-fkm12 is satisfied, then the action
fkm12 will add the random number intruder used into
the set of random number and add a faking m1 message
into the network. Otherwise, this action will not change
the state of the system. The meaning of this faking
message is that: a customer ic, who is acting as an
intruder, sends to merchant m his own (the intruder ic’)
one-time public key and signed cryptographic
checksum of the purchase order using intruder ic’s one-

1106

time private key, while this message seems to be sent
from another customer ¢’s fake name.

The remaining action operators are defined with
equations in a similar way.

5. Verification

The main properties focused on in this paper are
safety properties (precisely invariants). Proofs of
invariants often need induction, especially induction on
the number of applied transition rules (or action
operators).

Let ¢ be a customer who performs a transaction
using the protocol with a merchant m, and we suppose
that ¢ and m are trustable. The informal descriptions of
fair exchange property are as follows:

FX1. If ¢ receives the goods ¢ has ordered, then m
has already been paid or will be eventually paid for
the goods.
FX2. If m is paid for the goods ¢ has ordered, then
¢ has already received or will eventually receive
the goods.

The informal description of customer’s anonymity is

as follows:

e The bank account of a customer, who uses a fake
name to purchase goods from a merchant, is never
leaked.

The formal definitions of the safety part of the first
two properties and the formal definition of the last
property are shown in Figure 9.

Property INV1.1 in Figure 9 claims that if ¢ receives
the goods ¢ has ordered, then m has already been paid.
That is to say, INV1.1 can imply FX1. In INV1.1, #pl
may be different from trustable third party #p, which
implies that p1 might be an intruder acting as a third
party. The meanings of m1, m2 and c1 are the same as
tp1(so do the same constants in INV1.2)

Property INV1.2 in Figure 9 claims that if m is paid
for the goods ¢ has ordered, then ¢ has already received
the encrypted goods. To deduce FX2, we also need to
prove another liveness property that claims if m is paid
for the goods ¢ has ordered, then ¢ will eventually
receive the key that can decrypt the encrypted goods.

Property INV2 in Figure 9 claims that any bank
account gleaned by the intruder is the intruder’s own
bank account. In other words, the bank account of a
trustable customer ¢ who uses the fake name cfn(c,m,r)
to purchase goods from a merchant m will not be
gleaned by the intruder. In this paper, we suppose that
from the bank account of a customer, others can
recognize the identity of the customer. So the second
property proves the customer’s anonymity, although it
can also be considered as safety property.

We have formally verified that INV2 holds for the
protocol and partly verified that INV1.1 and INV1.2
hold for the protocol. The verification has been done
by writing proof scores showing that the protocol
satisfies these requirements in CafeOBJ and executing
the proof scores with the CafeOBJ system. In this
paper, we do not describe the detail that how to verify
properties with rewriting as described in sectionl.

6. Conclusions

We have described a case study that we have
formally analyzed an anonymous fair exchange e-
commerce protocol that is claimed to satisfy fair
exchange and customer’s anonymity. Concretely, the
protocol has been modeled as an OTS, the OTS has

1107

been written in CafeOBJ, and it has been partly verified
that the OTS satisfies the safety part of the two
requirements.

Our future work includes the completion of the
verification of INV1.1 and INV1.2 in Figure 9. We
should verify that the OTS has the liveness part of FX1
and FX2 as well. With respect to customer’s anonymity,
we assume that the real identity of a customer is
equivalent to his/her bank account. We should also
relax this assumption. There exists another important
property with respect to customer’s anonymity: no
single principles have enough information to link a
customer to a merchant. It seems like that the current
way of modeling security protocols may have to be
modified so as to deal with this property.

Acknowledgement

This research is conducted as a program for the
“Fostering Talent in Emergent Research Fields” in
Special Coordination Funds for Promoting Science and
Technology by Ministry of Education, Culture, Sports,
Science and Technology.

References

[1] Indrakshi Ray and Indrajit Ray, “An anonymous fair
exchange e-commerce protocol”, Proceedings of the
First International Workshop on Internet Computing
and E-Commerce, San Francisco, CA, April 2001.

Jean Camp and J.D. Tygar, “Anonymous atomic
transactions”, 2nd Annual USENIX Workshop on
Electronic Commerce Proceedings, Oakland, Nov.
1996, pages 123-134.

G. Lowe, “An attack on the Needham-Schroeder
public-key authentication protocol”, Information
Processing Letters, 1995, 56:131-133.

D. Dolev and A. C. Yao, “On the security of public key
protocols”, IEEE Transactions on Information Theory,
1T-29:198-208, 1983

CafeOBJ. CafeOBJ web page.

http://www.1dl jaist.ac.jp/cafeobj/, 2001

R. Diaconescu and K. Futatsugi, “CafeOBJ Report”,
AMAST Series in computing, 6. World Scientific,
Singapore, 1998

K. Ogata and K. Futatsugi, “Flaw and modification of
the /KP electronic payment protocols”, Information
Processing Letters, 2003, 86:57-62.

K. Ogata and K. Futatsugi, “Formal analysis of the iKP
electronic payment protocols”, In [International
symposium on Software Security, volume2609 of
LNCS, pages 441-460. Springer, 2003

K. Ogata and K. Futatsugi, “Proof scores in the
OTS/CafeOBJ method”, In 6th [FIP WG6.1
Iternational Conference on Formal Methods for Open
Object-Based Distributed Systmes, LNCS 2884, pages
170-184, 2003

(2]

K)

(4]

(5]
(6]

(71

(8]

(%]

	footer1:

