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High-Performance Training of Conditional Random Fields for
Large-Scale Applications of Labeling Sequence Data

Xuan-Hieu PHAN™*?, Le-Minh NGUYEN', Nonmembers, Yasushi INOGUCHI',

SUMMARY  Conditional random fields (CRFs) have been successfully
applied to various applications of predicting and labeling structured data,
such as natural language tagging & parsing, image segmentation & ob-
ject recognition, and protein secondary structure prediction. The key ad-
vantages of CRFs are the ability to encode a variety of overlapping, non-
independent features from empirical data as well as the capability of reach-
ing the global normalization and optimization. However, estimating pa-
rameters for CRFs is very time-consuming due to an intensive forward-
backward computation needed to estimate the likelihood function and its
gradient during training. This paper presents a high-performance training
of CRFs on massively parallel processing systems that allows us to handle
huge datasets with hundreds of thousand data sequences and millions of
features. We performed the experiments on an important natural language
processing task (text chunking) on large-scale corpora and achieved signif-
icant results in terms of both the reduction of computational time and the
improvement of prediction accuracy.

key words: parallel computing, probabilistic graphical models, condi-
tional random fields, structured prediction, text processing

1. Introduction

CREF, a conditionally trained Markov random field model,
together with its variants have been successfully applied to
various applications of predicting and labeling structured
data, such as information extraction[1],[2], natural lan-
guage tagging & parsing [3], [4], pattern recognition & com-
puter vision [5]-[8], and protein secondary structure predic-
tion [9], [10]. The key advantages of CRFs are the ability to
encode a variety of overlapping, non-independent features
from empirical data as well as the capability of reaching the
global normalization and optimization.

However, training CRFs, i.e., estimating parameters for
CRF models, is very expensive due to a heavy forward-
backward computation needed to estimate the likelihood
function and its gradient during the training process. The
computational time of CRFs is even larger when they are
trained on large-scale datasets or using higher-order Markov
dependencies among states. Thus, most previous work
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either evaluated CRFs on moderate datasets or used the
first-order Markov CRFs (i.e., the simplest configuration in
which the current state only depends on one previous state).
Obviously, this difficulty prevents us to explore the limit of
the prediction power of high-order Markov CRFs as well as
to deal with large-scale structured prediction problems.

In this paper, we present a high-performance training
of CRFs on massively parallel processing systems that al-
lows to handle huge datasets with hundreds of thousand data
sequences and millions of features. Our major motivation
behind this work is threefold:

e Today, (semi-)structured data (e.g., text, image, video,
protein sequences) can be easily gathered from differ-
ent sources, such as online documents, sensors, cam-
eras, and biological experiments & medical tests. Thus,
the need for analyzing, e.g., segmentation and predic-
tion, those kinds of data is increasing rapidly. Build-
ing high-performance prediction models on distributed
processing systems is an appropriate strategy to deal
with such huge real-world datasets.

o CRF has been known as a powerful probabilistic graph-
ical model, and already applied successfully to many
learning tasks. However, there is no thoroughly empir-
ical study on this model on large datasets to confirm
its actual limit of learning capability. Our work also
aims at exploring this limit in the viewpoint of empiri-
cal evaluation.

e Also, we expect to examine the extent to which CRFs
with the global normalization and optimization could
do better than other classifiers when performing struc-
tured prediction on large-scale datasets. And from that
we want to determine whether or not the prediction ac-
curacy of CRFs should compensate its large computa-
tional cost.

The rest of the paper is organized as follows. Section 2
briefly presents the related work. Section 3 gives the back-
ground of CRFs. Section 4 presents the parallel training of
CRFs. Section 5 presents the empirical evaluation. And
some conclusions are given in Sect. 6.

2. Related Work

Most previous researches evaluated CRFs on moderate
datasets. One of the most typical and successful applications
of CREFs is text shallow parsing [4]. The authors used the
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second-order Markov CRFs and reported the state-of-the-
art accuracy for noun phrase chunking on the CoNLL2000
shared task. However, their training dataset is limited to
8,936 text sentences (about 220,000 words). They did
not reported results of noun phrase chunking on larger
datasets or results of all-phrase chunking because the train-
ing of second-order CRFs on large-scale datasets or tasks
with many class labels on a single computer is very time-
consuming. Quattoni et al. [6] used CRFs and reported the
results of object recognition from image on a small dataset
of 1000 4 KB-gray-scale images. Also, another work on
protein-fold prediction [10] reported the results on a dataset
of about 2,000 protein sequences. We, on the other hand,
aim at solving large-scale problems by training second-
order CRFs on much larger datasets which might contain up
to hundreds of thousand data sequences (i.e., about millions
of data tokens).

Cohn et al. [3] attempted to reduce the training time of
CRFs by casting the original multi-label learning problem
to two-label CRF models, training them independently, and
then combining them using error-correcting codes. This sig-
nificantly reduces computational time. However, training
binary CRFs independently will lose many important de-
pendencies among labels. For example, interactions among
verbs, adverbs, adjectives, nouns, etc. in part-of-speech tag-
ging are significant for inferring the most likely tag path.
Therefore, omitting this type of information means that the
binary CRF models would lose considerable accuracy.

Our work is also closely related to advanced optimiza-
tion methods because the training of CRFs, ultimately, can
be seen as an unconstrained convex optimization task. To
support high-performance optimization, TAO (Toolkit for
Advanced Optimization) [11] provides a convenient frame-
work that allows users to perform large-scale optimization
problems on massively parallel computers quite easily. In
principle, our system can be built upon TAO framework.
However, to perform many other operations other than op-
timization, we decided to develop our own system from
scratch to keep it portable and easy to use.

3. Conditional Random Fields

The task of predicting a label sequence to an observation se-
quence arises in many fields, including bioinformatics, com-
putational linguistics, and speech recognition. For example,
consider the natural language processing task of predicting
the part-of-speech (POS) tag sequence for an input text sen-
tence as follows:

e Input sentence: “Rolls-Royce Motor Cars Inc. said it expects
its U.S. sales to remain steady at about 1,200 cars in 1990 .”

e QOuput sentence and POS tags: “Rolls-Royce_ZNNP Mo-
tor NNP Cars_NNPS Inc. NNP said_ VBD it PRP ex-
pects_ VBZ its PRP$ U.S.NNP sales.NNS to_TO re-
main_.VB steady_JJ atIN about IN 1,200_-CD cars_NNS
in_IN 1990_CD ._.”

Here, “Rolls-Royce Motor Cars Inc. said ...” and “NNP NNP
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NNPS NNP VBD ...” can be seen as the input data obser-
vation sequence and the output label sequence, respectively.
The problem of labeling sequence data is to predict the most
likely label sequence of an input data observation sequence.
CRFs [12] was deliberately designed to deal with such kind
of problem.

Leto = (oy,...,or) be some input data observation se-
quence. Let S be a finite set of states, each associated with a
labell(e L ={li,...,1lp}). Lets=(sy,..., s7) be some state
sequence. CRFs are defined as the conditional probability of
a state sequence given an observation sequence as,

1 T
Palslo) = exp [Z F(s,o, r)), (1
t=1

where Z(0) = Yo exp (Zthl F(s’, 0, t)) is a normalization
factor summing over all label sequences. F(s, o, ) is the sum
of CRF features at time position ¢,

Fis,0,0) = D Afi(si-1,5) + ), 4;8(0,5) @)
i J

where f; and g; are edge and state features, respectively;
A; and A; are the feature weights associated with f; and f;.
Edge and state features are defined as binary functions as
follows,

fi(si, 80 = [sim =115, =1
(0, 5,) = [x;(0,)][s,=1]

where [s; = [] equals 1 if the label associated with state s, is
1, and 0 otherwise (the same for [s,_; = [']). x;(0,7) is a log-
ical context predicate that indicates whether the observation
sequence o (at time ) holds a particular property. [x;(0,1)]
is equal to 1 if x;(o, ) is true, and O otherwise. Intuitively,
an edge feature encodes a sequential dependency or causal
relationship between two consecutive states, e.g., “the label
of the previous word is JJ (adjective) and the label of the
current word is NN (noun)”. And, a state feature indicates
how a particular property of the data observation influences
the prediction of the label, e.g., “the current word ends with
-tion and its label is NN (noun)”.

3.1 Inference in Conditional Random Fields

Inference in CRFs is to find the most likely state sequence
s* given the input observation sequence o,

B

S

argmaxg py(slo)

T
argmaxg {exp [Z F(s, o0, t)]} 3)

t=1

In order to find s*, one can apply a dynamic pro-
gramming technique with a slightly modified version of
the original Viterbi algorithm for HMMs[13]. To avoid
an exponential-time search over all possible settings of s,
Viterbi stores the probability of the most likely path up
to time ¢ which accounts for the first # observations and
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ends in state s;. We denote this probability to be ¢,(s;)
(0 <t <T-1)and ¢y(s;) to be the probability of start-
ing in each state s;. The recursion is given by:

@i1(5) = max, {@(s))expF(s, 0,1 + 1)} @)

The recursion stops when r = T — 1 and the biggest
unnormalized probability is p; = argmax;[¢r(s;)]. At this
time, we can backtrack through the stored information to
find the most likely sequence s*.

3.2 Training Conditional Random Fields
CRFs are trained by setting the set of weights 6 =

{1, A2, ...} to maximize the 'log—likelihood, L, of a given
training data set D = {(0o"/, l(’))}yzl:

N
L = log(ps?10))

j=1

M=

Z F(l(j), o(j), f)— Z 10gZ(0(j)) (5)

t= Jj=1

T N
J 1 j

When the label sequences in the training dataset is
complete, the likelihood function in exponential models
such as CRFs is convex, thus searching the global optimum
is guaranteed. However, the optimum can not be found an-
alytically. Parameter estimation for CRFs requires an it-
erative procedure. It has been shown that quasi-Newton
methods, such as L-BFGS [14], are most efficient [4]. This
method can avoid the explicit estimation of the Hessian ma-
trix of the log-likelihood by building up an approximation
of it using successive evaluations of the gradient. L-BFGS
is a limited—memory quasi—-Newton procedure for uncon-
strained convex optimization that requires the value and
gradient vector of the function to be optimized. The log—
likelihood gradient component of A is

oL

g

CiP,09)= " py(slo?)Ci(s, o)
S

M= 1D

[gk(l(j), o(j)) —E,, Ci(s, 0(1’))] (6)
=1

~
Il

where C,(19,09) = Y7 4L 19) if 4y is associated with

-1
an edge feature f; and = 3| gi(0"?, lﬁj) ) if A is associated
with a state feature g;. Intuitively, it is the expectation (i.e.,
the count) of feature f; (or gx) with respect to the jth training
sequence of the empirical data D. And E,,Ci(s, 0) is the
expectation (i.e., the count) of feature f; (or gx) with respect
to the CRF model py.

The training process for CRFs requires to evaluate the
log-likelihood function L and gradient vector {%, %, )
at each training iteration. This is very time-consuming
because estimating the partition function Z(0”) and the
expected value E, Cy(s,0") needs an intensive forward-

backward computation. This computation manipulates on
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the transition matrix M, at every time position ¢ of each data
sequence. M, is defined as follows,

M,[[[l1=exp F(s, 0, 1)

=exp [Z/lifi(sz_l ,st)+z/1 8j(0,5,) @)
i j

To compute the partition function Z(0") and the ex-
pected value E,,, Cy(s, o), we need forward and backward
vector variables a; and 3, defined as follows,

_ a1 M, 0<t<T

[ MuBT, 1<t<T
B —{ 1 - 9
Z(oW) = ar17 (10)
T
. — « M)B;
E,, Ci(s, o)) = Z al(ZﬁzT))’B an

t=1

4. High-Performance Parallel Training of
Conditional Random Fields

4.1 The Need of Parallel Training of CRFs

In the sequential algorithm for training CRFs in Table 1,
step (1) is most time-consuming. This is because of the
heavy forward-backward computation on transition matri-
ces to estimate the log-likelihood function L and its gradi-
ent {%, %, ...}. The L-BFGS update, i.e., step (2), is very
fast even if the log-likelihood function is very high dimen-
sional, i.e., the CRF model contains up to millions of fea-
tures. Therefore, the computational complexity of the train-
ing algorithm is mainly estimated from step (1).

The time complexity for calculating the transition ma-
trix M, in (7) is O L*) where |£] is the number of class
labels and 7 is the average number of active features at a
time position in a data sequence. Thus, the time complexity
to the partition function Z(0"”) according to (8) and (10) is
O(#|LI*T), in which T is the length of the observation se-
quence o). And, the time complexity for computing the

Table 1  Training algorithm for CRFs.

Input:

- Training data: D = {(0"?, l"”)};":] i

- The number of training iterations: m

Output:

- Optimal feature weights: 6° = {17, 45,...}

Initial Step:

- Generate features with initial weights 6 = {1;, 2, ...}
Training (each training iteration):

. compute the log-likelihood function L and

oL
)

. perform L-BFGS optimization search to update
the new feature weights 6 = {1, A2, ...}
. If #iterations < m then goto step 1, stop otherwise

its gradient vector { %

[

w
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feature expectation E,, Ci(s, 0) is also O(ii| LI*T). As a re-
sult, the time complexity for evaluating the log-likelihood
function and its gradient vector is O(N#|L|*T), in which N
is the number of training data sequences and 7 is now re-
placed by T - the average length of training data sequences.
Because we train the CRF model m iterations, the final
computational complexity of the serial training algorithm is
O(mN#|L)*T). This computational complexity is for first-
order Markov CRFs. If we use the second-order Markov
CRFs in which the label of the current state depends on two
labels of two previous states, the complexity is now propor-
tional to |.LJ*, i.e., O(mN#| L*T).

Although the training complexity of CRFs is poly-
nomial with respect to all input parameters, the training
process on large-scale datasets is still prohibitively expen-
sive. In practical implementation, the computational time
for training CRFs is even larger than what we can esti-
mate from the theoretical complexity; this is because many
other operations need to be performed during training, such
as feature scanning, mapping between different data for-
mats, numerical scaling (to avoid numerical problems), and
smoothing. For example, training a first-order Markov CRF
model for POS tagging (|.L| = 45) on about 1 million words
(i.e., NT = 1,000, 000) from the Wall Street Journal corpus
(Penn TreeBank) took approximately 100 hours, i.e., more
than 4 days.

All in all, we point out at least four reasons as the main
motivations for speeding up the training of CRFs as follows:

e Today, there are more large-scale annotated datasets
in NLP and Bioinformatics. Further, unlike natural language
sentences, biological data sequences are much longer (i.e., a
DNA sequence is usually contain thousands of amino acids).
Therefore, Training powerful analyzing and prediction mod-
els like CRFs on these datasets requires large computational
burden and that why parallel implementations of them can
help.

e One of the main advantages of CRFs over genera-
tive models like HMMs is that we can incorporate millions
of features into CRF models. Those features are usually
generated from the training data automatically by applying
predefined templates. However, not all features are rele-
vant and useful; many of them are unuseful or redundant
that influence negatively on the prediction accuracy (e.g.,
causing the overfitting problem). Choosing most important
and useful features from a large set of candidates for the
model is a significant step in machine learning in general
and for CRFs in particular. This step is called “feature se-
lection/induction”[15],[16]. Feature selection can be per-
formed using different criteria in which most methods re-
quire the model to be re-trained again and over again. Of
course, training CRFs is much more time-consuming than
normal classification models and training CRFs again and
again requires a lot of time. In this sense, parallel version of
CRFs can help to accelerate the feature selection step sig-
nificantly.

e Another challenge is that in many new application
domains, the lack of labeled training data is very critical.
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Building large annotated datasets requires a lot of human
resources. Semi-supervised learning is a way to build ac-
curate prediction models using a small set of labeled data
as well as a large set of unlabeled data because unlabeled
data are widely available and easy to obtain. There are sev-
eral approaches in semi-supervised learning like self- and
co-training. In general, semi-supervised learning with CRFs
needs to train the models again and again and inference with
a huge amount of unlabeled data. Thus, a parallel version of
CRFs also helps to reduce computational time for this.

e Last but not least, building an accurate prediction
model needs a repeated refinement because the learning per-
formance of a model like CRF depends on different parame-
ter settings. This means that we have to train the model sev-
eral times using different values for input parameters and/or
under different experimental setups till it reaches a desired
output. In practice, the training process is repeated over and
over, and costs much computational time. Accelerating this
process using the parallel implementation can save time for
practitioners significantly.

4.2 The Parallel Training of CRFs

As we can see from (5) and (6), the log-likelihood function
and its gradient vector with respect to training dataset D
are computed by summing over all training data sequences.
This nature sum allows us to divide the training dataset into
different partitions and evaluate the log-likelihood function
and its gradient on each partition independently. As a result,
the parallelization of the training process is quite straight-
forward.

Note that all training algorithms (e.g., traditional EM
algorithm, Baum-Welch algorithm for HMMs, training al-
gorithm for CRFs, etc.) that follow the the MLE (Maximum
Likelihood Estimation) approach can be parallelized in this
way because the objective function to be optimized (i.e.,
the likelihood function) is summed over all training data se-
quences. The differences among them can be the choice of
optimization techniques or the difference in structure of the
models.

4.2.1 How the Parallel Algorithm Works

The parallel algorithm is shown in Table 2. The algorithm
follows the master-slave strategy. In this algorithm, the
training dataset D is randomly divided into P equal parti-
tions: Dy, ..., Dp. At the initialization step, each data par-
tition is loaded into the internal memory of its corresponding
process. Also, every process maintains the same vector of
feature weights 6 in its internal memory.

At the beginning of each training iteration, the vec-
tor of feature weights on each process will be updated by
communicating with the master process. Then, the local
log-likelihood L; and gradient vector { %, %, ...}; are eval-
uated in parallel on distributed processes; the master pro-
cess then gathers and sums those values to obtain the global

log-likelihood L and gradient vector {%, %, ...}; the new
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Table 2 Parallel algorithm for training CRFs.

Input:

- Training data: D = {(()(/),l(/))}';/:l

- The number of parallel proceséesz P;

- The number of training iterations: m

Output:

- Optimal feature weights: 6* = {/IT, /1;, Lo

Initial Step:

- Generate features with initial weights 6 = {1, A2, ...}
- Each process loads its own data partition D;

Parallel Training (each training iteration):

. The root process broadcasts 6 to all parallel processes

2. Each process P; computes the local log-likelihood
L; and local gradient vector l%, % ,...JionD;
. The root process gathers and sums all L; and
l%, %,...},‘ to obtain the global L and l%, %,...}
4. The root process performs L-BFGS optimization search to
update the new feature weights 6

. If #iterations < m then goto step 1, stop otherwise

W

W

setting of feature weights is updated on the master process
using L-BFGS optimization. The algorithm will check for
some terminating criteria to whether stop or perform the
next iteration. The output of the training process is the opti-
mal vector of feature weights * = {17, 43, .. .}.

4.2.2 Data Communication and Synchronization

In each training iteration, the master process has to commu-
nicate with each slave process twice: (1) broadcasting the
vector of feature weights and (2) gathering the local log-
likelihood and gradient vector. These operations are per-
formed using message passing mechanism. Let n be the
number of feature weights and weights are encoded with
“double” data type, the total amount of data needs to be
transferred between the master and each slave is 8(2n+1). If,
for example, n = 1, 500, 000, the amount of data is approx-
imately 23 Mb. This is very small in comparison with high-
speed links among computing nodes on massively parallel
processing systems. A barrier synchronization is needed
at each training iteration to wait for all processes complete
their estimation of local log-likelihood and gradient vector.

4.2.3 Data Partitioning and Load Balancing

Load balancing is important to parallel programs for perfor-
mance reasons. Because all tasks are subject to a barrier
synchronization point at each training iteration, the slowest
process will determine the overall performance. In order to
keep a good load balance among processes, i.e., to reduce
the total idle time of computing processes as much as pos-
sible, we attempt to divide data into partitions as equally as
possible. Let M = Z]]y:l [0“?] be the total number of data
observations in training dataset 9. Ideally, each data par-
tition P; consists of N; data sequences having exactly %
data observations. However, this ideal partitioning is not
always easy to find because the lengths of data sequences
are different. To simplify the partitioning step, we accept
an approximate solution as follows. Let ¢ be some integer
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Table 3  Partitioning algorithm for load-balancing.

Input:

- Training data: D = {(()m,l(j’)}';/:l

- The number of partitions (i.e., #of parallel processes): P
- Initial integers &, k

Output:

- D; (i = 1..P) as balanced as possible
Initialization:

01.D = {I;} where (I; = [0, j=1...N)
02. M =3 loj)l
03.D;=@(@{=1...P)
04.for(i=1...Pym; =0

05. while (true) {

06. for(i=1...P){

07.  if m; € [% -6, % +6]) then

08. skip

09. else

10 find the largest [y € D’ such that m; + I < % +6
11. m; =m; + I

12, O =D — (it} D; = D; U {0V, 1P))

13. )

14, if@lme[¥ -5 M4 451and D # @) or
15. (D' # @ and cannot find any [y € D){

16. 6=0+k
17. go to line 01
18. }

19.}

number, we attempt to find a partitioning in which the num-
ber of data observations in each data partition belongs to the
interval [% — 6, % + §]. To search for the first acceptable
solution, we follow the round-robin partitioning policy in
which longer data sequences are considered first. ¢ starts
from some small value and will be gradually increased until
the first solution is satisfied. Table 3 shows the partitioning
algorithm in details.

Let us take an example to show how the above al-
gorithm can, in general, achieve a better partitioning so-
lution than normal division. Let D = {(0“,1Y¥)} j=1..95
D =16,7,10,5,8,9, 3,7,8}, P = 4, and the initial value of
§=1,k=1.M=63and % = 1575, thus [% — 6, % + 6] =
[14.75, 16.75]. The above algorithm takes these as inputs
and produce the following partition:

Data partition # of observations

Dy ={(02,19), 0,1V} m; =10+6=16
Dy ={(09,19),0?,1?))  m=9+7=16
Dy ={(0,19),0®,1®)}  m3=8+7=15

Dy = (07,1, (09,19,

(07,17} my=8+5+3=16

We can see that there is a high balance among m; (16,
16, 15, 16). This is more balanced than the following parti-
tioning solution (13, 15, 17, 18) by normal division:

Data partition # of observations

Dy = {0, 1V), 0?,1?)}  m=6+7=13
Dy ={(00,19),0Y,1¥)}  my =10+5=15
D3 = ((0°,19),(09,19))  my=8+9=17

Dy = (07,17, (09,19,

(0,19} my=3+7+8=18




This is just a small example. In practice, natural lan-
guage sentences are longer and might vary from sentence
to sentence. A sentence can be 4, 5 or 40 in length. Bi-
ological sequences (DNA, protein chains) are even much
more longer (thousands of amino acids in length). There-
fore, achieving a balanced data partition should improve the
load-balancing of the system significantly.

5. Empirical Evaluation

We performed two important natural language processing
tasks, text noun phrase chunking and all-phrase chunking,
on large-scale datasets to demonstrate two main points: (1)
the large reduction in computational time of the parallel
training of CRFs on massively parallel computers in com-
parison with the serial training; (2) when being trained on
large-scale datasets, CRFs tends to achieve higher predic-
tion accuracy in comparison with the previous applied learn-
ing methods.

5.1 Experimental Environment

The experiments were carried out using our C/C++ imple-
mentation, PCRFs, of second-order Markov CRFs. It was
designed to deal with hundreds of thousand data sequences
and millions of features. It can be compiled and run on
any parallel system supporting message passing interface
(MPI). We used a Cray XT3 system (Linux OS, 180 AMD
Opteron 2.4 GHz processors, 8 GB RAM per each, high-
speed (7.6 GB/s) interconnection among processors) for the
experiments.

5.2 Text Chunking

Text chunking 7%, an intermediate step towards full pars-
ing of natural language, recognizes phrase types (e.g., noun
phrase, verb phrase, etc.) in input text sentences. Here is
a sample sentence with phrase marking: “[NP Rolls-Royce
Motor Cars Inc.] [VP said] [NP it] [VP expects] [NP its
U.S. sales] [VP to remain] [ADJP steady] [PP at] [NP about
1,200 cars] [PP in] [NP 1990].” We evaluate two main
tasks: noun phrase chunking (NP chunking for short) and
all-phrase chunking (chunking for short) with different data
sizes and parameter configurations.

5.3 Text Chunking Data and Evaluation Metric

We evaluated NP chunking and chunking on the two data
configurations as follows: (1) CoNLL2000-L: the training
dataset consists of 39,832 sentences of sections from 02 to
21 of the Wall Street Journal (WSJ) corpus (of Penn Tree-
bank ") and the testing set includes 1,921 sentences of sec-
tion 00 of WSIJ; and (2) 25-fold CV Test: 25-fold cross-
validation test on all 25 sections of WSJ. For each fold, we
took one section of WSJ as the testing set and all the others
as training set. For example, the testing set of the 2nd fold
includes 1,993 sentences from section 01 and the training
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set includes 47,215 sentences from all the other sections.

Label representation for phrases is either IOB2 or
IOE2. B indicates the beginning of a phrase, I is the in-
side of a phrase, E marks the end of a phrase, and O
is outside of all phrases. The label path in IOB2 of the
sample sentence is “B-NP I-NP I-NP [-NP B-VP B-NP B-VP
B-NP I-NP I-NP B-VP I-VP B-ADJP B-PP B-NP I-NP I-NP B-PP
B-NP O”.

Evaluation metrics are precision (pre. = ), recall
(rec. = %), and Fg_1 = 2 X (pre. X rec.)/(pre. + rec.); in
which a is the number of correctly recognized phrases (by
model), b is is the number of recognized phrases (by model),
and c is the the number of actual phrases (by humans). We
trained our CRF models using different initial values of fea-
ture weights (6) to examine how the starting point influences
the learning performance (note that the expression 8 = .01
means 6 = {.01,.01,...}).

5.4 Feature Selection for Text Chunking

To achieve high prediction accuracy on these tasks, we train
CRF model using the second-order Markov dependency.
This means that the label of the current state depends on
the labels of the two previous states. As a result, we have
four feature types as follows rather than only two types in
first-order Markov CRFs.

Silsiz1, 80) = [s21 =l/][5z=l]

gi0,5) = (o, 0llsi=l
Si(si2, 8021, 80) = [812=1 ][St—l/:l 1ls:=1]
8n(0, 51, 5¢) = [xp(0, D][s-1 =1 1[5, =1]

where f; and g; are the same as in first-order Markov CRFs;
and f; and g;, are the edge and state features that are only be
used in second-order CRFs.

Figure 1 shows a sample training data sequence for text
chunking. The top half is the label sequence and the bottom
half is the observation sequence including tokens (words or
punctuation marks) and their POS tags. Table 4 describes
the context predicate templates for text chunking. Here w
denotes a token; p denotes a POS tag. A predicate template

I I i
B-rnP BYP B-NMNFP NP NP BWP WP

f

PRP | WBZI PRP§ MNP NNS TO | VB
iopa Pl po Pl pz

it %expects its L3 sales  to %remain
Y W WD W wy |

sliding window {size = 5)

Fig.1  An example of a data sequence.

"The source code and document of PCRFs are available at
http://www.jaist.ac.jp/~hieuxuan/flexcrfs/flexcrfs.html
For more information about text chunking task, see the shared
task: http://www.cnts.ua.ac.be/conll2000/chunking
T Penn Treebank: http://www.cis.upenn.edu/~treebank
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Table 5 Results of NP chunking and chunking with different initial values (6) of feature weights on
the CoNLL2000-L. (training: sections 02-21, testing: section 00 of WSJ)

NP chunking Chunking

Init 10B2, #features: 1,351,627 10E2, #features: 1,350,514 10B2, #features: 1,471,004 I0E2, #features: 1,466,312
6 Pre. | Rec. | Fp-1 Pre. | Rec. | Fp- Pre. | Rec. | Fp- Pre. | Rec. | Fp-1
.00 96.54 | 96.37 96.45 96.49 | 96.37 96.43 96.09 | 96.04 96.06 96.10 | 96.10 96.10
.01 96.50 | 96.32 96.41 96.51 96.44 96.48 96.09 | 96.04 96.06 96.12 | 96.09 96.11
.02 96.63 | 96.31 96.47 96.59 | 96.36 96.47 96.11 96.10 96.10 96.19 | 96.09 96.14
.03 96.53 | 96.31 96.42 96.50 | 96.44 96.47 96.09 | 96.01 96.05 96.13 96.08 96.11
.04 96.67 | 96.35 96.51 96.57 | 96.33 96.45 96.07 | 95.98 96.03 96.16 | 96.04 96.10
.05 96.59 | 96.29 96.44 96.63 | 96.55 96.59 96.12 | 96.01 96.07 96.13 96.04 96.09
.06 96.54 | 96.40 96.47 96.72 | 96.43 96.58 96.10 | 96.00 96.05 96.20 | 97.17 96.18
.07 96.59 | 96.33 96.46 96.49 | 96.54 96.51 96.03 96.07 96.05 96.12 | 96.17 96.15

Voting: Pre = 96.80, Rec = 96.68, Fz_ = 96.74

Voting: Pre = 96.33, Rec = 96.33, Fz_ = 96.33 |

Table 4  Context predicate templates for text chunking.

wo, WE W, Wi, Wa, Wopwg, Wowi

P-2s PLys Pys P1s P25 P-2P-15 P-1Pys PoP1> P1P2
P-2P-1P0s P-1P0P1> PoP1P2, P-1W"y, Pow
P-1PoW" |5 P-1P0Wy, P-1W-1Wg, PoW-1Wg, P—1P0P1Wo

Table 6  25-fold cross-validation test of NP chunking on the whole 25
sections of WSJ. (using initial 6 = .00)
IOB2 | IOE2 Max I0B2 | IOE2 Max
No. Fﬁ:] Fﬁ:] Fﬂzl No. Fﬁ:] Fﬂzl Fﬁ:]

00 | 96.56 | 96.54 | 96.56 | 13 | 97.17 | 97.17 | 97.17
01 | 96.72 | 96.76 | 96.76 | 14 | 96.29 | 96.51 | 96.51
02 | 96.76 | 96.81 | 96.81 15 | 96.04 | 96.19 | 96.19
03 | 96.56 | 96.53 | 96.56 | 16 | 96.42 | 96.33 | 96.42
04 | 96.65 | 96.67 | 96.67 | 17 | 96.50 | 96.52 | 96.52
05 | 96.55 | 96.48 | 96.55 18 | 96.46 | 96.62 | 96.62
06 | 96.07 | 96.78 | 96.78 | 19 | 96.90 | 96.92 | 96.92
07 | 9542 | 9554 | 9554 | 20 | 9591 | 96.05 | 96.05
08 | 96.79 | 97.12 | 97.12 | 21 | 96.28 | 96.25 | 96.28
09 | 96.08 | 96.06 | 96.08 | 22 | 96.47 | 96.52 | 96.52
10 | 96.59 | 96.61 | 96.61 | 23 | 96.45 | 96.43 | 96.45
11 | 96.01 | 96.06 | 96.06 | 24 | 9542 | 9526 | 9542
12 | 95.68 | 9597 | 95.97 | Avg | 96.35 | 96.42 | 96.45

can be a single token (e.g., the current word: wy), a single
POS tag (e.g., the POS tag of the previous word: p_;), or a
combination of them (e.g., the combination of the POS tag
of the previous word, the POS tag of the current word, and
the current word: p_jpowp). Context predicate templates
with asterisk () are used for both state feature type 1 (i.e.,
g) and state feature type 2 (i.e., g). We also apply rare (cut-
off) thresholds for both context predicates and state features
(the threshold for edge features is zero). Those predicates
and features whose occurrence frequency is smaller than 2
will be removed from our models to reduce overfitting.

5.5 Experimental Results of Text Chunking

Table 5 shows the results of NP chunking and chunking
tasks on the CoNLL2000-L dataset. For each task, we
trained 16 second-order CRF models using two label styles
(IOB2, IOE2) and started from eight different initial val-
ues of feature weights §. We achieved the highest Fpg_; of
96.59 for NP chunking and 96.18 for chunking. The highest

Table 7  Accuracy comparison of NP chunking and all-phrase chunking
on the CoNLL2000-L dataset.

NP All
Methods Fp- Fp-
Ours (majority voting among 16 CRFs) 96.74 | 96.33

Ours (CRFs, about 1.3M - 1.5M features) | 96.59 | 96.18
Kudo & Matsumoto 2001 (voting SVMs) 95.77 -

Kudo & Matsumoto 2001 (SVMs) 95.34 -
Sang 2000 (system combination) 94.90 -
5.1
51 4.66
. 4.23
g 4]
= 3.41
g 3.26
< 3
c
K]
B
5 2]
e
o
14
0 - T T T T |
Sang - Kudo & Kudo & Ours Ours
2000 Matsumoto Matsumoto  (CRFs) (voting
(SVMs) - (voting CRFs)
2001 SVMs) -
2001

Fig.2  Error rate comparison among system for noun phrase chunking
on CoNLL2000-L dataset.

Fp-1 scores after voting among the 16 trained CRF models
are 96.74 and 96.33 for NP chunking and chunking, respec-
tively.

In order to investigate chunking performance on the
whole WSJ, we performed a 25-fold CV test on all 25 sec-
tions. We trained totally 50 CRF models for 25 folds for NP
chunking using two label styles IOB2, IOE2 and only one
initial value of 6 (= .00). The number of features of these
models are approximately 1.5 million. Table 6 shows the
highest Fz_; of the 50 models. The last column is the maxi-
mum Fg-; between models using IOB2 and IOE2. The last
row displays the average Fg-; scores.

Table 7 shows a accuracy comparison between ours and
the state-of-the-art chunking systems on the CoNLL2000-L
dataset. Sang[17] performed majority voting among classi-
fiers and got an Fp_; of 94.90. Kudo and Matsumoto [18]
also reported voting Fg—; of 95.77 using SVMs. No previ-
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Fig.3  The computational time of parallel training and the speed-up ratio of the first fold (using IOB2)
of 25-fold CV test on WSJ.
Table8  Training time of the second-order CRF models on single process

and parallel processes.

Task (#iterations) |
NP chunking single process 45 processes
CoNLL2000-L (130) 38h57’ 56

CV test of WSJ (150) 55h59’ (estimated) 1h21°
Chunking
CoNLL2000-L (200)

Training time |

single process 90 processes
1348h26’(estimated) 17h46

ous work reported results of chunking on this dataset. Our
CRFs used from 1.3 to 1.5 million features and achieved
Fp-y scores of 96.59 and 96.18. We also voted among CRFs
and obtained the best scores of 96.74 and 96.33, respec-
tively. Our model reduces error by 22.93% on NP chunk-
ing relative to the previous best system. Figure 2 shows
the comparison of prediction error among the noun phrase
chunking systems on the CoNLL2000-L dataset in a more
visual way.

5.6 Computational Time Measure and Analysis

We also measured the computational time of the CRF mod-
els the Cray XT3 system. Table 8 reports the training time
for three tasks using a single process and parallel processes.
For example, training 130 iterations of NP chunking task on
CoNLL2000-L dataset using a single process took 38h57’
while it took only 56’ on 45 parallel processes. Similarly,
each fold of the 25-fold CV test of NP chunking took an av-
erage training time of 1h21° on 45 processes while it took
approximately 56h on one process. All-phrase chunking is
much more time-consuming. This is because the number of
class labels is |£] = 23 on CoNLL2000-L. For example,
serial training on the CoNLL2000-L requires about 1348h
for 200 iterations (i.e., about 56 days) whereas it took only
17h46’ on 90 parallel processes.

Figure 3 depicts the computational time and the speed-
up ratio of the parallel training CRFs on the Cray XT3 sys-
tem. The left graph shows the significant reduction of com-
putational time as a function of the number of parallel pro-
cesses. The middle graph shows the left graph with logg
scale. The right graph shows the speed-up ratio when we in-
crease the number of parallel processes. We can see that the

real speed-up ratio (the lower line) approaches the theoreti-
cal speed-up line (the upper line). We observed that the time
for L-BFGS search and data communication as well as syn-
chronization at each training iteration is much smaller than
the time for estimating the local log-likelihood values and
its gradient vectors. This can explain why parallel training
CRFs is so efficient.

6. Conclusions

We have presented a high-performance training of CRFs
on large-scale datasets using massively parallel computers.
And the empirical evaluation on text chunking with different
data sizes and parameter configurations shows that second-
order Markov CRFs can achieved a significantly higher ac-
curacy in comparison with the previous results, particularly
when being provided enough computing power and training
data. And, the parallel training algorithm for CRFs helps
reduce computational time dramatically, allowing us to deal
with large-scale problems not limited to natural language
processing.
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