
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Algorithm for Legal Firing Sequence Problem of

Petri Nets Based on Partial Order Method

Author(s) HIRAISHI, Kunihiko; TANAKA, Hirohide

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E84-A(11): 2881-2884

Issue Date 2001-11-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4689

Rights

Copyright (C)2001 IEICE. Kunihiko Hiraishi and

Hirohide Tanaka, IEICE TRANSACTIONS on

Fundamentals of Electronics, Communications and

Computer Sciences, E84-A(11), 2001, 2881-2884.

http://www.ieice.org/jpn/trans_online/

Description

IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001
2881

LETTER Special Section on Concurrent Systems Technology

An Algorithm for Legal Firing Sequence Problem

of Petri Nets Based on Partial Order Method

Kunihiko HIRAISHI†a), Regular Member and Hirohide TANAKA†b), Nonmember

SUMMARY The legal firing sequence problem of Petri nets
(LFS) is one of fundamental problems in the analysis of Petri
nets, because it appears as a subproblem of various basic prob-
lems. Since LFS is shown to be NP-hard, various heuristics has
been proposed to solve the problem of practical size in a reason-
able time. In this paper, we propose a new algorithm for this
problem. It is based on the partial order verification technique,
and reduces redundant branches in the search tree. Moreover,
the proposed algorithm can be combined with various types of
heuristics.
key words: Petri nets, legal �ring sequence problem, partial

order methods, stubborn sets, state space explosion

1. Introduction

The legal firing sequence problem of Petri nets (LFS,
for short) is one of fundamental problems in the anal-
ysis of Petri nets, because it appears as a subproblem
of various basic problems [6]. Since LFS is shown to be
NP-hard [5], various heuristics has been proposed to
solve the problem of practical size in a reasonable time
[7]–[9]. In this paper, we propose a new algorithm for
LFS. It is based on the partial order verification tech-
nique for concurrent programs [1], [3], [4]. In this tech-
nique, a partial order defined on the set of transitions
is used to compute a reduced state space that preserves
properties to be verified, such as existence of deadlocks
and properties written in the form of next-free linear
time temporal logic. Interleaving unnecessary for the
verification is excluded from the state space.

The proposed algorithm is orthogonal to existing
heuristic algorithms, i.e., it can be combined with ex-
isting algorithms and can increase the performance.

2. Preliminaries

Let IN denote the set of nonnegative integers. For a
finite set S, we identify a function f : S → IN with
a |S| dimensional vector of nonnegative integers and
write f ∈ INS .

A Petri net is a triple N = (P, T,A), where P and
T are disjoint finite sets, and A : (P×T)∪(T×P) → IN

Manuscript received March 19, 2001.
Manuscript revised June 5, 2001.

†The authors are with the School of Information Sci-
ence, Japan Advanced Institute of Science and Technology,
Ishikawa-ken, 923-1292 Japan.
a) E-mail: hira@jaist.ac.jp
b)E-mail: hirohide@jaist.ac.jp

is a function. Each element in P is called a place, and
each element in T a transition. A Petri net is usually
drawn as a directed bipartite graph, with two set of
nodes P and T , and arcs represented by the function
A.

As usual for each v ∈ P ∪ T , let •v = {w | (w, v) ∈
A} and v• = {w | (v, w) ∈ A}, and for V ⊆ P ∪ T , let
•V = ∪v∈V

•v and V • = ∪v∈V v
•. A function m : P →

IN is called a marking, which is a state of the Petri net.
The behavior of a Petri net N = (P, T,A) is rep-

resented by a transition system TSN = (INP , T,→),
where →⊆ INP × T × INP is defined by (m, t,m′) ∈→
if and only if

∀p ∈ P : [m(p) ≥ A(p, t) ∧
m′(p) = m(p) +A(t, p) −A(p, t)].

We write m t→ m′ instead of (m, t,m′) ∈→. As usual,
the transition relation → is extended to finite sequences
of transitions.

Let T ∗ denote the set of all finite sequences (in-
cluding the empty sequence) over T . Let ψ : T ∗ → INT

be a function such that ψ(σ)(t) denotes the number of
occurrences of transition t in σ, e.g., ψ(abaabbc)(a) = 3.
We write m σ→ to denote ∃m′ : m σ→ m′. When m

t→,
t is called enabled in marking m. Let en(m) denote the
set of enabled transitions in m.

3. New Algorithm for LFS

3.1 Problem Description

Let N = (P, T,A) be a Petri net. A non-negative inte-
ger vector x ∈ INT is called a firing count vector. Then
the problem LFS is formulated as follows:
Given: A Petri net N = (P, T,A), an initial marking
m0, and a firing count vector x ∈ INT ;
Find: a firing sequence σ ∈ T ∗ such that m0

σ→ and
ψ(σ) = x.

3.2 Persistent Sets

We introduce the notion of persistent sets, which will
be used in the algorithm.

Let N = (P, T,A) be a Petri net. A subset W of T
is called a persistent set at marking m if for any t ∈W

and any σ ∈ (T −W)∗ : m σt→ m′ ∧ m
t→ ⇒ m

tσ→ m′.

2882
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001

A sufficient condition for W ⊆ T to be a persistent
set can be obtained from the results on stubborn set
theory [4].

Proposition 1: Let N = (P, T,A) be a Petri net. A
subset W of T is a persistent set at marking m if for
each t ∈W ∩en(m) and p ∈ P , one of the following (i),
(ii) holds:

(i) ∀t′ ∈ T −W :
min(A(t, p), A(t′, p)) ≥ min(A(p, t), A(p, t′));

(ii) ∀t′ ∈ T −W :
min(A(t, p), A(p, t′)) ≥ min(A(p, t), A(t′, p)).

Proof: Suppose that m
σt→ and m

t→ for σ =
t1t2 · · · tn ∈ (T −W)∗ and t ∈W . Let m t1···tk−→ mk (k =
1, · · · , n).

For a place p �∈• t, the right-hand side of each in-
equality is zero, and therefore (i) and (ii) always hold.
For a place p ∈• t, the conditions (i), (ii) can be inter-
preted as follows.

(i) When A(p, t) < A(p, t′), A(p, t) ≤ A(t, p)
holds and therefore a firing of t does not decrease
the number of tokens in p. When A(p, t) ≥ A(p, t′),
A(p, t′) ≤ A(t, p) holds and therefore p has sufficient
tokens to enable t′ after a firing of t. Moreover, when
A(p, t) ≥ A(t′, p), A(t′, p) ≥ A(p, t′) holds, and there-
fore a firing of t′ does not decrease the number of tokens
in p.

(ii) When A(p, t) < A(t′, p), A(p, t) ≤ A(t, p)
holds and therefore a firing of t does not decrease
the number of tokens in p. When A(p, t) ≥ A(t′, p),
A(t′, p) ≤ A(t, p) holds and therefore p has sufficient
tokens to enable t′ after a firing of t. Moreover, when
A(p, t) ≥ A(t′, p), A(t′, p) ≤ A(p, t′) holds and therefore
a firing of t′ does not increase the number of tokens in
p.

We first show that mk
t→ (k = 1, · · · , n). Assume

that t is not enabled in mk. Then there exists a place p
from which the firing of t1 · · · tk removes tokens neces-
sary for t to be enabled. Hence, A(p, t) > A(ti, p) holds
for some i ∈ {1, · · · , k} (otherwise, p keeps sufficient
tokens). If condition (i) holds for t and p, then any
transition t′ ∈ T − W does not decrease the number
of tokens in p. This contradicts the fact that m t−→.
If condition (ii) holds, then any transition t′ ∈ T −W
does not increase the number of tokens in p. This con-
tradicts the fact that mk

tk+1···tnt−→ .
In addition, since the firing of t does not make ti

disabled, we have the following diagram.

m− t1 → m1 − t2 → · · · mn−1 − tn → mn

| | | |
t t t t
↓ ↓ ↓ ↓
m′ − t1 → m′

1 − t2 → · · · m′
n−1 − tn → m′

n

✷

Table 1 Algorithm LFSPOM.

Algorithm LFSPOM:
Stack is empty;
push 〈m0, x, λ〉 onto Stack;
while Stack is not empty do

pop 〈m, y, σ〉 from Stack;
if y = 0 then output σ and halt;
compute W (m, y);
for all t in W (m, y) ∩ en(m) do

push 〈m′, y − ψ(t), σt〉 onto Stack, where m
t→ m′;

output “no”.

3.3 Algorithm LFSPOM

We show the proposed algorithm LFSPOM (the algo-
rithm for the Legal Firing Sequence problem based on
Partial Order Methods) in Table 1. It is a depth-
first search algorithm except that at each step only
transitions in the set W (m, y) are considered for fir-
ing, where m is the current marking and y is the
remaining firing count vector. If we choose the set
Ty := {t ∈ T | y(t) > 0} as W (m, y), then the al-
gorithm behaves like an exhaustive search algorithm
using the depth-first search.
Remark: In the algorithm LFSPOM, a vector y−ψ(t)
and a sequence σt is added to the data in the stack.
However, this is just for simplifying the description. We
can implement the algorithm in which only a vector m
is push onto the stack. When backtrack occurs, the re-
maining firing count is recoverd and the last transition
of the current firing sequence is removed.

The set W (m, y) is defined as follows. If en(m) ∩
Ty = ∅, then W (m, y) = ∅. Otherwise, W (m, y) is
a nonempty subset of Ty that satisfies the following
conditions:

1. W (m, y) ∩ en(m) �= ∅.
2. In the subnet N |Ty, W (m, y) is a persistent set at

marking m, where N |Ty denotes the subnet of N
consisting of transitions Ty and all places adjacent
to Ty with arcs connecting these nodes.

3. If t ∈ W (m, y) − en(m), then for any σ ∈ (Ty −
W (m, y))∗ : m σ→ m′ ⇒ t �∈ en(m′).

We can easily obtain the following sufficient con-
dition for the requirement 3.

Lemma 2: Let t ∈ W (m, y) − en(m). Suppose
that for all t′ ∈ Ty − W (m, y): m(p) < A(p, t) ⇒
A(t′, p) = 0. Then for any σ ∈ (Ty − W (m, y))∗ :
m

σ→ m′ ⇒ t �∈ en(m′).

Using the results in Proposition 1 and Lemma 2,
the set W (s, y) can be computed by the following pro-
cedure.

1. Select a transition t ∈ en(m) ∩ Ty and let
W (m, y) := {t}.

2. Repeat the following until no more transition is

LETTER
2883

added.

(i) If for t ∈W (m, y)∩ en(m) there exists a tran-
sition of t′ ∈ Ty −W (m, y) that does not sat-
isfy the condition (i) and (ii) of Proposition 1,
then add t′ to W (m, y).

(ii) If for t ∈W (m, y)−en(m) there exists a tran-
sition t′ ∈ Ty − W (m, y) that does not sat-
isfy the condition of Lemma 2, then add t′ to
W (m, y).

This procedure eventually terminates since W (s, y) =
Ty always satisfies the conditions.

We now prove the correctness of the algorithm.

Lemma 3: Suppose that m σ→ m′, ψ(σ) = y, and
that m is visited by LFSPOM. Then m′ is also visited
by a firing sequence σ′ such that ψ(σ) = ψ(σ′) in the
algorithm.

Proof: We use induction on the length of σ. It is clear
when the length is 0. We consider the case that the
length is greater than 0. Every transition in W (m, y)
is contained in σ since W (m, y) ⊆ Ty. Suppose that
t ∈ W (m, y) occurs first in σ, i.e., σ = σ1tσ2 and σ1

has no transitions of W (m, y). By the requirement 3
of W (m, y), t is enabled in m, and by the requirement
2, m tσ1σ2−→ m′ holds. By the induction hypothesis, our
result follows. ✷

Theorem 4: Algorithm LFSPOM correctly solves
LFS.

Proof: If LFSPOM outputs a firing sequence σ, then it
is legal and ψ(σ) = x. Assume that LFS has a solution
σ such that m0

σ→ m and ψ(σ) = x. By Lemma 3, m is
visited by a firing sequence σ′ such that ψ(σ) = ψ(σ′)
in the algorithm, and σ′ is also a solution for the LFS.

✷

We now discuss computational complexity of LF-
SPOM. We first need to say that the partial order meth-
ods does not improve the worst case complexity. There
exists a case that at every step W (m, y) contains all en-
abled transitions of Ty. Then the execution of the algo-
rithm requires exponential time. However, if we apply
the algorithm to conflict-free nets, then we can always
find the set W (m, y) containing exactly one transition.
For conflict-free nets, there exists a greedy algorithm
that solves LFS, i.e., at each step selecting just one en-
abled transition within the remaining firing count [6].
Algorithm LFSPOM behaves like the greedy algorithm
when it is applied to conflict-free nets. When the net
has a conflict-free substructure, LFSPOM eliminates
redundant search corresponding to the structure.

3.4 Experimental Results

We have applied the proposed algorithm to LFS for
Petri nets describing well-known dining philosophers

Fig. 1 A Petri net describing DPP.

Table 2 Experimental results.

EXHAUSTIVE LFSPOM
Ex. #FC

Time (sec.) #BT Time (sec.) #BT
(1) 15 1.23 38,940 0.67 3,210
(2) 17 6.45 202,816 2.08 10,142
(3) 19 24.32 754,436 5.18 25,416
(4) 21 84.29 2,266,492 11.28 55,044
(5) 23 194.62 5,861,332 21.94 107,620

problem (Fig. 1). LFSPOM is compared with the ex-
haustive search algorithm (Algorith EXAUSTIVE in
the table) which is the same algorithm as LFSPOM
except that W (m, y) is always set to Ty.

Algorithms are implemented by C language, and
are executed on SUN Ultra5 (CPU: UltraSparc-IIi
270 MHz, Main Memory: 128 MB).

First we need to say that LFSPOM does not show
better performance than EXAUSTIVE when the num-
ber of backtracks occurred in the execution is small.
All examples shown in Table 2 have no legal firing
sequences satisfying the requirements, and therefore
many backtracks occur. Each example “(k)” is an in-
stance of LFS having the following firing count:

X(w1) = k, X(v1) = k + 1;
X(wi) = 1, X(vi) = 2 (i = 2, · · · , 5).

In the table, #FC denotes the total number of firing
counts, Time (sec.) the CPU time, and #BT the num-
ber of backtracks. We can observe that the number
of backtracks is reduced drastically in the execution of
LFSPOM.

The proposed algorithm is essentially the same
as the stubborn set method [4]. The stubborn set
method generates a reduced state space that preserves
all dead markings, while LFSPOM explores a reduced
state space that preserves every marking in which the
remaining firing count is 0. In both methods, a selective

2884
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.11 NOVEMBER 2001

set of transitions W is computed at each marking m so
that it satisfies the following: If m σ−→ m′ and m′ is a
marking to be preserved, then there exists some t ∈W

such that σ = σ1tσ2 and m tσ1σ2−→ m′. The stubborn set
method and similar methods were shown to be effective
through many experiments (see [2], [4]). Therefore, we
can expect that the proposed method will also work in
many instances.

4. Conclusion

As written in the introduction, there are several heuris-
tics proposed for LFS. Algorithm LFSPOM can be com-
bined with these heuristics, i.e., LFSPOM will work as
an accelerator of existing heuristic algorithms based on
search algorithms.

References

[1] P. Godefroid, “Using partial orders to improve automatic
verification methods,” Lecture Notes in Computer Science,
vol.531, pp.176–185, Springer, 1990.

[2] D.A. Peled, V.R. Pratt, and G.J. Holzmann (eds.), “Partial

order methods in verifications,” DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol.29,
1996.

[3] D.K. Probst and H.F. Li, “Using partial-order semantics
to avoid the state explosion problem in asynchronous sys-
tems,” Lecture Notes in Computer Ssience, vol.531, pp.147–
155, Springer, 1990.

[4] A. Valmari, “Stubborn sets for reduced state space genera-
tion,” Lecture Notes in Computer Science, vol.483, pp.491–
515, Springer, 1990.

[5] T. Watanabe, Y. Mizobata, and K. Onaga, “Time complex-
ity of legal firing sequence and related problems of Petri
nets,” IEICE Trans., vol.E71, no.12, pp.1400–1409, 1989.

[6] T. Watanabe and M. Yamauchi, “A survey on the legal fir-
ing sequence problem of Petri nets,” IEICE Technical Re-
port, CST97-33, 1997.

[7] M. Yamauchi, S. Nakamura, and T. Watanabe, “An approx-
imation algorithm for the legal firing sequence problem of
Petri nets,” IPSJ SIG Notes, 93-AL-33, pp.17–24, 1993.

[8] M. Yamauchi and T. Watanabe, “A new heuristic algorithm
for the legal firing sequence problem of Petri nets,” IEICE
Technical Report, CST97-32, 1997.

[9] M. Yamauchi, M. Hashimoto, and T. Watanabe, “A heuris-
tic algorithm FSD for the legal firing sequence problem of
Petri nets,” IEICE Technical Report, CST98-6, 1998.

