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PAPER Special Section on Discrete Mathematics and Its Applications

Arranging Fewest Possible Probes to Detect a Hidden Object with
Industrial Application

Taisuke SHIMAMOTO†a), Nonmember and Tetsuo ASANO††, Member

SUMMARY This paper addresses the problem of arranging fewest pos-
sible probes to detect a hidden object in a specified region and presents a
reasonable scheme for the purpose. Of special interest is the case where an
object is a double-sided conic cylinder which represents the shape of the
energy distribution of laser light used in the optical network. The perfor-
mance of our scheme is evaluated by comparing the number of probes to
that of an existing scheme, and our scheme shows a potential for reducing
the number of probes. In other words, the time for detection is significantly
reduced from a realistic point of view.
key words: computational geometry, covering, Minkowski sum, light path
alignment, dual-plane scheme

1. Introduction

The Internet based on optical network is revolutionizing our
life style. Optical network comprises not only optical fiber
cables but a wide variety of optoelectronic components and
photonic devices necessary to generate, modulate, guide,
amplify, switch and detect light. These tiny and complex
devices are assembled into a package that couples the light
into or out of optical fiber. Transferring light signals through
the optical devices is not as easy as transferring electric sig-
nals through metallic devices. To prevent power loss be-
tween optical devices, a delicate alignment of optical path is
made at various assembly stages. For example, the accuracy
required for the devices used in the long-haul optical fiber
network is usually less than one micro meter. Since aligning
the light path with sub-micron accuracy using normal vision
system is almost impossible, the “active alignment” method
(i.e. actually emitting light from one device and detecting
the light power at the other device and then establishing po-
sitioning feedback) is taken to find the peak power position
of the light.

The light path alignment process comprises two subse-
quent processes. Firstly a process called “blind search” is
used to detect the light and secondly another process called
“fine search,” to find the peak power position. Figure 1 il-
lustrates the blind-search process which uses an optical fiber
as a sensing probe. The intensity of the laser light has a
Gaussian-like distribution and can be roughly estimated us-
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Fig. 1 Illustration of the blind-search process in the light path alignment
application.

Fig. 2 The object to be detected.

ing analytical methods [5]. However, practically, the inten-
sity is profiled using a beam-analyzing equipment. When
the lens converges the light, the energy distribution takes a
conic shape like Fig. 2. In the blind-search process, typi-
cal assembly systems use single-plane scheme that defines
a search plane perpendicular to the axis of the light and
then shifts the sensing probe by even pitches to measure the
power. If the light is not detected, the probe is shifted toward
the light path direction by a preset pitch and the same search
process is repeated. In the single-plane scheme, the probe
moves in such a way that the search plane is covered with
congruent circles whose diameter is equal to the diameter of
the core of the optical fiber. This usually requires hundreds
of measurement points per plane. A couple of supplemental
methods are considered to reduce the search time. Most of
the methods consider changing the measurement path on the
search plane heuristically but do not ensure the reduction of
the search time. In this paper, we are going to introduce a
new blind-search method called dual-plane scheme that ex-
actly reduces the number of measurement points and thus,
the search time is reduced. In special cases, our scheme
performs four times better than conventional single-plane
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scheme. The application areas of our search scheme is not
limited to optical device assembly but can be used in other
sensing applications in which a rigid object is to be searched
in a broad search space.

One of the earliest topics in computational geometry is
the Art Gallery problem that requires the minimum number
of guards to watch an art gallery of a polygonal shape [3],
[4]. It has been generalized to a watchman route problem [1]
for finding a shortest possible route to find an intruder hid-
den in an art gallery. The problem has also been extended to
the problem of detecting a mobile intruder hidden in an art
gallery [6]. The problem to be discussed in this paper is also
an extension of the art gallery problem in yet another direc-
tion. We want to find or detect a rigid object hidden some-
where in an art gallery by arranging probes appropriately
over the gallery. Computational complexity of the problem
highly depends on the shapes of the object and the gallery,
the degrees of freedom of the object (with/without rotation
in addition to translation), and the dimension of those geo-
metric objects. Our problem is closely related to the prob-
lem of covering a region by some simple geometric objects
(see e.g., [2]).

This paper is organized as follows. In Sect. 2 we de-
scribe the basic geometric problem in a general form. Then
in Sect. 3, we restrict ourselves to some special cases which
are closely related to the applications mentioned above. Fi-
nally, in the last section we have some concluding remarks
with open problems.

2. Problem Description

A rigid object B is hidden somewhere in a region. Implic-
itly we assume one point o in its interior as a reference point
(the origin). We call a region in which o can lie reference
point region R. We want to arrange fewest possible probes
in a probe region P, in which the probes can be placed, so
that we can detect B wherever it is hidden. We assume that
we can determine whether a point q lies in the interior of B
by a predicate F(q) that can be computed in linear time in
the length of the predicate. We also assume implicitly that a
rigid object B has a simple shape and thus the inclusion test
can be done in constant time. If the object B is a triangle
(p1, p2, p3) in the plane, then the predicate is

F(q) : �(p1, p2, q) ≥ 0, �(p2, p3, q) ≥ 0,

and �(p3, p1, q) ≥ 0,

where �(p, q, r) is positive if the three points are arranged
in a counter-clockwise order, 0 if they lie on a line, and
negative if they are in a clockwise order. We also assume
that the three points p1, p2 and p3 are arranged in a counter-
clockwise order.

Thus, a rigid object B is specified as

B = {q|F(q)}. (1)

By B(p, θ) we denote the object B translated to the
point p (so the reference point is located at p) and then ro-
tated by an angle θ in a counterclockwise direction around

the reference point. Then, the corresponding predicate be-
comes

q ∈ B(p, θ)⇔ F(T−θ(q − p)), (2)

where Tθ(q) is the point determined by counterclockwise ro-
tation of the point q around the origin by the angle θ. We as-
sume that point inclusion is also tested in time proportional
to the complexity of the object.

An object B(p, θ) can be detected if at least one probe
is contained in the interior of the object, that is,

pi ∈ B(p, θ)⇔ F(T−θ(pi − p)) (3)

for some probe pi.
We say that a set of probes is feasible if they detect an

object wherever it is located. We want to find a minimum
feasible set of probes. A key idea behind our scheme pre-
sented in this paper is to define the image B−1 of a rigid
object B. If no rotation is allowed, then it is defined by

B−1 = {p|F(−p)}. (4)

Figure 3 shows the image of a polygonal object B, that is
point-symmetric to the original shape. For the time being,
we do not allow rotation.

Now, our problems are described as follows:

Problem 1: Feasibility Test
INSTANCE: A rigid body B characterized by a predicate
defined by polynomial inequalities with respect to a refer-
ence point o, a reference point region R, and a probe region
P.
QUESTION: Is there a feasible set of probes? Or, in other
words, is it possible to arrange the probes so that they can
detect a hidden object wherever it is located?

Problem 2: Optimal Feasible Set
INSTANCE: A rigid body B, a reference point region R,
and a probe region P.
QUESTION: Find a minimum feasible set of probes if there
exists one.

Figure 4 illustrates a set of probes arranged in the probe
region P which is usually contained in the reference point
region R. The figure includes three objects with different

Fig. 3 The image of an object: (a) given rigid object (B) and (b) its image
(B−1).
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Fig. 4 Hidden objects in a reference-point region R and a set of probes
in a probe region P.

Fig. 5 Minkowski sum P ⊕ B−1.

angles.
From the above definitions, we have the following ba-

sic observations.

Lemma 2.1: For an arbitrary rigid object B the following
always holds

p ∈ B(q)⇔ q ∈ B−1(p). (5)

Proof p ∈ B(q)⇔ F(p − q)⇔ q ∈ B−1(p). �

Once we have the above lemma, the following two lem-
mas are almost obvious.

Lemma 2.2: Given B, R and P, there is a feasible set of
probes if and only if the Minkowski sum P ⊕ B−1 contains
R (see Fig. 5).

Proof The proof immediately follows from the definition
of the Minkowski sum:

P ⊕ Q = {p + q|p ∈ P and q ∈ Q}. �

Lemma 2.3: A set S = {p1, p2, . . . , pn} of probes in P cov-
ers a region R if and only if the union of their images covers
R, that is,

R ⊆ ∪pi∈SB−1(pi). (6)

Proof “if” part: Eq. (6) implies that for any point p ∈ R
there exists some points pi such that p ∈ B−1(pi). By the

Fig. 6 A covering of the region R by the image B−1.

definition, p ∈ B−1(pi)⇔ pi ∈ B(p), which implies that the
point pi detects the object B(p) at p.
“Only if” part: If the union of the images does not cover
R, there must be a point p ∈ R which is not contained in
B−1(pi) for any point pi ∈ S . This means that pi � B(p) for
any pi ∈ S and thus the set S does not cover R. �

The Lemma 2.3 implies that our problem reduces to
that of finding the minimum number of images B−1 to cover
the entire reference point region R.

Figure 6 shows a covering of the region R by the image
B−1. The set of corresponding reference points gives us a
feasible set of probes.

3. Application to the Blind-Search Process in the Light
Path Alignment

In this paper we consider a rather special case in which a
rigid object is a double-sided conic cylinder and the refer-
ence region (which is equal to the probe region) is a cuboid
of L × L wide and of unit height. We assume that the height
of the cylinder in one side is exactly 1 so that each half of
the cylinder is tall enough to cover the height of the cuboid.
The conic cylinder shown in Fig. 7 is a simplified model of
the light energy distribution around the focal point of the
laser beam. It is double-sided due to converging and diverg-
ing ends of the energy distribution, as depicted in Fig. 8. We
will show that the knowledge obtained in the previous sec-
tion can be effectively applied to the blind-search process in
the light path alignment application.

Figure 9 shows how a double-sided conic cylinder is
embedded in the light energy distribution. Such simplifi-
cation may sacrifice efficiency of the search compared with
that using the actual shape, but simplicity of our model is
also very important for practical implementation.

Our objective is to arrange the smallest number of
probes in the probe region (it is equal to the reference re-
gion which is a cuboid in this case) so that any hidden object
(a focal point of a laser beam in this case) can be detected
wherever it is located in the reference region. The traditional
heuristic method is characterized as a single-plane scheme
in which all the probes must be located on a single plane
which is parallel to the base face (rectangle in this case) of
the reference region. To cover the entire cuboid by those
cylinders we are forced to cover the base face (rectangle) by
circles given as the cross section of the conic cylinder with
the plane parallel to the rectangle at the distance 1 from the
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Fig. 7 Axis-parallel conic cylinder.

Fig. 8 An example of light energy distribution.

Fig. 9 A double-sided conic cylinder.

central cross section of the cylinder (that is the part of the
largest radius). For simplicity, we assume that the height
of the cylinder in one side is exactly 1 and the largest and
smallest radii of the circles given as cross sections are R and
r, respectively. So, under the assumption we have to cover
the rectangle by circles of the smallest radius r. Obviously
it is not advantageous.

The performance of the blind-search based on this
single-plane scheme can be improved if we use the morphic
characteristic of the light energy distribution. We would like
to introduce here a new scheme called dual-plane scheme
in which probes are located in two different planes. We
will prove an advantage of the dual-plane scheme over the
single-plane one by showing that the total number of the
probes is considerably reduced. Figure 10 illustrates the
concept of our scheme.

The reference point region R is an axis-parallel cuboid
of height 1. Formally, an object B is defined by

B = {(x, y, z)|
√

x2 + y2

≤ (r − R)|z| + R,−1 ≤ z ≤ 1}, (7)

where r and R are the radii of the top and bottom circles of
the object. Since B is symmetric, B−1 = B.

It has an axis that is parallel to the z-axis and it is
bounded by a conic surface. Note that, the cross section

Fig. 10 (a) Conventional single-plane scheme and (b) our dual-plane
scheme.

Fig. 11 Covering the cuboid region R by two sets of conic cylinders.

of B at any plane perpendicular to the z-axis is a disk. A
radius of such a disk is largest at z = 0 and smallest at z = 1
and z = −1. The largest and smallest radii are denoted by R
and r respectively.

Consider the following arrangement of conic cylinders.
An idea here is to place those cylinders on the two planes
z = 0 and z = 1 (see Fig. 11). Precisely, two sets of probe
locations are determined as follows.

S 0(k) = {(0, 0, 0), (0, 2d, 0), (0, 4d, 0), . . . ,

(2d, 0, 0), (2d, 2d, 0) . . . ,

(2kd, 2kd, 0)},
S 1(k) = {(d, d, 1), (d, 3d, 1), (d, 5d, 1), . . . ,

(3d, d, 1), (3d, 3d, 1), . . . ,

((2k + 1)d, (2k + 1)d, 1)}.
The set of conic cylinders whose center points (reference
points) are located on the plane z = 0 are called 0-cylinders
and those on the plane z = 1 1-cylinders. 0-cylinders are
located on a regular grid of space 2d. 1-cylinders are also
located in a similar manner, but their centers are character-
ized by odd integers times d. The space parameter d is de-
termined by

d =
R + r

2
. (8)

The other parameter k is determined to be a smallest integer
such that the corresponding set of cylinders cover the en-
tire cuboid. To find such an smallest integer k, we have to
consider different cases (See Fig. 12). For simplicity, we as-
sume that the base area is a square of side length L. In case
kd < L ≤ (k + 1)d, the cuboid is covered with cylinders cor-
responding to S 0(k)∪S 1(k) so that total number of cylinders
needed is |S 0(k)|2 + |S 1(k)|2 = 2k2 = 2(�L/(2d)�)2. In other
case (k + 1)d < L ≤ (k + 2)d, the cuboid is covered with the
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Fig. 12 Change in parameter k with different size of base area; (a) upper
right corner of cuboid lies on the center of S 1(k) (b) the same corner lies
on the center of S 0(k + 1).

ones corresponding to S 0(k+1)∪S 1(k) so that the total num-
ber of disks for covering becomes |S 0(k + 1)|2 + |S 1(k)|2 =
(k + 1)2 + k2 = (�L/(2d)� + 1)2 + (�L/(2d)�)2.

By C0
i, j and C1

i, j we denote the intersections of the
cuboid with the 0-cylinder and 1-cylinder, respectively,
whose reference points are located at the points (id, jd, z),
that is,

C0
i, j = {(x, y, z)|0 ≤ z ≤ 1,

(x − id)2 + (y − jd)2 ≤ (R − (R − r)z)2},
(i, j) = (0, 0), (0, 2d), (0, 4d), . . . ,

(2d, 0), (2d, 2d), . . . , (2kd, 2kd) and

C1
i, j = {(x, y, z)|0 ≤ z ≤ 1,

(x − id)2 + (y − jd)2 ≤ (r + (R − r)z)2},
(i, j) = (d, d), (d, 3d), (d, 5d), . . . ,

(3d, d), (3d, 3d), . . . , ((2k + 1)d, (2k + 1)d).

Lemma 3.1: A cuboid of a square base face and of height
1 can be covered by 0-cylinders and 1-cylinders placed at
the locations specified by S 0(k) and S 1(k), respectively, on
the planes z = 0 and z = 1, respectively.

Proof We shall show how the cross section of the cuboid
at z = z0, 0 ≤ z0 ≤ 1 is covered by those cylinders. When
z0 > 1/2, the 1-cylinders cover more space than 0-cylinders.
The radius r1(z0) of a 1-cylinder at z = z0 is given by

r1(z0) = r + (R − r)z0. (9)

Similarly, the radius r0(z0) of the circle of a 0-cylinder at
z = z0 is given by

r0(z0) = R − (R − r)z0. (10)

If r1(z0) >
√

2d, that is, z0 > (
√

2d − r)/(R − r), then
the cross section of the cuboid at z = z0 is covered by 1-
cylinders. For d < r1(z0) ≤ √2d, that is, 1/2 < z0 ≤ (

√
2d−

r)/(R − r), the farthest points from a center (id, jd) of a 1-
cylinder C1

i, j are {((i ± 1)d, ( j ± 1)d)} (See Fig. 13).
Consider the intersection at z = z0 between two

cylinders C1
i, j and C1

i, j+2, which is given by (id +√
r1(z0)2 − d2, ( j + 1)d). This point is covered by the cross

section of the cylinder (or exactly disk) C0
i+1, j+1 because

Fig. 13 Cross sections of 0-cylinders and 1-cylinders when 1/2 < z0 ≤
(
√

2d − r)/(R − r).

Fig. 14 Cross section at z = 3
4 .

{(i + 1)d − id −
√

r1(z0)2 − d2}2
+ {( j + 1)d − ( j + 1)d}2 − r0(z0)2

= {d −
√

r1(z0)2 − d2}2 − (2d − r1(z0))2

= −2d{
√

r1(z0)2 − d2 + 2(d − r1(z0))}
= −2d(2d − 2r1(z0) +

√
r1(z0) − d2) < 0.

The last inequality is verified as follows. Let r1 =

r1(z0) and f (r1) = 2d − 2r1 +
√

r1 − d2.
Differentiating the function f w.r.t. r1 we have

f ′(r1) = −2 + r1√
r2

1−d2
.

So, the function f (r1) takes an extreme value when r1 =
2
√

3
3 d. The extreme value is positive since f ( 2

√
3

3 d) = (2 −√
3)d > 0

We also see that f (d) = 0 and f (
√

2d) = (3 − 2
√

2)d >
0. All these observations suggest f (r1) > 0. If d < r1(z0) ≤√

2d, then −2d(2d − 2r1(z0) +
√

r1(z0) − d2) < 0. �

Figure 14 shows the cross section of cuboid at z = 3/4.
Now, we can compare the performance of our dual-

plane scheme with that of the single-plane scheme in which
probes are arranged so that the smallest circles cover the
rectangular reference point region. We discuss here in the
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Fig. 15 Hexagonal arrangement of circles.

case (b) in Fig. 12. The number of circles required by our
scheme is

(k + 1)2 + k2 = (�L/(2d)� + 1)2 + �L/(2d)�2. (11)

On the other hand, the number of circles required by the
single-plane scheme is

(k′ + 1)2 + k′2 = (�L/(2r)� + 1)2 + �L/(2r)�2. (12)

Thus, the ratio is given by

(k′2 + (k′ + 1)2)/(k2 + (k + 1)2)

� �L/(2r)�2/�L/(2d)�2 � (d/r)2

= ((R + r)/(2r))2

= (1 + R/r)2/4. (13)

So, if R = 3r, then the ratio is (1 + 3)2/4 = 4. Although
the shape of the light energy distribution varies according to
the kind of light sources and the configuration of optics, the
ratio R/r = 3 is reasonable from the experience of the first
author. This ratio 4 means that the dual-plane scheme can
reduce the number of probes by a factor of 4 if the larger
radius is thrice of the smaller one.

The performance of the single-plane scheme can be im-
proved by arranging circles of radius r on a hexagonal grid
as shown in Fig. 15. In this case, the number of circles to
cover the cross section is given by

L2

1.5r × √3r
=

2
√

3
9

L2

r2
. (14)

Thus, the ratio is improved to
√

3
9

(
1 +

R
r

)2
, (15)

which is 3.08 when R = 3r.

4. Conclusions

In this paper, we have considered the problem of arranging
fewest possible probes to find a hidden geometric object in a
given region. This problem is closely related to an industrial
application of the light path alignment problem. To reduce
the time of the blind-search process in the application, we
introduced the dual-plane scheme using morphic character-
istic of the object. Our scheme succeeded in improving the
performance of the search process. In practical applications
we have to deal with small rotation of objects with addi-
tional freedom of two rotations, which has been left as an
open problem.
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