
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Deriving Discrete Behavior of Hybrid Systems

under Incomplete Knowledge

Author(s) HIRAISHI, Kunihiko

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E87-A(11): 2913-2918

Issue Date 2004-11-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4691

Rights

Copyright (C)2004 IEICE. Kunihiko Hiraishi, IEICE

TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences, E87-A(11),

2004, 2913-2918.

http://www.ieice.org/jpn/trans_online/

Description

IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004
2913

PAPER Special Section on Concurrent Systems and Hybrid Systems

Deriving Discrete Behavior of Hybrid Systems under Incomplete
Knowledge

Kunihiko HIRAISHI†a), Member

SUMMARY We study analysis of hybrid systems under incomplete
knowledge. The class of hybrid systems to be considered is assumed to
have the form of a rectangular hybrid automaton such that each constant in
invariants and guards is given as a parameter. We develop a method based
on symbolic computation that computes an approximation of the discrete
behavior of the automaton. We also show an implementation on a constraint
logic programming language.
key words: hybrid systems, incomplete knowledge, approximation, con-
straint logic programming

1. Introduction

We focus on the situation that concrete values of constants
in a hybrid system model are hard to be obtained. Typical
examples are found in biological systems. Various kinds of
reactions in biological systems, such as metabolic pathways,
signal transduction pathways and gene regulatory interac-
tion can be represented by hybrid systems [13]. However,
it is not easy to measure precise values of constants that
influence dynamics of the system. In addition, the values
may vary according to the environment. Qualitative reason-
ing [7] was proposed to deal with such a situation. One of
disadvantages of qualitative reasoning is that the constraints
are too weak, and as a result it sometimes generates a huge
number of states which are not realizable. In this paper, we
aim to propose an efficient and relatively accurate method
for the analysis of hybrid systems under such incomplete
knowledge. In addition, we would like to have an efficient
implementation of the proposing method.

For these purposes, we use the following techniques:

• In stead of using concrete values, we treat them as sym-
bols, called parameters, where a parameter is a kind of
variables such that it does not change its value through
the evolution of the system. Incomplete knowledge is
described as constraints on parameters such as a par-
tial order on them. In addition, we deal with parame-
ters and constraints by symbolic computation, i.e., con-
straints are truly evaluated as it is.
• In general, parametric analysis of hybrid systems is

harder than the case that concrete values are given. For
example, the emptiness problem (given a parametric
hybrid automaton, are there concrete values for the pa-

Manuscript received April 7, 2004.
Final manuscript received June 16, 2004.
†The author is with the School of Information Science, Japan

Advanced Institute of Science and Technology, Ishikawa-ken, 923-
1292 Japan.

a) E-mail: hira@jaist.ac.jp

rameters so that the automaton has an accepting run?)
is undecidable even if we restrict the target to a primi-
tive class of hybrid systems such as timed automata [3].
Under incomplete knowledge on the model, however, it
is sufficient to have an approximation of the behavior.
We develop a method that computes an approximation
of the discrete behavior of the model. The approxi-
mated behavior is described in the form of a finite tran-
sition system and the computation always terminates.
Moreover, we can control the degree of accuracy in the
approximation.
• For the implementation, we use a constraint logic pro-

gramming language with a linear constraint solver.

2. Hybrid Systems

In this paper, we follow the definition of hybrid systems de-
scribed in [2]. A hybrid system is H = (V, n,Q0, F, Inv,R),
where

• V is a finite set of locations, and n is a nonnegative
integer called the dimension of H. Each state of H is a
pair (l, x), where l ∈ V is the discrete part of the state
and x ∈ Rn is the continuous part of the state. Let
Q = V × Rn be called the state space.

• Q0 ⊆ Q is the set of initial states.
• F : Q → 2R

n
assigns to each state (l, x) a set F(l, x) ⊆

R
n, which constrains the time derivative of the contin-

uous part of the state by ẋ ∈ F(l, x) in location l.
• Inv : V → 2R

n
assigns to each location l an invari-

ant set Inv(l) ⊆ Rn, which constrains the value of the
continuous part of the state in location l.
• R ⊆ V×V is a relation capturing discrete state changes.

We refer to the n individual coordinates of the contin-
uous part Rn of the state space as real-valued variables, and
we view the continuous part x = (x1, · · · , xn) of a state as an
assignment of values to the variables.

A hybrid systems is usually represented as a finite di-
rected graphs G = (V, E) where

• The set of vertices is the set of locations V . With each
location l, let Init(l) := {x ∈ Inv(l) | (l, x) ∈ Q0}.
• E := {(l, l′) ∈ V × V | ∃x ∈ Inv(l), x′ ∈ Inv(l′) :

((l, x), (l′, x′)) ∈ E}. With each edge e = (l, l′) ∈
E, we associate a guard set Guard(e) := {x ∈
Inv(l) | ∃x′ ∈ Inv(l) : ((l, x), (l′, x′)) ∈ R}, and a reset
map Reset(e, x) := {x′ ∈ Inv(l′) | ((l, x), (l′, x′)) ∈ R}.

2914
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

Each trajectory of H originates at an initial state (l, x) ∈
Q0. As long as x ∈ Inv(l), x evolves over time according to
the differential inclusions ẋ ∈ F(l, x). When x ∈ Guard(e)
for some e = (l, l′) ∈ E, the edge e becomes enabled and
the state instantaneously jump from (l, x) to (l′, x′) with x′ ∈
Reset(e, x).

Formally, the behavior of H is described in the form of
a transition system TH = (Q,→,Q0), where the transition

relation→= d→ ∪ τ→ is defined as follows:

• Discrete transitions: (l, x)
d→ (l′, x′) if and only if for

e = (l, l′) ∈ E: x ∈ Guard(e) and x′ ∈ Reset(e, x).
• Continuous transitions: (l, x1)

τ→ (l′, x2) if and only if
l = l′ and there exits a real δ ≥ 0 and a differential
curve x : [0, δ] → Rn with x(0) = x1, x(δ) = x2, for all
t ∈ [0, δ] we have x(t) ∈ Inv(l) and for all t ∈ (0, δ) we
have ẋ ∈ F(l, x(t)).

A discrete trajectory of H is a finite sequence
of locations l(1) · · · l(m) ∈ V∗ such that for some
xin(1), xout(1), · · · , xin(m−1), xout(m−1), xin(m) ∈ Rn: (i) (l(1), xin(1))

∈ Init(l(1)), and (ii) (l(j), xin(j))
τ→ (l(j), xout(j)), (l(j), xout(j))

d→
(l(j+1), xin(j+1)) (i = 1, · · · ,m − 1). Let Ld(H) ⊆ V∗ be the set
of all discrete trajectories of H.

Example 2.1: Figure 1 shows a hybrid system represent-
ing a temperature control system [1]. The system controls a
reactor tank by moving two independent control rods. The
goal is to maintain the coolant between the temperatures θm

and θM (θm < θM). When the temperature reaches its max-
imum value θM, the tank must be refrigerated with one of
the rods. When no rod is activated, the temperature rises
according to a differential equation θ̇ = θ/k + W, where k
and W are constants determined by the reactor tank. If rod
i ∈ {1, 2} is activated, then the temperature decreases ac-
cording to θ̇ = θ/k − Ri, where Ri is a constant determined
by control rod i and the reactor tank. A rod can be moved
again only if T time units have elapsed since the end of its
previous movement. If the temperature of the coolant can-
not decrease because there is no available rod, a complete
shutdown is required.

Fig. 1 A temperature control system.

3. Approximation Method

3.1 Parametric Rectangular Automata

The start point of the proposing method is approximation
of the target system by a parametric model. Let x =
(x1, · · · , xn) ∈ Rn be the continuous part of the state. A rect-
angular set is a conjunction of linear inequalities of the form
xi ≈ c, where ≈ is one of <,≤,=,≥> and c ∈ R. A variable
xi is called a parameter if the value of xi does not change
in all locations and in all discrete jumps. That is, it is a
symbolic constant. A parametric rectangular set is a con-
junction of linear inequalities of the form xi ≈ p, where p is
a parameter. For a (parametric) rectangular set B, let Bi be
its projection onto the ith coordinate. Thus a rectangular set
B ⊆ Rn is of the form B = B1 × · · · × Bn, where each Bi is a
bounded or unbounded interval.

We assume that the target system can be approximated
in the form of a class of hybrid system, called a parametric
rectangular automaton, defined as follows:

• For every location l, the set Init(l) and Inv(l) are para-
metric rectangular sets.
• For every location l, there is a rectangular set Bl such

that F(l, x) = Bl for all x ∈ Rn.
• For every edge e, the set Guard(e) is a para-

metric rectangular set, and there is a parametric
rectangular set Be and a subset Je ⊆ {1, · · · , n}
such that for all x ∈ R

n: Reset(e, x) =

{(x′1, · · · , x′n) | for all 1 ≤ i ≤ n, if i ∈ Je then
x′i ∈ Be

i else x′i = xi}.
In a parametric rectangular automaton, the derivative of

each variable stays between fixed bounds, which may be dif-
ferent in different locations. With each discrete jump across
an edge e, the value of a variable xi is either left unchanged
(if i � Je), or reset nondeterminiscally to a new value within
some interval Be

i determined by parameters (if j ∈ Je).
The idea behind the approximation is described as fol-

lows:

• Discrete jumps happen when values of some variables
reach to borders (e.g., θm, θM and T in Fig. 1). We do
not know the concrete values of them, but know only
the partial information (θm < θM and T > 0).
• For the derivative of each variable, we assume that

relative magnitude of it is known as a fixed interval
(e.g., 3 ≤ θ̇ ≤ 5). We remark that absolute values
are not necessary because all borders are given as pa-
rameters. For example, ẋi = 8, ẋ j = 4 with guards
xi ≤ bi, x j ≥ bj are equivalent to ẋi = 2, ẋ j = 1 with
guards xi ≤ b′i , x j ≥ b′j, where b′i = bi/4 and b′j = bj/4.

Figure 2 is an approximated model of the hybrid system
in Fig. 1.

Now the problem to be considered is described as fol-
lows: given a parametric rectangular automaton H, find a
set L̃d(H) ⊆ V∗ such that Ld(H) ⊆ L̃d(H). In addition, find

HIRAISHI: DERIVING DISCRETE BEHAVIOR OF HYBRID SYSTEMS UNDER INCOMPLETE KNOWLEDGE
2915

Fig. 2 A parametric rectangular automaton.

conditions on H so that the equality holds.
There are several semantics proposed for hybrid au-

tomata, such as timed transition semantics, time-abstract
transition semantics, and timed tube semantics [9], [10].
Since the proposing approach checks feasibility of each dis-
crete jump only, we have adopted a semantics in which all
continuous transitions are considered silent. This semantics
suffices for knowing qualitative behavior of the system.

3.2 Constraint Transition Graphs

The main step of the proposing method is approximation of
a given parametric rectangular automaton by a finite transi-
tion system, called a constraint transition graph.

Each discrete trajectory of a hybrid system gives a con-
straint on parameters. Consider the hybrid system in Fig. 2.
Suppose that · · · l1l0l1 · · · ∈ Ld(H). Then the following
(in)equalities must be true:

θin + 3t ≤ θout ≤ θin + 5t ∧
xout

1 = xin
1 + t ∧ xout

2 = xin
2 + t ∧

θin = θm ∧ θout = θM ∧
xin

1 = 0 ∧ xout
1 ≥ T

where θin, xin
1 , xin

2 are values of variables θ, x1, x2 when the
system goes into location l0, θout, xout

1 , xout
2 are values when

the system goes out of l0, and t is the duration of time
elapsed in location l0.

Now we apply existential quantifier to variables
θin, θout, xin

1 , xout
1 , xin

2 , xout
2 , t:

∃θin, θout, xin
1 , xout

1 , xin
2 , xout

2 , t :

θin + 3t ≤ θout ≤ θin + 5t ∧
xout

1 = xin
1 + t ∧ xout

2 = xin
2 + t ∧

θin = θm ∧ θout = θM ∧
xin

1 = 0 ∧ xout
1 ≥ T

≡ ∃θin, θout, xin
1 , xout

1 , xin
2 , xout

2 :

(θout − θin)/5 ≤ xout
1 − xin

1 ≤ (θout − θin)/3 ∧
xout

1 − xin
1 = xout

2 − xin
2 ∧

θin = θm ∧ θout = θM ∧

xin
1 = 0 ∧ xout

1 ≥ T

≡ ∃xout
1 :

(θM − θm)/5 ≤ xout
1 ≤ (θM − θm)/3 ∧

xout
1 ≥ T

≡ θM − θm ≥ 3T.

Since all (in)equalities are linear, we can use efficient quan-
tifier elimination techniques to perform above calculation
[6].

Similarly, we obtain constraint (θM − θm)/3 + (θM −
θm)/4+(θM−θm)/3 ≥ T ≡ 11(θM−θm) ≥ 12T from trajectory
l1l0l2l0l1, and constraint (θM − θm)/5 + (θM − θm)/6 + (θM −
θm)/5 < T ≡ 17(θM − θm) < 30T from trajectory l1l0l2l0l3.
On the other hand, trajectory l1l0l2 gives no constraint, i.e.,
constraint is always true, because x1 is unconstrained when
the system goes out of l0 and x2 is unconstrained when the
system goes into l0.

Given a hybrid system H, let Vk
H ⊆ V∗ denote the set of

all sequence of locations l(1)l(2) · · · l(j) such that (l(i), l(i+1)) ∈
E for i = 1, · · · , j − 1 and j ≤ k. That is, each element in
Vk

H is a fragment of discrete trajectories of H with a length
less than or equal to k. For each u ∈ Vk

H , let C(u) denote the
derived constraint. The idea of the proposing approximation
is to restrict the consideration on constraints to those derived
from Vk

H .
Note that if u′ ∈ Vk

H is a subsequence of u ∈ Vk
H , i.e.,

there exists v, w ∈ V∗ such that u = vu′w, then C(u)→ C(u′)
holds, where → is the logical implication. This means
that we need only sequences of length k when we intend
to extract all constrains derived from Vk

H . However, we
need to take care of initial fragments of trajectories, be-
cause initial fragments with a length less than k may not
be contained in other fragments of length k. For this pur-
pose, we introduce a special symbol φ. Suppose k = 5
and l0l1l0l2l0l1 ∈ Ld(H). Along this trajectory, we prepare
the following sequence of fragments: 〈φφφφφ〉, 〈φφφφl0〉,
〈φφφl0l1〉, 〈φφl0l1l0〉, 〈φl0l1l0l2〉, 〈l0l1l0l2l0〉, 〈l1l0l2l0l1〉. For
a trajectory l(1) · · · l(m) ∈ V∗ and a positive integer k, let
s/k denote the sequence of fragments obtained from s, i.e.,
s/k = 〈φk〉, 〈φk−1l(1)〉, 〈φk−2l(1)l(2)〉, · · · , 〈l(1) · · · l(k)〉, · · · ,
〈l(m−k+1) · · · l(m)〉. Let Ṽk

H denote the set of all such fragments
of trajectories.

Now we define the constraint transition graph of de-
gree k as CTGk

H = (Ṽk
H , Ẽ, ψ, 〈φk〉), where

• Ẽ ⊆ Ṽk
H × Ṽk

H denotes the set of edges defined by
(〈l(1) · · · l(k)〉, 〈l′(1) · · · l′(k)〉) ∈ Ẽ if and only if l′(i) =
l(i+1)(i = 1, · · · , k − 1) and (l(k), l′(k)) ∈ E.

• ψ : Ẽ → C(Ṽk
H)∪ {true} denotes a function that assigns

a constraint to each edge and is defined by ψ((u, u′)) =
C(u′) if C(u′) � C(u), ψ((u, u′)) = true otherwise.

For the hybrid system in Fig. 2, we obtain the con-
straint transition graph of degree 5 shown in Fig. 3, where
constraints assigned to edges are: (1) θM − θm ≥ 3T , (2)
θM−θm < 5T , (3) 11(θM−θm) ≥ 12T , (4) 17(θM−θm) < 30T ,
(5) θM − θm ≥ 3T , (6) θM − θm < 5T , (7) 7(θM − θm) ≥ 6T ,

2916
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

Fig. 3 The constraint transition graph of degree 5.

(8) 11(θM − θm) < 15T .

3.3 Theoretical Guarantee on Approximation

Let Ld(CTGk
H) ⊆ V∗ denote the set of all discrete trajectories

of CTGk
H , which is defined as follows: s = l(1) · · · l(m) ∈ V∗

is in Ld(CTGk
H) if and only if (i) s/k is a path on CTGk

H , and
(ii) C(s/k) := ∧iC(ui) is satisfiable, where s/k = u1, · · · , ur,

The following lemma is obvious from the definition be-
cause the constraint transition graph evaluates a subset of
constraints.

Lemma 3.1: Ld(H) ⊆ Ld(CTGk
H) for any positive integer

k.

Since any constraint evaluated in CTGk
H is also evalu-

ated in CTGk+1
H , we have

Lemma 3.2: Ld(CTGk+1
H) ⊆ Ld(CTGk

H) for any positive
integer k.

This result implies that the degree k can be used as a
control parameter for the accuracy in the approximation.

However, there exits a hybrid system H such that
Ld(H) � Ld(CTGk

H) for any positive integer k. One of the
reasons is that the system may produce infinitely many con-
straints. Let us consider the hybrid system in Fig. 2. Since
there is a cycle l2l0l2 in which variable x1 is not initialized,
i.e., not reset to a new value, the following constraint is de-
rived from trajectory l1l0(l2l0)kl3 where k is any positive in-
teger: k · ((θM − θm)/5 + (θM − θm)/6) + (θM − θm)/5 < T .

We consider a class of parametric rectangular automata
such that the equality Ld(H) = Ld(CTGk

H) holds. Unfortu-
nately, such a class is quite limited. One of such classes is
a parametric rectangular automata in which all variables are
simultaneously initialized at some point in the automaton.
Note that a guard condition with equality like xi = c is con-
sidered to be with an initialization, i.e., xi = c → xi := c.
We define a complexity measure ξ(H) of a parametric rect-
angular automaton H by the maximal length of fragments of

discrete trajectories in which at least one variable is not ini-
tialized on each edge. If the length of a fragment s is greater
than ξ(H), then all variables are simultaneously initialized
at least once in s.

Theorem 3.3: Suppose that H is a parametric rectangular
automaton. If ξ(H) � ∞, then Ld(H) = Ld(CTGξ(H)+2

H).

Proof. Let k = ξ(H) + 2. By Lemma 3.2, Ld(H) ⊆
Ld(CTGk

H) holds. Let s = l(1) · · · l(m) ∈ Ld(CTGk
H). If m ≤ k,

then obviously s ∈ Ld(H). We consider the case that m > k.
Then s ∈ Ld(H) if and only if C(〈φl(1) · · · l(m)〉) ≡ C(s/k) ≡
true. Note that C(〈φl(1) · · · l(m)〉) → C(s/k) is always true
and we need to prove the converse.

Let x = (x1, · · · , xn) be the continuous part of the state.
Let xin(j) = (xin(j)

1 , · · · , xin(j)
n) and xout(j) = (xout(j)

1 , · · · , xout(j)
n)

denote the values of x when the system goes into location
l(j) and goes out of l(j), respectively. Suppose that the system
goes along the discrete trajectory s. Let f(j) be the constraint
that must hold when the system goes through location l(j).
As we have seen in 3.2, f(j) is a conjunction of (in)equalities
over xin(j), xout(j) and parameters. Note that if a variable xi

is not initialized on edge (l(j), l(j+1)), then f(j+1) has equality
xout(j)

i = xin(j+1)
i and therefore xout(j)

i is contained in both f(j)

and f(j+1). Otherwise, xout(j)
i is contained in f(j) only.

Then C(〈φl(1) · · · l(m)〉) is of the form ∃xin(j), xout(j)

(j = 1, · · · ,m) : f(1) ∧ · · · ∧ f(m). Since m > k = ξ(H),
there are locations l(r1), · · · , l(rh) at which all variables are si-
multaneously initialized before entering them. Therefore,
C(〈φl(1) · · · l(m)〉) can be written in the form F0 ∧ · · · ∧ Fh

such that
Fi ≡ ∃xin(j), xout(j)(j = ri, ri + 1, · · · , ri+1 − 1) :

f(ri) ∧ f(ri+1) ∧ · · · ∧ f(ri+1−1)

where r0 = 1 and rh+1 = m + 1. Since ri+1 − ri ≤ ξ(H) for
any i = 0, · · · , h, there exists u ∈ s/k such that u contains
l(ri−1)l(ri) · · · l(ri+1−1)l(ri+1), where l(0) = φ and l(m+1) is empty,
as a subsequence and therefore C(u)→ Fi holds. Hence, we
have C(s/k)→ C(〈φl(1) · · · l(m)〉).

3.4 State Space Representation

To check properties on discrete trajectories in Ld(CTGk
H),

we need a finite representation of it. For this purpose, we

define a finite transition system T̃ k
H = (Q̃,

d̃→, q̃0) by

• Q̃ = Ṽk
H × 2ψ(Ẽ), i.e., each state is a pair (u,C) where u

is a state of CTGk
H and C is a subset of all constraints

appeared in CTGk
H .

• d̃→⊆ Q̃ × Q̃ is defined by (u,C)
d̃→ (u′,C′) if and only

if (i) (u, u′) ∈ Ẽ, (ii) ψ((u, u′))∧ (∧Ci∈CCi
)

is satisfiable,
and (iii) C′ = C ∪ ψ((u, u′)).
• q̃0 = (〈φk〉, ∅).

Then s = l(1) · · · l(m) ∈ Ld(CTGk
H) if and only if there exists

a trajectory q̃0
d̃→ (u1,C1)

d̃→ · · · d̃→ (um,Cm) on T̃ k
H such

that s/k = 〈φk〉, u1, · · · , um.

HIRAISHI: DERIVING DISCRETE BEHAVIOR OF HYBRID SYSTEMS UNDER INCOMPLETE KNOWLEDGE
2917

4. Implementation

The proposed method can be implemented easily on con-
straint logic programming languages. Constraint logic pro-
gramming (CLP) is a merger of two declative paradigms:
constraint solving and logic programming [6]. The syntax
of CLP language is similar to that of logic programming
language like Prolog, except that various kind of numeri-
cal and/or algebraic constraints can be described in the pro-
gram. There have been several researches on application of
CLP to the analysis of hybrid systems [11], [14].

We here show an implementation on a constraint logic
programming language Keyed CLP [12]. Keyed CLP
is equipped with a linear constraint solver based on the
simplex method, and allows users to write linear equali-
ties and inequalities on the Real field directly in the pro-
gram. In addition, Keyed CLP has a different type of
predicates, called keyed predicates, which has the form
Predicate-Name (Key1, · · · ,Keyn : Arg1, · · · , Argm). Each
predicate in logic programming can be seen as a relational
table in a database. A keyed predicate corresponds to a tu-
ple with Key1, · · · ,Keyn as the key attributes. In a relational
table, a tuple is uniquely determined if all the values of the
key attributes are specified. This property is preserved in the
execution of Keyed CLP, i.e., every predicate which has the
same predicate name and the same key values must have the
same values of Arg1, · · · , Argm. If the key part is empty, then
the values of Arg1, · · · , Argm are unique on every computa-
tion paths. This mechanism allows us to introduce global
variables into logic programming.

The following is a source code of Keyed CLP that com-
putes the approximated state space T̃ k

H from the constraint
transition graph in Fig. 3.

/* simulator */

exec(terminal, V):-!.

exec(ID, V):- lookup(stack(ID, V :)),!.

exec(ID, V):- stack(ID, V :),

link(ID, ID1, N), constraint(N, V, V1),

write([[ID, V], [ID1, V1]]), nl,

exec(ID1, V1).

go:- exec(snnnnn, [0,0,0,0,0,0,0,0]), fail.

go.

/* link */

link(snnnnn, snnnn0, 0).

link(snnnn0, snnn01, 0).

link(snnnn0, snnn02, 0).

link(snnn01, snn010, 0).

link(snn010, sn0101, 1).

...

link(s20203, terminal, 0).

/* parameters and stack */

param(: TM, Tm, T):- TM > Tm, T > 0.

stack(_, _ :).

/* constraints */

constraint(0, V, V):-!.

constraint(1, [A, B, C, D, E, F, G, H],

[1, B, C, D, E, F, G, H]):-

(A = 1; param(: TM, Tm, T),

TM - Tm >= 3 * T), !.

constraint(2, [A, B, C, D, E, F, G, H],

[A, 1, C, D, E, F, G, H]):-

(B = 1; param(: TM, Tm, T),

TM - Tm < 5 * T), !.

...

constraint(8, [A, B, C, D, E, F, G, H],

[A, B, C, D, E, F, G, 1]):-

(H = 1; param(: TM, Tm, T),

11 * (TM - Tm) < 15 * T), !.

The algorithm explores states in a depth-first manner.
Predicate exec() is the main part of the program. The
graph structure of the constraint transition graph is given by
predicates link(). Satisfiability of constraints are checked
in predicate constraint(). It refers a keyed predicate
param(: TM, Tm, T) with empty key, which is used as
global variables. Visited states are stored in a system stack
defined by a keyed predicate stack(ID, V :), where ID
and V correspond to elements in Ṽk

H and 2ψ(Ẽ), respectively.
If we call keyed predicate stack(ID, V :)with values as-
signed to ID and V, then it is automatically push onto a sys-
tem stack, and the status of the stack can be checked by sys-
tem predicate lookup(). In the second line of exec(), call-
ing lookup(stack(ID, V :)) checks if the current state
is already in the stack or not. If it is true, then exec() suc-
ceeds and backtrack occurs by calling fail in go. Oth-
erwise, the current state is push onto the stack (calling
stack(ID, V :) in the third line of exec()) and succes-
sors are explored. Output of the program is the set of all

pairs (̃q, q̃′) of states such that q̃
d̃→ q̃′ and q̃ is reachable

from q̃0.

5. Related Work

QSIM [7] is one of typical algorithms for qualitative rea-
soning. It describes the system by a collection of qualita-
tive differential equations. Each variable is a function of
time and the value at each time step is represented as a pair
(qmag, qdir), where qmag takes a value from a totally or-
dered set of symbols, called landmark values, and qdir is the
sign of its derivative. Differential equations are described
by constraints on qualitative values. For example, constraint
(d/dt x y), which means dx/dt = y, is true if and only
if qdir of x is equal to sign(y), where sign(y) is determined
from qmag of y.

The behavior of QSIM algorithm is outlined as follows:
It generates all successors without considering constraints,
and eliminate some of them which are inconsistent. Repeat

2918
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

this process until no new states are obtained. It was shown
that the behavior generated by QSIM contains the real be-
havior. Comparing with QSIM, the proposing method is
also an exploration on discrete state space but it takes ac-
count numerical constraints represented by linear inequali-
ties. Computational cost is not so high because constraints
are restricted to be linear. Moreover, we can control the de-
gree of accuracy in the simulation.

Discrete abstraction of state space is also an approach
to make the state space to be a discrete set [2]. It parti-
tions the state space by an equivalence relation called bisim-
ulation. If a finite bisimulation is obtained, then we can
know discrete behavior from the abstracted transition sys-
tem. However, there is no guarantee that a finite bisimula-
tion exists.

As an approximation method for analyzing linear hy-
brid systems, a method based on convex approximation was
proposed [8]. It computes upper approximations containing
the convex hull of the reachability set, and the computation
always terminates. While the convex approximation directly
manipulate the state space, the proposing method works on
the parameter space which has a smaller dimension than that
of the state space. In addition, the method in [8] focuses on
the reachability set only, not on the dynamics of the model
such as discrete trajectories.

6. Conclusion

The proposing approach is also applicable to more general
class of parametric hybrid systems in which invariants and
guards are defined as linear sets instead of rectangular sets.
For nonlinear hybrid systems, we need to have a rectan-
gular approximation of the system. Accuracy of the result
strongly depends on this step. Therefore, we need to develop
a systematic way to do this. It was shown that quantifier
elimination technique can be applied to larger classes than
rectangular automata, such as hybrid automata with para-
metric inhomogeneous linear differential systems at each lo-
cation [4], [5]. We will be able to incorporate this result with
the proposed approach.

References

[1] R. Alur, et al., “The algorithmic analysis of hybrid systems,” Theo-
retical Computer Science, vol.138, pp.3–34, 1995.

[2] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas, “Discrete
abstraction of hybrid systems,” Proc. IEEE, vol.88, no.7, pp.971–
984, 2000.

[3] R. Alur and T.A. Henzinger, “Parametric real-time reasoning,” Proc.
25th Annual ACM Symposium on Theory and Computing, pp.592–
601, 1993.

[4] H. Anai and V. Weispfenning, “Reach set computations using real
quantifier elimination,” Proc. HSCC2001, LNCS 2034, pp.63–76,
2001

[5] H. Anai and V. Weispfenning, “On reachability problem for linear
hybrid systems,” Trans. Institute of Systems, Control and Informa-
tion Engineers, vol.15, no.3, pp.109–116, 2002.

[6] J. Jaffar and M.J. Maher, “Constraint logic programming: A survey,”
J. Logic Programming, vol.19/20, pp.503–581, 1994.

[7] B. Kuipers, Qualitative Reasoning, The MIT Press, 1994.

[8] N. Halbwachs, Y. Proy, and P. Raymond, “Verification of linear hy-
brid systems by means of convex approximations,” Lecture Notes in
Computer Science, vol.818, pp.222–237, 1994.

[9] T.A. Henzinger, “The theory of hybrid automata,” Proc. 11th An-
nual Symposium on Logic in Computer Science (LICS), pp.278–
292, 1996.

[10] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya, “What’s decid-
able about hybrid automata?,” J. Comput. Syst. Sci., vol.57, pp.94–
124, 1998.

[11] T.J. Hickey and D.K. Wittenberg, “Modeling hybrid systems us-
ing analytic constraint logic programming,” Technical Report, Dep.
Computer Science, Brandeis Univ., 2002.

[12] K. Hiraishi, “A constraint logic programming language Keyed CLP
and its applications to decision making problems in OR/MS,” Deci-
sion Support Systems, vol.14, pp.269–281, 1995.

[13] H. Matsuno, S. Fujita, A. Doi, M. Nagasaki, and S. Miyano, “To-
wards biopathway modeling and simulation,” Lecture Notes in Com-
puter Science, vol.2679, pp.3–22, 2003.

[14] L. Urbina, “Analysis of hybrid systems in CLP(R),” Lecture Notes
in Computer Science, vol.1118, pp.451–467, 1996.

Kunihiko Hiraishi received from the To-
kyo Institute of Technology the B.E. degree in
1983, the M.E. degree in 1985, and D.E. degree
in 1990. He is currently a professor at School of
Information Science, Japan Advanced Institute
of Science and Technology. His research inter-
ests include discrete event systems and formal
verification. He is a member of the IEEE, IPSJ,
and SICE.

