JAIST Repository

https://dspace.jaist.ac.jp/

Title A Heuristic Algorithm for| One- Machi i
Ti me Scheduling Problem wjth Periodi

Author(s) CHI BA, Ei shi ; HI RAI SHI , Kuni hi ko
| EI CE TRANSACTI ONS on Fundamental s «

Citation Electronics, Communicatiops and Comj
Sciences, E88-A(5): 1192-0199

Issue Date 2005-05-01

Type Journal Article

Text version publ i sher

URL http://hdl.handle.net/ 10109/ 4693
Copyright (C)2005 1 EI CE. . Chi ba, |
| EI CE TRANSACTI ONS on Funpgdamental s

Rights El ectronics, Communicatiohs and Comj
Sciences, E88-A(5), 2005, 1192-1199.
http:// www.ieice.org/jpn/ftrans_onli:

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



1192

IEICE TRANS. FUNDAMENTALS, VOL.E88-A, NO.5 MAY 2005

| PAPER Special Section on Discrete Mathematics and Its Applications

A Heuristic Algorithm for One-Machine Just-In-Time Scheduling

Problem with Periodic Time Slots

Eishi CHIBA', Student Member and Kunihiko HIRAISHI'®, Member

SUMMARY  Just-in-time scheduling problem is the problem of finding
an optimal schedule such that each job finishes exactly at its due date. We
study the problem under a realistic assumption called periodic time slots.
In this paper, we prove that this problem cannot be approximated, assuming
P#NP. Next, we present a heuristic algorithm, assuming that the number
of machines is one. The key idea is a reduction of the problem to a network
flow problem. The heuristic algorithm is fast because its main part consists
of computation of the minimum cost flow that dominates the total time.
Our algorithm is O(n®) in the worst case, where n is the number of jobs.
Next, we show some simulation results. Finally, we show cases in which
our algorithm returns an optimal schedule and is a factor 1.5 approximation
algorithm, respectively, and also give an approximation ratio depending on
the upper bound of set-up times.

key words: scheduling, just-in-time, set-up times, heuristic algorithm, min-
imum cost flow

1. Introduction

For many years, research on scheduling has focused on sin-
gle performance measures, referred to as regular measures
that are nondecreasing in job completion times. Most of the
literature deals with such regular measures as mean flow-
time, mean latency, percentage of tardy jobs, and mean tar-
diness (see [1] for the definition of terms). With the grow-
ing interest in Just-In-Time (JIT) production, the demand
for research into problems with irregular performance mea-
sures has considerably increased (see [2]). In JIT produc-
tion, an ideal schedule is one in which all jobs finish exactly
on their assigned due dates. There are only a few good stud-
ies that deal with such ideal schedule; see Cormen et al. [3]
for such a classical and famous scheduling problem, some-
times called activity-selection problem.

Recently, a quadratic time algorithm which solves gen-
eralization of activity-selection problem was presented in
[4]. A polynomial time algorithm which solves a more gen-
eral class than above was presented in [5]. Cepek and Sung
[4] suggests that the main contribution of Hiraishi et al. [5]
lies in the results for the identical parallel machines with due
dates. It was shown in [5], that the problem of activity se-
lection is solvable in polynomial time even if a nonnegative
weight is assigned to each job, a nonnegative set-up time is
assigned to each ordered pair of jobs, and the objective is to

Manuscript received August 16, 2004.
Manuscript revised November 19, 2004.
Final manuscript received January 5, 2005.

"The authors are with the School of Information Science, Japan
Advanced Institute of Science and Technology, Ishikawa-ken, 923-
1292 Japan.

a) E-mail: hira@jaist.ac.jp
DOI: 10.1093/ietfec/e88-a.5.1192

maximize the weighted number of just-in-time jobs, where
a job is called just-in-time if it is completed exactly on its
due date. Considering real-life situations, jobs which are
not processed in some period will be scheduled on the next
chance, e.g. tomorrow, next week, next month, etc. We can
formalize such situations as periodic time slots.

The reason that all scheduled jobs must be just-in-time
in our problem simply comes from the fact that inventory
costs must be reduced in production. In manufacturing,
if the time instance of manufacturing a product is earlier
than the scheduled shipping time, inventory costs increases
proportionally. The concept of periodic time slots comes
from the real situation of production. For example, we can
have an assumption that the shipping time is fixed on a span
(daily, weekly, monthly, etc.) basis. Our problem was first
studied by Hiraishi [6] in the environment of identical paral-
lel machine. There are many practical problems motivating
our study, e.g. automotive manufacturing, observation from
satellites etc.

In this paper, we study the problem of Just-In-Time
scheduling with periodic time slots. A processing time and
periodically repeating due dates are assigned to each job,
where the period is same for all jobs. A set-up time is as-
signed to each ordered pair of jobs. The objective is to min-
imize the maximum number of periodic time slots required
for each machine that are sufficient for scheduling all given
jobs, in which each job is completed exactly at one of its due
dates. We first formulate our problem as an optimization
problem. Next, we prove the inapproximability result for
the problem assuming P#NP. Next, we present a heuristic
algorithm using network flows assuming a single machine.
Then, we show some simulation results. Finally, we show
cases for which our algorithm returns an optimal schedule
and is a factor 1.5 approximation algorithm, respectively,
and also give an approximation ratio depending on the up-
per bound of set-up times.

2. Notation and Problem Formulation

The scheduling problem considered here has multiple time
slots and in each time slot, due dates of a job j are d;, L +
dj,2L + dj, ..., where L is the length of a time slot. Each
job is processed by parallel identical machines, and should
be finished exactly at its due date in one of time slots. Then
the problem is to find a nonpreemptive schedule that mini-
mizes the maximum number of time slots required for each
machine when all jobs are processed.

Copyright © 2005 The Institute of Electronics, Information and Communication Engineers



CHIBA and HIRAISHI: A HEURISTIC ALGORITHM FOR ONE-MACHINE JUST-IN-TIME SCHEDULING PROBLEM WITH PERIODIC TIME SLOTS

We describe a formal definition of the problem. The
following notations will be used:

N is the set of natural numbers.

M, M,, ..., M,: mparallel identical machines.

J ={1,2,...,n}: the set of n jobs to be processed.

pj (> 0): processing times of job j on a machine.

d;j (= pj): due dates of job j.

sjk (= 0): set-up times for each ordered pair of jobs j
and k, i.e., the time difference between the completion
of j and the start of k must be at least s if they are
scheduled consecutively on the same machine.

e L (> maxje,s{d;}): the length of a time slot.

The assumption of d; > p; is practical because if a job is
scheduled just-in-time, it completely fits within a single time
slot.

A schedule is a mapping S @ j = (M, C}), where
M[Sj] is the machine on which job j is processed and Cf is
the time instant when job j is finished on machine ij]. A
schedule S is called feasible if

(1) for each job j, there exists a nonnegative integer rf
such that Cf = rf -L+dj,and

(ii) for every ordered pair of jobs j and k, if M[Si] = M[Sk],

s S S s
then C + sj + pr < CY or Cp + 53+ pj < €.

Let 7(S) := max e J{rf }. Then our problem, i.e. Just-In-
Time Scheduling Problem with Periodic Time Slots (JIT-SP)
is stated as follows: Given processing time p;, due dates d;,
set-up times s, and the length of a time slot L; minimize
the value 7(S) called the objective function over the set of all
feasible nonpreemptive schedules. Intuitively, the problem
is to schedule n jobs so that the maximum number of time
slots required for each machine is minimized. When the
number of machines is equal to one, i.e., m = 1, the problem
is to schedule 7 jobs so that the number of time slots required
for the machine is minimized.

An optimal schedule for an instance of the problem is a
feasible schedule that achieves the smallest objective func-
tion value, which is called the optimal cost. The optimal
cost plus one means the number of time slots in the opti-
mal schedule. If the number of machines is no less than the
number of jobs, then there is a feasible schedule in which
no machines executes more than one job. Consequently, the
problem is trivial. From now on, we assume that m < n.

Now, for every ordered pair of jobs j and k, let g be a
nonnegative integer such that

(gjk_1)'L+dk<dj+sjk+pkﬁgjk’L"'dk- (D)

This inequality means that a machine can start processing
job k in gj time slots after job j is finished on the same
machine such that both jobs are finished exactly at their
due dates. Given an instance of the problem, such gj
uniquely exists for any ordered pair of jobs j and k. Let
g 1= Max ey j#{gjk}-

Known results are [7]:

1193

2L 3L

]
6

Fig.1 A schedule by the greedy method.

T L 2L

C10OC 1 O0l |
1 2 3 i45 6

Fig.2  An optimal schedule.

o JIT-SP becomes N P-hard (in the strong sense) even for
the single machine case (i.e. for m = 1).

o If set-up times are not considered (i.e. s = 0), JIT-SP
is solvable in polynomial time for an arbitrary number
of identical parallel machines.

Example 1: We consider the following instance of the one-
machine six-job problem, i.e. m = 1,n = 6: s = 1 for
every ordered pair of jobs jand k, L = 17, and the following
processing times and due dates.

J || pi|d
1 5 7
2 2 110
31 5|16
41 2| 3
5 1 5
61 7|13

Using the algorithm in [5], we can obtain a feasible so-
lution in a greedy way, i.e., we schedule maximum possible
number of jobs from the first time slot sequentially. Then,
three time slots are required for the machine; see Fig. 1.
However, two time slots are sufficient for the optimal sched-
ule; see Fig. 2.

3. Inapproximability Result for JIT-SP

In this section we prove that JIT-SP cannot be approximated,
assuming P#NP.

Theorem 1: For any polynomial time computable function
a(n), JIT-SP cannot be approximated within a factor of a(n)
even for the single machine case (m = 1), unless P=NP.

Proof: Assume, for a contradiction, that there is a factor
a(n) polynomial time approximation algorithm, A, for the
general JIT-SP. We will show that A can be used for de-
ciding the well-known strongly NP-complete Hamiltonian
path problem (see e.g. [8]) in polynomial time, thus imply-
ing P=NP. The reduction is given below.

Hamiltonian path (HP)

Instance: An undirected graph G = (V,E), where V =
{vy,...,v,} for some n € N — {0}.

Question: Is there a Hamiltonian path in G, i.e. a permu-
tation of vertices vj,, vj,, . . ., v;, such that (v, v;,,) € E
foreveryl <k <n-1?



1194

Now we shall construct an instance of our JIT-SP as follows.

JIT-SP

Instance: J = {1,2,...,n} (we identify jobs with vertices
of the input graph), m = 1, L = 1, p; = d; = 1 for all
jeJ,and

Sjk =

0 if(Uj,l)k) (S E,
a(n) -n otherwise.

This reduction transforms an input of HP to an input of JIT-
SP such that

e if G has a Hamiltonian path, then the number of time
slots in an optimal schedule of the input of JIT-SP is n,
and

e if G does not have a Hamiltonian path, then an optimal
schedule of the input of JIT-SP is of number of time
slots > a(n) - n.

Observe that, on the above input of JIT-SP, algorithm
A must return a solution of number of time slots < a(n) - n,
exactly n in fact, in the first case, and a solution of number
of time slots > a(n) - n in the second case. Thus, it can be
used for deciding whether G contains a Hamiltonian path.
O
Notice that, to obtain such a strong nonapproximability
result, we had to assign set-up time that violates s < h- L
(j,k e J, j# k, h € N\{0}), where & is a constant. If we
restrict ourselves to inputs of JIT-SP in which the number of
machines, m = 1 and satisfies s < h-L (j k€ J, j * k,
h € N\ {0}), the problem remains NP-hard (in the strong
sense), but is no longer hard to approximate. We describe
our solution to that in Sect. 6.

4. A Heuristic Algorithm

In this section, we present a heuristic algorithm for one-
machine JIT-SP using network flows. This algorithm also
gives a lower bound on the number of time slots for general
JIT-SP.

From this section, the following well-used notations
are used. Let G = (V,A) be a digraph with vertex set
V and arc set A. For each arc e € A, let lcap(e) and
ucap(e) be lower and upper bounds for the flow across e
and let w(e) be the weight of shipping one unit of flow
across e, and for each node v € V let supply(v) be the
supply or demand at node v. We talk about a supply if
supply(v) > 0 and we talk about a demand if supply(v) < 0.
We assume that the supplies and demands balance, i.e.,
>vev supply() = 0. A flow f is a function on the arcs sat-
isfying the capacity constraints and the mass balance condi-
tions, i.e., lcap(e) < f(e) < ucap(e) for every arc e € A and
S“Pply(v) = Ze;source(e):v f(e) - Ze;target(e):v f(é‘) for every
nodev € V.

For every arc e € A, w(e) is the weight of sending one
unit of flow across the arc. The total weight of a flow f is
therefore given by w(f) = 3 ,c4 f(e) - w(e).

Now, given an instance of general JIT-SP, we construct

IEICE TRANS. FUNDAMENTALS, VOL.E88-A, NO.5 MAY 2005

a simple connected digraph G = (V, A) as follows:

e The set V consists of 2n+2 nodes, i.e., s, a;,da, ..., a,,
by, by, ..., b,, t, where s is the source and ¢ is the sink;
and each pair of vertices a;, b; represents job j and are
called transshipment vertices.

e The set A consists of the following n” + 2n arcs:

— (s,a;) with w(s,a;) = 0 forall j € J;

— (aj, bj) with w(a;, b;) = —wjq, forall j € J;

— (bj,t) with w(b;, 1) = O forall j € J;

— (bj, ar) with w(b;, ar) = gj for every ordered pair
of jobs jand k

e [cap(e) = 0 and ucap(e) = 1 for all e € A.

where wjqp, is any positive integer such that g < wje,. This
inequality means that the absolute value of the weight of
each arc (a;, b;) which represents a job j is greater than the
weight of other arcs.

Example 2: We consider the following instance of the one-
machine four-job problem, i.e., m = 1,n = 4: 53 = 1 for
every ordered pair of jobs j and k, L = 8, and the following
processing times and due dates.

Jj |l pild
1212
2216
3 3 4
428

Given above instance, we can compute g by Eq. (1)
as follows: g1 = 0,913 = 1,914 = 0, 921 = 1, go3 = 1,
gu=Lgin=193=1,934a=0,941 =2, 900 =1, 943 = L.
Then, we construct G consisting of 10 nodes and 24 arcs, as
shown in Fig. 3.

Next, for above-constructed G, we solve the minimum
cost flow problem that can be stated as follows:

Minimize w(f) subject to

m  (v=ys),
supply(v) =40 (e V\{s,1}),

-m (v=1),

0< f(e) < 1forallee€ A.




CHIBA and HIRAISHI: A HEURISTIC ALGORITHM FOR ONE-MACHINE JUST-IN-TIME SCHEDULING PROBLEM WITH PERIODIC TIME SLOTS

Fig.4  Anexample of G’ obtained from Example 2.

Now, it is easy to find a feasible flow in G because m <
n. For example, the flow defined by

1 ifu=sandv=aqa; (1<j<m),

1 ifu=ajandov=>b; (1<j<n),
fw,v) =41 ifu=b;(1<j<m—1, j=n)and v=t,

1 ifu=bjandv=aj, (m<j<n—1),

0 otherwise

is one of them.

A minimum cost flow maps each arc to a zero or one.
Each arc (aj, b;), which is a pair of transshipment vertices,
are always mapped to one. It is because we define the func-
tion w on each arc (a;, b;) by —wjqp such that g < wjep.

We here introduce G’ in order to represent a flow in G.
The vertex set of G’ is equal to the vertex set of G. The arc
set of G’ consists of arcs such that f(e) = 1 for all e € A.
Therefore, when G’ is depicted in a figure, we omit arcs
such that f(e) = 0, and depict arcs such that f(e) = 1 for all
e € A. Then, there exist m paths from s to ¢ in G’ obtained
by computing a minimum cost flow for G. Note that, if w(e)
for all e € A are positive, there exist no paths outside of m
paths from s to # in G’. But, there may exist some directed
cycles apart from the m paths in G’ because each w(a;, b))
is negative. Such example is shown in Fig. 4. This is the G’
obtained by computing a minimum cost flow for G shown in
Fig. 3. There is only one path from s to ¢ because of m = 1
and one directed cycle, i.e., a3 — b3z — a4 — by — a3, in
this G’.

If G’ has no directed cycles, G’ corresponds to a fea-
sible schedule as follows. We can assume that there are
exactly m paths from s to ¢ and no arcs apart from the m
paths in G’. We can describe m paths as m flows. More pre-
cisely, the flow that G’ represents can be decomposed into
exactly m flows fi, f>,..., fin such that f = X, fi. The
arcs at which f; has value one determine a path from s to ¢.
We can associate each flow f; with a machine and schedule
the jobs represented by arcs (a;, b;) belonging to the same
path from s to ¢ on the associated machine. There are m!
such mapping from {fi, f>, ..., fu} to {My, M>, ..., M,,} but
we are free to select arbitrarily one of them because the ma-
chines are identical. If a path from s to ¢ in G’ goes through
an arc with a positive weight, then the jobs following this
arc are processed in the next or later time slots. More pre-
cisely, each path 7 from s to 7 in G’ is decomposed into paths

1195
Fig.5 Anexample of G’ obtained from Example 2.
©® 2 @ © ©®
0 2 4 6 8 10 12 14 16
A —
1 2 3 4
Fig.6  An optimal schedule for Example 2.
my, Mo, . .., by removing every arc with a positive weight.

We assign each path x; to a time slot as follows.

(i) Assign path 7y to the first time slot.

(ii) Suppose that path 7; is assigned to the k-th time slot. If
the arc between 71; and 7, has positive weight k', then
assign path m;,1 to the (k + k’)-th time slot.

Therefore, we can associate G’ with a feasible schedule if
G’ has no directed cycles.

Example 3: We consider the same instance as Example 2.
We compute a minimum cost flow for G shown in Fig. 3.
Note that, the flow is underspecified. There generally exist
some flows that have the same total weight. Such example
is shown in Fig. 5. The arc from b, to a3 has weight 1. Both
arcs from b to a, and b3 to a4 have weight 0. This is also
obtained by computing a minimum cost flow for G shown
in Fig.3. This G’ has no directed cycles. Therefore, this
corresponds to a feasible schedule. The obtained schedule
is shown in Fig. 6. In this case, the schedule is optimal.

When G’ has no directed cycles, the total number of
time slots in the feasible schedule to which G’ corresponds
is as follows.

D, (fe)-we) +m.

e€A,w(e)>0

Remark 1: When G’ has no directed cycles, the feasible
schedule to which G’ corresponds minimizes the total num-
ber of time slots. But, we want to find the schedule which
minimizes the maximum number of time slots required for
each machine. If the number of machines is one, i.e.,m = 1,
both are equal. Thus, when m = 1 and G’ has no directed cy-
cles, a schedule which G’ corresponds to, is optimal. There-
fore, the obtained schedule is optimal in the case of Example
3.

Remark 2: Generally, G’ may have some directed cy-
cles in addition to some paths from s to f. There-
fore, a lower bound on the total number of time slots is



1196
@
8 @
@
Fig.7

Yiecan(e>0 (f(e) - w(e)) + m. Thus, the following expression
gives a lower bound on the number of time slots for general
JIT-SP.

1

D (&) wen|+ 1.

e€A,w(e)>0

We assume m = 1 in what follows. When G’ has some
directed cycles, G” does not directly correspond to a feasible
schedule by the above-mentioned way. In this paper, we
obtain a feasible schedule as follows even if G’ has some
directed cycles.

Heuristic Algorithm (the case of one machine):
Step 1. Construct G.
Step 2. Compute a minimum cost flow for G. (If G’ has no
directed cycles, go to Step 5; otherwise go to Step 3.)
Step 3. Find an arc (b}, ax) on a directed cycle with
min . jres{w(bj, a;)) — wbj, ap), w(by, ax) — wibj, ar)},
where a; is the first node and b; is the last node on the
path from s to 7 in G'.
Step 4. For the arc (b, a;) obtained at Step 3,
IF w(bj, a;) — w(bj, ar) < w(by, ar) — w(b;, ax)
fj,ar) =0, f(s,a;) =0,
fbj,a) =1, f(s,a1) = 1.
ELSE
fbj,ar) =0, f(by,1) =0,
fna) =1, f(b;,1) = 1.
(If G’ that represents updated flow has no directed cy-
cles, go to Step 5; otherwise go to Step 3.)
Step 5. Obtain a feasible schedule from G’.

At Step 2, G’ has exactly one path from s to ¢ because of
m = 1. If G’ has no directed cycles, we obtain an optimal
schedule. Otherwise, we do not necessarily obtain an opti-
mal schedule. At Step 3, we find an arc which is deleted in
G’. The number of operations in Step 3 is proportional to
the number of arcs in the directed cycles. Step 4 is to update
current flow. The updation of the flow is shown in Fig. 7.
Figure 7(a) corresponds to original G’. If the conditional ex-
pression of if statement at Step 4 is true, the G’ which repre-
sents updated flow corresponds to Fig. 7(b). Otherwise, the
G’ which represents updated flow corresponds to Fig. 7(c).
The role of Step 4 is to reduce the number of directed cycles
in G’ by exactly one. Therefore, the total number of Step 4
operations over the heauristic algorithm is equal to the num-
ber of directed cycles in G’ at Step 2. At Step 2, G’ has at

(b)

IEICE TRANS. FUNDAMENTALS, VOL.E88-A, NO.5 MAY 2005

The updation of G’ at Step 4.

most [(n — 1)/2] directed cycles. When each directed cycle
contains exactly two (a;, b;)-type arcs, G’ has |[(n — 1)/2]
directed cycles. We can assign G’ obtained at Step 5 to a
feasible schedule because G’ always has no directed cycles.
At that time, the number of time slots in the feasible sched-
ule is as follows:

(fle) - w(e)) + 1.

ecA,w(e)>0

2

In fact, the arc reversal transformation (cf. [9]) is used
to remove arcs with negative weights before computing a
minimum cost flow at Step 2. Then, the flow value is set
to n + 1 because 1 is the original flow value and # is the
increase in the flow value by the arc reversal transforma-
tion. A minimum cost flow is computed in time O(n*) us-
ing the successive shortest path algorithm as presented by
[9]. Computation of a minimum cost flow obviously domi-
nates the total computation time for our heuristic algorithm.
Therefore, our algorithm returns a feasible schedule in time
on®).

Remark 3: We presented a method based on network flow
in this section, but it can also be solved based on Travel-
ing Salesman Problem (TSP) and cycle cover. Concretely
speaking, we reduce one-machine JIT-SP to TSP by con-
structing G, and then use a solution of the minimum cost
cycle cover problem (i.e., the problem of finding a min cost
set of directed cycles that cover all the vertices in a given
directed graph). The minimum cost cycle cover problem is
a relaxation of TSP, and it is solvable in time O(n?) by a
well-known reduction to the assignment problem [10]. If an
optimal solution for this problem consists of a single cycle,
it must be an optimal TSP tour as well; however, an optimal
solution consists of multiple cycles in general. We connect
such cycles.

5. Computational Experiment

We have implemented our algorithm in C++ on a Dell Preci-
sion 650 PC. For our experiment, the number of machines,
m = 1 and length of a time slot, L = 20. We generate our
problem instances randomly as follows:

e O<duedatesd; < L(jeJ)

fOS: Microsoft Windows 2003 Server, CPU: Intel Xeon
3.06 GHz x 2, RAM: 4 GByte.




CHIBA and HIRAISHI: A HEURISTIC ALGORITHM FOR ONE-MACHINE JUST-IN-TIME SCHEDULING PROBLEM WITH PERIODIC TIME SLOTS

Table 1  The rate of obtaining G’ which has no directed cycles at Step 2.

n 5 10 | 20 | 40 | 80 | 160 | 320
Rate(%) || 35 | 21 5 4 5 2 0

Table 2  Number of directed cycles in G’.

n Maximum | Average | Variance #
100 8 3.56 2.4264 49
200 10 4.08 3.1136 99
400 12 4.57 4.8051 199
800 12 5.14 4.3804 399
1600 11 5.8 4.46 799

e 0 < processing times p; < d; (j € J)
e 0 <set-uptimes sy < L(jkeJ j#k)

The inequality constraints on due dates and processing times
described above come from our problem definition. The in-
equality constraint on set-up times described above is differ-
ent from our problem definition. But, here we have L as an
upper bound on set-up times in order to simulate our algo-
rithm. Both the algorithms based on the minimum cost flow
and pseudorandom generator are implemented using the li-
brary functions in LEDA [11].

Now, if G’ has no directed cycles at Step 2, we directly
go to Step 5, i.e., an obtained schedule is always optimal.
We checked how many such cases appear by repeating 100
trials. The experimental result is shown in Table 1. The first
row and second row denote the number of jobs n and the
rate of obtaining G’ that has no directed cycles at Step 2, re-
spectively. It turns out from Table 1 that the rate is relatively
high when n = 5, but G’ has some directed cycles in 100%
when n = 320. We predictably confirmed the result that
the overall rate tends to decrease with increasing number of
jobs.

Next, we checked how many directed cycles G” has at
Step 2 by repeating 100 trials. The experimental result is
shown in Table 2. Each column denotes number of jobs
n, maximum number of directed cycles, average number of
directed cycles, their variance, and maximum number of di-
rected cycles # in the theoretical sense, i.e., [(n — 1)/2], re-
spectively. The maximum number of directed cycles is con-
siderably less than the theoretical maximum for each job.
The average is also low, around 3-6 cycles throughout the
whole experiment. Therefore, G’ actually does not tend to
have much directed cycles at Step 2. Additionally, both the
maximum and average do not increase so much with in-
creasing number of jobs.

Next, we checked approximation ratio on the number
of time slots by repeating 10, 000 trials. The approximation
ratio is the ratio between the number of time slots computed
by our algorithm (see Eq. (2)), and the minimum number of
time slots obtained in an optimal schedule by checking all
feasible schedules. The experimental result is shown in Ta-
ble 3. Each column denotes number of jobs n, maximum,
average, and variance, respectively of the approximation ra-
tios. The maximum is at most 1.5, but the average is very
low, i.e., almost one, throughout the whole experiment. The

1197
Table 3  Approximation ratio.
n Maximum | Average Variance
3 1 1 0
4 1.5 1.00978 | 0.00300402
5 1.33333 1.01522 | 0.00366418
6 1.5 1.01932 | 0.00393428
7 1.4 1.0224 | 0.00393347
8 14 1.02461 | 0.00370951
9 1.4 1.0237 | 0.00326279
10 14 1.02431 | 0.00301326
350 — ‘
min cost flow ——
300 L heuristic algorithm -
X
250
g 200 ¢
T
E 150
100
50
0 1 1
0 500 1000 1500 2000

number of jobs

Fig.8 CPU time of our algorithm.

variance is nearly equal to zero. These results mean that our
algorithm has pretty good performance on the average for
approximation ratio.

Finally, we checked the CPU time used by our algo-
rithm by repeating 100 trials. The experimental result is
shown in Fig. 8. In the Fig. 8, a point represents the average
of CPU time for each n = 100, 200, ..., 2000. The solid line
represents the time of computing a minimum cost flow. The
broken line represents the time of including updations of the
flow over and above computation of the minimum cost flow.
Our algorithm has a great advantage in terms of CPU time
because the number of updations of the flow is very low and
computation of the minimum cost flow dominates the total
time of our algorithm. The experiments whose results were
discussed above show that it is much faster in practice.

6. Approximation Ratio

In this section, we show some results on approximation ratio
under a constraint.

Lemma 1: If number of jobs is two, i.e., n = 2, our heuris-
tic algorithm returns an optimal schedule.

Proof: If n = 2, Step 2 can compute one or the other of two
different minimum cost flows. G’s which represents such
flows are shown in Figs. 9(a) and (b). Both have no directed
cycles. Therefore, the obtained schedule is optimal. O

Next, we introduce the following variables for G con-
structed at Step 1.



1198

(a) (b)
Fig.9 G’ obtained at Step 2 when n = 2.

®
2
©

0 ;= max {wb;,ar)} — min {wb;,a
o= max uby,a0) = min (i), @),

Ox = max {w(bj,ar)} — min {w(b;, ar)},
J#k.jel ’ J#k.jeJ
0 := max min{d., Ouk}.
Jj#k,jked
¢ denotes an upper bound on the weight increased by updat-
ing the flow at Step 4. Additionally, the following notations
are used:

e y: number of time slots in any schedule by our algo-
rithm.

e y*: number of time slots in an optimal schedule.

e y%: number of time slots obtained by a minimum cost
flow fiin at Step 2, which is defined by

(fmin(e) - w(e)) + 1.

ecA,w(e)>0
Note that y; is a lower bound of y*. Therefore, 7} <7y

Lemma 2: Our algorithm gives a schedule with at most
v*+6-|(n—1)/2] time slots.

Proof: At Step 2, G’ has at most | (n — 1)/2] directed cycles.
Therefore, the number of updations of the flow is also at
most [(n — 1)/2]. Because the increase in weight is at most
0 every time we update the flow, the total number of time
slots is finally at most y}i +6-|(n—-1)/2]. Since 7} <95,
this lemma is proved. O

Theorem 2: Our algorithm is a factor 1.5 approximation
algorithm for the assumption that G constructed at Step 1
has arcs (b}, a;) with w(b;, ax) € {1, 2} for every ordered pair
of jobs j and k.

Proof: Since w(b;, ay) € {1,2}, nis alower bound of y*, i.e.,
n < y*. ¢ is at most one. Then, by Lemma 2

n-—1
2

n-1
2

7Sy*+6{ JS7*+

Thus,

nol gt yso b s
2’}/* 2n 2n (n—o)

l*sl+
Y

O
It’s easy to find a tight example, and is omitted.
Next, we introduce the following variables in order to
derive an approximation ratio for general case:

L w-w

£ . 3 *
w:mm{wa,a },w =max{w?}, ¢
I ked (bj» ar) jeJ{ iz n—1

IEICE TRANS. FUNDAMENTALS, VOL.E88-A, NO.5 MAY 2005

Then, c(n — 1) + 1 is a lower bound of 7}, and we have by
Lemma 2

—1
yﬁyﬂuA—n-Vz y 3
thus,
R L =b@-D2 (= D@A-D/2
Y Y cn—1)+1
Sl+(11—1)(A—1)/2:1+A—1’ @
c(n-1) 2c

where A := max ju jres{w(bj, ar)}. At Step 4, the increase in
weight by changing the flow is at most A — 1, because:

e at Step 4, the increase in weight by selecting an arc
with cost 0 is at most A.

e cvery cycle has an arc with positive weight and the in-
crease in weight by selecting this arc at Step 4 is less
than A.

e Since an arc (by,a;) with minimum {w(bi,a;) —
w(by,a;), w(by, a;) — w(by, a;)} is selected at Step 3, the
weight increased by changing the flow at Step 4 is at
most A — 1.

We have the following result, which is directly derived
by Eq. (4).

Corollary 1: If w(b;, a) € {0, 1} for every ordered pair of
jobs j and k, then our algorithm gives an optimal schedule.

Finally, we derive an approximatin ratio under a con-
straint on the set-up time.

Lemma 3: At Step 2, G’ has at most y* — 1 directed cycles.

Proof: We proceed to prove this lemma by contradiction as
follows. Suppose, to the contrary that at Step 2 the number
of directed cycles in G’ is greater than or equal to y*. Every
cycle has at least one arc with positive weight. Therefore,
a cycle contributes at least one time slot. Thus, the total
number of time slots in an optimal schedule is at least y* + 1.
This is a contradiction. O

Theorem 3: Our algorithm is a factor & + 1 approximation
algorithm under the constraint that set-up time sy < h- L
(ke d,j#+k,heN\{0}).

Proof: By Eq. (3) and Lemma 3, we have
y<y' +@A@-D-"-D.

Since 0 < s < h-L, wehave A < h + 1. Thus,
y<y' +h-(y - D.

Thus,

X

1
*§1+h~(1——)51+h.
Y

,y*

We directly have the following result when & = 1.



CHIBA and HIRAISHI: A HEURISTIC ALGORITHM FOR ONE-MACHINE JUST-IN-TIME SCHEDULING PROBLEM WITH PERIODIC TIME SLOTS

Corollary 2: Our algorithm is a factor 2 approximation al-
gorithm under the constraint that set-up time s < L for
every ordered pair of jobs j and k.

Alternatively, Corollary 2 suggests that if g € {0, 1,2} for
every ordered pair of jobs j and k, our algorithm is a fac-
tor 2 approximation algorithm. On the other hand, Theorem
2 means that if gy € {1,2} for every ordered pair of jobs j
and k, our algorithm is a factor 1.5 approximation algorithm.
The assumption of 7 = 1 (i.e. 0 < s < L) is considered
reasonable and proper when we try to design an approxima-
tion algorithm. Such problem formulation is considered in

[7].
7. Conclusion

We have presented a heuristic algorithm for one-machine
JIT-SP. Our algorithm is fast and has good performance on
approximation ratio experimentally. We have also shown
some results on approximation ratio under a constraint. Ex-
tending our algorithm to the case of m-machines is a future
problem.

Acknowledgments

The authors would like to thank Shao Chin Sung, Arijit
Bishnu (JAIST), and two anonymous referees for comments
and suggestions.

References

[1] J. Btazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,
Scheduling Computer and Manufacturing Processes, Second Edi-
tion, Section 3.1, Springer-Verlag, Berlin, 2001.

[2] K.R.Baker and G.D. Scudder, “Sequencing with earliness and tardi-
ness penalties: A review,” Oper. Res., vol.38, no.1, pp.22-36, 1990.

[3] T.H.Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition, Section 16.1, MIT Press, 2001.

[4] O. Cepek and S.C. Sung, “A quadratic time algorithm to maximize
the number of just-in-time jobs on identical parallel machines,” re-
search report IS-RR-2004-003, School of Information Science, the
Japan Advanced Institute of Science and Technology, 2004.

[5] K. Hiraishi, E. Levner, and M. Vlach, “Scheduling of parallel identi-
cal machines to maximize the weighted number of just-in-time jobs,”
Computers & Operations Research, vol.29, pp.841-848, 2002.

[6] K. Hiraishi, “Scheduling of parallel identical machines with multiple
time slots,” Proc. 4th Czech-Japan Seminar on Data Analysis and
Decision Making under Uncertainty, Jindrichuv Hradec, pp.33-39,
Sept. 2001.

[7]1 O. Cepek and S.C. Sung, “Just in time scheduling with periodic time
slots,” Proc. 5th Czech-Japan Seminar on Data Analysis and Deci-
sion Making under Uncertainty, pp.27-29, Osaka, Japan, Sept. 2002.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman and Com-
pany, San Francisco, 1979.

[9] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows — The-
ory, Algorithms, and Applications, Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

[10] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Prentice Hall, NJ, 1982.
[11] LEDA HP: http://www.algorithmic-solutions.com/enleda.htm

1199

Eishi Chiba received the B.E. degree from
Tohoku University in 2001, and the M.S. degree
from the Japan Advanced Institute of Science
and Technology (JAIST) in 2003. He is cur-
rently a doctoral student at JAIST. His main re-
search interests include scheduling, discrete al-
gorithms, combinatorial optimization and their
applications.

Kunihiko Hiraishi received from the To-
kyo Institute of Technology the B.E. degree in
1983, the MLE. degree in 1985, and D.E. degree
in 1990. In 1985 he joined the IIAS-SIS, Fujitsu
Limited. Since 1993 he has been with Japan Ad-
vanced Institute of Science and Technology, and
is currently a Professor of School of Information
Science. His current interests include theory and
algorithm for concurrent systems. He is a mem-
ber of the IEEE, IPSJ, and SICE.



