
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title On accrual failure detectors

Author(s)
Defago, Xavier; Urban, Peter; Hayashibara,

Naohiro; Katayama, Takuya

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2004-011: 1-14

Issue Date 2004-05-14

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/4785

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）



On Accrual Failure Detectors 
Xavier Defago1,2, Peter Urban!, Naohiro Hayashibara\
 

and Takuya Katayama1
 

lSchool ofinfonnation Science, Japan Advanced Institute of Science and Technology (JAIST)
 
2pRESTO, Japan Science and Technology Agency (JST)
 

May 14,2004
 
IS-RR-2004-011
 



On Accrual Failure Detectors∗

Xavier Défago∗,†, Péter Urb́an∗, Naohiro Hayashibara∗, Takuya Katayama∗

∗School of Information Science, JAIST
1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan.

†PRESTO, Japan Science and Technology Agency (JST).

Email: {defago,urban,nao-haya,katayama}@jaist.ac.jp

May 14, 2004

Abstract

Traditionally, failure detectors have considered a binary model whereby a given process can be
either trusted or suspected. This paper defines a family of failure detectors, called accrual failure
detectors, that revisits this interaction model. Accrual failure detectors associate to each process a
real value representing asuspicion level. An important advantage of accrual failure detectors over
binary ones is to allow distributed applications to trigger different actions depending on the suspicion
level. For instance, an application can take precautionary measures when the suspicion level reaches
a given level, and then take more drastic actions after it raises above a second (much higher) level.
The paper defines accrual failure detectors and their basic properties. Four classes of accrual failure
detectors are discussed, each of which is proved equivalent to a class of binary unreliable failure
detectors (P, S, ♦P, and♦S).

1 Introduction

Context of the study. Failure detection is a fundamental issue in fault-tolerant distributed computing,
from both a practical and a theoretical standpoint.

The concept of unreliable failure detectors was introduced and formalized by Chandra et al. [3,
2], who, among other things, identify the minimal conditions to solve the Consensus problem [16] in
asynchronous systems. Equally important, they also show that failure detectors constitute a fundamental
abstractionfor distributed systems and algorithms.

Except for strictly synchronous distributed systems, failure detection is inherently uncertain. Unre-
liable failure detectors account for this uncertainty by allowing mistakes, thus introducing the notion of
“suspicion” as opposed to detection. Adetectionoccurs when a faulty process is recognized as such.
In contrast, asuspicionoccurs when a process is considered as faulty, although this may not actually
be the case. As an analogy, a similar difference exists between “knowing something” and “believing in
something.”

The distinction between detection and suspicion is essential, but it is also often desirable to know
more than just “processp is suspect.” More specifically, one wants to know thedegree of confidence
associated with each suspicion (also calledsuspicion levelhere). For instance, a distributed application
may want to assign primary roles to processes that are “not suspect at all” and relegate to secondary
roles those that are “a little suspect.”

∗Research supported by the Japan Society for the Promotion of Science, a Grant-in-Aid for JSPS Fellows from the Japanese
Ministry of Education, Culture, Sports, Science and Technology, and the Swiss National Science Foundation.

1



Illustration. Let us illustrate this with a simple example. Consider a distributed application with one
master process and a collection of worker processes. The master holds a list of jobs that needs to be
computed, dispatches these jobs to the available workers, and gathers results. Dependencies existing
between jobs, some are more urgent than others. To simplify the discussion, assume that the master
never crashes but that some of the workers may crash. Obviously, the master must be able to detect
when a worker has crashed and take appropriate actions, otherwise some tasks will never complete.

With a confidence level associated to suspicions, this could be realized as follows. Urgent jobs are
dispatched to workers that have the lowest suspicion level, while less urgent jobs are sent to workers
with a higher suspicion level. When the suspicion level associated with a worker reaches a moderately
high threshold, the master replicates the computation by sending a new instance of the same job to
another worker. Finally, when the suspicion level goes beyond some very high threshold, the worker
is removed from the list of workers and all corresponding resources are released. Note that the binary
model normally considered (i.e., trust vs. suspect) does not allow for such differentiated actions to be
taken.

Contribution of the paper. In this paper, we define a family of failure detectors, called accrual failure
detectors, whereby each monitoring process associates, to each of the monitored process, a real value
that changes over time.1 The value represents thesuspicion level, where zero means that the process is
not suspected, and positive values mean that the process is suspected; the larger the value, the stronger
the suspicion. Roughly speaking, accrual failure detectors ensure that the suspicion level associated with
a monitored processp (1) accrues toward infinity ifp is faulty, and (2) is bounded ifp is correct. We
define four classes of accrual failure detectors, calledPac , Sac , ♦Pac , and♦Sac , depending whether
the bound is known or not, and whether the properties hold for all pairs of processes or for just some of
them. We prove that each class of accrual failure detectors is equivalent to a class of binary unreliable
failure detectors (namely,P, S, ♦P, and♦S), thus showing that accrual failure detectors are neither
more nor less powerful than binary ones.

Practical considerations. One important advantage of an accrual failure detector over a binary one is
that the former provides a suitable abstraction for implementing a generic failure detection service, one
that suits the needs of multiple applications with different quality of service requirements. The reason
is that an accrual failure detector leaves the task of interpreting the suspicion level to applications, and
hence different applications can set different thresholds to suspect processes according to their needs.
In contrast, a binary failure detector provides a value already interpreted (suspect or not), and is thus
poorly designed to serving more than a single application at a time.

Related work. We present existing work that, just like our approach, uses numeric and sometimes
accruing values for failure detection or similar purposes.

Cosquer et al. [5] describe a group membership service that allows the tuning of its failure detection
by monitoring various system parameters that are combined internally into a single value. By exposing
this value to processes, this could provide a strong basis for implementing an accrual failure detector.

Aguilera et al. [1] propose the failure detector calledHB (Heartbeat) that can be used together
with an unreliable failure detector to solve Consensus in partitionable systems. Roughly speaking, the
failure detector associates to each process an integer value that increases as long as the process remains
reachable. In contrast, the output of an accrual failure detector increases if the process isnot reachable.

1An implementation for such a failure detector, called theϕ failure detector, was outlined at a workshop during DISC 2003
[12]. A revised version with a performance comparison is also available as a technical report [14].

2



More recently, Friedman [8] outlined in a position paper the idea of afuzzy group membership,
where a value called fuzziness level would be associated with each process to determine the extent
to which the process belongs to the group. Technical issues were developed later by Friedman and
Tcharny [9, 11, 10]. Although the papers address different issues, the authors rely on some fuzzy failure
detector that outputs some integer value and uses two thresholds to define three suspicion levels (trusted,
fuzzy, or suspected). There are no details, however, because this is not the main focus of their work.
In particular, they give no definition nor implementation of fuzzy failure detectors. We believe that,
although developed independently, our works could in fact complement each other.

Sampaio et al. [17] define slowness oracles as being some failure detector oracle that outputs a list of
processes ordered according to the perceived responsiveness of each process. Accrual failure detectors
also quantify responsiveness, hence their output values could be used to establish (or estimate) this order.

Mostefaoui et al. [15] propose an algorithm to implement a leader oracle (also calledΩ failure
detector) that relies internally on integer counters that are incremented each time the corresponding
process is suspected to have crashed. If the process has crashed, the counter never stops increasing.
This part of their protocol is in fact similar to an accrual failure detector and an adaptation of their
protocol might possibly be used to implement a leader oracle based on accrual failure detectors. A
major difference is that counters never decrease, even for correct processes.

Structure of the paper. The remainder of the paper is structured as follows. Section 2 presents the
system model and important definitions. Section 3 defines the general notion of accrual failure detectors,
as well as four main classes of accrual failure detectors, calledPac , ♦Pac , Sac , and♦Sac respectively.
Section 4 outlines a simple heartbeat-based algorithm to implement♦Pac in a partially synchronous
model. Section 5 proves simple yet useful properties about using accrual failure detectors with multi-
ple suspicion thresholds. Section 6 proves the equivalence between the four classes of accrual failure
detectors and their binary counterparts. Finally, Section 7 concludes the paper.

2 System Model & Definitions

Basic system model. We consider a distributed system consisting of a set of processesΠ = {p1, . . . , pn}.
Notice that, at this stage, we make no specific assumption regarding how processes communicate, such
as whether this is done using messages or some shared memory.2

We assume the existence of some global time, unbeknown to processes, the domain of which, de-
noted byT, is an infinitely countable subset of real numbers with no upper bound. We assume that
processes may access some local clock by calling the pseudo-functionnow ; values can be provided
by a real-time clock or by simply counting the number of steps the process takes.now returns strictly
monotonically increasing values fromT. Nothing is assumed, however, regarding the synchronization
of clocks between processes. We assume that processes always make progress, and that at leastδ > 0
time units elapse between consecutive steps, both in local and global time.

Failures. The failure model considered in this paper is based on the model of Chandra and Toueg [3].
A process can be correct or faulty. A process isfaulty if its behavior deviates from its specification, and
a process iscorrect if it is not faulty. We say that a processfails when its behavior starts deviating from
its specification.3

A failure pattern is a functionF : T 7→ 2Π, whereF (t) is the set of processes that have failed before
or at timet. The functioncorrect(F ) denotes the set of correct processes (processes that never belong

2Interprocess communication is indeed irrelevant to the specification of the failure detectors.
3We think of failures as permanent. In particular, we do not define predicates related to recovery.

3



to failure patternF ) while faulty(F ) denotes the set of faulty processes (complement ofcorrect(F )
with respect toΠ).

Failure detectors. Chandra and Toueg [2] define failure detectors as a collection of failure detector
modules, one attached to each process, that output information on the failure pattern that occurs in an
execution.4

A failure detector module outputs information from a rangeR of values. A failure detector historyH
with rangeR is a functionH : Π × T 7→ R, whereH(p, t) is the value output by the failure detector
module of processp at timet. A failure detectorD is a function that maps every failure patternF to
a set of failure detector histories with rangeRD (whereRD is the range of the information output by
the failure detector modules ofD). D(F ) is the set of failure detector histories that failure detectorD
permits for failure patternF .

Binary failure detectors, such as the failure detectors defined in [3], output values from the range
R = 2Π, the power set ofΠ. If a process is part of the output set, it issuspectedto have failed, otherwise
it is trusted. An S-transitionoccurs when a trusted process becomes suspected and aT-transitionoccurs
when a suspected process becomes trusted.

Chandra and Toueg [3] define a class hierarchy of unreliable binary failure detectors, of which we
present only four here, calledP (perfect),S (strong),♦P (eventually perfect), and♦S (eventually
strong). The four classes differ by the set of failure detector histories permitted by each of them. This
set is defined by two properties ofcompletenessandaccuracy. All four failure detectors mentioned
above share the same property of completeness, and only differ by their accuracy property:

(STRONG COMPLETENESS) Eventually every faulty process is permanently suspected by all correct
processes. [classesP, ♦P, S, ♦S ]

(STRONG ACCURACY) Correct processes are never suspected. [classP ]

(EVENTUAL STRONG ACCURACY) There is a time after which correct processes are never suspected
by any correct process. [class♦P ]

(WEAK ACCURACY) Some correct process is never suspected. [classS ]

(EVENTUAL WEAK ACCURACY) There is a time after which some correct process is never suspected
by any correct process. [class♦S ]

3 Accrual Failure Detectors

We first define the notion of suspicion level between a pair of processes. Then, we define the notion
of accrual failure detector for a distributed system withn processes. Finally, we define four classes of
accrual failure detectors that are of particular interest.

3.1 Suspicion level

Consider two distinct processesp andq, with q monitoringp. Let R+
0 denote the real positive numbers

and zero. The suspicion level of processq monitoring processp expresses the confidence ofp in the
statement thatq is faulty. It is defined as follows.

4The definition of failure detectors of Chandra and Toueg [3] restricts the output to a set of suspected processes, but the
definition of Chandra et al. [2] allows from an arbitrary range. Accrual failure detectors are based on the latter and more
general definition.

4



Definition 1 (Suspicion level) The suspicion level of processq with respect to processp is the function
susp levelq→p : T 7→ R+

0 .

We require that the functionsusp levelq→p satisfies the following two properties.

Property 1 (Accruement) If processp is faulty, the suspicion levelsusp levelq→p(t) tends to infinity
as time goes to infinity.

p∈ faulty(F ) ⇒ lim
t→+∞

susp levelq→p(t) = +∞

Property 2 (Reset) If processp is correct, then for any timet0, susp levelq→p(t) = 0 for some timet ≥
t0.

p∈correct(F ) ⇒
(
∀t0∈T,∃t ≥ t0 : susp levelq→p(t) = 0

)
Depending on the class of failure detector and the pair of processes, one of the two properties below

may be satisfied by the functionsusp levelq→p .

Property 3 (Unknown upper bound) If processp is correct, thensusp levelq→p(t) is bounded.

p∈correct(F ) ⇒
(
∃SLmax ∈ R+

0 ,∀t∈T : susp levelq→p(t) ≤ SLmax

)
Property 4 (Known upper bound) If processp is correct, thensusp levelq→p(t) is bounded by a
known valueSLmax ∈ R+

0 .

p∈correct(F ) ⇒
(
∀t∈T : susp levelq→p(t) ≤ SLmax

)
3.2 Accrual failure detector: definition

An accrual failure detectorDac is a failure detector with range(R+
0 )Π, the set of all functions that map

processes to non-negative real numbers (note the analogy to binary failure detectors whose range is2Π).
In other words, failure detector modules output non-negative real values, with each value corresponding
to a process and representing the current suspicion level of that process. More precisely, the history of
failure detectorDac is defined as follows.

H(q, t)(p) =
{

susp levelq→p(t) if p 6= q

0 otherwise

Concrete classes of accrual failure detectors put some restrictions on the suspicion level functions.
An accrual failure detector must satisfy the following property.5

Property 5 For all pairs of distinct processesp andq, the property of Accruement (Prop. 1) holds for
susp levelq→p .

We define four classes of accrual failure detectors, depending on how the suspicion level satisfies the
properties on an upper bound. The choice of names is not arbitrary. Indeed, as we prove later (Sect. 6),
the four classes are equivalent to their respective binary counterparts.

Pac For all pairs of distinct processesp andq, the properties ofKnownUpper Bound (Prop. 4) and
Reset (Prop. 2) are satisfied.

5In this paper, we require that the Accruement property holds for all pairs of processes. However, it is possible to weaken
this property, making it equivalent to the property of Weak Completeness. For simplicity and because Chandra and Toueg [3]
have shown Weak and Strong Completeness to be equivalent, we do not consider the issue here.

5



♦Pac Forall pairs of distinct processesp andq, the properties ofUnknownUpper Bound (Prop. 3) and
Reset (Prop. 2) are satisfied.

Sac For somecorrect processp and any other processq 6= p, the properties ofKnownUpper Bound
(Prop. 4) and Reset (Prop. 2) are both satisfied forsusp levelq→p .

♦Sac Forsomecorrect processp and any other processq 6= p, the properties ofUnknownUpper Bound
(Prop. 3) and Reset (Prop. 2) are both satisfied forsusp levelq→p .

4 Simple Implementation

In this section, we propose a simple heartbeat-based algorithm to implement an accrual failure detector.
First, we present the system model assumed by the algorithm. Second, we describe the algorithm and
prove that it implements an accrual failure detector of class♦Pac . Notice that the algorithm described
in this paper is intended as a simple illustration. Stochastic implementations of adaptive accrual failure
detectors have been proposed [12, 13, 14]. Finally, we present the transformation of a well-known
adaptive failure detector into an accrual failure detector.

Partially synchronous system model. We extend the model described in Section 2, by considering
that processes communicate only by message-passing. In particular, we assume that processes have their
own memory space.6 Also, channels are reliable, and we consider only crash failures of processes.

We assume a partially synchronous model, as defined by Chandra and Toueg [3], where someun-
knownbounds on process speed and message delays hold after someunknowntime calledGST (for
global stabilization time).7

Algorithm The algorithm (Algorithm 1) is based on heartbeats and is actually quite simple. The code
of the algorithm, identical for all processes, is expressed for some arbitrary processq ∈ Π. A monitored
process sends heartbeat messages on a regular basis (according to its own local clock). Heartbeats
are sequence numbered, so that a heartbeat message with higher sequence number is considered more
recent. A monitoring processq keeps track of the time of arrivalTlast(p) (according to its own local
clock) of the most recent heartbeat message from a monitored processp. The value of the function
susp levelq→p(t) is given by the time elapsed since the arrival of the most recent heartbeat (according
to the local clock of the monitoring process).

Lemma 1 Algorithm 1 satisfies Prop. 1 (Accruement) forsusp levelq→p , wherep andq are two distinct
processes inΠ, andp is faulty.

PROOF. To prove the property, we show thatsusp levelq→p(t) tends toward infinity, given thatp
crashes.

Sincep crashes, it can send only a finite number of heartbeat messages. Let the heartbeat with the
greatest sequence number arrive at timet0. The algorithm updatesTlast(p) to t0 at this time, and will
never updateTlast(p) again. It follows that, for any time greater thant0, the functionsusp levelq→p(t) =
t− t0. This function obviously tends toward infinity, thus completing the proof. �Lemma 1

6In particular, this means that variables arenot shared between processes. Although the same variable name (say,Tlast )
may be employed by two different processes (say,p andq), this always refers to twodistinctvariables (that is,Tlast of p and
Tlast of q).

7This model is in fact a simple variation over the definitions of partial synchrony due to Dwork et al. [6].

6



Algorithm 1 Simple implementation of an accrual failure detector.
code of some process q ∈ Π:
1: Initialization:
2: start := now
3: next sn := 1 {Sequence number for the next heartbeat}
4: forall p in Π− {q} do
5: Tlast(p) := start {Arrival time of the last heartbeat from each process}
6: SNlast(p) := 0 {Seq. number of the last heartbeat received}
7: when receive(heartbeat, sn) from p {receive heartbeat with sequence numbersn}
8: if sn > SNlast(p) then
9: Tlast(p) := now

10: SNlast(p) := sn
11: periodically do
12: broadcast(heartbeat,next sn)
13: next sn := next sn + 1
14: whenqueried about processp at timet
15: susp levelq→p(t) := if p 6= q then t− Tlast(p) else 0

Lemma 2 Algorithm 1 satisfies Prop. 2 (Reset) forsusp levelq→p , wherep and q are two distinct
processes inΠ, andp is correct.

PROOF. To prove the property, we show that for any timet0, susp levelq→p(t) = 0 for some timet ≥
t0, given thatp is correct.

As p is correct, it will send a heartbeat aftert0. Let this heartbeat be received att; obviously,t > t0.
The algorithm setsTlast(t) = t at timet, and hence a query at timet returnssusp levelq→p(t) = 0, thus
completing the proof of the lemma. �Lemma 2

Lemma 3 Algorithm 1 satisfies Prop. 3 (unknown upper bound) forsusp levelq→p , wherep andq are
two distinct processes inΠ, andp is correct.

PROOF. Let t1 be the arrival time of the first heartbeat messageH1 sent afterGST . Assume as a worst
case that all messages sent prior toGST arrive aftert1. Those messages are ignored because of their
lower sequence number. Hence, untilt1, susp levelq→p(t) is bounded byt1 − start .

After t1, only heartbeat messages with a higher sequence number, hence sentafter H1, are consid-
ered by the algorithm. It follows that they are subject to the synchrony assumptions of the model. Let
∆ be the end-to-end upper bound on transmission time. Let∆′ be the maximal interval between the
sending of two consecutive heartbeats.8 It follows that the largest interval elapsed between receiving
two consecutive heartbeats is∆ + ∆′.

Combining the two parts, we obtain thatsusp levelq→p(t) is bounded bymax(t1− start ,∆+∆′).

∀t∈T : susp levelq→p(t) ≤ max
(
t1 − start ,∆ + ∆′)

This completes the proof of the lemma. �Lemma 3

Theorem 4 Algorithm 1 implements an accrual failure detector of class♦Pac .

PROOF. The proof follows directly from Lemma 1, Lemma 2, and Lemma 3, as these lemmas hold for
an arbitrarily chosen pair of processes. �Theorem 4

8The exact values of∆ and∆′ depend on the synchrony assumptions on process speeds, transmission times and drift rates
of local clocks with respect to global time.

7



4.1 Converting Chen’s failure detector to an accrual one

Chen et al. [4] have proposed a well-known implementation for a network adaptive binary failure detec-
tor. Briefly speaking, their failure detector, based on heartbeats, monitors heartbeat arrivals to estimate
the timeEA when the next heartbeat should be expected to arrive. The algorithm sets a timeout by taking
this arrival time and adding a constant safety marginα, initially computed from some QoS requirements.

There is a simple way to transform their algorithm to implement an accrual failure detector. Roughly
speaking, it works as follows. When the expected arrivalEA is reached (and the heartbeat is not yet
received), the suspicion level begins to increase linearly over time.Now, if a process sets a constant
suspicion threshold toα, the resulting failure detector is identical to Chen’s original implementation.
Nevertheless, the accrual failure detector can serve multiple applications with various qualities of service
or applications with multiple thresholds or even more general adaptation policies.

5 Using Multiple Thresholds with Accrual Failure Detectors

In this section, we take a look at useful properties when an accrual failure detector is converted into a
binary one by means of some threshold. In particular, we look at the special case where there are two
failure detectors defined by two thresholds, where one threshold is always lower than the other.

Let p andq be two processes, andsusp levelq→p the suspicion level function ofq with respect
to p. Let T1, T2 : T 7→ R+ be two threshold functions ofq. Let suspectT1

q→p andsuspectT2
q→p be two

predicates defined as follows,

∀t∈T,∀T ∈ {T1, T2} : suspectT
q→p(t) ⇔ susp levelq→p(t) > T (t)

WhensuspectT1
q→p(t) (resp. suspectT2

q→p(t)) is true, this means that processp if suspected at timet by
the failure detectorDT1 (resp.DT2) defined by thresholdT1 (resp. thresholdT2). We consider the case
whereT1(t) is strictly lower thanT2(t) for any timet. We have the following simple theorem.

Theorem 5 At all time, failure detectorDT2 suspectsp only if failure detectorDT1 suspectsp.

∀t∈T : suspectT2
q→p(t) ⇒ suspectT1

q→p(t)

PROOF. The proof is straightforward.

suspectT2
q→p(t)

⇒ susp levelq→p(t) > T2(t)
⇒ susp levelq→p(t) > T1(t)

⇒ suspectT1
q→p(t)

�Theorem 5

Chen et al. [4] propose a set of metrics to evaluate the quality of service (QoS) of failure detectors.
In terms of such metrics, we can state the following corollaries when comparingDT1 andDT2 .

Corollary 6 Failure detectorDT1 detects failures as fast as or faster than failure detectorDT2 . In
other words,TD(DT1) ≤ TD(DT2) whereTD(D), calleddetection time, is the time that elapses from
the failure ofp until the failure detector module ofD at q begins to suspectp permanently.

Corollary 7 Failure detectorDT2 generates wrong suspicions at most as frequently as failure detec-
tor DT1 . In other words,TMR(DT1) ≥ TMR(DT2) whereTMR(D), called mistake recurrence time,
measures the time between two consecutive wrong suspicions made byD.

8



Corollary 8 Failure detectorDT2 wrongly suspects a process for a duration at most as long as failure
detectorDT1 . In other words,TM (DT1) ≥ TM (DT2) whereTM (D), calledmistake duration, measures
the time that elapses from the beginning of a wrong suspicion until its end (i.e., until the mistake is
corrected).

We can also say that failure detectorDT1 is moreaggressivethan failure detectorDT2 , and con-
versely, thatDT2 is moreconservativethanDT1 .

6 Equivalence between failure detectors

This section proves that accrual failure detector classes are equivalent to their binary counterparts. The
equivalence between an accrual failure detector classCac and its binary equivalentC is important for
two reasons. First, it shows that the assumptions underlying the classCac are not stronger than those
underlying the classC. Second, it shows that any problem that can be solved with a binary failure
detector of classC can also be solved with an accrual failure detector of classCac . In other words, the
oracles hidden in the two equivalent failure detector classes are equally powerful.

6.1 From accrual to binary

We now prove that an accrual failure detectorDac (whereDac belongs to one ofPac , ♦Pac , Sac , or
♦Sac) can be reduced to a binary failure detectorD (whereD belongs to the respective classP, ♦P,
S, or ♦S). The reduction implies, among other things, that the Consensus problem can be solved in
asynchronous systems with an accrual failure detector of any of the four classes mentioned above.

We focus on the reduction from♦Pac into ♦P, and then explain how to adapt the proof for the three
other reductions (♦Sac into ♦S, Pac intoP, andSac into S).

Algorithm 2 Transforming an accrual failure detector with unknown bound into a binary failure detector.
1: Initialization:
2: T := 1 {threshold to suspect}
3: suspectq→p := susp levelq→p > T {true if q suspectsp}

4: when suspectq→p = false andsusp levelq→p > T
5: suspectq→p:= true

6: when suspectq→p = true andsusp levelq→p = 0
7: suspectq→p := false
8: T := T + 1 {increase threshold if suspicion was wrong}

Consider two processesp andq, whereq monitorsp. Algorithm 2 uses an accrual failure detec-
tor Dac , the output of which is given by the functionsusp levelq→p . The output of Algorithm 2 is
given by the value of the boolean variablesuspectq→p. Processp is suspected when and only when the
variablesuspectq→pis true.

The algorithm uses a dynamic thresholdT to trigger suspicions. Wheneversusp levelq→p rises
beyond the thresholdT , q begins to suspectp (or continues to suspectp). Whenever the value of
susp levelq→p falls to zero,q stops suspectingp and the thresholdT is increased. Very similar algo-
rithms have been discussed by Dwork et al. [6], Chandra et al. [2], and Fetzer et al. [7], expressed with
timeouts rather than an abstract threshold.

The above algorithm implements a failure detector of class♦P. To see this, it is enough to show
that the Strong Completeness and the Eventual Strong Accuracy properties of the accrual failure detector
yield the corresponding properties of the binary failure detector.

9



Lemma 9 (Strong Completeness)Given an accrual failure detectorDac of class♦Pac , Algorithm 2
satisfies the property of Strong Completeness.

PROOF. Consider a faulty processp and a correct processq. By assumption,susp levelq→p satisfies
the Accruement property. We show that this implies thatq eventually suspectsp forever.

As susp levelq→p goes to infinity, there is a timet1 after whichsusp levelq→p is always strictly
positive. Therefore, no T-transitions occur aftert1, and thus the current thresholdT1 at timet1 no longer
changes. Again, assusp levelq→p goes to infinity, there is a timet2 after which it is forever greater than
T1. It follows thatp is permanently suspected after this timet2. �Lemma 9

Lemma 10 Given an accrual failure detectorDac of class♦Pac , Algorithm 2 satisfies the property of
Eventual Strong Accuracy.

PROOF. Let p andq be two distinct correct processes. By assumption,susp levelq→p satisfies the
Unknown Upper Bound and Reset properties. Given this, we show that there is a time after whichq no
longer suspectsp. Let SLmax denote the unknown bound forsusp levelq→p. We consider two cases.

• Case 1.The thresholdT rises aboveSLmax during the execution of the algorithm (at some time
t). It results that the transition at timet is a T-transition (S-transitions do not increaseT ) and no
more S-transitions will occur after timet, assusp levelq→p will never reachT .

• Case 2. The threshold never rises aboveSLmax , hence we know that only a finite number of
T-transitions occur. Hence only a finite number of S-transitions occur. Let the last S-transition
happen at timet1. The Reset property ensures thatsusp levelq→p reaches zero at some timet2 >
t1. This triggers a T-transition that is followed by no S-transition.

Therefore, there is a time after whichq no longer suspectsp. �Lemma 10

Theorem 11 Algorithm 2 transforms an accrual failure detector of class♦Pac into one of class♦P.

PROOF. The proof follows directly from Lemma 9 (Strong completeness) and Lemma 10 (Eventual
strong accuracy). �Theorem 11

We have proved the transformation from♦Pac into ♦P. The proofs for the other three transforma-
tions is very straightforward and only outlined here (details are in the appendix).

Consider first the transformation from♦Sac into ♦S. Algorithm 2 as it stands does this transforma-
tion. The argument is simple.♦Sac ensures that the Unknown Upper Bound and Reset properties are
met for some correct processp and all other processes. The proof of Lemma 10 can easily be adapted to
show that there is a time after whichp is never suspected, thus proving Eventual Weak Completeness.

Now, consider the transformation fromPac intoP (same argument forSac). Pac ensures that there
is aknownupper bound, sayB, on the suspicion level between any pair of correct processes. This bound
is known, so Algorithm 2 is modified so that the thresholdT is initially set toB. This ensures that a
correct process is never suspected.

6.2 From binary to accrual

We now prove that a binary failure detectorD (whereD belongs to one ofP, ♦P, S, or ♦S) can be
transformed into an accrual failure detectorDac (whereDac belongs to the respective classPac , ♦Pac ,

10



Sac , or ♦Sac). For all four classes of failure detectors, the transformation fromD toDac is done by the
same algorithm (Algorithm 3).

The algorithm is expressed between two processesp and q, whereq monitorsp. Whenever the
binary failure detectorD trusts the monitored processp, the suspicion level is set to 0. WheneverD
suspectsp, the suspicion level is set to2 plus the time that elapsed since the beginning of the suspicion

Algorithm 3 Transforming a binary failure detector into an accrual failure detector.
1: Initialization:
2: timestamp := now

3: when suspectq→p becomes true {S-transition}
4: timestamp := now

5: whenqueried
6: if suspectq→p then
7: susp levelq→p := 2 + now − timestamp {always at least 2}
8: else
9: susp levelq→p := 0

Lemma 12 (Accruement) Algorithm 3 satisfies the property of Accruement (Prop. 1) for some binary
failure detectorD of classP, S, ♦P, or ♦S.

PROOF. Consider a faulty processp and a correct processq. By definition,D ensures thatp is eventu-
ally suspected permanently (Strong Completeness;D is of classP, S, ♦P, or ♦S). Let t1 be the time
when the last S-transition occurs (or the starting time of the algorithm if no S-transition occurs). The
resulting suspicion level function issusp levelq→p(t) = 2 + t − t1 aftert1. This function clearly goes
to infinity with time, thus proving the Accruement property. �Lemma 12

Theorem 13 Algorithm 3 transformsP intoPac andS into Sac .

PROOF. From Lemma 12, Algorithm 3 satisfies the Accruement property.
Consider the transformation fromS intoSac (the proof for the transformation ofP intoPac is nearly

identical). Letp be a correct process that is never suspected byD (Weak Accuracy). Letq be any other
correct process. Sincep is never suspected,susp levelq→p = 0 always. Known Upper Bound (Prop. 4)
and Reset (Prop. 2) are both trivially satisfied. �Theorem 13

Theorem 14 Algorithm 3 transforms♦P into ♦Pac and♦S into ♦Sac .

PROOF. From Lemma 12, Algorithm 3 satisfies the Accruement property.
Consider the transformation from♦S into ♦Sac (the proof for the transformation of♦P into ♦Pac

is nearly identical). Letp be the correct process that is never suspected after some timet by any
other correct processq (Eventual Weak Accuracy). We prove Unknown Upper Bound and Reset for
susp levelq→p.

Again, the proof is easy:susp levelq→p is constantly equal to0 after t, hence Reset is trivially
satisfied. The highest suspicion level occurs if there is only one suspicion lasting from the starting time
t0 of the algorithm until timet: this level is2 + t− t0. Therefore Unknown Upper Bound is satisfied.9

9Note that the timet is not known a priori, hence Known Upper Bound does not hold.

11



�Theorem 14

Finally, note that Algorithm 3 has an interesting property. Consider any binary failure detectorD.
If D is transformed into an accrual failure detectorDac by Algorithm 3 and back into a binary failure
detector by setting a threshold of 1, the result isD itself. In other words, using the accrual failure
detectorDac with suspicion threshold 1 results in the same sequence of suspicions as generated withD
(with transitions occurring at the same times).

7 Conclusion

Failure detectors constitute a fundamental abstraction for fault-tolerant distributed systems. However,
from a more practical perspective, the binary model of these failure detectors is limited by the fact
that they combine monitoring and interpretation. The accrual failure detectors presented in this paper
decouple these two issues by outputting a suspicion level rather than a binary value, and leaving it to
processes to interpret that value. Ideally, the monitoring can be done by a single service running on each
machine, while the interpretation is left to each application process. Such a service can be implemented
as a daemon, a shared library or a kernel service, depending on the desired tradeoff between intrusiveness
and performance.

The equivalence results presented in this paper show that accrual failure detectors do not hide any
additional synchrony assumptions with respect to their binary counterpart. In addition, equivalence with
other failure detectors can be deduced for other results (e.g., between the eventual leaderΩ and♦Sac

by transitivity from equivalence proved by Chandra et al. [2] and Chandra and Toueg [3]).

References
[1] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure detector for quiescent reliable communication and

consensus in partitionable networks.Theor. Comput. Science, 220(1):3–30, June 1999.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.J. ACM, 43(4):685–722,
July 1996.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.J. ACM, 43(2):225–267, 1996.

[4] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure detectors.IEEE Trans. on Computers,
51(5):561–580, May 2002.

[5] F. J. N. Cosquer, L. T. Rodrigues, and P. Verı́ssimo. Using tailored failure suspectors to support distributed cooperative
applications. InProc. 7th IASTED Intl. Conf. on Parallel and Distributed Computing and Systems (PDCS’95), pages
352–356, Washington, DC, USA, October 1995.

[6] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.J. ACM, 35(2):288–323,
April 1988.

[7] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure detection protocol. InProc. 8th IEEE Pacific Rim Symp. on
Dependable Computing (PRDC’01), pages 146–153, Seoul, Korea, December 2001.

[8] R. Friedman. Fuzzy group membership. In A. Schiper, A. A. Shvartsman, H. Weatherspoon, and B. Y. Zhao, editors,
Future Directions in Distributed Computing, number 2584 in LNCS, pages 114–118. Springer-Verlag, January 2003.
Position paper.

[9] R. Friedman and G. Tcharny. Evaluating failure detection in mobile ad-hoc networks. TR CS-2003-06, Technion, Israel,
October 2003.

[10] R. Friedman and G. Tcharny. Fuzzy membership based reliable delivery for mobile ad-hoc networks. TR CS-2003-14,
Technion, Israel, December 2003.

[11] R. Friedman and G. Tcharny. Stability detection in mobile ad-hoc networks. TR CS-2003-12, Technion, Israel, November
2003.

[12] N. Hayashibara, X. D́efago, and T. Katayama. Two-ways adaptive failure detection with theϕ-failure detector. InProc.
Workshop on Adaptive Distributed Systems (WADiS’03), pages 22–27, Sorrento, Italy, October 2003.

12



[13] N. Hayashibara, X. D́efago, and T. Katayama. Flexible failure detection withκ-fd. RR IS-RR-2004-006, Japan Advanced
Institute of Science and Technology, Ishikawa, Japan, February 2004.

[14] N. Hayashibara, X. D́efago, R. Yared, and T. Katayama. Theϕ accrual failure detector. RR IS-RR-2004-010, Japan
Advanced Institute of Science and Technology, Ishikawa, Japan, May 2004.

[15] A. Mostéfaoui, M. Raynal, and C. Travers. Crash-resilient time-free eventual leadership. TR, IRISA, Rennes, France,
April 2004.

[16] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.J. ACM, 27(2):228–234, April
1980.

[17] L. M. R. Sampaio, F. V. Brasileiro, W. Cirne, and J. C. A. Figueiredo. How bad are wrong suspicions? towards adaptive
distributed protocols. InProc. IEEE Intl. Conf. on Dependable Systems and Networks (DSN’03), pages 551–560, San
Francisco, CA, USA, June 2003.

A Appendix: Proofs

We present here some of the proofs that were only summarized in the main body of the paper.

A.1 Reduction: from accrual to binary

Algorithm 4 transformsPac to P andSac to S. The algorithm uses the known upper bound on the
suspicion level as a threshold to both suspect and trust the monitored processp. Unlike in Algorithm 2,
there is no need to dynamically modify the threshold used to suspectp.

Algorithm 4 Transforming an accrual failure detector with known bound into a binary failure detector.
1: Initialization:
2: T := bound on the accrual value {threshold to both suspect and trust}

3: whenqueried
4: suspectq→p := susp levelq→p > T

Lemma 15 (Strong Completeness)Given an accrual failure detector that satisfies Accruement, Algo-
rithm 4 satisfies Strong Completeness.

PROOF. Consider a faulty processp and a correct processq. We show that the Accruement property of
susp levelq→p implies thatq will eventually suspectp forever. This holds becausesusp levelq→p goes
to infinity, and thus there is a timet at which the suspicion level rises above the thresholdT . Hence the
failure detector permanently suspectsp after this timet. �Lemma 15

Lemma 16 (Accuracy) Given an accrual failure detector of classPac (resp.Sac), Algorithm 4 satisfies
Strong Accuracy (resp. Weak Accuracy).

PROOF. Consider any two correct processesp andq (p 6= q) when proving Strong Accuracy (for the
transformationPac to P) and the correct processp to which Weak Accuracy refers, and any other cor-
rect processq, when proving Weak Accuracy (for the transformationSac toS). For these two processes
p andq, we show that the Known Upper Bound and Reset properties imply thatq never suspectsp. The
proof is simple: Known Upper Bound implies that the suspicion level will never rise above the threshold
T . �Lemma 16

13



Lemma 17 (Weak Accuracy) Given an accrual failure detector of classSac , Algorithm 4 satisfies
Weak Accuracy.

PROOF. The proof is a simple adaptation of that of Lemma 16 with the difference that the correct pro-
cessp for which the Known Upper Bound holds is the correct process that is never suspected.�Lemma 17

Theorem 18 Algorithm 4 transforms an accrual failure detector of classPac into a binary one of
classP.

PROOF. The proof follows directly from Lemma 15 (Strong Completeness) and Lemma 16 (Strong
Accuracy). �Theorem 18

Theorem 19 Algorithm 4 transforms an accrual failure detector of classSac into a binary one of
classS.

PROOF. Follows directly from Lemma 15 (Strong Completeness) and Lemma 17 (Weak Accuracy).
�Theorem 19

14


