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Abstract

Traditionally, failure detectors have considered a binary model whereby a given process can be
either trusted or suspected. This paper defines a family of failure detectors, called accrual failure
detectors, that revisits this interaction model. Accrual failure detectors associate to each process a
real value representingsaspicion level An important advantage of accrual failure detectors over
binary ones is to allow distributed applications to trigger different actions depending on the suspicion
level. For instance, an application can take precautionary measures when the suspicion level reaches
a given level, and then take more drastic actions after it raises above a second (much higher) level.
The paper defines accrual failure detectors and their basic properties. Four classes of accrual failure
detectors are discussed, each of which is proved equivalent to a class of binary unreliable failure
detectors®, S, OP, and)S).

1 Introduction

Context of the study. Failure detection is a fundamental issue in fault-tolerant distributed computing,
from both a practical and a theoretical standpoint.

The concept of unreliable failure detectors was introduced and formalized by Chandra et al. [3,
2], who, among other things, identify the minimal conditions to solve the Consensus problem [16] in
asynchronous systems. Equally important, they also show that failure detectors constitute a fundamental
abstractionfor distributed systems and algorithms.

Except for strictly synchronous distributed systems, failure detection is inherently uncertain. Unre-
liable failure detectors account for this uncertainty by allowing mistakes, thus introducing the notion of
“suspicion” as opposed to detection. detectionoccurs when a faulty process is recognized as such.

In contrast, asuspicionoccurs when a process is considered as faulty, although this may not actually
be the case. As an analogy, a similar difference exists between “knowing something” and “believing in
something.”

The distinction between detection and suspicion is essential, but it is also often desirable to know
more than just “procesg is suspect.” More specifically, one wants to know tlegjree of confidence
associated with each suspicion (also cafledpicion levehere). For instance, a distributed application
may want to assign primary roles to processes that are “not suspect at all” and relegate to secondary
roles those that are “a little suspect.”

*Research supported by the Japan Society for the Promotion of Science, a Grant-in-Aid for JSPS Fellows from the Japanese
Ministry of Education, Culture, Sports, Science and Technology, and the Swiss National Science Foundation.



lllustration. Let us illustrate this with a simple example. Consider a distributed application with one
master process and a collection of worker processes. The master holds a list of jobs that needs to be
computed, dispatches these jobs to the available workers, and gathers results. Dependencies existing
between jobs, some are more urgent than others. To simplify the discussion, assume that the master
never crashes but that some of the workers may crash. Obviously, the master must be able to detect
when a worker has crashed and take appropriate actions, otherwise some tasks will never complete.

With a confidence level associated to suspicions, this could be realized as follows. Urgent jobs are
dispatched to workers that have the lowest suspicion level, while less urgent jobs are sent to workers
with a higher suspicion level. When the suspicion level associated with a worker reaches a moderately
high threshold, the master replicates the computation by sending a new instance of the same job to
another worker. Finally, when the suspicion level goes beyond some very high threshold, the worker
is removed from the list of workers and all corresponding resources are released. Note that the binary
model normally considered (i.e., trust vs. suspect) does not allow for such differentiated actions to be
taken.

Contribution of the paper. In this paper, we define a family of failure detectors, called accrual failure
detectors, whereby each monitoring process associates, to each of the monitored process, a real value
that changes over timeThe value represents tisaspicion levelwhere zero means that the process is

not suspected, and positive values mean that the process is suspected; the larger the value, the stronger
the suspicion. Roughly speaking, accrual failure detectors ensure that the suspicion level associated with
a monitored process (1) accrues toward infinity ip is faulty, and (2) is bounded j is correct. We

define four classes of accrual failure detectors, céafted Suc, OPuc, andOS,., depending whether

the bound is known or not, and whether the properties hold for all pairs of processes or for just some of
them. We prove that each class of accrual failure detectors is equivalent to a class of binary unreliable
failure detectors (namely?, S, 0P, and(S), thus showing that accrual failure detectors are neither
more nor less powerful than binary ones.

Practical considerations. One important advantage of an accrual failure detector over a binary one is
that the former provides a suitable abstraction for implementing a generic failure detection service, one
that suits the needs of multiple applications with different quality of service requirements. The reason
is that an accrual failure detector leaves the task of interpreting the suspicion level to applications, and
hence different applications can set different thresholds to suspect processes according to their needs.
In contrast, a binary failure detector provides a value already interpreted (suspect or not), and is thus
poorly designed to serving more than a single application at a time.

Related work. We present existing work that, just like our approach, uses numeric and sometimes
accruing values for failure detection or similar purposes.
Cosquer et al. [5] describe a group membership service that allows the tuning of its failure detection
by monitoring various system parameters that are combined internally into a single value. By exposing
this value to processes, this could provide a strong basis for implementing an accrual failure detector.
Aguilera et al. [1] propose the failure detector call#® (Heartbeat) that can be used together
with an unreliable failure detector to solve Consensus in partitionable systems. Roughly speaking, the
failure detector associates to each process an integer value that increases as long as the process remains
reachable. In contrast, the output of an accrual failure detector increases if the prox#seashable.

1An implementation for such a failure detector, called¢Hailure detector, was outlined at a workshop during DISC 2003
[12]. A revised version with a performance comparison is also available as a technical report [14].



More recently, Friedman [8] outlined in a position paper the idea fifzay group membership
where a value called fuzziness level would be associated with each process to determine the extent
to which the process belongs to the group. Technical issues were developed later by Friedman and
Tcharny [9, 11, 10]. Although the papers address different issues, the authors rely on some fuzzy failure
detector that outputs some integer value and uses two thresholds to define three suspicidrulsteg]s (
fuzzy or suspecteld There are no details, however, because this is not the main focus of their work.

In particular, they give no definition nor implementation of fuzzy failure detectors. We believe that,
although developed independently, our works could in fact complement each other.

Sampaio et al. [17] define slowness oracles as being some failure detector oracle that outputs a list of
processes ordered according to the perceived responsiveness of each process. Accrual failure detectors
also quantify responsiveness, hence their output values could be used to establish (or estimate) this order.

Mostefaoui et al. [15] propose an algorithm to implement a leader oracle (also €nfiadure
detector) that relies internally on integer counters that are incremented each time the corresponding
process is suspected to have crashed. If the process has crashed, the counter never stops increasing.
This part of their protocol is in fact similar to an accrual failure detector and an adaptation of their
protocol might possibly be used to implement a leader oracle based on accrual failure detectors. A
major difference is that counters never decrease, even for correct processes.

Structure of the paper. The remainder of the paper is structured as follows. Section 2 presents the
system model and important definitions. Section 3 defines the general notion of accrual failure detectors,
as well as four main classes of accrual failure detectors, clledOP ¢, Sqc, aNdOS .. respectively.

Section 4 outlines a simple heartbeat-based algorithm to imple¢#épt in a partially synchronous

model. Section 5 proves simple yet useful properties about using accrual failure detectors with multi-
ple suspicion thresholds. Section 6 proves the equivalence between the four classes of accrual failure
detectors and their binary counterparts. Finally, Section 7 concludes the paper.

2 System Model & Definitions

Basic system model. We consider a distributed system consisting of a set of procésse$p, . .., p, }.
Notice that, at this stage, we make no specific assumption regarding how processes communicate, such
as whether this is done using messages or some shared nfemory.

We assume the existence of some global time, unbeknown to processes, the domain of which, de-
noted byT, is an infinitely countable subset of real numbers with no upper bound. We assume that
processes may access some local clock by calling the pseudo-funetignvalues can be provided
by a real-time clock or by simply counting the number of steps the process takeseturns strictly
monotonically increasing values frofih Nothing is assumed, however, regarding the synchronization
of clocks between processes. We assume that processes always make progress, and that-ableast
time units elapse between consecutive steps, both in local and global time.

Failures. The failure model considered in this paper is based on the model of Chandra and Toueg [3].
A process can be correct or faulty. A procestaigdty if its behavior deviates from its specification, and
a process isorrectif it is not faulty. We say that a proce$ails when its behavior starts deviating from
its specificatior?
A failure pattern is a functiod” : T — 2!, whereF(t) is the set of processes that have failed before
or at timet. The functioncorrect(F') denotes the set of correct processes (processes that never belong

2Interprocess communication is indeed irrelevant to the specification of the failure detectors.
3We think of failures as permanent. In particular, we do not define predicates related to recovery.



to failure patternF’) while faulty(F') denotes the set of faulty processes (complemenbofect(F')
with respect tdI).

Failure detectors. Chandra and Toueg [2] define failure detectors as a collection of failure detector
modules, one attached to each process, that output information on the failure pattern that occurs in an
execution

A failure detector module outputs information from a rafigef values. A failure detector histoy
with rangeR is a functionH : II x T — R, whereH (p, t) is the value output by the failure detector
module of procesp at timet. A failure detectorD is a function that maps every failure patterto
a set of failure detector histories with ranBe (whereRp is the range of the information output by
the failure detector modules @¥). D(F) is the set of failure detector histories that failure dete@or
permits for failure patterd.

Binary failure detectorssuch as the failure detectors defined in [3], output values from the range
R = 21, the power set ofl. If a process is part of the output set, iisspectedo have failed, otherwise
it is trusted An S-transitionoccurs when a trusted process becomes suspectedTlatndrasitionoccurs
when a suspected process becomes trusted.

Chandra and Toueg [3] define a class hierarchy of unreliable binary failure detectors, of which we
present only four here, calleg (perfect),S (strong), 0P (eventually perfect), andS (eventually
strong). The four classes differ by the set of failure detector histories permitted by each of them. This
set is defined by two properties obmpletenesandaccuracy All four failure detectors mentioned
above share the same property of completeness, and only differ by their accuracy property:

(STRONG COMPLETENESY Eventually every faulty process is permanently suspected by all correct
processes. [class@&s OP, S, OS]

(STRONG ACCURACY) Correct processes are never suspected. [Eldss

(EVENTUAL STRONG ACCURACY) There is a time after which correct processes are never suspected
by any correct process. [cla$$ ]

(WEAK ACCURACY) Some correct process is hever suspected. [ddss

(EVENTUAL WEAK ACCURACY) There is a time after which some correct process is never suspected
by any correct process. [clagsS |

3 Accrual Failure Detectors

We first define the notion of suspicion level between a pair of processes. Then, we define the notion
of accrual failure detector for a distributed system withbrocesses. Finally, we define four classes of
accrual failure detectors that are of particular interest.

3.1 Suspicion level

Consider two distinct processg®&ndg, with ¢ monitoringp. Let ]R{(J{ denote the real positive numbers
and zero. The suspicion level of proceseionitoring procesp expresses the confidenceoin the
statement thag is faulty. It is defined as follows.

“The definition of failure detectors of Chandra and Toueg [3] restricts the output to a set of suspected processes, but the
definition of Chandra et al. [2] allows from an arbitrary range. Accrual failure detectors are based on the latter and more
general definition.



Definition 1 (Suspicion level) The suspicion level of procegwith respect to procegsis the function
susp level ., : T — ]R(J)r.

We require that the functiosusp level,_,, satisfies the following two properties.

P

Property 1 (Accruement) If processp is faulty, the suspicion levelsp _level
as time goes to infinity.

4—p(t) tends to infinity

p€ faulty(F) = tEeroo susp_level,_,,(t) = +o0

Property 2 (Reset) If procesg is correct, then for any tima&), susp_level,,_,,(t) = 0 for some time >
to.
p€ correct(F) = (Vo €T, 3t > to : susp_level,_,(t) = 0)

Depending on the class of failure detector and the pair of processes, one of the two properties below
may be satisfied by the functicmsp_level,,_.,, .

Property 3 (Unknown upper bound) If processp is correct, thensusp_level,,_,,(t) is bounded.

p€ correct(F) = (EISLmaI € RS‘,WET s susp_level,,_, (t) < SLmaI)

q—p

Property 4 (Known upper bound) If processp is correct, thensusp_level,_,,(t) is bounded by a
known valueSLy,q, € Ry .

p€ correct(F) = (VtET : susp_level (1) < Sme)

3.2 Accrual failure detector: definition

An accrual failure detectdp,,. is a failure detector with rang(éﬁg )T, the set of all functions that map
processes to non-negative real numbers (note the analogy to binary failure detectors whosetgnge is

In other words, failure detector modules output non-negative real values, with each value corresponding
to a process and representing the current suspicion level of that process. More precisely, the history of
failure detectofD,,. is defined as follows.

_ susp,levelq_,p(t) if p#q
0w -{ otherise

Concrete classes of accrual failure detectors put some restrictions on the suspicion level functions.
An accrual failure detector must satisfy the following propérty.

Property 5 For all pairs of distinct processes and g, the property of Accruement (Prop. 1) holds for
susp-level,_,, .

We define four classes of accrual failure detectors, depending on how the suspicion level satisfies the
properties on an upper bound. The choice of names is not arbitrary. Indeed, as we prove later (Sect. 6),
the four classes are equivalent to their respective binary counterparts.

P.. Forall pairs of distinct processgsandgq, the properties oKnownUpper Bound (Prop. 4) and
Reset (Prop. 2) are satisfied.

%In this paper, we require that the Accruement property holds for all pairs of processes. However, it is possible to weaken
this property, making it equivalent to the property of Weak Completeness. For simplicity and because Chandra and Toueg [3]
have shown Weak and Strong Completeness to be equivalent, we do not consider the issue here.



0P, Forall pairs of distinct processesandg, the properties off/nknownUpper Bound (Prop. 3) and
Reset (Prop. 2) are satisfied.

Sq.c Forsomecorrect procesp and any other process# p, the properties oKknownUpper Bound
(Prop. 4) and Reset (Prop. 2) are both satisfiedsp level,_,, .

0S,.. Forsomecorrect procesgand any other procegs# p, the properties oyfnknownUpper Bound
(Prop. 3) and Reset (Prop. 2) are both satisfieddsp level,_,,, .

4 Simple Implementation

In this section, we propose a simple heartbeat-based algorithm to implement an accrual failure detector.
First, we present the system model assumed by the algorithm. Second, we describe the algorithm and
prove that it implements an accrual failure detector of c{z#Bs.. Notice that the algorithm described

in this paper is intended as a simple illustration. Stochastic implementations of adaptive accrual failure
detectors have been proposed [12, 13, 14]. Finally, we present the transformation of a well-known
adaptive failure detector into an accrual failure detector.

Partially synchronous system model. We extend the model described in Section 2, by considering
that processes communicate only by message-passing. In particular, we assume that processes have their
own memory spacg Also, channels are reliable, and we consider only crash failures of processes.

We assume a partially synchronous model, as defined by Chandra and Toueg [3], whetsmsome
knownbounds on process speed and message delays hold afteusgmavntime calledGST (for
global stabilization time}.

Algorithm  The algorithm (Algorithm 1) is based on heartbeats and is actually quite simple. The code

of the algorithm, identical for all processes, is expressed for some arbitrary proedds A monitored

process sends heartbeat messages on a regular basis (according to its own local clock). Heartbeats
are sequence numbered, so that a heartbeat message with higher sequence number is considered more
recent. A monitoring procesgkeeps track of the time of arrival,, (p) (according to its own local

clock) of the most recent heartbeat message from a monitored pracéldse value of the function
susp_level,,_,,(t) is given by the time elapsed since the arrival of the most recent heartbeat (according

to the local clock of the monitoring process).

Lemma 1 Algorithm 1 satisfies Prop. 1 (Accruement) farsp _level
processes i, andp is faulty.

4—p » Wherep andgq are two distinct

PROOF.  To prove the property, we show thatsp level,_,,(t) tends toward infinity, given that
crashes.

Sincep crashes, it can send only a finite number of heartbeat messages. Let the heartbeat with the
greatest sequence number arrive at tigneThe algorithm update®),s;(p) to ¢y at this time, and will
never updaté,; (p) again. It follows that, for any time greater thanthe functionsusp,levelq_)p(t) =
t — to. This function obviously tends toward infinity, thus completing the proof. Olemma1

8In particular, this means that variables at shared between processes. Although the same variable namé&i(say,
may be employed by two different processes (geamndq), this always refers to twdistinctvariables (that is7}.s: of p and
Tlast Of q)

"This model is in fact a simple variation over the definitions of partial synchrony due to Dwork et al. [6].



Algorithm 1 Simple implementation of an accrual failure detector.
code of some process q € 11:

1: Initialization:

2:  start := now

3 nextsn:=1 {Sequence number for the next heartheat
4: forall pin II — {¢} do

5: Tiast(p) = start {Arrival time of the last heartbeat from each procgss
6: SNiast(p) =0 {Seq. number of the last heartbeat received
7. whenreceive(heartbeat, sn) from p {receive heartbeat with sequence numbe}

8: if sn > SNis:(p) then

9: Tiast(p) := now
10: SNiast(p) := sn

11: periodically do

12:  broadcastheartbeat, next_sn)
13:  next_sn := next_sn + 1

14: when queried about procegsat timet

15:  susp-level,_,,(t) = if p # g thent — Tj,5(p) else 0

Lemma 2 Algorithm 1 satisfies Prop. 2 (Reset) fetisp_level wherep and ¢ are two distinct

processes ifil, andp is correct.

q—p’

PROOF. To prove the property, we show that for any titgesusp level,,_,,(t) = 0 for some timet >
to, given thatp is correct.

As pis correct, it will send a heartbeat aftgr Let this heartbeat be receivedtabbviously,t > tg.
The algorithm set§},;(t) = t attimet, and hence a query at timeeturnssusp level,_,,(t) = 0, thus
completing the proof of the lemma. Ciemma 2

Lemma 3 Algorithm 1 satisfies Prop. 3 (unknown upper bound)siesp _level wherep andq are

two distinct processes i, andp is correct.

q—p’

PROOF. Lett; be the arrival time of the first heartbeat messagesent afterGST. Assume as a worst
case that all messages sent prioid8T arrive aftert;. Those messages are ignored because of their
lower sequence number. Hence, uhltilsusp,levelq_)p(t) is bounded by, — start.

After ¢1, only heartbeat messages with a higher sequence number, heneéteseft,, are consid-
ered by the algorithm. It follows that they are subject to the synchrony assumptions of the model. Let
A be the end-to-end upper bound on transmission time.A’die the maximal interval between the
sending of two consecutive heartbehtit. follows that the largest interval elapsed between receiving
two consecutive heartbeatsAs+ A'.

Combining the two parts, we obtain thatsp_level,_,, (t) is bounded bynax(ty — start, A+ A’).

q—p

VteT : susp_level,,_,,(t) < max (t; — start, A + A')

q—p
This completes the proof of the lemma. ULemma3

Theorem 4 Algorithm 1 implements an accrual failure detector of clg§$3,..

PROOF. The proof follows directly from Lemma 1, Lemma 2, and Lemma 3, as these lemmas hold for
an arbitrarily chosen pair of processes. Urheorem 4

8The exact values ok andA’ depend on the synchrony assumptions on process speeds, transmission times and drift rates
of local clocks with respect to global time.



4.1 Converting Chen'’s failure detector to an accrual one

Chen et al. [4] have proposed a well-known implementation for a network adaptive binary failure detec-
tor. Briefly speaking, their failure detector, based on heartbeats, monitors heartbeat arrivals to estimate
the timeF A when the next heartbeat should be expected to arrive. The algorithm sets a timeout by taking
this arrival time and adding a constant safety margimitially computed from some QoS requirements.

There is a simple way to transform their algorithm to implement an accrual failure detector. Roughly
speaking, it works as follows. When the expected arrivdlis reached (and the heartbeat is not yet
received), the suspicion level begins to increase linearly over time.Now, if a process sets a constant
suspicion threshold te, the resulting failure detector is identical to Chen’s original implementation.
Nevertheless, the accrual failure detector can serve multiple applications with various qualities of service
or applications with multiple thresholds or even more general adaptation policies.

5 Using Multiple Thresholds with Accrual Failure Detectors

In this section, we take a look at useful properties when an accrual failure detector is converted into a
binary one by means of some threshold. In particular, we look at the special case where there are two
failure detectors defined by two thresholds, where one threshold is always lower than the other.

Let p andq be two processes, andisp_level,_,,, the suspicion level function of with respect
top. LetTy, Ty : T — R* be two threshold functions af. Let suspectl'., and suspectl?,, be two
predicates defined as follows,

Vte T, VT € {11,152} : suspecthHp(t) & susp_level,_,,(t) > T(t)

When suspecth;p(t) (resp. suspecthQ_,p(t)) is true, this means that proces# suspected at time by

the failure detectoDr, (resp.Dr,) defined by threshold’ (resp. threshold?). We consider the case
whereT (¢) is strictly lower thanZ»(¢) for any timet. We have the following simple theorem.

Theorem 5 At all time, failure detectoD, suspect® only if failure detectorDr, suspectp.

T

ap(t) = suspectlt, (t)

VteT : suspect g—p

PROOF. The proof is straightforward.

suspecthi,p(t)
susp_level () > Ta(t

(t) > Tu(t)

4

~—

4

susp-level,_,,

T
= suspect,!,,(t)

DTheorem 5

Chen et al. [4] propose a set of metrics to evaluate the quality of service (QoS) of failure detectors.
In terms of such metrics, we can state the following corollaries when compBringndDr, .

Corollary 6 Failure detectorDy, detects failures as fast as or faster than failure deteds. In
other words,Tp(Dr,) < Tp(Dr,) whereTp (D), called detection timeis the time that elapses from
the failure ofp until the failure detector module @ at ¢ begins to suspegtpermanently.

Corollary 7 Failure detectorDz, generates wrong suspicions at most as frequently as failure detec-
tor Dr,. In other words,Twr(Dr,) > Tur(Dr,) WhereTyr(D), called mistake recurrence time
measures the time between two consecutive wrong suspicions made by

8



Corollary 8 Failure detectorDz, wrongly suspects a process for a duration at most as long as failure
detectorDr, . In other words Iy, (Dr,) > Tar(Dr,) WhereT; (D), calledmistake durationmeasures

the time that elapses from the beginning of a wrong suspicion until its end (i.e., until the mistake is
corrected).

We can also say that failure detec®y, is moreaggressivehan failure detectoDr,, and con-
versely, thaDr, is moreconservativehanDr, .

6 Equivalence between failure detectors

This section proves that accrual failure detector classes are equivalent to their binary counterparts. The
equivalence between an accrual failure detector agssand its binary equivaler@ is important for

two reasons. First, it shows that the assumptions underlying the@Jasse not stronger than those
underlying the clasg€. Second, it shows that any problem that can be solved with a binary failure
detector of clas§ can also be solved with an accrual failure detector of digssIn other words, the
oracles hidden in the two equivalent failure detector classes are equally powerful.

6.1 From accrual to binary

We now prove that an accrual failure detect?y. (whereD,. belongs to one of,., OPuc, Sac, OF

0S4c) can be reduced to a binary failure detecfdfwhereD belongs to the respective claBs P,

S, or {S). The reduction implies, among other things, that the Consensus problem can be solved in

asynchronous systems with an accrual failure detector of any of the four classes mentioned above.
We focus on the reduction frodP . into P, and then explain how to adapt the proof for the three

other reductions{S .. into ¢S, P, into P, andS,. into S).

Algorithm 2 Transforming an accrual failure detector with unknown bound into a binary failure detector.
1: Initialization:

22 T:=1 {threshold to suspekt
3. suspect,_,, = susp-level,_,, >T {true if g suspectp}
4: when suspect,,_,,, = false andsusp_level,_,, > T

51 suspect,_,,:=true

6: when suspect,,_,,, = true andsusp_level,_,,, =0

70 suspect,_,, = false

8 T:=T+1 {increase threshold if suspicion was wrdng

Consider two processesand g, whereq monitorsp. Algorithm 2 uses an accrual failure detec-
tor D,., the output of which is given by the functiomsp_level,_,,, . The output of Algorithm 2 is
given by the value of the boolean variaBlespect,,_.,,. Procesg is suspected when and only when the
variablesuspect,,_,,is true.

The algorithm uses a dynamic threshdldo trigger suspicions. Whenevetsp level,_,,, rises
beyond the threshold’, ¢ begins to suspegt (or continues to suspegl). Whenever the value of
susp _level,,_,,, falls to zero,q stops suspecting and the threshold’ is increased. Very similar algo-
rithms have been discussed by Dwork et al. [6], Chandra et al. [2], and Fetzer et al. [7], expressed with
timeouts rather than an abstract threshold.

The above algorithm implements a failure detector of c{gBs To see this, it is enough to show
that the Strong Completeness and the Eventual Strong Accuracy properties of the accrual failure detector

yield the corresponding properties of the binary failure detector.



Lemma 9 (Strong Completeness)Given an accrual failure detectdp,,. of classOP,., Algorithm 2
satisfies the property of Strong Completeness.

PrRoOOF. Consider a faulty procegsand a correct procegs By assumptionsusp level,,_,,, satisfies
the Accruement property. We show that this implies thatentually suspecisforever.

As susp_level,,_,, goes to infinity, there is a timg after whichsusp_level,_,, is always strictly
positive. Therefore, no T-transitions occur aftgrand thus the current threshdlgl at timet; no longer
changes. Again, asusp level,,_,,, goes to infinity, there is a timg after which it is forever greater than
T;. It follows thatp is permanently suspected after this titge OLemma 9

Lemma 10 Given an accrual failure detectdp,,. of class¢P ., Algorithm 2 satisfies the property of
Eventual Strong Accuracy.

PROOF. Letp andq be two distinct correct processes. By assumptionp level,_,, satisfies the
Unknown Upper Bound and Reset properties. Given this, we show that there is a time aftegwhbich

longer suspectg. Let SL;,q, denote the unknown bound feusp _level,_,,,. We consider two cases.

e Case 1.The threshold rises aboveSL,, ., during the execution of the algorithm (at some time
t). It results that the transition at tintas a T-transition (S-transitions do not incredSeand no
more S-transitions will occur after tinTEaSSUSp,levelqﬂp will never reacHr".

e Case 2. The threshold never rises abo$%é.,,.., hence we know that only a finite number of
T-transitions occur. Hence only a finite number of S-transitions occur. Let the last S-transition
happen at time, . The Reset property ensures thatp_level,,_,, reaches zero at some time>
t1. This triggers a T-transition that is followed by no S-transition.

Therefore, there is a time after whiglno longer suspecis OLemma 10

Theorem 11 Algorithm 2 transforms an accrual failure detector of clgsB,,. into one of clas$)P.

ProoF.  The proof follows directly from Lemma 9 (Strong completeness) and Lemma 10 (Eventual
strong accuracy). Urheorem 11

We have proved the transformation frg® .. into ¢P. The proofs for the other three transforma-
tions is very straightforward and only outlined here (details are in the appendix).

Consider first the transformation frofrS .. into ¢S. Algorithm 2 as it stands does this transforma-
tion. The argument is simple}S,. ensures that the Unknown Upper Bound and Reset properties are
met for some correct procegsnd all other processes. The proof of Lemma 10 can easily be adapted to
show that there is a time after whighis never suspected, thus proving Eventual Weak Completeness.

Now, consider the transformation frof),. into P (same argument fa$,.). P,. ensures that there
is aknownupper bound, sag, on the suspicion level between any pair of correct processes. This bound
is known, so Algorithm 2 is modified so that the thresh®lds initially set to B. This ensures that a
correct process is never suspected.

6.2 From binary to accrual

We now prove that a binary failure detectBr(whereD belongs to one of, OP, S, or {S) can be
transformed into an accrual failure detectdy, (whereD,. belongs to the respective claBs., OP e,
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Sac, 0r0S,c). For all four classes of failure detectors, the transformation fiota D, is done by the
same algorithm (Algorithm 3).

The algorithm is expressed between two procegsasd g, whereq monitorsp. Whenever the
binary failure detectoD trusts the monitored procegs the suspicion level is set to 0. Whenever
suspect®, the suspicion level is set tplus the time that elapsed since the beginning of the suspicion

Algorithm 3 Transforming a binary failure detector into an accrual failure detector.
1: Initialization:
2. timestamp := now

: when suspect,,_,,, becomes true {S-transitior}
timestamp = now

: whenqueried
if suspect,_,, then

susp_level ,_,,, := 2 + now — timestamp {always at least P
else

susp-level,_,,, =0

ecoNT AW

Lemma 12 (Accruement) Algorithm 3 satisfies the property of Accruement (Prop. 1) for some binary
failure detectorD of classP, S, OP, or OS.

PrROOF. Consider a faulty procegsand a correct procegs By definition,D ensures that is eventu-

ally suspected permanently (Strong Completen®sis; of classP, S, OP, or {S). Lett; be the time
when the last S-transition occurs (or the starting time of the algorithm if no S-transition occurs). The
resulting suspicion level function isisp_level,_,,(t) = 2 +t — t; aftert;. This function clearly goes

to infinity with time, thus proving the Accruement property. O emma 12

Theorem 13 Algorithm 3 transformg” into P,. andS into S,..

PrROOF. From Lemma 12, Algorithm 3 satisfies the Accruement property.

Consider the transformation frointo S, (the proof for the transformation @t into P, is nearly
identical). Letp be a correct process that is never suspectel fWeak Accuracy). Ley be any other
correct process. Singeis never suspectedysp level,_,,, = 0 always. Known Upper Bound (Prop. 4)
and Reset (Prop. 2) are both trivially satisfied. Otheorem 13

Theorem 14 Algorithm 3 transformg)P into OP,. and QS into 0S5 ..

PrRooF. From Lemma 12, Algorithm 3 satisfies the Accruement property.

Consider the transformation frofS into 0S . (the proof for the transformation dfP into 0P .
is nearly identical). Lep be the correct process that is never suspected after some timeany
other correct procesg (Eventual Weak Accuracy). We prove Unknown Upper Bound and Reset for
susp-level,_,,.

Again, the proof is easysusp_level,_,, is constantly equal to after¢, hence Reset is trivially
satisfied. The highest suspicion level occurs if there is only one suspicion lasting from the starting time
to of the algorithm until time: this level is2 + ¢ — ¢y. Therefore Unknown Upper Bound is satisfied.

®Note that the time is not known a priori, hence Known Upper Bound does not hold.

11



DTheorem 14

Finally, note that Algorithm 3 has an interesting property. Consider any binary failure defector
If D is transformed into an accrual failure detecidy, by Algorithm 3 and back into a binary failure
detector by setting a threshold of 1, the resulDistself. In other words, using the accrual failure
detectorD,,. with suspicion threshold 1 results in the same sequence of suspicions as generafed with
(with transitions occurring at the same times).

7 Conclusion

Failure detectors constitute a fundamental abstraction for fault-tolerant distributed systems. However,
from a more practical perspective, the binary model of these failure detectors is limited by the fact
that they combine monitoring and interpretation. The accrual failure detectors presented in this paper
decouple these two issues by outputting a suspicion level rather than a binary value, and leaving it to
processes to interpret that value. Ideally, the monitoring can be done by a single service running on each
machine, while the interpretation is left to each application process. Such a service can be implemented
as adaemon, a shared library or a kernel service, depending on the desired tradeoff between intrusiveness
and performance.

The equivalence results presented in this paper show that accrual failure detectors do not hide any
additional synchrony assumptions with respect to their binary counterpart. In addition, equivalence with
other failure detectors can be deduced for other results (e.g., between the eventudllaadéxs .
by transitivity from equivalence proved by Chandra et al. [2] and Chandra and Toueg [3]).
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A Appendix: Proofs

We present here some of the proofs that were only summarized in the main body of the paper.

A.1 Reduction: from accrual to binary

Algorithm 4 transformsP,. to P andS,. to S. The algorithm uses the known upper bound on the
suspicion level as a threshold to both suspect and trust the monitored prothdse in Algorithm 2,
there is no need to dynamically modify the threshold used to sugpect

Algorithm 4 Transforming an accrual failure detector with known bound into a binary failure detector.
1: Initialization:
2: T :=bound on the accrual value {threshold to both suspect and trist

3: whenqueried
4:  suspect,_,, := susp-level,_ , >T

Lemma 15 (Strong Completeness)Given an accrual failure detector that satisfies Accruement, Algo-
rithm 4 satisfies Strong Completeness.

PrRooF. Consider a faulty procegsand a correct procegs We show that the Accruement property of
susp _level ,_,,, implies thatg will eventually suspecp forever. This holds becausesp_level,,_,, goes
to infinity, and thus there is a timeat which the suspicion level rises above the threstbléience the
failure detector permanently suspegtafter this timet. O emma 15

Lemma 16 (Accuracy) Given an accrual failure detector of clags,. (resp.S,.), Algorithm 4 satisfies
Strong Accuracy (resp. Weak Accuracy).

PROOF. Consider any two correct procesgeandq (p # ¢) when proving Strong Accuracy (for the
transformatioriP,. to P) and the correct procegsto which Weak Accuracy refers, and any other cor-
rect procesg, when proving Weak Accuracy (for the transformati®y to S). For these two processes

p andgq, we show that the Known Upper Bound and Reset properties imply; thewer suspecis. The

proof is simple: Known Upper Bound implies that the suspicion level will never rise above the threshold

T. E]Lemma 16
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Lemma 17 (Weak Accuracy) Given an accrual failure detector of class,., Algorithm 4 satisfies
Weak Accuracy.

PROOF. The proof is a simple adaptation of that of Lemma 16 with the difference that the correct pro-
cessp for which the Known Upper Bound holds is the correct process that is never suspecigda 17
Theorem 18 Algorithm 4 transforms an accrual failure detector of clgBs, into a binary one of
classP.

PROOF.  The proof follows directly from Lemma 15 (Strong Completeness) and Lemma 16 (Strong
Accuracy). UTheorem 18
Theorem 19 Algorithm 4 transforms an accrual failure detector of claSg. into a binary one of

classS.

ProoF.  Follows directly from Lemma 15 (Strong Completeness) and Lemma 17 (Weak Accuracy).
CTheorem 19
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