JAIST Repository

https://dspace.jaist.ac.jp/

Title An SNMP based failure detpction ser)\

Author(s) Wi esmann, Matthias; Ur ban Pet er ; D ¢
Research report (School of I nformat.

Citation Japan Advanced Institute pf Science
Technology), | S-RR-2006-0p1: 1-24

Issue Date 2006-02-01

Type Techni cal Report

Text version publ i sher

URL http:/7 /7 hdl handle.net/ 101019/ 4791

Rights

L 00000000 DbODOO0O0OoOO0ObOOoDoOobOoog
Description

gooogd

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



An SNMP based failure detection service

Matthias Wiesmann, Péter Urban, and Xavier Défago

School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST)

February 1, 2006
IS-RR-2006-001

Japan Advanced Institute of Science and Technology (JAIST)

School of Information Science
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

http://www.jaist.ac.jp/

ISSN 0918-7553
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Japanese Advanced Institute of Science and Technology
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Abstract

In this paper, we present the SNMP-FD system. This system is a novel failure detection service
entirely based on the SNMP standard. The advantage of this approach is better interoperability, and the
possibility to rely on different sources of information for failure detection, including network equipment.
This, in turn, gives us more precise failure information. This paper presents the architecture of the
SNMP-FD system and discusses its advantages, both from the system engineering and interoperability
angle, and the quality of the resulting failure detection service.

Keywords: failure detection, SNMP, distributed systems, interoperability, fault tolerance.

1 Introduction

One definition of distributed systems was given by Leslie Lamport: You know you have one when the crash
of a computer you’ve never heard of stops you from getting any work done. It illustrates one of the main
issues in distributed systems: detecting and handling failures. In order to implement some form of fault
tolerance in a distributed system, one needs a mechanism to detect remotely when hosts and processes fail.
As the number of nodes and the complexity of distributed system increases, the need for standard means for
detecting such failures becomes a necessity.

While failure detection is an important aspect for implementing distributed algorithms, the problem of de-
tecting failed processes or nodes is more general. It affects cluster and network management, application
deployment and distributed computing in the wide sense. Currently, solutions for process and host failure
detection exist, but they tend to be restricted to system and network management usage. Application level
failure detection is typically handled using fixed timeouts, if it is handled at all.

Fixed timeouts are ill-suited for failure detection. Consider the case of a web-browser issuing an HTTP
request. A connection timeout can mean either that the server has failed or that it is simply overloaded.
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This means that the user has to reload the page to figure out what happened, which is neither practical, nor
reliable or even efficient—in fact, in case of an overloaded server, a retry will only add to the load. Setting
the right timeout is a difficult task: if it is too short, the connection will fail before getting the answer from
the remote site and, if it is too long, the connection will block, waiting needlessly for a crashed machine. As
there is no standard means to detect if a host or an application is crashed, timeouts are, alas, often the only
possible solution.

A failure detection service addresses these issues. Applications can use it to decide when a process has
crashed and when reconfiguration is needed. The service can be used directly by applications, but also be
integrated in the communication mechanisms of middleware systems, like CORBA or a grid infrastructure,
or be used to build failure detectors that offer formal properties like ¢S [CT96], €2 [Lam98] or accrual failure
detectors [DUHKO5].

There are many advantages in having a failure detection service. First, a service factors out common func-
tionalities. It is easier to implement complex, adaptive failure detection as an independent service and thus
offer formal properties. Such a service can aggregate multiple information sources and use all the available
information. Second, it gives a uniform interface to complex functionality. Third, the actual implementation
and model of the underlying system can be changed without rewriting applications and high-level protocols.
Fourth, a failure detection service can be configured independently of the applications.

A failure detection service has many advantages and there have been a few implementations, yet none of
those have gained wide acceptance. Existing implementations have generally been ad-hoc implementations,
with little regard for standardized interfaces or interactions with other services and standards. Many is-
sues can prevent a distributed service from gaining acceptance, but providing no standard interface and no
provision for interactions with existing services and infrastructure is certainly a factor.

We believe that failure detection is now mature enough to be standardized. In this paper, we present an
architecture for a standard based failure detection service. This architecture is based on the SNMP stan-
dard [CFSDO90]. The use of this standard gives us four advantages: 1) the SNMP protocol is designed to
be lightweight; 2) SNMP makes it possible to inter-operate with network equipment and other management
services; 3) using an existing standard prevents us from re-inventing the wheel and increases the prospect of
wide adoption [WDS03]; 4) using a standard designed for monitoring makes it possible to use the abundance
of existing tools and thus build a high quality detection service.

Our SNMP-FD framework offers low-level failure detection services and specifies interfaces to be used for
application level failure reporting. Failure detection components can use a variety of strategies to detect
failures and report such failures with different quality of service parameters and formal properties. In turn,
these failure detection services can be used directly by applications, be integrated in middlewares, or be used
for building distributed system protocols, like consensus, total order broadcast, or atomic commitment.

SNMP helps us in many ways: we use SNMP messages to transport heartbeats and failure reports; we use
an SNMP interface to query and configure the failure detection service; and the failure detection service can
use SNMP accessible information offered by other services, like network equipment. This makes it possible
to rely less on heartbeat messages and improve the quality of failure detection.

Finally, we get all the advantages of using a standardized middleware. First, this means that different
implementations of the failure detection service can coexist and share the same interface. This might be



needed because nodes may run in different administrative domains with a different infrastructure, or because
there may be multiple versions of the failure detection service to avoid correlated bugs. Moreover, issues
like external monitoring and security become important aspects if the distributed system is to run in a wide
area network (WAN). Using SNMP allows us to reuse its security facilities and wide array of tools.

The remainder of this paper is structured as follows. Section 2 presents failure detection and the system
model. Section 3 introduces the SNMP protocol. Section 4 describes the different SNMP mechanisms that
can be used to build a failure detection service. Section 5 introduces the SNMP-FD framework architecture.
Section 6 discusses the failure model and applications of the framework. Section 7 presents the related work.
Section 8 concludes the paper and talks about future work. Appendix I contains the MIB description of the
service.

2 Failure detection

Failure detection has always been an issue in distributed systems. Early implementations of failure detection
have been proposed by Ricciardi et al. [RB91] and Beker [Bec91]. Conceptually, a failure detection service
is a distributed oracle that gives you information about the state of processes in a distributed system. This
oracle can be used to determine when a point-to-point communication should be aborted (typically, stop
waiting for data from the other endpoint). In distributed algorithms, this oracle is used to trigger new phases
and reconfigurations. For a general understanding of failure detectors, see the introductions on the subject by
Girtner [Gdr01] and Raynal [Ray05]. Different failure detection models and implementations are described
in Section 3.

While distributed systems concentrate on processes, monitoring systems typically monitor resources. A
resource can be anything: a cooling fan, a single executing process, a host machine, or a whole computing
rack. There is a relationship between resource failures. Depending on the amount of redundancy and the
type of failure, one failure can cause the failure of another element: if a host crashes, all processes running
on this host will also crash. Monitoring tools handle the failure relationship between resources. A failure
detection service only monitors processes. Therefore this paper concentrates on processes and the resources
whose failure can directly affect processes: hosts and network links.

We assume a set of hosts, each running a set of processes. Processes are the basic unit of monitoring. The
failure detection service provides failure information about processes. We assume that the service is running
within a Local Area Network (LAN); failure detection in Wide Area Networks (WAN) is beyond the scope
of this paper. The failure detection delivers notifications each time a process is suspected to have failed
(S-transition) or is trusted again not to have failed (T-transition). Attached to these notifications is some
optional information about the level of suspicion. We concentrate on this failure detection interface because
it is the most common, and it is also applicable in point-to-point communication.

Failure detection in a LAN is either done in a centralised way, with one management station monitoring
all hosts and processes, or in a flat structure, where all processes monitor all other processes. There are
two kinds of monitoring. With the first kind, also called ping (after the ICMP ping protocol [Pos81]), the
monitoring host sends are you alive requests to the monitored process and expects a response. The lack of
response leads to a suspicion. The second approach is to have the observed process send heartbeat messages
(also called I'm alive messages) to the observer. The lack of heartbeat messages leads to a suspicion.



The characteristics of a LAN are as follows. Hosts are connected with high-bandwidth, direct links. There
is little or no IP-level routing between the nodes and broadcast primitives like UDP-multicast can be used.
Network latency is low, and packet loss is rare. Hosts can potentially interact with the network equipment
that connects them.

3 SNMP

The Simple Network Management Protocol (SNMP) is a standard for network management activi-
ties [CFSD90] defined by the Internet Engineering Task Force (IETF). SNMP is the most common standard
for managing network equipment and critical servers. SNMP agents can be found in all the higher-range
equipment, and the current trend is to put SNMP agent in low-cost devices: nowadays, one can find SNMP
agents in many network attached devices like Wi-Fi access points, ADSL routers, small smart switches, and
even printers. We think this trend will continue. Open-source agent software and SNMP tools for personal
computers and servers are available for most operating systems [NSN].

Many application specific extensions to SNMP have been proposed, from network performance monitor-
ing [Wal95] to database management [BPD*94]. The Java Management toolkit specifies an SNMP inter-
face [JIMX99]. Other vendors provide tools to translate low level monitoring information like IPMI into
SNMP [Vol01]. Thus, various aspects of a complete distributed system, from software components to
power-supply voltage, can be monitored using SNMP. Many high-level diagnosis and monitoring tools rely
on SNMP information for network and host management.

Network 1| Monitored
Management [« )
Station Object
Netwrk !

SNMP
Agent m

Figure 1: SNMP Architecture

Figure 1 illustrates the SNMP architecture. The Network Management Station (NMS), on the left, monitors
some managed object on the right, by the way of an SNMP agent. The SNMP agent hosts a Management
Information Base (MIB). The MIB can be queried and written by the NMS using synchronous queries. The
agent can initiate communication with the NMS by sending messages. These messages can either be traps
(which are not acknowledged), or inform messages (which are acknowledged). The actual type of message
can be configured. SNMP specifies security and authentification. SNMP typically runs over UDP/IP but
it can also use TCP/IP or other network technologies. Data marshalling is done according to the Abstract
Syntax Notation’s Basic Encoding Rules (ASN.1-BER) defined by the ITU [X.602].

The MIB is a tree structured database that contains information reflecting the state and configuration of both
the agent and the monitored object. The MIB tree can be divided in sub-trees, each concerning a particular
aspect of management. In addition to the standard parts of the MIB tree, each vendor can have its own
proprietary sub-tree. The MIB supports scalar integer types, strings, structures, and tables. The position of
a data item in the tree is identified by a reference, called Object IDentifier (OID). The OID is a sequence
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of numbers, usually denoted x .y .z. Many OIDs have an associated human-readable name; in this paper,
such names are written in sans serif font. An SNMP binding is a pair formed by an OID and an associated
value. SNMP messages contain a sequence of bindings. In other words, each message contains the value of
certain points in the tree.

The content of the MIB and of SNMP messages are described using schema files written in the SMI lan-
guage. Those files are used by SNMP tools to display information in a human readable format, but also to
configure tools, and to help building agents. The service specification given in Appendix I is written in the
SMI language.

While SNMP was originally designed with a single NMS in mind, fault tolerance and scalability has been
increasingly researched. A system that increase the scalability of SNMP monitoring system is presented
in [SAF00]. In [DMNN98], techniques to make SNMP reporting fault tolerant are described.

4 Using SNMP

4.1 Goal

Our goal is not to implement one particular failure detector (for a description of different failure detector
types and interfaces, see Section 7). Instead, we wish to offer common functionality needed to implement a
failure detector and means to connect this failure detector with applications. For simplicity, we concentrate
on one particular failure detection interface but the same technique can be used for other interfaces. With
this interface, the application is simply told that a given process is suspected with some optional informa-
tion giving some insight on the level of suspicion. We choose this interface mostly because it is the most
common, and it can be used with point-to-point communication. Other interfaces, like leader election, are
defined in terms of many processes, and hence cannot be applied to point-to-point communication.

The standard approach to build a complex distributed system is to rely on some kind of middleware. Mid-
dlewares have two advantages: they offer some abstraction level, and a standard for interoperability. Both
aspects are relevant for a distributed failure detection service, although interoperability is more of a con-
cern to us. There is an abundance of available middlewares: Java-RMI, CORBA, DCOM, JMS, SOAP, etc.
SNMP is not traditionally considered a middleware, yet it offers all the basic facilities: it specifies client-
server interactions, message format, data marshalling, standard services, and authentication.

Given our goal, SNMP is a clear choice, as the standard is designed for network monitoring, it is widely
deployed, and was designed to be lightweight so as to be embedded in network equipment. In this section,
we describe how SNMP’s features can be used for the task of building a failure detection service. This
includes the following functionalities: heartbeat messages, process information, failure detection configura-
tion, failure reporting, and cooperation with networking equipment.

4.2 Messaging



SNMP specifies a mechanism for transmitting messages, as traps and inform messages. SNMP specifies the
serialisation format and the message structure. A failure detection service will have to transmit messages.
Those messages can be both internal (for instance, heartbeat messages), or to notify client applications
(report changes in the suspicion level). By using the SNMP message format, messages can be parsed
and understood by existing tools. This also means that client applications can use any existing SNMP
handling library and is not tied to one specific implementation or language. One advantage of using SNMP
messages over using the messaging structure of another middleware like CORBA is that the message format
is lightweight (typically one UDP packet) and can be used in a connection-less mode.

4.3 Process information

SNMP specifies a standard MIB, called the host resource MIB [WGO00] to expose information about re-
sources on a host. Resources that can be monitored via this interface include devices, file systems, installed
software, and running processes. The last item is of interest for a failure detection service. Using this MIB
to expose information about whether local processes are running or not is a natural choice. If it uses this
MIB, the failure detection system can be used hand in hand with classical network and cluster management
systems.

4.4 Configuration interface

The MIB is the SNMP mechanism for querying and setting the configuration of the agent. The Notification
and the Target MIB [LMS99] specify destinations of SNMP messages and how they should be addressed.
Other aspects of the service can be described in application specific MIBs.

4.5 Cooperation with networking equipment

The SNMP agents on networking equipment are configured to send traps in case of events that have an
influence on the failure detection service. Two traps are of particular interest: link-up and link-down. Link-
down indicates that a network interface went down; the host behind this interface is therefore unreachable.
Link-up indicates that the network interface went up. In case of short disconnections—for instance, the
rebooting of a machine—the down trap might not be generated. Other traps, for instance those signaling
congestion, could be used to adjust failure detection parameters [dAMeL04].

5 Failure detection service based on SNMP

This section describes the architecture of our SNMP-based failure detection service. We call it SNMP-FD.

We assume a set of hosts, running both monitored or monitoring processes. Monitoring processes want to
get monitoring information from monitored processes. A process can be both monitoring and monitored.



A demon process is running on each host. This demon acts as a local agent for both monitoring and
monitored processes. Monitored and monitoring processes are registered with the local demon. Demons
are responsible for exchanging monitoring information. We assume that in case of crash of the demon, it is

restarted automatically by the operating system.
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Figure 2: SNMP Usage

Figure 2 illustrates the general architecture of SNMP-FD. It shows two hosts A and B. Host A contains
one process p 4 that monitors three processes on host B: p}B, sz and p%. The network between hosts A and
B runs on smart switch S that exports management information using a SNMP interface. On smart switch
S, host A is connected on interface i4 and host B is connected on interface ¢g. De&mons d4 and dg run
on nodes A and B, respectively. Both act as SNMP agents. D@mon d 4 implements the monitoring agent
interface, while demon dp implements the monitored agent interface. In an actual system, demons would
implement both interfaces. All monitored processes p}g . p3B are registered with demon dp. Other parts
of the figure are explained throughout the section.

5.1 Monitored agent

This agent monitors local processes and notifies remote agents in case of crashes. The agent implements
three MIBs: the Host Resource MIB, the Notification MIB and the Heartbeat MIB. We assume that the agent
is monitored by some operating system facility. In case of failure, the agent is automatically restarted. The
agent has a copy of its internal structures in stable storage. Thus, we assume that dp is running as long as
host B is up. Upon restart, the agent follows the SNMP convention and sends a cold-start message to all
the targets registered in the Notification MIB. The monitored agent sends two types of messages to other
agents: heartbeats and messages signaling a change of process state.

Host Resource MIB The agent implements the part of the standard Host Resource MIB [WGO00] that
describes running processes. The system can export all running processes of the host or only the monitored
processes. Processes are stored into the SNMP table called hrSWRunTable (OID .1.3.6.1.2.1.25.4.2). Of
particular interest is the field named hrSWRunStatus that contains the status of the process. The agent



implements the part of the standard Host Resource MIB [WGO0O0] that describes running processes. The
system can export all running processes of the host or only the monitored processes. Processes are stored
into SNMP table called hrSWRunTable (OID .1.3.6.1.2.1.25.4.2). The agent implements the portion of the
Host Resource MIB that contains the process table.

Notification and Target MIB SNMP specifies the Notification MIB and the Target MIB [LMS99] to
handle registration of remote SNMP entities interested in receiving messages if the state of the agent or its
associated device changes. In particular, those MIBs specify tables that contain the addresses and parameters
for each remote listener. The agent implements the standard Notification and Target MIB. Those MIBs
contain the addresses and parameters of all entities that need to be notified in case of process state change.

For the case described in Figure 2, the Notification and Target MIB contains one entry with the address
of A and the port number used by the SNMP Agent running on A, along with the relevant SNMP options
(addresses, protocol used, SNMP version, type of message, filtering options, etc.).

Heartbeat MIB The agent also maintains a MIB that contains the descriptions of the different heartbeats
in the form of one table. We need an additional table as heartbeat parameters do not fit in the notification and
target tables. Each entry in this table contains the tag of one entry in the Notification MIB to send the heart-
beat to, the process identifier of the monitored process, and information about the heartbeats themselves:
time interval between heartbeats and a counter of the number of sent heartbeats. In the case illustrated by
Figure 2, the heartbeat table contains three entries: for p}g, for pZB and for p3’B. This MIB is specific to the
SNMP-FD framework and is specified in Appendix L.

Heartbeat messages Heartbeat messages can be either traps or inform messages. They contain a sequence
of bindings from the different MIB of the monitored agent. The following bindings are included: the host
identifier of the monitored agent SNMPv2-MIB::sysName (OID 1.3.6.1.2.1.1.5.0), the interval between
heartbeats, then for each monitored process the process identifier, the process state (from the Host resource
MIB), the requested heartbeat interval (which might be larger than the actual interval between heartbeats)
and the heartbeat counter (both from the Heartbeat MIB).

5.2 Network equipment

The SNMP agent on smart switch .S is configured by the way of its Notification and Target MIBs to send
traps to the agent on host A in case of events. For instance if interface i goes up or down. A link-down
trap concerning interface ¢ g indicates the host B is unreachable on the network. An link-up trap without a
down trap before indicates a reboot — in this case, the agent on host A should query the demon on host B to
see what its status is.

5.3 Monitoring agent



The monitoring agent A maintains four MIBs: the Notification MIB, the Target MIB, the Process Knowledge
MIB, and the Failure Detection MIB. Each different failure detection policy will result in a different table in
the Failure Detection MIB.

Notification and Target MIBs Like the monitored Agent (see Section 5.1), the Monitoring Agent im-
plements the Notification and the Target MIB. Those MIBs contain the information for sending traps or
notifications to remote hosts. All the entities known to the agent are registered here.

Process Knowledge MIB This MIB contains monitoring information for remote processes. This infor-
mation is stored in a table, where each line is a remote process that the agent knows about. For each process,
it contains the host name, the process identifier, the last known status (hrSWRunStatus), the state of the
associated host and the time-stamp of the last update. This information is updated dynamically as SNMP
messages arrive. This MIB is specific to SNMP-FD and specified in Appendix 1.

Failure Detection MIB This MIB contains a table of failure detectors. Each failure detector is imple-
mented as a different table, but they all share some common structure. Each entry of this table describes
a remote process identified by a host name and a process identity, it also contains a reference to one local
process knowledge table entry that describes the remote process, and the related heartbeat rate. Each line
of the table also contains all the parameters related to the failure detection. Those columns of the table are
specific to one failure detector. For example, a failure detector that implements a simple timeout-based sus-
picion scheme, will implement this MIB with a table where each entry will contain the status (suspected or
not) and the timeout after which the lack of heartbeat will trigger a suspicion. This MIB is specific to each
policy implemented within the SNMP-FD system. An example of a simple heartbeat base failure detector is
specified in Appendix I.

Application notification Applications are notified using local SNMP notifications. The suspicion mes-
sage contains the OID of the process’s entry in the Failure Monitoring MIB, the binding of the process’s
status in the Failure Detection MIB (e.g, the OID and the value). The application can use the failure infor-
mation in the message, or use the OIDs included in the message to lookup more complete information in the
MIBs of the Monitoring Agent or even the host where the process runs.

5.4 Comparison to other services

This architecture follows that of other failure detection services like the Globus Heartbeat Moni-
tor [SDF99]. There are many similarities with the Hierarchical Service presented by Bertier and
al. [BMSO03]: the Process Knowledge MIB is similar to the blackboard element in the Basic Layer, and
Failure Detection MIBs correspond to adaptation layers.



6 Failure detection types

In this section, we discuss the avantages of the SNMP-FD architecture for failure detection and the failure
coverage.

We consider a system composed of hosts, processes, network links and network equipments. Hosts can have
the following failures: operating system freeze (the hardware stays active, but the hosts and the processes
running on it stop responding), operating system crash (the hosts reboots, all processes running on it are
terminated), hardware stops (the hardware shuts down). Process failures are fail-stop and are detected by
the operating system, that is, we consider that the operating system has means to detect other process failure
types, like freezes [SS83]. We consider that the SNMP-FD agent can fail, but will be restarted by the
operating system. Network links can fail (stop transmitting data). The network system can lose packets,
but it is fair lossy, i.e., eventually messages will be transmitted. Network equipment can stop-crash (i.e
physically stop from working), or freeze (stop transmitting data). We exclude malicious (byzantine) failures.

6.1 Available failure detection information

Cause Detection mechanism | Monitor Notification
Process stop-crash oS Monitored Agent Process state trap
Agent stop-crash oS Agent cold start trap
Link failure Link state Network equipment | Link down trap
Host stop

Host reboot Link up trap
Equipment stop-crash Link down trap

Table 1: Detection types

Many failures can be detected by components of the system. Table 1 summarizes the types of failures that
can be detected and thus reported to the failure detection system.

Process failures Process stop-crashes can be communicated with no significant delay — the notification
is triggered as soon as the host’s operating system detects the crash. The crash of the monitored agent is
detected indirectly. The crash is detected by the operating system and the monitored agent is restarted. Upon
restart, the agent will send a cold start trap (as specified by the SNMP standard). The agent’s data structures
are assumed to be stored on stable storage.

Link crash failures Link crash failures mean that the network link goes physically down. This can be
detected by the hardware of network equipment and are reported by link-down traps. Interpretation of those
traps depends on the system’s structure and the number of links to a given host. The processes on a given
host should only be suspected when the host’s last link fails. The loss of a link can affect some parameters
of a failure detection scheme. For instance, if the failure detector reports a suspicion level for a host, this
level would be increased when the host is connected to the network with a reduced set of links.
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Host failures Host fail-stops also cause the network link to go down. A host reboot causes the network
link to go down for a short amount of time and then go up again. This is often only signaled by the equipment
by a link-up trap with no previous link-down. Detection time for changes in the link state are quite long:
the traps are only generated after roughly 1 second. The hardware does its own transient suppression and
thus waits for the link state to stabilise. Depending on the equipment, the agent can be configured to send
notifications instead of traps and do retries to ensure the notifications are reliably delivered.

It is not possible to distinguish the crash of a single host from the failure of all its links: both are signaled
by link-down traps. Both cases indicate that further messages from the host should be expected. Link-down
traps can be correlated with ICMP Host unreachable packets [WNSS02] which also signal that a host is
unreachable.

Network failure Fail-stops of network equipment, like host fail-stops are detected by the link connecting
to them going down. It is also not possible to distinguish between the crash of some equipment and the
failure of all of its links. While such failures should be handled by the networking infrastructure and do not
concern directly the failure detection service, those failure could affect some failure detection parameters.
For instance the loss of some of the network connectivity could mean that heartbeat parameters would be
changed.

6.2 Proactive failure detection

The failures cases described in the previous section are very interesting because detecting them does not
require any specific activity of the failure detection service: it must simply register for these notifications
and react to them. When no failure occur, no processing and no message transmission is needed.! We call
this reactive failure detection.

The main problem is that not all failures can be detected using reactive failure detection. For instance, an
operating system freeze will not trigger any special signal, as the network link will stay up. Also while
certain failures can be detected reactively, the detection time can be quite long. Because of this, we cannot
rely solely on reactive schemes: we also have to use heartbeats. In that case, the failure detection system does
not wait for external signals; it generates a data stream instead, and measures it. This uses both processing
and network resources. We call this proactive failure detection. The quality of service of proactive failure
detection is correlated with the amount of monitoring the traffic generated [CTA02].

The two approaches are not exclusive, and SNMP-FD is designed to support both.

6.3 Advantages of reactive failure detection

The advantage of reactive failure detection is that the detection time can be short. If the failure is detected
immediately, the time until it is reported is basically the time for one message to go from the monitored

!"This information might not be available via a push interface, so local polling might be needed.
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host to the monitoring host. The detection time is constant. If you assume that reactive failure case are fre-
quent then integrating reactive detection schemes in the failure detection service can improve your average
detection time (it will not change the maximum detection time, though).

Let us consider the case illustrated in Figure 2, host A monitors processes on host B. The demon on host B
sends heartbeat message to A every 7 time units. We consider a simple timeout based failure detector with
the following model assumptions: the system has synchronized clocks, the average time for transmitting
a message from B to A is ¢, the maximum transmission time is § + €, and the failure detector on host A
suspects B if it has not received a heartbeat at time § + €. Messages are never lost. In this system, the
average detection time will be: Tp=0+e+ g

If we consider P the probability that a given failure can be detected immediately, then the average detection
time now will be: Tp = d + (1 — P)(e + ). As P increases, the contribution of the heartbeat parameters
becomes small, and the average detection time depends less on the the heartbeat period.

Beside crashes where the monitored process crashes and the rest of the system is fine, other failure cases
can be detected without ambiguity. For instance, if a machine shuts down because its UPS is nearly empty.
Another example is system reboot (by the way of link up traps and ICMP unreachable packets). In general,
software failures are quite common [OGP03, Gra85].

6.4 Suspicions and certitudes

The basic interface of the failure detector returns two values: trusted or suspected. In the SNMP-FD there
are cases where another value is returned: failure is not a suspicion but a certitude. For instance, if a process
crashes but the host and the SNMP-FD agent are correct, this failure can be reported without any ambiguity.
In fact, getting more accurate information is the main advantage of interacting with more entities on the
network. Does this bring any advantage? What are the advantages of having a failure detector with three
states trusted, suspected, failed?

A three state failure detector makes it possible to write algorithms with better characteristics. Take for
instance the problem of consensus in an asynchronous system with unreliable failure detectors [CT96].
Consensus can only terminate if the there is a majority of correct processes, that is, a number of faulty
processes f < 7, now if we distinguish the number of suspected processes fs from the proceses that are

known for sure to have failed f., consensus can terminate if fy < R_Tf‘

Intuitively this can be explained in two ways. One is to consider that the system implements a simple
view membership service [CKVO01]. Processes are then safely excluded from the view when their failure
is certain, so the algorithm will run with a view where all processes whose failure is certain have been
excluded. Another way to see it is to consider the consensus algorithm for the crash-recovery model from
Aguilera et al. [ACTO00]. In this algorithm, when a node recovers, it simply sends a single message to say
that it should be ignored in the next rounds of consensus. If process a is certain that process b is crashed,
process a can behave as if b had crashed, recovered and sent this message. Thus from the point of view of
the number of required processes to terminate, failure certitudes can be handled as recoveries.

A similar conclusion is reached by Gorender et al. [GMROS5]. In their model, the system switches between
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two models, one with a perfect failure detector and one with an imperfect one and uses this model to
implement a three state failure detector, with similar results.

7 Related work

Chandra et al. have shown that an abstract failure detection service [CT96] with certain properties can
solve the consensus and atomic broadcast problem in an asynchronous system [FLP85]. The same failure
detectors can solve total order broadcast or atomic commitment problem [GLS95]. This failure detector
returns a list of suspected processes. Other failure detection interfaces have been proposed: returning a
leader [Lam98], giving an indication of slowness [SBCdFO03], a suspicion level [HDYKO04]. In [BO83], an
oracle returning a random value is used instead of a failure detector. In this paper, we concentrated on the
first kind of interface.

For each interface type, there have been numerous implementations and algorithms. Some refine the sus-
picion model [GS96, GM98], avoid the use of timeouts [ACT97], use a query-response based implementa-
tion [MMRO3] or handle network partitions [DFKM97]. In [CTAO02], Chen et al. propose a quantification
of quality of service for failure detectors. Many techniques have been proposed to improve the quality of
service of failure detectors: by minimizing traffic [LFAOO], masking transient errors [BCG97], or by using
some means of adaptation [CRV95, FRTO1, NJP04]. Failure detectors that combine multiple approaches
have also been proposed [AT99, MPRO4]. In [dAMeL04], failure detection is implemented by the way of
a neural network. This neural network uses information extracted from network equipment as one of its
inputs. This information is extracted using SNMP, but the protocol is not used for other tasks. To the extent
that they are used to build a failure detector that tells if a process is suspected or not, all these techniques
can be used within our architecture.

The concept of a failure detection service as a separate entity has been proposed for some time [FDGO99].
Most distributed system toolkits feature a failure detection facility [Mur(05], or a group membership service
that excludes failed processes [KSMDO02]. A standalone failure detection service have been proposed in
both the distributed system community [DHJT04] and the Grid community [SDFT99, WSGY00]. A system
to adapt timeouts in Fault-tolerant CORBA is presented in [SMO1]. Those services are different from the
one presented here in two ways: first, they do not support standard interfaces; second, they offer high-
level failure detection information. A first, incomplete and partially SNMP compliant prototype of the
architecture in this paper was described in [Rei02]. The general architecture follows that of other failure
detection services [SDF 99, BMS02].

The scalability of failure detection has also been studied. Two general types of wide area failure detectors
have been proposed [HCKO02]: hierarchy based [SFK™98, BMS03] and gossip based [vVRMH98, GCGO1].
Evaluations of wide area network failure detectors are presented in [BMS03, FBOS5]. The techniques de-
scribed in those paper are all applicable to the system presented here, but due to space constraints they are
not described here.

Tools to monitor processes for system administrations purposes have been around for a long time. Systems
like Pulsar [Fin97] or Nagios [Kre03] include modules to monitor processes. Management systems like
HP’s Open View or Sun’s Sun Management Center [MS01] integrate tools for process and host monitoring.
Both tools rely on SNMP. While those tool can also monitor processes, this is not the focus of such systems.
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They do not export a failure detection interface to be used by applications. The SNMP system has been
designed for monitoring tasks and is used in many domains related to failure detection. A framework for
application level recovery based on SNMP diagnosis is presented in [SIK02]. Distributed fault diagnosis
based on SNMP is described in [STDO2].

8 Conclusion and future work

We have described the architecture and design of a failure detection service based on the SNMP standard.
This design shows that this standard can be adapted to fit the task of a failure detection service. While a few
new Management Information Bases need to be defined, many existing, standardized interfaces can be used.
By using an existing standard, we ensure interoperability with existing management systems and tools. A
standard interface makes it possible for multiple implementations of the service to coexist and cooperate.

The SNMP-FD system offers a failure detection service, with lightweight heartbeat messages and process
status and configuration information exposed using the standard Management Information Base interface
mechanism. The service is designed for interoperability from the ground up and can interact directly with
existing SNMP enabled network equipment. The system can be extended for WAN failure detection.

Future work includes the implementation of failure detection algorithms described in the literature within
SNMP-FD, the integration of information gathered from SNMP devices into those algorithm, and the inte-
gration of SNMP-FD interfaces into existing group-communication toolkits. Further work on the use of the
three state failure detector is also planned.
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Appendix I SMI Failure detection service specification

SnmpFD DEFINITIONS ::= BEGIN

IMPORTS

enterprises

FROM

RFC1155-SMI

Counter32, Integer32, TimeTicks, OBJECT-TYPE, MODULE-IDENTITY

FROM

SNMPv2-SMI

RowStatus, RowPointer, DisplayString, TEXTUAL-CONVENTION

FROM

SNMPv2-TC ;

snmpFDMIB MODULE-IDENTITY
LAST-UPDATED "2005013000002z™"
ORGANIZATION "JAIST"
CONTACT-INFO "mail: wiesmann@jaist.ac.jp

Matthias Wiesmann
Japanese Advanced Institute of Science and Technology
Asahidai 1-1 Nomi-shi Ishikawa-ken 923-1211 Japan"

DESCRIPTION "Definitions for failure detection service."
REVISION "200501300000z"
DESCRIPTION "Initial publication."

{ enterprises 999 }

heartbeat OBJECT IDENTIFIER ::= { snmpFDMIB 1 }
knowledge OBJECT IDENTIFIER ::= { snmpFDMIB 2 }
basicfd OBJECT IDENTIFIER ::= { snmpFDMIB 3 }
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HBTARGET ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION "Represents the tag associated with a hearbeat"

SYNTAX OCTET STRING (SIZE (0..255))
HeartBeatEntry ::=
SEQUENCE {
hbtargettag HBTARGET,
hbtargetnum INTEGER,
hbpid INTEGER,
hbinterval TimeTicks,
hbcounter Counter32,
hbstatus RowStatus

hBTable OBJECT-TYPE
SYNTAX SEQUENCE OF HeartBeatEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Table of heartbeats"
::= { heartbeat 1 }

heartbeatEntry OBJECT-TYPE
SYNTAX HeartBeatEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "List of heartbeats"
INDEX { hbtargettag, hbtargetnum }
:= { hBTable 1 }

hbtargettag OBJECT-TYPE
SYNTAX HBTARGET
MAX-ACCESS read-only
STATUS current
DESCRIPTION "tag of target"
::= { heartbeatEntry 1 }

hbtargetnum OBJECT-TYPE
SYNTAX INTEGER(1..32000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "index for a given tag-target"
::= { heartbeatEntry 2 }

hbpid OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-only
STATUS current
DESCRIPTION "pid of monitored process"
::= { heartbeatEntry 3 }
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hbinterval OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-write
STATUS current
DESCRIPTION
:= { heartbeatEntry 4 }

hbcounter OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
:= { heartbeatEntry 5 }

hbstatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION "status of the row"
::= { heartbeatEntry 6 }

ProcessState ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "state of a process -

"time interval between heartbeats"

"count of sent heartbeats"

extension of hrSWRunStatus in RFC

SYNTAX INTEGER {
running (1),

trusted(2),
waiting (3),
invalid(4),
unknown (5)

}

KnowBaseEntry ::=

SEQUENCE {
kbindex Integer32,
kbhostname DisplayString,
kbpid Integer32,
kbstate ProcessState,
kbrecv TimeTicks,
kbcounter Counter32,
kbsender DisplayString,
kbsendtime TimeTicks,
kbeffinterval TimeTicks,
kbreginterval TimeTicks,
kbhbindex RowPointer

kbTable OBJECT-TYPE

SYNTAX SEQUENCE OF KnowBaseEntry
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MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Table of remote process information"
::= { knowledge 1 }

kbentry OBJECT-TYPE
SYNTAX KnowBaseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Remote information about a process”
INDEX { kbindex }
::= { kbTable 1 }

kbindex OBJECT-TYPE
SYNTAX Integer32(1..32000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "index of row"
::= { kbentry 1 }

kbhostname OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION "hostname for remote process"
::= { kbentry 2 }

kbpid OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "pid for remote process"
::= { kbentry 3 }

kbstate OBJECT-TYPE
SYNTAX ProcessState
MAX-ACCESS read-only
STATUS current
DESCRIPTION "state of remote process"
:= { kbentry 4 }

kbrecv OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "reception time of last heartbeat"
::= { kbentry 5 }

kbcounter OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of received heartbeats"
::= { kbentry 6 }

21



kbsender OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION "sender of
::= { kbentry 7 }

kbsendtime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "send time
:= { kbentry 8 }

kbeffinterval OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "effective
::= { kbentry 9 }

kbreginterval OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-write
STATUS current
DESCRIPTION "requested
::= { kbentry 10 }

kbhbindex OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION "heartbeat
::= { kbentry 11 }

last heartbeat"

of last heartbeat"

interval included in last heartbeat"

interval included in last heartbeat"

index that generated this entry"

BasicFDState ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION "State of a failure detector.
Suitable for P, diamond-S
and similar failure detectors"

SYNTAX INTEGER ({
failed (1),
suspected (2),
trusted (3)

BasicFDEntry ::=
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SEQUENCE {

fdindex Integer32,
fdhostname DisplayString,
fdpid Integer32,
fdtimeout TimeTicks,
fdtarget DisplayString,
fdstate BasicFDState,
fdknowindex RowPointer,
fduptime TimeTicks,
fdinterval TimeTicks,
fdstatus RowStatus

}

fdtable OBJECT-TYPE
SYNTAX SEQUENCE OF BasicFDEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION

"Table of failure detectors"

::= { basicfd 1 }

basicFDEntry OBJECT-TYPE
SYNTAX BasicFDEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION

"List of failure detector entries"

INDEX { fdindex }
::= { fdtable 1 }

fdindex OBJECT-TYPE
SYNTAX Integer32(1..32000)
MAX-ACCESS read-only
STATUS current

DESCRIPTION

"index of the row"

::= { basicFDEntry 1 }

fdhostname OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current

DESCRIPTION

"host of the process”

::= { basicFDEntry 2 }

fdpid OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "pid of the process”
:= { basicFDEntry 3 }

fdtimeout OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
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DESCRIPTION "time out of failure detector"
::= { basicFDEntry 4 }

fdtarget OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION "target failure detector"
::= { basicFDEntry 5 }

fdstate OBJECT-TYPE
SYNTAX BasicFDState
MAX-ACCESS read-only
STATUS current
DESCRIPTION "state of the process"
::= { basicFDEntry 6 }

fdknowindex OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION "index in knowledge table"
:= { basicFDEntry 7 }

fduptime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "uptime of process"
::= { basicFDEntry 8 }

fdinterval OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-write
STATUS current
DESCRIPTION "heartbeat interval (repeated from knowledge)"
::= { basicFDEntry 9 }

fdstatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION "status of the row"
::= { basicFDEntry 10 }

END
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