JAIST Repository

https://dspace.jaist.ac.jp/

K Anonymous stabilizing | eafder el ecti
net work sequencer

Author(s) Wi esmann, Matthias; Defagp, Xavier
Research report (School of I nformat.

Citation Japan Advanced Institute pf Science
Technol ogy) , I S-RR-2006-0p07: 1-8

Issue Date 2006-11- 28

Type Techni cal Report

Text version

publ i sher

19/ 4795

URL http://hdl.handle.net/ 101
Rights

- Oob0oobOOoooobooboOoboobooboboooboo
Description

goodgo

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Anonymous Stabilizing Leader Election
using a Network Sequencer

Matthias Wiesmann and Xavier Défago

School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST)

November 28, 2006
IS-RR-2006-017

Japan Advanced Institute of Science and Technology (JAIST)

School of Information Science
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

http://www.jaist.ac.jp/

ISSN 0918-7553

Anonymous Stabilizing Leader Election using a Network Sequencer

Matthias Wiesmann'

*

Xavier Défago

Japan Advanced Institute of Science and Technology
Asahidai 1-1 Nomi, Ishikawa 923-1292, Japan
E-mail: {wiesmann|defago}@jaist.ac. jp

Abstract

In this paper, we present an anonymous, stable, com-
munication efficient, stabilizing leader election algorithm
that works using anonymous communication primitives. The
algorithm offers properties similar to that of the Q failure
detector, with the added property of totally ordering the se-
quence of proposed leaders. The algorithm does not need to
know beforehand the identity or the number of processes in
the system, and operates using a constant amount of memory.
We present the algorithm, discuss performance issues and
optimizations and present experimental results of a prototype
implementation.

1. Introduction

An important issue in distributed systems is the leader
election problem. Leader election is one of the basic build-
ing blocks of distributed programming. Many distributed
protocols rely at some point on a leader election primitive.

The leader election problem is usually defined as selecting
one node among a known set of nodes, but this set might
not be known. This is the case when leader election is
used during the initial setup of the system. At this time,
the identity of the nodes and their number are unknown.
When the identity of nodes is unknown, only anonymous
communications primitives, like multicast, can be used. We
call anonymous leader election a leader election protocol
that only relies on anonymous communication primitives.

A leader election primitive called Q is the basis of the
Paxos consensus algorithm [10]. The relationship between

*Work supported by MEXT Grant-in-Aid for Scientific Research on
Priority Areas (Nr. 18049032)
Swiss National Science Foundation Fellowship PA002-104979

Q and the failure detector W is discussed in [4]. The im-
plementation of Q in a weak synchrony model is discussed
in [2]. A time-free leader election primitive is presented
in [11]. Aguilera et al. introduced several characteristics for
leader election primitives, including stability [1] and com-
munication efficiency [3]. Ferndndez et al. introduce an
anonymous leader election protocol in [7].

In this paper we present an anonymous leader election
protocol. This protocol does not need any information about
the number, the identity, or the addresses of the nodes that
participate in the protocol. Instead, the protocol relies on a
anonymous multicast primitive (ip-multicast) and sequence
numbers extracted from the networking infrastructure. The
sequence numbers can be obtained without any special con-
figuration or programming of said equipment, instead, our
algorithm only relies on information available using standard
interfaces.

Our leader election protocol offers the following proper-
ties: a) eventually all participant agree on one leader b) lead-
ers are selected in the same order on all leaders c) the proto-
col is stable d) the protocol is communication efficient e) the
protocol requires a constant amount of memory. The first
property is equivalent to the Q failure detector [10]. The
second means that applications can use the leaders delivered
by the leader elector without fears of deadlocks. This is
very important when selecting a primary server. The third
property means that if the leader does not crash, and the
communication links between the leader and the other nodes
are timely, no new leader is elected. The fourth property
ensures that, eventually, only the leader will send messages
on the network. The fifth property compares favourably to
the protocol introduced by Fernandez et al. [7] that requires a
amount of memory proportional to the number of processes
in the system. Additionally our protocol does not require a
total ordering of process identifiers.

Our protocol is well suited for electing a leader in settings
where a fixed networking infrastructure is present, but cannot
be reconfigured or reprogrammed to suit the needs of the
application. Example include selecting a leader among a set
of mobile nodes connected to a single wireless base-station,
electing a cluster-head in a computing farm, or configuring
the primary printer in a local area network. The main advan-
tage of our protocol is that it can exploit functionality that is
available in existing network equipment without requiring
any special configuration or running code on the networking
equipment.

This paper is structured as follows: Section 2 describes
the model, Section 3 describes the algorithm, Section 4
presents the implementation of the reliable broadcast and the
failure detector used by the algoritm. Section 5 explains how
the network sequencer is implemented. Section 6 discusses
optimizations and performance considerations of the algo-
rithm. Section 7 describes the prototype implementation of
the protocol and discusses performance. Finally, Section 8
concludes the paper.

2. Model

We assume a set of processes IT={p; ... py}. Processes
do not know the number of processes N or the identity of
other processes. We do not require any ordering of process
identifiers. Processes can crash and recover, new processes
can join the system at any time. If a process is eventually
forever up, we say it is good. Processes do not have access
to a shared clock. We assume the existence of three basic
communications facilities: a reliable broadcast primitive, a
failure detector and a network-sequencer. The protocol does
not use any point-to-point communication.

2.1. Reliable Broadcast

We assume the existence of a reliable broadcast primitive
called r-broadcast. The call r-broadcast(m) broadcasts mes-
sage m to all processes. This broadcast primitive is reliable,
i.e if the sender is good, then all good processes eventually
deliver the message by the way of the primitive r-deliver(im).
The implementation of this primitive is discussed in Sec-
tion 4.

2.2. Failure Detector

We assume the existence of an oracle for detecting the
failure of the current leader. The failure detector is a predi-

cate that returns frue if the current leader is trusted and false
otherwise. This failure detector can make mistakes: it can
suspect a leader that is not crashed, or trust a leader that
is crashed. We assume that for a given leader [a) at least
Jd400q g00d processes eventually suspect / if [is crashed,
b) less than fd,,,; processes suspect [if [is not crashed.
The implementation of the failure detector is discussed in
Section 4.

2.3. Network Sequencer

We assume a network sequencer is available in the system.
The network sequencer is a shared facility that returns monot-
ically increasing positive natural numbers. The sequencer is
a facility that never fails (it is part of the network) and can
be queried by any node. The sequencer has the following
properties:

Increase If a query to the sequencer returns v,, then any
later query will return a value v, > v,.

K-loss If a query returns value v,, and the query that imme-
diately follows returns vy, then (v, —v,) < k.
If k = 1, we say the sequencer is perfect.

The implementation of the sequencer is discussed in Sec-
tion 5.

2.4. Constants

We assume the existence of a constant R. This constant
can be any positive integer, i.e R € N*. In order for the
algorithm to be live, we need that F < R < G. G is the
minimal number of good processes whose failure detector is
correct and F is the upper bound on lost sequence numbers
and false suspicions in one round of the algorithm. So G <
fgooq> and F < (k- f) + (fd}aq), where f is the maximum
number of processes that can crash during one round of the
protocol. Constant k is given by the network sequencer and
constants fd,,,, and fd,,,4 are given by the failure detector.

3. Algorithm

The principle of the algorithm is the following: when
there is no leader, or when the current leader is suspected,
process p proposes itself to become a new leader. To do
this, process p gets a sequence number and builds a foken. A
token contains the identity of the sender (p) and the sequence
number acquired by p. In order to avoid situations where

each suspicion or late message changes the leader, the space
of sequence number is divided in rounds of R values. We
say a round is closed if values from a subsequent round
have been received. A round that is not closed is open. The
current leader is the process that has broadcast the highest
sequence number in the last closed round.

Basically, tokens acts as proposals for a new leader. If at
least R such proposals are sent, a new leader is elected. Each
node keeps track of the absolute highest sequence number
and the highest sequence number in the last closed round.
As the algorithm only has to manage those two elements, the
memory requirements are constant and do not depend on the
number of participating processes.

The pseudo code of the algorithm is described in Figure 2.
The algorithm involves two concurrent tasks. The listen task
is responsible for listening to incoming messages extract the
token from the message and update the values associated
with the last closed round v;,s.s and the highest seen value
Vopen- Figure 1a shows the flowchart of task listen. The sus-
pector task is responsible for proposing the current process
if there is no current leader, or the current leader is suspected.
The run-loop of this task is to propose the current process,
wait for a new leader, wait for the leader to be suspected and
start again. Figure 1b illustrates the flowchart of this task.

Each time a token is delivered, the sequence number
is compared t0 Vypen and Vejoseq- If the token’s sequence
number is larger than Vypen, Vopen and idgpe, are updated.
If the token’s sequence number is the largest in the last
closed round, v¢jpseq and id jpseq are updated. The leader can
change as a result of two situations: a) a new round starts,
and therefore the nodes with the largest value in the previous
round becomes the leader b) the leader was not the largest
sequence of the last closed round and a token within the
same round but a larger sequence number is delivered. This
only happens if the node holding the last value of a round is
slow.

3.1. Properties

Lemma 1 A selected leader is an existing process.

PROOF. Processes only propose themselves. Any selected

process therefore exists. ULemma 1

Lemma 2 For each closed round r, there is a least one
proposed sequence number v,.

PROOF.
gap in sequence numbers that is larger or equal to R, but by

A round r without proposed value v, implies a

according to the model definition, the maximum number of

lost sequence number is F' < R. ULemma 2

Lemma 3 For each closed round r, there is a least one
leader.

PROOF.
sequence number for round r. Let V, = {v]...v}} be the

By Lemma 2 there was a least one proposed

set of proposed values for round r. The leader is given by

max(V,), which always returns a value. Ol emma 3

Lemmad4 [f G > R good processes suspect the current
leader a new leader is elected.

PROOF. If G processes suspect the current leader, they will
propose themselves as leader. As they are good, their tokens
will eventually be received. This means at least G sequence
numbers will be proposed. As G > R at least one round will
be closed and the previous closed. Thus a new leader will be

selected. ULemma 4

Lemma S If all good processes are suspected by less than
f< % processes, new leaders eventually stop being elected.

PROOF.
the number of sequences needed to close round r is
6, = R—mod(v,R). The suspecting processes can broadcast
s sequences, such as s < k- f < R values. If s < 8 no new
round can be started, and therefore no new leader is elected.
If s > 8 anew round r + 1 will be started. In this new round
611=R—5+6>1+6,. As 6,11 > 1+ 5, we see that &
is strictly monotically increasing. Thus eventually, &4, > s

Let v the current value of the sequencer,

and new leaders are not elected anymore. Ulemmas

Lemma 6 The protocol is stable.

PROOF.
leader to all processes is timely and no message loss occurs,

If the leader does not crash, the link from the

the leader is not suspected. So no new round is started and

no new leader is selected. OLemma 6

Lemma 7 The protocol is communication efficient.

Deliver
Proposal

¢

New
Leader
Selected

Update V.,

open

NO

YES

In closed round
AND >V,

close

YES >

Update V.4

(a) Listen Task

oo

Wait For Leader
Leader

selected
No Leader selected

Propose Self

Suspect New leader
selected

Trust leader

(b) Suspector Task

Figure 1. Task flow charts

variables
Velosed =1
idclosed =1
idopen =1 3
Vopen =1

SnewLeader 5

task listen begin
loop
r-deliver(token) ;
if token.v > v,pe, then
V= Vopen 5 id = idopen ;
Vopen = token.v ; id ype, = token.id ;
if %2 | > [%] then
Velosed =V 5
idcjosed = 1d ;
signal (s,ewLeader) 3
if [252 | = (|"%2 | 1) then
if token.v > v jy5.q4 then

Velosed = token.v ;
idclosed = token.id signal (Speyieader)

end
task suspector begin
loop
when — trust-leader() do

token.id := self ;
token.v := get-sequence() ;
r-broadcast(token) ;
wait until (suereader) ;

end

< Highest value in closed round

<1 Owner of highest value in last closed round, i.e the leader.

}

< Owner of the highest value in open round.
<l Highest value in open round.
<1 Semaphore signaling a leader update.

< Blocking receive, wait for incoming proposals.

< Save old maximum in v
<1 Update the current maximum.

< Previous maximum value is in closed round.
<1 Previous maximum is leader.
< We have updated the leader

<1 We update the largest in closed round.
<1 We have updated the leader

< Sender is self.
< Get sequence number.
< Broadcast of the values.

Figure 2. leader election algorithm

PROOF. Processes only send messages if either they are
the leader, or suspect the current leader. If the current leader
is not suspected, only the leader sends messages. [emma 7

Lemma 8 If the algorithm returns two leaders L, and L,
on two processes py and pa, they are returned in the same
order.

PROOF. Every selected leader has an unique associated
sequence value. Sequences have a strict ordering. A leader
can only be replaced by a leader with a larger sequence

number. i emma 8

4. Implementing the reliable-broadcast and the
failure detector

The reliable broadcast primitive and the failure detector
required by the algorithm described in Section 3 are im-
plemented together using the same unreliable ip-multicast
primitive. The reliable broadcast is implemented by period-
ically sending the message. This ensures eventual delivery
and acts as a heartbeat for the failure detector. This is similar
to the implementation of Q described in [9, 7].

Figure 2 illustrates the algorithm of both the reliable
multicast and the heartbeat functionality. Variables 1 and
€ represent the heartbeat interval and the time-out period
respectively. This algorithm uses a very simple fixed time-
out scheme, more complex failure detection schemes [12, 8,
6, 5] could also be used.

5. Implementing the Sequencer

The sequencer is implemented using functionality that is
present in many pieces of network equipment: the Simple
Network Management Protocol (SNMP) interface. Routers,
smart switches, wireless access-points and other network
equipments very often contain an SNMP agent, a small
server that responds to SNMP queries. This agent is used to
implement the sequencer described in Section 2. As the se-
quencer is implemented inside the network infrastructure, the
assumption that it does not fail is valid — or more precisely,
if the sequencer fails, the network fails and leader election
is impossible anyways. We assume that the sequencer runs
on a critical part of the network infrastructure. If this critical
infrastructure is hardened or replicated, so is the sequencer.

The sequencer is implemented by sending a special query
to the SNMP agent. The query reads the value SNMPv2-
MIB::snmplnGetRequests.0 (1.3.6.1.2.1.11.15.0) of the Man-
agement Information Base (MIB). This value reflects the
number of the SNMP requests the agent has received, and
is increased each time a request reaches the agent. As re-
questing this value is also an SNMP request, the counter
is increased with every request. There are two issues with
sequence number implemented this way: sequence gaps, and
counter resets.

Sequence number normally only increase by one for each
request, but sequence gaps can appear if external programs
query the SNMP agent or if the response packet gets lost.
The problem of lost response packets arises because SNMP
generally runs on top of the UDP protocol, the request to
the agent is transmitted in one UDP packet and the response
another one. Both the request and the response can get lost,
but only the loss of the response causes a sequence gap.

A counter reset can occur for two reasons. First, the
counter is implemented as a 32 bit integer, if the counter
reaches 232, it simply resets to 0, this is a wrap-around. Sec-
ond, the counter is reset when there is an equipment restart.
A restart results in all the data-structures been cleared, in-
cluding the counter we use, we call this a restart-reset. Con-
cretely, if a process receives from the sequencer a value
smaller that R, it broadcasts a special message that restarts
the whole algorithm.

A more advanced approach would be to discriminate be-
tween wrap-around or a restart-reset. In the case of a wrap-
around, the algorithm does not need to be reset, instead we
can use a sliding window technique and interpret a value v
smaller than 23! as being v+ 232 1n the case of a restart-reset,
the algorithm is effectively reset. The difference between
wrap-around and restart-reset can be detected by also query-
ing the value SNMPv2-MIB::sysUpTime.0 of the MIB. This
value contains the uptime of the equipment and is reset in
case of restart-reset, but not in the case of a wrap-around.
We have decided not to implement this technique, given
the fact that both wrap-arounds and restart-resets are rare,
the performance improvement does not justify the added
complexity.

6. Performance Considerations

While implementing the protocol, we improved perfor-
mance with a few optimizations. A first optimization enables
joining processes to accept the current leader with a single

input: 11 Heartbeat period, € Suspicion timeout
begin
Ligst := now ;
V=0,
end
procedure r-broadcast(token) begin
while v,j,50.q = token.v do
broadcast(token) ;
oy

end

procedure deliver(token) begin

if roken.v ¢ V then
r-deliver(token) ;

L V .=V J{rken.v} ;

tigst = NOW ;

end

function trust-leader begin
| return now —ftyy < €

end

< Delivery of last heartbeat
< Set of delivered values

< Send token
< Sleep for heartbeat period.

< First time we see token, so we deliver.
< Update V

< Update time of last heartbeat.

Figure 3. broadcast and failure detection algorithms

message. Basically, as the state of the protocol is very small
(two integer values) we send it fully. The leader adds the
maximum known value v, to every token it broadcasts. A
recovering process parses the two sequences number con-
tained in the token sequentially, first in handles v, and
then the value of the leader. This way, when a recovering
process receives a token from a leader it select that leader
immediately. This optimisation does not change the way
processes choose the current leader (Lemma 9) and can be
seen as a case of piggy-backing messages.

This optimization makes sense if joining processes wait
for some time to see if there is an existing leader in the
system. Starting and recovering processes start with a special
leader L, and can only propose themselves if they do not hear
from a existing leader before some initial time &. To avoid
initial burst situations, &j is chosen uniformly in the interval
]0...€]. We assume that § > 7, that is the failure detector
time-out is larger than the interval of two heartbeats. This
is justified by the fact that heartbeats are transported using
an unreliable mechanism and we want to avoid a suspicion
caused by a single lost heartbeat.

If a starting process receives the message from a leader [
during this time, it adopts / as their leader. This optimization
ensures that starting or recovering processes do not force new
leaders (Lemma 10). The main drawback of this optimisation
is that it adds some latency to the protocol. If we assume

that R processes start at t = 0, then the decision time will be
torot + % where 1, is the time needed to run the protocol.

Lemma 9 Leaders selected based using the recovery opti-
misation are the same as those of the algorithm in Figure 2.

PROOF. If process is a leader, then | “dawed | 41 = [2" |,
The algorithm behaves as if two messages were delivered,
first the proposal of the current leader with value v jseq 1S
delivered, then the value v, is delivered. Value v jggeq is
the last value of a closed round, so [is selected as leader.

DLemma 9

Lemma 10 Unstable processes (processes that crash and
recover) behave like good processes.

PROOF. Recovering processes can only propose themselves
if they suspect the leader L and have received no proposal
from an actual leader. This can only happen if the failure
detector make a wrong suspicion. This behaviour is the
same as for good processes. Oiemma 10

One important aspect of the performance of the protocol is
the performance of the network sequencer. For a new leader
to be elected, assuming no crashes and a perfect sequencer
we need R sequences. If all processes start at time ¢ = 0,

then the leader will be elected at time #,;eci0n, as defined by
the following formula:

8 ar Se
Lelection = = +t§mcle +R-1 I + et (D

2 oracle

Where t,,.,is the time needed to broadcast a message. The
time needed to get a sequence from the network oracle
toracle 18 divided in two parts: 177 and £33 | (toracre =10 1+
£l). Value i7" | represents the time that is independent
between processes, 7,0
the sequencer that is in contention between all processes. We
assume that network contention is negligible.

We see that if R is large, the term R- 1)
As the network oracle is implemented on network equipment

represents the processing time of

will dominate.

with weak processing power, the throughput rate is limited,
this leads to a large value for £¢ , .
formance of network oracle implemented on two different
switches, with different number of clients. The average

Table 1 gives the per-

response time measured in milliseconds and the average
throughput measured in sequences per second. Measures
were done by querying for 10000 sequence numbers, we
could not observe any lost sequence.

As the performance of the network oracle will have a
large impact on the performance of the system, it makes
sense to adapt the other parameters to the performance of
the network oracle. In particular, as leader election is rate
limited, suspicions from the failure detection should be lim-
ited to a similar rate. Therefore it makes no sense to have
€ < loracle-

7. Implementation

In order to validate this protocol, we implemented it
in Java. The network oracle was implemented using
the SNMP4J framework. Messaging was done using ip-
multicast messages. The implemented code includes the
optimisations discussed in Section 6. In order to measure
the performance of the algorithm, we ran in on a computing
cluster composed of nodes linked by a smart switch.

The nodes are x-series 305 machines with each an In-
tel Pentium 4 processor at 2.8 GHz and 2 GB of memory.
The operating system is Linux Fedora Core 4 with kernel
2.6.15. The Java virtual machine is Sun’s JRE 1.5.0-06. The
SNMPA4J framework is version 1.6c. The switch is a PCI
FMG-24K switch with 24 gigabit ethernet ports, and was
used both for linking the nodes and implementing the net-
work sequencer. The network links are all full-duplex 1000
Mb/s. The ping time between hosts was around 0.15 ms.

The main metric for evaluating the algorithm was the
election overhead. The election overhead is the elapsed time
between the moment a node proposes itself as leader and the
moment a new leader is elected. The experiment consisted
in running the protocol on ten nodes, every five seconds, the
protocol is reset, this triggers a new leader election. The
experiment was run for ten minutes.

Figure 4a shows the election overhead as a function of the
round size with a system with 10 nodes and the following
parameters 1) = 10 ms, € = 30 ms. Those values are much
too agressive for normal use, and were intended to observe
the behaviour of the protocol in load situation. Higher loads
tend to overload the sequencer and gave: election overhead
does not diminish but becomes less stable. Every point in the
graph is the average of at least 3000 measures, the vertical
bars represent a 99% confidence interval. The actual election
time will be overhead + 5.

We see that the election time increases roughly as a linear
function of the size of the round. If we compare the detection
overhead to the response time of the sequencer given in
Table 1, we see that it is smaller. This is caused by the way
the protocol works. On average § proposals are needed to
elect a new leader. So when a process decides to propose
itself, there is a good chance that the protocol has already
selected a new leader. In fact in many cases, especially with
small values of R, processes don’t have the time to suspect
the leader before one is selected. In some rare cases, the
time needed to select a leader is around 15 ms, that is the
time needed to get a token from the sequencer. So roughly,
the larger then number of processes relatively to the round
size R, the faster the protocol. This is interesting for large
systems where R will be relatively small compared to the
number of processes.

We repeated the same experiment with larger values for
heartbeat and timeout. Figure 4b shows the results for n =
50 ms, € = 150 ms, the curve is largely similar, with overall
longer response times.

8. Conclusion

We have presented a stable, communication efficient,
anonymous, stabilizing leader election algorithm which re-
quires a constant amount of memory. We showed how to
implement the different abstractions required by the algo-
rithm. The algorithm is well suited for selecting a primary
server during configuration phases, as the algorithm does not
put any requirement on the set of processes and their address-

Clients | Response Time | Throughput | Link Type

Planex SF-0224FS 1 14.783 ms 67.646 seq/s | 100 Mb/s
Planex SF-0224FS 2 27.068 ms 73.889 seq/s | 100 Mb/s
PCI FMG-24K 1 10.181 ms 98.165 seq/s | 1000 Mb/s
PCI FMG-24K 2 20.17 ms 49.57 seq/s | 1000 Mb/s

Table 1. Performance of network sequencer on switches

Election time overhead vs. Round size

Election time overhead [ms]
o

Round size (processes)

(@) N =10,1 =10 ms,e =30 ms

Election time overhead vs. Round size

Election time overhead [ms]

1 2 3 4 5 6 7 8 9 10 11

Round size (processes)

(b) N =10,n =50 ms, e = 150 ms

Figure 4. Election overhead vs. round size

ing schemes. Experimental results show that with today’s
switching equipment, the algorithm can select a leader in
roughly 30 ms. While this is unsuitable for high-performance
computing, this is is a reasonable overhead for configuration
phases.

Acknowledgments

We would like to thank Péter Urban and Yan Yéng, for the
insightful discussion about this protocol and giving feedback
for the paper.

References

[1] M. K. Aguilera, C. Delporte-Gallet, and H. Fauconnier. Sta-
ble leader election. In Proc. of the 15" Int. Conf. on Dis-
tributed Computing (DISC’01), volume 2180, pages 108 —
122. Springer-Verlag, 2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing Q with weak reliability and
synchrony assumptions. In Proc. of the 22" annual Symp.
on Principles of Distributed Computing (PODC’03), pages
306-314, 2003.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and con-
sensus with limited link synchrony. In Proc. of the 23™
annual symp. on Principles of distr. computing (PODC '04),
pages 328-337. ACM, 2004.

[4] E. Chu. Reducing Q to W. Information Processing Letters,
67(6):289-293, September 1998.

[5] X. Défago, P. Urban, N. Hayashibara, and T. Katayama.
Definition and specification of accrual failure detectors. In
Proc. of the Int. Conf. on Dependable Systems and Networks
(DSN’05), pages 206-215, 2005.

[6] L. Falai and A. Bondavalli. Experimental evaluation of the
QoS of failure detectors on wide area network. In Proc. of the
Int. Conf. on Dependable Systems and Networks (DSN’05),
pages 624-633, June 2005.

[7] A.Fernandez, E. Jiménez, and M. Raynal. Eventual leader
election with weak assumptions on initial knowledge, com-
munication reliability and synchrony. In Proceedings of the
Int. Conf. on Dependable Systems and networks (DSN’06),
pages 166—189. IEEE, June 2006.

[8] N. Hayashibara, X. Défago, R. Yared, and T. Katayama. The
¢ accrual failure detector. In Proc. of the 23" Int. Symp.
on Reliable Distributed Systems (SRDS’04), pages 66—78,
October 2004.

[9] E. Jiménez, S. Arévalo, and A. Fernandez. Implementing
the Q failure detector with unknown membership and weak
synchrony. Technical Report RoSaC-2005-2, Universidad
Rey Juan Carlos, Madrid, Spain, 2005.

[10] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

[11] A. Mostefaoui, M. Raynal, and C. Travers. Crash-resilient
time-free eventual leadership. In Proc. of the 23" Int. Symp.
on Reliable Distributed Systems (SRDS’04), pages 208-217.
IEEE, October 2004.

[12] R. C. Nunes and I. Jansch-Porto. QoS of timeout-based self-
tuned failure detectors: The effects of the communication
delay predictor and the safety margin. In Proc. of the Int.
Conf. on Dependable Systems and Networks (DSN’04), 2004.

