
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Fault-tolerant Flocking in a k-bounded

Asynchronous System

Author(s) Souissi, Samia; Yang, Yan; Defago, Xavier

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2008-004: 1-22

Issue Date 2008-09-26

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/4800

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Fault-tolerant Flocking in a k-bounded Asynchronous
System

Samia Souissi, Yan Yang, Xavier Défago
School of Information Science,

Japan Advanced Institute of Science and Technology (JAIST)

September 26, 2008
IS-RR-2008-004

ISSN 0918-7553

Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
http://www.jaist.ac.jp/

Fault-tolerant Flocking in a k-bounded Asynchronous
System ?

Samia Souissi, Yan Yang, and Xavier Défago

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
{ssouissi,y.yang,defago}@jaist.ac.jp

Abstract. This paper studies the flocking problem, where mobile robots group
to form a desired pattern and move together while maintaining that formation.
Unlike previous studies of the problem, we consider a system of mobile robots
in which a number of them may possibly fail by crashing. Our algorithm ensures
that the crash of faulty robots does not bring the formation to a permanent stop,
and that the correct robots are thus eventually allowed to reorganize and continue
moving together. Furthermore, the algorithm makes no assumption on the relative
speeds at which the robots can move.
The algorithm relies on the assumption that robots’ activations follow a k-bounded
asynchronous scheduler, in the sense that the beginning and end of activations are
not synchronized across robots (asynchronous), and that while the slowest robot
is activated once, the fastest robot is activated at most k times (k-bounded).
The proposed algorithm is made of three parts. First, appropriate restrictions on
the movements of the robots make it possible to agree on a common ranking of
the robots. Second, based on the ranking and the k-bounded scheduler, robots can
eventually detect any robot that has crashed, and thus trigger a reorganization of
the robots. Finally, the third part of the algorithm ensures that the robots move to-
gether while keeping an approximation of a regular polygon, while also ensuring
the necessary restrictions on their movement.

1 Introduction

Be it on earth, in space, or on other planets, robots and other kinds of automatic sys-
tems provide essential support in otherwise adverse and hazardous environments. For
instance, among many other applications, it is becoming increasingly attractive to con-
sider a group of mobile robots as a way to provide support for rescue and relief during
or after a natural catastrophe (e.g., earthquake, tsunami, cyclone, volcano eruption).
As a result, research on mechanisms for coordination and self-organization of mobile
robot systems is beginning to attract considerable attention (e.g, [17–20]). For such
operations, relying on a group of simple robots for delicate operations has various ad-
vantages over considering a single complex robot. For instance, (1) it is usually more
cost-effective to manufacture and deploy a number of cheap robots rather than a sin-
gle expensive one, (2) higher number yields better potential for a system resilient to
? Work supported by MEXT Grant-in-Aid for Young Scientists (A) (Nr. 18680007).

individual robot failures, (3) smaller robots have obviously better mobility in tight and
confined spaces, and (4) a group can survey a larger area than an individual robot, even
if the latter is equipped with better sensors.

Nevertheless, merely bringing robots together is by no means sufficient, and ade-
quate coordination mechanisms must be designed to ensure coherent group behavior.
Furthermore, since many applications of cooperative robotics consider cheap robots
dwelling in hazardous environments, fault-tolerance is of primary concern.

The problem of reaching agreement among a group of autonomous mobile robots
has attracted considerable attention over the last few years. While much formal work
focuses on the gathering problem (robots must meet at a point, e.g., [7]) as the embodi-
ment of a static notion of agreement, this work studies the problem of flocking (robots
must move together), which embodies a dynamic notion of agreement, as well as co-
ordination and synchronization. The flocking problem has been studied from various
perspectives. Studies can be found in different disciplines, from artificial intelligence
to engineering [1, 3, 5, 6]. However, only few works considered the presence of faulty
robots [2, 4].

Fault-tolerant flocking. Briefly, the main problem studied in this paper, namely the
flocking problem, requires that a group of robots move together, staying close to each
other, and keeping some desired formation while moving. Numerous definitions of
flocking can be found in the literature [3, 11, 12, 14], but few of them define the problem
precisely. The rare rigorous definitions of the problem suppose the existence of a leader
robot and require that the other robots, called followers, follow the leader in a desired
fashion [3, 6, 10], such as by maintaining an approximation of a regular polygon.

The variant of the problem that we consider in this paper requires that the robots
form and move while maintaining an approximation of a regular polygon, in spite of
the possible presence of faulty robots—robots may fail by crashing and a crash is per-
manent. Although we do consider the presence of a leader robot to lead the group, the
role of leader is assigned dynamically and any of the robots can potentially become a
leader. In particular, after the crash of a leader, a new leader must eventually take over
that role.

Model. The system is modelled as a system composed of a group of autonomous mobile
robots, modelled as points evolving on the plane, and all of which execute the same
algorithm independently. Some of the robots may possibly fail by crashing, after which
they do not move forever. Although the robots share no common origin, they do share
one common direction (as given by a compass), a common unit distance, and the same
notion of clockwise direction.

Robots repeatedly go through a succession of activation cycles during which they
observe their environment, compute a destination and move. Robots are asynchronous
in that one robot may begin an activation cycle while another robot finishes one. While
some robots may be activated more often than others, we assume that the scheduler
is k-bounded in the sense that, in the interval it takes any correct robot to perform a
single activation cycle, no other robot performs more than k activations. The robots can
remember only a limited number of their past activations.

Contribution. The paper presents a fault-tolerant flocking algorithm for a k-bounded
asynchronous robot system. The algorithm is decomposed into three parts. In the first
part, the algorithm relies on the k-bounded scheduler to ensure failure detection. In the
second part, the algorithm establishes a ranking system for the robots and then ensures
that robots agree on the same ranking throughout activations. In the third and last part,
the ranking and the failure detector are combined to realize the flocking of the robots
by maintaining an approximation of a regular polygon while moving.

Related work. Gervasi and Prencipe [3] have proposed a flocking algorithm for robots
based on a leader-followers model, but introduce additional assumptions on the speed
of the robots. In particular, they proposed a flocking algorithm for formations that are
symmetric with respect to the leader’s movement, without agreement on a common
coordinate system (except for the unit distance). However, their algorithm requires that
the leader is distinguished from the robots followers.

Canepa and Potop-Butucaru [6] proposed a flocking algorithm in an asynchronous
system with oblivious robots. First, the robots elect a leader using a probabilistic algo-
rithm. After that, the robots position themselves according to a specific formation. Fi-
nally, the formation moves ahead. Their algorithm only lets the formation move straight
forward. Although the leader is determined dynamically, once elected it can no longer
change. In the absence of faulty robots, this is a reasonable limitation in their model.

To the best of our knowledge, our work is the first to consider flocking of asyn-
chronous (k-bounded) robots in the presence of faulty robots. Also, we want to stress
that the above two algorithms do not work properly in the presence of faulty robots, and
that their adaptation is not straightforward.

Structure. The remainder of this paper is organized as follows. In Section 2, we present
the system model. In Section 3, we define the problem. In Section 4, we propose a
failure detection algorithm based on k−bounded scheduler. In Section 5, we give an
algorithm that provides a ranking mechanism for robots. In Section 6, we propose a
dynamic fault tolerant flocking algorithm that maintains an approximation of a regular
polygon. Finally, in Section 7, we conclude the paper.

2 System Model and Definitions

2.1 The CORDA model

In this paper, we consider the CORDA model of Prencipe [8] with k-bounded scheduler.
The system consists of a set of autonomous mobile robots R = {r1, · · · , rn}. A robot
is modelled as a unit having computational capabilities, and which can move freely in
the two-dimensional plane. Robots are seen as points on the plane. In addition, they are
equipped with sensor capabilities to observe the positions of the other robots, and form
a local view of the world.

The local view of each robot includes a unit of length, an origin, and the direc-
tions and orientations of the two x and y coordinate axes. In particular, we assume
that robots have a partial agreement on the local coordinate system. Specifically, they

agree on the orientation and direction of one axis, say y. Also, they agree on the clock-
wise/counterclokwise direction.

The robots are completely autonomous. Moreover, they are anonymous, in the sense
that they are a priori indistinguishable by appearance. Furthermore, there is no direct
means of communication among them.

In the CORDA model, robots are totally asynchronous. The cycle of a robot consists
of a sequence of events: Wait-Look-Compute-Move.

– Wait. A robot is idle. A robot cannot stay permanently idle. At the beginning all
robots are in Wait state.

– Look. Here, a robot observes the world by activating its sensors, which will return
a snapshot of the positions of the robots in the system.

– Compute. In this event, a robot performs a local computation according to its de-
terministic algorithm. The algorithm is the same for all robots, and the result of the
compute state is a destination point.

– Move. The robot moves toward its computed destination. But, the distance it moves
is unmeasured; neither infinite, nor infinitesimally small. Hence, the robot can only
go towards its goal, but the move can end anywhere before the destination.

In the model, there are two limiting assumptions related to the cycle of a robot.

Assumption 1. It is assumed that the distance travelled by a robot r in a move is not
infinite. Furthermore, it is not infinitesimally small: there exists a constant δr > 0, such
that, if the target point is closer than δr, r will reach it; otherwise, r will move toward
it by at least δr.

Assumption 2. The amount of time required by a robot r to complete a cycle (wait-
look-compute-move) is not infinite. Furthermore, it is not infinitesimally small; there
exists a constant τr > 0, such that the cycle will require at least τr time.

2.2 Assumptions

k-bounded-scheduler. In this paper, we assume the CORDA model with k-bounded
scheduler, in order to ensure some fairness of activations among robots. Before we
define the k-bounded-scheduler, we give a definition of full activation cycle for robots.

Definition 1 (full activation cycle). A full activation cycle for any robot ri is defined
as the interval from the event Look (included) to the next instance of the same event
Look (excluded).

Definition 2 (k-bounded-scheduler). With a k-bounded scheduler, between two con-
secutive full activation cycles of the same robot ri, another robot rj can execute at most
k full activation cycles.

This allows us to establish the following lemma:

Lemma 1. If a robot ri is activated k+1 times, then all (correct) robots have completed
at least one full activation cycle during the same interval.

Faults. In this paper, we address crash failures. That is, we consider initial crash of
robots and also the crash of robots during execution. That is, a robot may fail by crash-
ing, after which it executes no actions (no movement). A crash is permanent in the sense
that a faulty robot never recovers. However, it is still physically present in the system,
and it is seen by the other non-crashed robots. A robot that is not faulty is called a
correct robot.

Before we proceed, we give the following notations that will be used throughout
this paper. We denote by R = {r1, · · · , rn} the set of all the robots in the system.
Given some robot ri, ri(t) is the position of ri at time t. y(ri) denotes the y coordinate
of robot ri at some time t. Let A and B be two points, with AB, we will indicate
the segment starting at A and terminating at B, and dist(A,B) is the length of such a
segment. Given a region X , we denote by |X |, the number of robots in that region at
time t. Finally, let S be a set of robots, then |S| indicates the number of robots in S.

3 Problem Definition

Definition 3 (Formation). A formation F = Formation(P1, P2, ..., Pn) is a config-
uration, with P1 the leader of the formation, and the remaining points, the followers of
the formation. The leader P1 is not distinct physically from the robot followers.

In this paper, we assume that the formation F is a regular polygon. We denote by d the
length of the polygon edge (known to the robots), and by α = (n− 2)180◦/n the angle
of the polygon, where n is the number of robots in F .

Definition 4 (Approximate Formation). We say that robots form an approximation of
the formation F if each robot ri is within εr from its target Pi in F .

Definition 5 (The Flocking Problem). Let r1,...,rn be a group of robots, whose po-
sitions constitute a formation F = Formation(P1, P2, ..., Pn). The robots solve the
Approximate Flocking Problem if, starting from any arbitrary formation at time t0,
∃t1 ≥ t0 such that, ∀t ≥ t1 all robots are at a distance of at most εr from their respec-
tive targets Pi in F , and εr is a small positive value known to all robots.

4 Perfect Failure Detection

In this section, we give a simple perfect failure detection algorithm for robots based
on a k−bounded scheduler in the asynchronous model CORDA. The concept of failure
detectors was first introduced by Chandra and Toueg [16] in asynchronous systems with
crash faults. A perfect failure detector has two properties: strong completeness, and
strong accuracy. Before we proceed to the description of the algorithm, we make the
following assumption, which is necessary for the failure detector mechanism to identify
correct robots and crashed ones.

Assumption 3. We assume that, at each activation of some robot ri (correct), ri com-
putes as destination a position that is different from its current position. Also, a robot

ri never visits the same location for the last k + 1 activations of ri.1Finally, a robot
ri never visits a location that was visited by any other robot rj during the last k + 1
activations of rj .

Recall that we only consider permanent crash failures of robots, and that crashed
robots remain physically in the system. Besides, robots are anonymous. Therefore, the
problem is how to distinguish faulty robots from correct ones. Algorithm 1 provides
a simple perfect failure detection mechanism for the identification of correct robots.
The algorithm is based on the fact that a correct robot must change its current posi-
tion whenever it is activated (Assumption 3), and also relies on the definition of the
k−bounded scheduler for the activations of robots. So, a robot ri considers that some
robot rj is faulty if ri is activated k+1 times, while robot rj is still in the same position.
Algorithm 1 gives as output the set of positions of correct robots Scorrect, and uses the
following variables:

– SPosPrevObser: a global variable representing the set of points of the positions
of robots in the system in the previous activation of some robot ri. These points
include the positions of correct and faulty robots. SPosPrevObser is initialized to
the empty set during the first activation of robot ri.

– SPosCurrObser: the set of points representing the positions of robots (including
faulty ones) in the current activation of some robot ri.

– cj : a global variable recording how many times robot rj did not change its position.

Algorithm 1 Perfect Failure Detection (code executed by robot ri)
Initialization: SPosPrevObser := ∅; cj := 0

1: procedure Failure Detection(SPosPrevObser,SPosCurrObser)
2: Scorrect := SPosCurrObser;
3: for ∀ pj ∈ SPosCurrObser do
4: if (pj ∈ SPosPrevObser) then {robot rj has not moved}
5: cj := cj + 1;
6: else
7: cj := 0;
8: end if
9: if (cj ≥ k) then

10: Scorrect = Scorrect − {pj};
11: end if
12: end for
13: return (Scorrect)
14: end

The proposed failure detection algorithm (Algorithm 1) satisfies the two properties
of a perfect failure detector: strong completeness, and strong accuracy. It also satisfies

1 That is, ri never revisits a point location that was within its line of movement for its last k + 1
total activations.

the eventual agreement property. These properties are stated respectively in Theorem 1,
Theorem 2, and Theorem 3, and their proofs are deferred to Appendix A.

Theorem 1. Strong completeness: eventually every robot that crashes is permanently
suspected by every correct robot.

Theorem 2. Strong accuracy: there is a finite time after which correct robots are not
suspected by any other correct robots.

Theorem 3. Eventual agreement: there is a finite time after which, all correct robots
agree on the same set of correct robots in the system.

5 Agreed Ranking for Robots

In this section, we provide an algorithm that gives a unique ranking (or identification) to
every robot in the system since we assume that robots are anonymous, and do not have
any identifier to allow them to distinguish each other. The algorithm allows correct
robots to compute and agree on the same ranking. In particular, the ranking mechanism
is needed for the election of the leader of the formation. Recall that, a deterministic
leader election is impossible without a shared y-axis [9]. Therefore, we assume that
robots agree on the y-axis.

We first assume that robots are not located initially at the same point. That is, robots
are not in the gathering configuration [7], because it may become impossible to separate
them later.2 The ranking assignment is given in Algorithm 2, which takes as input the set
of positions of correct robots in the system Scorrect, and returns as output an ordered
set of the positions in Scorrect, called RankSequence. The ranking of positions of
robots in Scorrect gives to every robot a unique identification number. The computation
of RankSequence is done as follows: RankSequence = {Scorrect, <}, where the
relation “ < ”is defined by comparing the y coordinates of the points in Scorrect,
and breaking ties from left to right. In other words, the positions of robots in Scorrect

are sorted by decreasing order of y−coordinate, such that the robot with greatest y-
coordinate is the first in RankSequence. When two or more robots share the same
y-coordinate, the clockwise direction is used to determine the sequence; a robot ri that
has a robot rj on its right hand, has a lower rank than rj in RankSequence.

In order for robots to agree on the same RankSequence initially, some restrictions
on their movement are required during their first k activations. The movement restric-
tion is given by procedure Lateral Move Right(), and it is designed in such a way that
all robots compute the same RankSequence during their first k activations. In particu-
lar, a robot ri that does not have robots on Right(ri) can move by at most the distance
εr/(k + 1)(k + 2) along Right(ri) in order to preserve the same y−coordinate. Other-
wise, ri moves by min(εr/(k+1)(k+2), dist(ri, p)/(k+1)(k+2)) along Right(ri),

2 Consider two robots that happen to have the same coordinate system and that are always ac-
tivated together. It is impossible to separate them deterministically. In contrast, it would be
trivial to scatter them at distinct positions using randomization (e.g., [15]), but this is ruled out
in our model.

Algorithm 2 Ranking Correct Robots (code executed by robot ri)
1: Input: Scorrect: set of positions of correct robots;
2: Output: RankSequence: Ordered set of positions of correct robots Scorrect;
3: Initialization: counteract := a global variable recording the number of activations of robot

ri;
4: procedure Ranking Correct Robots(Scorrect)
5: When ri is activated
6: counteract := counteract + 1;
7: Left(ri):= is the ray starting at ri and perpendicular to its y−axis in counter-clockwise

direction.
8: Sort the y−coordinates of robots in Scorrect in decreasing order.
9: if (∀rj , rk ∈ Scorrect, y(rj) 6= y(rk)) then

10: RankSequence := the set Scorrect in order of decreasing y−coordinate;
11: else if y(rj) = y(rk) then
12: if (rj is on Left(rk)) then
13: RankSequence := rj < rk;
14: else
15: RankSequence := rk < rj ;
16: end if
17: end if
18: if (counteract ≤ k) then
19: Lateral Move Right();
20: end if
21: Return(RankSequence);
22: end

Algorithm 3 Procedure Lateral Move Right (code executed by robot ri).
1: procedure Lateral Move Right()
2: Right(ri) := the ray starting at ri and perpendicular to its y−axis in clockwise direction;
3: if (If no other robot on Right(ri)) then
4: ri moves by at most εr/(k + 1)(k + 2) to Right(ri);
5: else {some robots are in Right(ri) including faulty robots}
6: p := the position of the nearest robot to ri in Right(ri);
7: ri moves by min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2)) to Right(ri);
8: end if
9: end

where p is the position of the nearest robot to ri in Right(ri). 3 From Algorithm 2, we
derive the following lemmas. In particular, the algorithm gives a unique ranking to every
robot in the system, and also ensures no collisions between robots.

Lemma 2. Algorithm 2 gives a unique ranking to every correct robot in the system.

Lemma 3. By Algorithm 2, there is a finite time after which, all correct robots agree
on the same initial sequence of ranking, RankSequence.

Lemma 4. Algorithm 2 guarantees no collisions between the robots in the system.

The proofs of the above lemmas are straightforward, and thus given in Appendix B.

6 Dynamic Fault-tolerant Flocking

In this section, we propose a dynamic fault tolerant flocking algorithm, where a group of
robots can dynamically generate an approximation of a regular polygon (Definition 4),
and maintain it while moving. Our flocking algorithm relies on the existence of two
devices, namely a perfect failure detector device and a ranking device, which were
represented respectively in Algorithm 1, and Algorithm 2.

6.1 Algorithm Description

The flocking algorithm is depicted in Algorithm 4, and takes as input the length of the
polygon edge d, and the history of robot ri, which includes the following variables:

– SPosPrevObser : the set of positions of robots in the system during the last previous
observation of robot ri.

– HistoryMove: the set of points on the plane visited by robot ri during its last
previous k + 1 activations.

– nbract: a counter recording the last previous k + 1 activations of robot ri.

The overall idea of the algorithm is as follows. First, when robot ri gets activated, it
executes the following steps:

1. Robot ri takes a snapshot of the current positions SPosCurrObser of robots in the
system.

2. Robot ri calls the failure detection module to get the set of correct robots, Scorrect.
3. Robot ri calls the ranking module, and gets a total ordering on the set of correct

robots Scorrect, called RankSequence.
4. Depending on the rank of robot ri in RankSequence, ri executes the procedure de-

scribed in Algorithm 5; Flocking Leader(RankSequence, d, nbract,HistoryMove)
if it has the first rank in RankSequence (i.e., the leader). Otherwise, robot ri

is a follower, and it executes the procedure which is described in Algorithm 6,
Flocking Follower(RankSequence, d, nbract, HistoryMove).

3 Note that, the bounded distance min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2)) set on
the movement of robots is conservative, and is sufficient to avoid collisions between robots,
and to satisfy Assumption 3.

Algorithm 4 Dynamic Fault-tolerant Flocking (code executed by robot ri)
1: Input: Memory(ri):SPosPrevObser;HistoryMove;nbract;
2: d = the desired distance of the polygon edge;
3: When ri is activated
4: ri takes a snapshot of the positions SPosCurrObser of robots;
5: Scorrect = Failure Detection(SPosPrevObser, SPosCurrObser);
6: RankSequence = Ranking Correct Robots(Scorrect);
7: leader := first robot in RankSequence;
8: if (ri = leader) then {leader}
9: Flocking Leader(RankSequence, d, nbract, HistoryMove);

10: else {follower}
11: Flocking Follower(RankSequence, d, nbract, HistoryMove);
12: end if

Algorithm 5 Flocking Leader: Code executed by a robot leader ri.
procedure Flocking Leader(RankSequence,d,nbract, HistoryMove)

n := |RankSequence|;
α := (n− 2)180◦/n;
P := Formation(P1, P2, ..., Pn) as in Definition 3;
P1 := current position of the leader ri;
ri+1:= next robot to ri in RankSequence;
projri+1 := the projection of ri+1 on y−axis of ri;
if (projri+1 = ri) then {ri has same y−coordinate as ri+1}

Zone(ri):= half circle with radius min(dist(ri, ri+1)/(k+1)(k+2), εr/(k+1)(k+2)),
centered at ri and above ri (refer to Fig. 1(a));

else
Zone(ri):= the circle centered at ri, and with radius min(εr/(k + 1)(k +
2), dist(ri, projri+1)/(k + 1)(k + 2)) (refer to Fig. 1(b));

end if
SCrashInZone := the set of positions of crashed robots in Zone(ri);
if (SCrashInZone 6= ∅) then

ri moves to a desired point Target(ri) within Zone(ri), excluding the points in
SCrashInZone, and the points in HistoryMove;

else
ri moves to a desired point Target(ri) within Zone(ri), excluding the points in
HistoryMove;

end if
CurrMove := the set of points on the segment riTarget(ri);
if (nbract ≤ k + 1) then

HistoryMove := HistoryMove ∪ CurrMove;
else

HistoryMove := CurrMove;
nbract := 1;

end if
end

ri+1ri

zone(ri)

< εr

dist(ri,ri+1)/(k+2)

y

(a) ri and ri+1 have the same y-coordinate,
and dist(ri, ri+1) < εr: Zone(ri) is the
half circle with radius dist(ri, ri+1)/(k +
1)(k + 2).

ri

εr/(k+2)

zone(ri)

y

ri+1

>= εr

(b) ri and ri+1 do not have the same y-
coordinate, and dist(ri, projri+1) ≥ εr:
Zone(ri) is the circle with radius εr/(k +
1)(k + 2).

Fig. 1. Zone of movement of the leader.

5. Robot ri is a leader. First, ri computes the points of the formation P1, ..., Pn as in
Definition 4, with its location as the first point P1 in the formation. The targets of
the followers are the other points of the formation, and they are assigned to them
based on their order in the RankSequence. After that, the leader will initiate the
movement of the formation, while preserving the same rank sequence, keeping an
approximation of the regular polygon, and also avoiding collisions with followers.
In order to prevent collisions between robots, the algorithm must guarantee that
no two robots ever move to the same location. Therefore, the algorithm defines a
movement zone for each robot, within which the robot must move. The zone of the
leader, referred to as Zone(ri), is defined depending on the position of the next
robot ri+1 in RankSequence. Let us denote by projri+1 , the projection of robot
ri+1 on the y−axis of ri. The movement zone of the leader is defined as follows:

– ri and ri+1 have the same y coordinate: Zone(ri) is the half circle with radius
min(dist(ri, ri+1)/(k+1)(k+2), εr/(k+1)(k+2)), centered at ri and above
ri (refer to Fig. 1(a)).

– ri and ri+1 do not have the same y coordinate: Zone(ri) is the circle, centered
at ri, and with radius min(dist(ri, projri+1)/(k+1)(k+2), εr/(k+1)(k+2))
(refer to Fig. 1(b)).

After determining its zone of movement Zone(ri), robot ri needs to determine
if there are crashed robots within Zone(ri). If no crashed robots are within its
zone, then robot ri can move to any desired target within Zone(ri), satisfying
Assumption 3. Otherwise, robot ri can move within Zone(ri) by excluding the
positions of crashed robots, and satisfying Assumption 3.

6. Robot ri is a follower. First, ri assigns the points of the formation P1, ..., Pn to the
robots in RankSequence based on their order in RankSequence. Subsequently,
robot ri determines its target Pi based on the current position of the leader (P1),

ri-1 ri

εr/(k+2)

zone(ri)

>=εr

ri+1

yyy

p

(a) ri−1, ri, and ri+1 have the
same y coordinate.

ri

εr/(k+2)

zone(ri)

y

ri+1

>= εr

ri-1

>= εr

(b) ri−1, ri and ri+1

do not have the same
y coordinate, and
dist(ri, projri−1) ≥ εr ,
and dist(ri, projri+1) ≥
εr .

dist(ri,proj(ri+1))/(k+2)

y

ri-1

>= εr

ri

ri+1

< εr
zone(ri)

(c) ri−1 and ri have the same y
coordinate, however, ri+1 does not.
Also, dist(ri, ri−1) ≥ εr , and
dist(ri, projri+1) < εr

Fig. 2. Zone of movement of a follower.

and the polygon angle α given in the following equation: α = (n − 2)180◦/n,
where n is the number of robots in the formation.
In order to ensure no collisions between robots, the algorithm also defines a move-
ment zone for each robot follower. The zone of a follower, referred to as Zone(ri)
is defined depending on the position of the previous robot ri−1 and the next robot
ri+1 to ri in RankSequence. Before we proceed, we denote by projri−1 , the pro-
jection of robot ri−1 on the y−axis of robot ri. Similarly, we denote by projri+1 ,
the projection of robot ri+1 on the y−axis of ri. The zone of movement of a robot
follower ri is defined as follows:

– ri, ri−1 and ri+1 have the same y coordinate, then Zone(ri) is the segment
rip, with p as the point at distance min(dist(ri, ri+1)/(k +1)(k +2), εr/(k+
1)(k + 2)) from ri (see Fig. 2(a)).

– ri, ri−1 and ri+1 do not have the same y coordinate, then Zone(ri) is the circle
centered at ri, and with radius min(εr/(k+1)(k+2), dist(ri, projri−1)/(k+
1)(k + 2), dist(ri, projri+1)/(k + 1)(k + 2)) (see Fig. 2(b)).

– ri and ri+1 have the same y coordinate, however ri−1 does not, then Zone(ri)
is the half circle above it, centered at ri, and with radius min(εr/(k + 1)(k +
2), dist(ri, projri−1)/(k + 1)(k + 2), dist(ri, ri+1)/(k + 1)(k + 2)).

– ri and ri−1 have the same y coordinate, however ri+1 does not, then Zone(ri)
is the half circle below it, centered at ri, and with radius min(εr/(k + 1)(k +
2), dist(ri, ri−1)/(k+1)(k+2), dist(ri, projri+1)/(k+1)(k+2)) (see Fig. 2(c)).

As we mentioned before, the bounded distance min(εr/(k+1)(k+2), dist(ri, p)/(k+
1)(k + 2)) set on the movement of robots is conservative, and is sufficient to avoid
collisions between robots, and to satisfy Assumption 3 (this will be proved later).
For the sake of clarity, we do not describe explicitly in Algorithm 6 the zone of
movement of the last robot in the rank sequence. The computation of its zone
of movement is similar to that of the other robot followers, with the only dif-
ference being that it does not have a next neighbor ri+1. So, if robot ri has the

same y−coordinate as its previous neighbor ri−1, then its zone of movement is
the half circle with radius min(εr/(k + 1)(k + 2), dist(ri, ri−1)/(k + 1)(k + 2)),
centered at ri and below ri. Otherwise, the circle centered at ri, and with radius
min(εr/(k + 1)(k + 2), dist(ri, projri−1)/(k + 1)(k + 2)).
After determining its zone of movement Zone(ri), robot ri needs to determine if
it can progress toward its target Target(ri). Note that, Target(ri) may not nec-
essarily belong to Zone(ri). To do so, robot ri computes the intersection of the
segment riTarget(ri) and Zone(ri), called Intersect. If Intersect is equal to
the position of ri, then ri will move toward its right as given by the procedure
Lateral Move Right(). Otherwise, ri moves along the segment Intersect as much
as possible, while avoiding to reach the location of a crashed robot in Intersect, if
any, and satisfying Assumption 3. In any case, if ri is not able to move to any point
in Intersect, except its current position, it moves to its right as in the procedure
Lateral Move Right().

Note that, by the algorithm robot followers can move in any direction by adaptation
of their target positions with respect to the new position of the leader. When the leader
is idle, robot followers move within the distance εr/(k + 1)(k + 2) or smaller in order
to keep an approximation of the formation with respect to the position of the leader, and
preserve the rank sequence.

6.2 Correctness of the Algorithm

In this section, we prove the correctness of our flocking algorithm by first showing that
correct robots agree on the same ranking during the execution of Algorithm 4 (Theo-
rem 4). Second, we prove that no two correct robots ever move to the same location, and
that a correct robot never moves to a location occupied by a faulty robot (Theorem 5).
Then, we show that all correct robots dynamically form an approximation of a regular
polygon in finite time, and keep this formation while moving (Theorem 6). Finally, we
prove that our algorithm tolerates permanent failures of robots (Theorem 7).

Lemma 5. Algorithm 4 satisfies Assumption 3.

Proof (Lemma 5). To prove the lemma, we first show that any robot ri in the system
is able to move to a destination that is different from its current location, and robot
ri never visits a point location that was within its line of movement for its last k + 1
activations. Then, we show that a robot ri never visits a location that was visited by
another robot rj during the last k + 1 activations of rj .

First, assume that robot ri is the leader. By Algorithm 4, its zone of movement
Zone(ri) is either a circle or a half circle on the plane, excluding the points in its history
of moves HistoryMove for the last k + 1 activations, and the positions of crashed
robots. Since, Zone(ri) is composed of an infinite number of points, the positions of
crashed robots are finite, and HistoryMove is a strict subset of Zone(ri), then robot
ri can always compute and move to a new location that is different from the locations
visited by ri during its last k + 1 activations.

Now, assume that robot ri is a follower, and let ri−1 and ri+1, be respectively the
previous, and next robots to ri in RankSequence. Two cases follow depending on the
zone of movement of ri.

Algorithm 6 Flocking Follower: Code executed by a robot follower ri.
procedure Flocking Follower(RankSequence,d,nbract,HistoryMove)

n := |RankSequence|;
α := (n− 2)180◦/n;
P := Formation(P1, P2, ..., Pn) as in Definition 3;
P1 := current position of the leader;
∀rj ∈ RankSequence, Target(rj) = Pj ∈ Formation(P1, P2, ..., Pn);
if (∀rj ∈ RankSequence, rj is within εr of Pj) then {Formation = True}

Lateral Move Right();
else {Flocking and formation generation}

ri−1:= previous robot to ri in RankSequence;
projri−1 := the projection of ri−1 on y−axis of ri;
ri+1 := next robot to ri in RankSequence;
projri+1 := the projection of ri+1 on y−axis of ri;
if (projri−1 = ri ∧ projri+1 = ri) then {ri has the same y coordinate as its
neighbors}

Zone(ri) := segment with length min(εr/(k+1)(k+2), dist(ri, ri+1)/(k+
1)(k + 2)) starting at ri to Right(ri) (see Fig. 2(a));

else if (projri−1 6= ri) ∧ (projri+1 6= ri) then
Zone(ri) := circle centered at ri, with radius min(εr/(k + 1)(k +
2), dist(ri, projri−1)/(k+1)(k+2), dist(ri, projri+1)/(k+1)(k+2)) (see
Fig. 2(b));

else if (projri−1 6= ri ∧ projri+1 = ri) then
Zone(ri) := half circle centered at ri, with radius min(εr/(k + 1)(k +
2), dist(ri, projri−1)/(k + 1)(k + 2), dist(ri, ri+1)/(k + 1)(k + 2)), and
above ri;

else {ri has different y coordinate from next robot}
Zone(ri) := half circle centered at ri, with radius min(εr/(k + 1)(k +
2), dist(ri, ri−1)/(k + 1)(k + 2), dist(ri, projri+1)/(k + 1)(k + 2)), and
below ri (see Fig. 2(c));

end if
Intersect := the intersection of the segment riTarget(ri) with Zone(ri);
if (Intersect 6= ri) then {ri is able to progress to its target}

SCrashInLine := the set of crashed robots that belongs to the segment
intersect;
if (SCrashInLine = ∅) then

ri moves linearly to the last point in Intersect, excluding the points in
HistoryMove;

else
rc := the closest crashed robot to ri in Intersect;
ri moves linearly to the last point in the segment rirc, excluding the point
rc, and the points in HistoryMove;

end if
else

Lateral Move Right();
end if

end if
CurrMove := the set of points on the segment riTarget(ri);
if (nbract ≤ k + 1) then

HistoryMove := HistoryMove ∪ CurrMove;
else

HistoryMove := CurrMove;
nbract := 1;

end if
end

– Consider the case where Zone(ri) is the segment with length min(εr/(k +1)(k +
2), dist(ri, ri+1)/(k+1)(k+2)), excluding ri. Since, such case occurs only when
ri−1, ri, and ri+1 have the same y coordinate, and robot ri is only allowed to move
to Right(ri). Then, ri can always move to a free position in Right(ri) that does
not belong to HistoryMove, and that excludes the positions of crashed robots
since they are finite and there exists an infinite number of points in Zone(ri).

– Consider the case where Zone(ri) is either a circle or a half circle, centered at ri

and with a radius greater than zero, excluding its history of move HistoryMove
for the last k + 1 activations, and the positions of crashed robots. By similar ar-
guments as above, we have Zone(ri) is composed of an infinite number of points,
HistoryMove is a strict subset of Zone(ri), and the positions of crashed robots
are finite. Thus, robot ri can always compute and move to a new location that is
different from the locations visited by ri during its last k + 1 activations.

We now show that robot ri never visits a location that was visited by another robot
rj during the last previous k + 1 activations of rj . Without loss of generality, we con-
sider robot ri and its next neighbor ri+1. The same proof holds for ri and its previous
neighbor ri−1. Observe that if ri and ri+1 are moving away from each other, then nei-
ther robots move to a location that was occupied by the other one for its last k + 1
activations.

Now assume that both robots ri and ri+1 are moving to the same direction, then
we will show that ri never reaches the position of ri+1 after k + 1 activations of ri+1.
Assume the worst case where robot ri+1 is activated once during each k activations of
ri. Then, after k + 1 activations of ri+1, ri will move toward ri+1 by a distance of at
most dist(ri, ri+1)(k + 1)2/(k + 1)(k + 2), which is strictly less than dist(ri, ri+1),
hence ri is unable to reach the position of ri+1.

Finally, we assume that both ri and ri+1 are moving toward each other. In this case,
we assume the worst case when both robots are always activated together. After k + 1
activations of either ri or ri+1, each of them will travel toward the other one by at most
the distance dist(ri, ri+1)(k+1)/(k+1)(k+2). Consequently, 2dist(ri, ri+1)/(k+2)
is always strictly less than dist(ri, ri+1) because k ≥ 1. Hence, neither ri or ri+1

moves to a location that was occupied by the other during its last k + 1 activations, and
the lemma holds. ut
Corollary 1. By Algorithm 4, at any time t, there is no overlap between the zones of
movement of any two correct robots in the system.

Agreement on Ranking. In this section, we show that correct robots agree always on
the same sequence of ranking even in the presence of failure of robots.

Lemma 6. By Algorithm 4, correct robots always agree on the same RankSequence
when there is no crash. Moreover, if some robot rj crashes, there is a finite time after
which, all correct robots exclude rj from the ordered set RankSequence, and keep the
same total order in RankSequence.

Proof (Lemma 6). By Lemma 3, all correct robots agree on the same sequence of rank-
ing, RankSequence after the first k activations of any robot in the system. Then, in

the following, we first show that the RankSequence is preserved during the execution
of Algorithm 4 when there is no crash in the system. Second, we show that if some
robot rj has crashed, there is a finite time after which correct robots agree on the new
sequence of ranking, excluding rj .

– There is no crash in the system: we consider three consecutive robots ra, rb and
rc in RankSequence, such that ra < rb < rc. We prove that the movement of rb

does not allow it to swap ranks with ra or rc in the three different cases that follow:
1. ra, rb and rc share the same y coordinate. In this case, rb moves by min(εr/(k+

1)(k + 2), dist(rb, rc)/(k + 1)(k + 2)) along the segment rbrc. Such a move
does not change the y coordinate of rb, and also it does not change its rank
with respect to ra and rc because it always stays between ra and rc, and it
never reaches either ra nor rb, by the restrictions on the algorithm.

2. ra, rb and rc do not share the same y coordinate. In this case, the movement of
rb is restricted within a circle C, centered at rb, and having a radius that does
not allow rb to reach the same y coordinate as either ra nor rc. In particular, the
radius of C is equal to min(εr/(k + 1)(k + 2), dist(rb, projra

)/(k + 1)(k +
2), dist(rb, projrc)/(k + 1)(k + 2)), which is less than dist(rb, projra)/k,
and dist(rb, projrc)/k, where projra and projrc are respectively, the projec-
tions of robot ra and rc on the y−axis of rb. Hence, such a restriction on the
movement of rb does not allow it to swap its rank with either ra or rb.

3. Two consecutive robots have the same y coordinate, (say ra and rb), however
rc does not. This case is almost similar to the previous one. The movement
of rb is restricted within a half circle, centered at rb, and below it, and with
a radius that does not allow rb to have less than or equal y coordinate as rc.
In particular, that radius is equal to min(εr/(k + 1)(k + 2), dist(ra, rb)/(k +
1)(k + 2), dist(rb, projrc)/(k + 1)(k + 2)), which is less than dist(ra, rb)/k,
and also less than dist(rb, projrc)/k, where projrc is the projection of robot
rc on the y−axis of rb. Hence, the restriction on the movement of rb does not
allow it to swap ranks with either ra or rb.

Since, all robots execute the same algorithm, then the proof holds for any two con-
secutive robots in RankSequence. Note that, the same proof applies for both al-
gorithms executed by the leader and the followers because the restrictions made on
their movements are the same

– Some robot rj crashes: From what we proved above, we deduce that all robots
agree and preserve the same sequence of ranking, RankSequence in the case of
no crash. Assume now that a robot rj crashes. By Lemma 11, we know that there
is a finite time after which all correct robots detect the crash of rj . Hence, there
is a finite time after which correct robots exclude robot rj from the ordered set
RankSequence.

In conclusion, the total order in RankSequence is preserved for correct robots during
the entire execution of Algorithm 4. This terminates the proof. ut
The following Theorem is a direct consequence from Lemma 6.

Theorem 4. By Algorithm 4, all robots agree on the total order of their ranking during
the entire execution of the algorithm.

Collision-Freedom.

Lemma 7. Under Algorithm 4, at any time t, no two correct robots ever move to the
same location. Also, no correct robot ever moves to a position occupied by a faulty
robot.

Proof (Lemma 7). To prove that no two correct robots ever move to the same location,
we show that any robot ri always moves to a location within its own zone Zone(ri), and
the rest follows from the fact that the zones of two robots do not intersect (Corollary 1).
By restriction on the algorithm, ri must move to a location Target(ri), which is within
Zone(ri). Since, ri belongs to Zone(ri), Zone(ri) is a convex form or a line segment,
and the movement of ri is linear, so all points between ri and Target(ri) must be in
Zone(ri).

Now we prove that, no correct robot ever moves to a position occupied by a crashed
robot. By Theorem 1, robot ri can compute the positions of crashed robots in finite time.
Moreover, by Lemma 5, robot ri always has free destinations within its zone Zone(ri),
which excludes crashed robots. Finally, Algorithm 4 restricts robots from moving to the
locations that are occupied by crashed robots. Thus, robot ri never moves to a location
that is occupied by a crashed robot. ut
The following theorem is a direct consequence from Lemma 7.

Theorem 5. Algorithm 4 is collision free.

Fault-tolerant Flocking. Before we proceed, we state the following lemma, which sets
a bound on the number of faulty robots under which a polygon can be formed.

Lemma 8. A polygon is generated if and only if the number of faulty robots f is
bounded by f ≤ n− 3, where n is the number of robots in the system, and n ≥ 3.

Proof (Lemma 8). The proof is trivial. A polygon requires three or more robots to be
formed. Then, the number of robots n in the system should be greater or equal to three.
Also, the number of faulty robots f at any time t in the system should be less than or
equal to n− 3 for the polygon to be formed. This proves the lemma. ut
Lemma 9. Algorithm 4 allows correct robots to form an approximation of a regular
polygon in finite time, and to maintain it in movement.

Proof (Lemma 9). We first show that each robot can be within εr of its target in the
formation F (P1, P2, ..., Pn) in a finite number of steps. Second, we show that correct
robots maintain an approximation of the formation while moving.

Assume that ri is a correct robot in the system. If ri is a leader, then by Algorithm 4,
the target of ri is a point within a circle or half circle, centered at ri, and with radius
less than or equal to εr satisfying Assumption 3, and excluding the positions of crashed
robots. Since, there exists an infinite number of points within Zone(ri), and by As-
sumption 2, the cycle of a robot is finite, then ri can reach its target within Zone(ri) in
a finite number of steps.

Now, consider that ri is a robot follower. We also show that ri can reach within εr

of its target Pi in a finite number of steps. We consider two cases:

– Robot ri can move freely toward its target Pi: every time ri is activated, it can
progress by at most εr/(k + 1)(k + 2). Since, the distance dist(ri, Pi) is finite,
the bound k of the scheduler is also finite, and the cycle of a robot is finite by
Assumption 2, then ri can be within εr of Pi in a finite number of steps.

– Robot ri cannot move freely toward its target Pi: first, assume that ri cannot
progress toward its target because of the restriction on RankSequence. Since,
there exists at least one robot in RankSequence that can move freely toward its
target, and this is can be done in finite time. In addition, the number of robots in
RankSequence is finite, and by Lemma 5, a robot can always move to a new loca-
tion satisfying Assumption 3, then, eventually each robot ri in RankSequence can
progress toward its target Pi, and arrive within εr of it in a finite number of steps.
Now, assume that ri cannot progress toward its target Pi because it is blocked by
some crashed robots. By Lemma 5, a robot can always move to a new location
satisfying Assumption 3. Also, the number of crashed robots is finite, so eventually
robot ri can make progress, and be within εr of its target in a finite number of steps,
by similar arguments.

We now show that correct robots maintain an approximation of the formation while
moving. Since, all robots are restricted to move within one cycle by at most εr/(k +
1)(k+2), then in every new k activations in the system, each correct robot ri cannot go
farther away than εr from its position during k activations. Consequently, ri can always
be within εr of its target Pi as in Definition 4, and the lemma follows. ut

Theorem 6. Algorithm 4 allows correct robots to dynamically form an approximation
of a regular polygon, while avoiding collisions.

Proof (Theorem 6). First, by Theorem 3, there is a finite time after which all correct
robots agree on the same set of correct robots. Second, by Theorem 4, all correct robots
agree on the total order of their ranking RankSequence. Third, By Theorem 5, there is
no collision between any two robots in the system, including crashed ones. Finally, by
Lemma 9, all correct robots form an approximation of a regular polygon in finite time,
and the theorem holds. ut

Lemma 10. Algorithm 4 tolerates permanent crash failures of robots.

Proof (Lemma 10). By Theorem 1, a crash of a robot is detected in finite time, and
by Algorithm 4, a crashed robot is removed from the list of correct robots, although it
appears physically in the system. Finally, by Theorem 5, correct robots avoid collisions
with crashed robots. Thus, Algorithm 4 tolerates permanent crash failures of robots.

ut

From Theorem 6, and Lemma 10, we infer the following theorem:

Theorem 7. Algorithm 4 is a fault tolerant dynamic flocking algorithm that tolerates
permanent crash failures of robots.

7 Conclusion

In this paper, we have proposed a fault-tolerant flocking algorithm that allows a group
of asynchronous robots to self organize dynamically, and form an approximation of a
regular polygon, while maintaining this formation in movement. The algorithm relies
on the assumption that robots’ activations follow a k-bounded asynchronous scheduler,
and that robots have a limited memory of the past.

Our flocking algorithm allows correct robots to move in any direction, while keep-
ing an approximation of the polygon. Unlike previous works (e.g., [3, 6]), our algorithm
is fault-tolerant, and tolerates permanent crash failures of robots. The only drawback of
our algorithm is the fact that it does not permit the rotation of the polygon by the robots,
and this is due to the restrictions made on the algorithm in order to ensure the agreement
on the ranking by robots. The existence of such algorithm is left as an open question
that we will investigate in our future work.

Finally, our work opens new interesting questions, for instance it would be interest-
ing to investigate how to support flocking in a model in which robots may crash and
recover.

Acknowledgments

This work is supported by the JSPS (Japan Society for the Promotion of Science) post-
doctoral fellowship for foreign researchers (ID No.P 08046).

References

1. Daigle, M. J., Koutsoukos, X. D., Biswas, G.: Distributed diagnosis in formations of mobile
robots. IEEE Transactions on Robotics, 23 (2) (2007) 353–369

2. Coble, J., Cook, D.: Fault tolerant coordination of robot teams. Available at: cite-
seer.ist.psu.edu/coble98fault.html

3. Gervasi, V., and Prencipe, G.: Coordination without communication: the Case of the Flock-
ing Problem. Discrete Applied Mathematics, 143, (1-3) (2004) 203–223

4. Hayes, A. T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-line
optimization and demonstration with real robots. In Proc. IEEE International Conference on
Robotics and Automation, 4 (2002) 3900–3905

5. Saber, R. O., Murray, R. M.: Flocking with Obstacle Avoidance: Cooperation with Limited
Communication in Mobile Networks. In Proc. 42nd IEEE Conference on Decision and
Control, (2003) 2022–2028

6. Canepa, D., Potop-Butucaru, M. G.: Stabilizing flocking via leader election in robot net-
works. In: Proc. 9th Intl. Symp. on Stabilization, Safety, and Security of Distributed Systems
(SSS’07), LNCS 4838 (2007) 52–66

7. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-
stabilizing mobile robots gathering. In: Proc. 20th Intl. Symp. on Distributed Computing
(DISC’06), LNCS 4167 (2006) 46–60

8. Prencipe, G.: CORDA: Distributed Coordination of a Set of Autonomous Mobile Robots. In
Proc. European Research Seminar on Advances in Distributed Systems, (2001) 185–190

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern Formation by Autonomous
Robots Without Chirality. In Proc. 8th Intl. Colloquium on Structural Information and Com-
munication Complexity (SIROCCO’01) (2001) 147–162

10. Gervasi, V., Prencipe, G.: Flocking by A Set of Autonomous Mobile Robots. Technical
Report, ”Dipartimento di Informatica, Universitá di Pisa, Italy, (2001) TR-01-24

11. Reynolds, C. W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Journal of
Computer Graphics 21 (1) (1987) 79–98

12. Brogan, D. C., Hodgins, J. K.: Group Behaviors for Systems with Significant Dynamics.
Autonomous Robots Journal 4 (1997) 137–153

13. John, T., Yuhai, T.: Flocks, Herds, and Schools: A Quantitative Theory of Flocking. Physical
Review Journal, 58 (4) (1998) 4828–4858

14. Yamaguchi, H., Beni, G.: Distributed Autonomous Formation Control of Mobile Robot
Groups by Swarm-based Pattern Generation. In Proc. 2nd Int. Symp. on Distributed Au-
tonomous Robotic Systems (DARS’96) (1996) 141–155

15. Dieudonné, Y., Petit, F.: A Scatter of Weak Robots. Technical Report, LARIA, CNRS,
France (2007) RR07-10

16. Chandra, T. D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43 (2) (1996) 225–267

17. Schreiner, K.: NASA’s JPL Nanorover Outposts Project Develops Colony of Solar-powered
Nanorovers. In IEEE DS Online, 3 (2) (2001)

18. Konolige, K., Ortiz, C., Vincent, R., Agno, A., Eriksen, M., Limketkai, B., Lewis, M., Briese-
meister, L., Ruspini, E., Fox, O., Stewart, J. Ko. B., Guibas, L.: CENTIBOTS: Large-Scale
Robot Teams. In Journal of Multi-Robot Systems: From Swarms to Intelligent Autonoma,
(2003)

19. Bellur, B. R., Lewis, M. G., Templin, F. L.: An Ad-hoc Network for Teams of Autonomous
Vehicles. In Proc. 1st IEEE Symp. on Autonomous Intelligent Networks and Systems, (2002)

20. Jennings, J. S., Whelan, G., Evans, W. F.: Cooperative Search and Rescue with a Team of
Mobile Robots. In Proc. 8th International Conference on Advanced Robotics, (1997) 193–
200

A Perfect Failure Detection

Lemma 11. If some robot ri crashes at time tcrash, then there is a time tmute after
which every correct robot detects the crash of robot ri, that is: ∃tmute, tmute ≤ tcrash+
tmax, where tmax is the maximum time required for the slowest robot to detect the crash.

Proof (Lemma 11). Let ri be a crashed robot. Then, ri will remain at its current position
forever. Let rf be a correct robot which is the fastest robot in the system. By hypothesis
on the system model, the time between two consecutive activations of any robot is finite.
Then, by definition of the k-bounded scheduler, and Assumption 3, robot rf detects that
ri has crashed after (k + 1) activations (activations of rf), which takes finite time.

Now, let rs be a correct robot which is the slowest robot in the system. Assume that
rs is activated the least, i.e., rs is activated only once during the k activations of robot
rf . Then, robot rs detects that ri has crashed after k(k + 1) activations (activations of
rs), which is also done in finite time. As a result, we can deduce that any correct robot
rj in the system detects the crash of robot ri in finite time by similar arguments.

Assume that ri crashes at time tcrash, and tmax is the maximum time required
for k(k + 1) activations of the slowest robot, then we can compute tmute, which is

the time after which all correct robot detect the crash of robot ri as follows: tmute ≤
tcrash + tmax. Since after time tcrash, robot ri never moves, then after time tmute,
ri will be permanently suspected by all correct robots in the system. This proves the
lemma. ut

As a direct consequence from Lemma 11, we derive the following theorem:
Theorem 1 Strong completeness: eventually every robot that crashes is perma-

nently suspected by every correct robot.
Algorithm 4 has also the following property:
Theorem 2 Strong accuracy: there is a finite time after which correct robots are

not suspected by any other correct robots.

Proof (Theorem 2). Let ri and rj be two correct robots. Assume without loss of gener-
ality that robot ri is activated only once during k activations of robot rj . If robot ri is
correct, then by Assumption 3, and by the definition of k−bounded scheduler, ri must
move by a non zero distance during the k activations of robot rj . Also, by Lemma 1, ri

must have finished its move before the start of the k + 1 activation of rj . In addition, rj

cannot move to the position that was occupied by ri by Assumption 3. Since rj is also
correct, it will realize that ri has changed its position at or before the k + 1 activation
of rj . Since the time required for the k +1 activations of rj is also finite, rj will realize
that ri is a correct robot in finite time. ut

B Agreed Ranking for Robots

Lemma 2 Algorithm 2 gives a unique ranking to every correct robot in the system.

Proof (Lemma 2). The proof is trivial. Since, robots agree on the direction and orienta-
tion of the y−axis, then, by Algorithm 2, all robots with different y−coordinates will
have different ranks. In addition, for robots who have the same y−coordinate, the clock-
wise direction is used to determine the sequence. Since, robots agree on the clockwise
direction, then two distinct robots having the same y−coordinate cannot see each other
in the same direction. Thus, a unique ranking is given to each of these robots. ut

Lemma 3 By Algorithm 2, there is a finite time after which, all correct robots agree
on the same initial sequence of ranking, RankSequence.

Proof (Lemma 3). Assume without loss of generality that robot ri is the first robot that
was activated by the scheduler. That is, ri has seen the initial configuration of the robots.
Then, the proof consists of showing that all other robots (correct) compute the same
sequence of ranking as ri. We first show that Algorithm 2 preserves the same sequence
of ranking computed by ri. Assume that robot rj is activated after robot ri has finished
one full cycle. Recall that ri has changed its position based on Assumption 3. Then, we
will show that robot rj will compute the same rank sequence as ri no matter what the
movement taken by ri:

1. Robot ri moves toward Right(ri): since such a move does not change the y−coordinate
of ri, and rj executes the same algorithm as ri, then rj will compute the same rank
sequence as ri.

2. Robot ri moves toward the closest robot to Right(ri), say rc by the distance
min(εr/(k+1)(k+2), dist(ri, rc)/(k+1)(k+2)): Assume the worst case where
ri is activated k + 1 times, while rc is activated only once. In k + 1 activations, ri

travels toward rc by less than the distance (k+1)dist(ri, rc)/(k+1)(k+2). Since
such a distance is less than dist(ri, rc), then the moves performed by ri during
its k + 1 activations do not change the order of ri and rc with respect to left and
right, and also it preserves the same y−coordinate of ri and rc. Thus, by similar
arguments as above, rj will compute the same rank sequence as ri.

The same proof applies to the other robots that are activated after ri and rj , by similar
arguments. By Lemma 2, the rank sequence, RankSequence computed by all correct
robots is unique. In addition, by the assumption of the k-bounded scheduler, a robot
is activated at least once during k activations, and its cycle is finite by Assumption 2.
Consequently, after k activations of the same robot in the system, every other correct
robot is activated at least once, and have computed the same ranking sequence. Such
computation is done in finite time, and the lemma follows. ut
Lemma 4 The ranking algorithm (Algorithm 2) guarantees no collisions between the
robots in the system.

Proof (Lemma 4). The proof is straightforward. The only movement allowed by Algo-
rithm 2 is to make robots move along the perpendicular of their y−axes, toward their
right. Assume that robot ri is one of the robots in the system. There are two cases to
consider, depending on whether robot ri has robots on Right(ri) or not. First, assume
that robot ri has a different y coordinate from the other robots in the system. Then, it is
trivial that ri will not collide with any of these robots because they do not belong to its
line of movement. In addition, they will not arrive at its line of movement because they
move in parallel to the y-axis of ri, by Algorithm 2.

Now assume that robot ri has the same y coordinate as another robot in the system,
say rj . Assume without loss of generality that rj is the closest to ri in Right(ri). By Al-
gorithm 2, ri is allowed to move at each activation cycle by at most min(dist(ri, rj)/(k+
1)(k + 2), εr/(k + 1)(k + 2)). Then, even in the worst case when ri is activated each
time during k activations in the system, while rj is activated the least, we will not have
the situation where ri collides with rj after k activations of ri because ri will not reach
rj since the distance kdist(ri, rj)/(k + 1)(k + 2) is less than dist(ri, rj). ut

