JAIST Repository

https://dspace.jaist.ac.jp/

Title Aspect-Oriented Design fof Embedded
Author(s) Noda, Nat suko

Citation

Issue Date 2008-009

Type Thesis or Dissertation

Text version

aut hor

URL http://hdl.handle.net/ 10119/ 4838
Rights
L Supervisor: Professor Tompji Kishi
Description))
Il nformati on Science, Doctpr

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Aspect-Oriented Design for Embedded Software

by

Natsuko NODA

submitted to
Japan Advanced Institute of Science and Technology
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Tomoji Kishi

School of Information Science
Japan Advanced Institute of Science and Technology

September 2008

Abstract

In software design, it is important to encapsulate cross-cutting concerns, and the ap-
plication of aspect-oriented technologies to design modeling is a significant challenge. We
examined the design of software for embedded systems that exhibit complicated behavior
and observed that aspect orientation is useful for designing such systems.

Aspect-orientation is one of the promising techniques not only for programming but
also for analysis and design. For programming, we have a popular language, AspectJ, and
the existence of this language facilitates the diffusion of aspect-oriented programming.
Likewise, in order to actually utilize aspect-orientation in analysis and design phase, it
is desirable to have good aspect-oriented modeling mechanism. Here, aspect-oriented
modeling mechanism provides us the means for aspect-oriented modeling, in which the
aspect-oriented concept such as “aspect” as well as conventional concepts such as “class”
and “association” should be treated as the first class modeling elements.

In this thesis, we propose an aspect-oriented modeling mechanism for software devel-
opment, especially for embedded software design. An aspect in this mechanism is a unit
to modularize a concern, and it includes fragments of software model. In other words, it
is a structure to realize a concern. It is similar to a “hyperslice” of Hyper/J [3]. In our
modeling mechanism, an aspect contains one or more classes, each of which can have a
state model that expresses its behavior.

We also examine issues in embedded software design, and point out that in modeling
embedded software, we have to manage cross-cutting relationship. In order to avoid the
issue, we examined the application of our aspect-oriented modeling mechanism to embed-
ded software design. We introduce modeling of an example based on our mechanism, and
show how this mechanism facilitates the embedded software design.

We also introduce an application of the mechanism to product-line development. As an
aspect in our mechanism is independent each other, this characteristics makes it possible
to design highly configurable product-lien architecture. We demonstrate the usefulness of
our modeling mechanism based on an embedded system—vehicle illumination system.

ii

Acknowledgments

The authors would like to thank Professor Tomoji Kishi for continuous supports and
suggestions to the research. The members of Kishi laboratory give us helpful comments
and support to the research. The case study of this research is based on a real project in
a company. We appreciate the project members who provided us the useful example.

il

v

Contents

Abstract
Acknowledgments
1 Introduction

2 Issues in Embedded Software Design
2.1 Characteristics and issues of embedded software design
2.2 Context e
2.3 Aspect-oriented context modeling

3 Aspect-Oriented Modeling Mechanism
3.1 Modeling elements
3.1.1 Aspect
3.1.2 Aspect-relation
3.1.3 Aspect-relation-rule Lo
3.2 Execution semantics
3.3 Notation
3.3.1 Policy for designing notation
3.3.2 Aspect-relation overview diagram L
3.3.3 Syntax of aspect-relation-rules
3.4 Simple example

Application of Mechanism to Architecture Design

4.1 Design issues and solution L.
4.2 Target phase.

Case Study of Embedded Software

5.1 System description
5.2 Modeling strategy Lo
5.3 Aspect-oriented modelingo

Application to Software Product Line Architecture Design

6.1 Architecture design of software product line
6.2 Separating functionalities and crosscutting relationships
6.3 Application of our mechanism to PLD
6.4 Product line architecture diagram

6.4.1 Basicnotation00

12
12
13

16
16
16
17

6.4.2 Variant aspect 28

6.4.3 Variant ruleset L Lo 28

6.4.4 Example of PLA diagram 29

6.5 Case study: vehicle illumination product line 31

7 Related Works 42
7.1 Aspect-oriented modeling Lo 42
7.2 Application of AOTs to PLD 43

8 Discussion 45
8.1 Characteristics of our mechanism 45
8.2 Aspect-oriented technology and product-line development 47

9 Conclusion 49
References 50
Publications 53
A Aspect-Orientedness 54
A.1 General definition 54
A2 Aspectin AspectJ 55
A3 Aspectin Hyper/J 56

B Metamodel of Aspect-Oriented Modeling 58
B.1 Overview. 58
B.2 AOM_StaticStructure package 58
B.2.1 Classifier (from UML), 58

B.2.2 StructuralFeature (from UML) 60

B.2.3 Class (from UML) 60

B.24 Aspect 60

B.2.5 AspectRelationo 60

B.2.6 RelationEnd oo 61

B.3 AOM_Behavior package 61
B.3.1 Class (from AOM _StaticStructure) 61

B.3.2 StateMachine (from UML) 61

B.3.3 State (from UML) 63

B.3.4 Transition (from UML) 63

B.3.5 Trigger (from UML) 64

B.3.6 Event (from UML) 64

B.3.7 Constraint (from UML) 64

B.4 AOM _AspectRelation package L. 64
B.4.1 AspectRelation (from AOM_StaticStructure) 64

B.4.2 RuleSet 65

Bi43 Rule 65

B.4.4 ConditionReferenceRule 66

B.4.5 EventIntroductionRule 0L, 66

B.4.6 State (from AOM_Behavior) 67

vi

B.4.7 Constraint (from AOM _Behavior) 67

B.4.8 Transition (from AOM_Behavior) 67

B.4.9 Event (from AOM_Behavior) 67

C Rule Extension 69
C.1 Generalization of aspect-relation-rules 69
C.2 Application of extended aspect-relation-rules 72

D Modeling Example by Prototype System 75
D.1 Objective 75
D.2 Prototype system 75
D.3 Modeling example 7
D.3.1 Aspects 7

D.3.2 Aspect-relation-rules definition 81

D4 Result 83

vil

List of Figures

2.1

3.1

3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Al
A2

B.1
B.2
B.3

Overview of aspect-oriented context modeling 4

Overview of aspect-oriented modeling utilizing the proposed modeling mech-

ANISINL . . o o e e e e e 6
Aspect-relation overview diagram 9
Syntax of aspect-relation-rules 0o 0L 10
Design using aspect-oriented modeling mechanism 11
Model by the layered architecture 14
Model by the proposed mechanism 14
Aspect-relation overview diagram for the example 20
Sensor aspect—DOOR, 21
Sensor aspect—POWER 21
S-context aspects—DOOR-ST and BTRY-ST 22
Process aspects—LCONTROL and BTRYSVR.. 22
A-context aspects—ON-OFF 23
Actuator aspect—LIGHT 23
Aspect-relation-rules 24
Schematic of system behavior 25
Example of PLA diagram 28
Optional and alternative aspects 29
Optional and alternative rule sets 30
Example of PLA design 31
Feature model of vehicle illumination PL 34
Actuator aspect—LIGHT 35
A-context aspect—ON-OFF and FADE-IN-OUT 35
Process aspect—LCONTROL and BTRYSVR 36
S-context aspect—BTRY-ST and DOOR-ST 37
Sensor aspect—POWER, ALL-DOOR, and DOOR 38
PLA diagram of vehicle illumination PL. 39
Rule sets for vehicle illumination PL. 41
Aspect in Aspectd 56
Aspect in Hyper/J 57
Packages 59
AOM _StaticStructure 59
AOM_Behavior 62

B.4 AOM _AspectRelation 65

C.1 Syntax of extended aspect-relation-rules 71
C.2 LIGHT and ON-OFF aspects of modified example 73
C.3 Modified aspect-relation-rules (1) 73
C.4 DOOR and DOOR-ST aspects of modified example 74
C.5 Modified aspect-relation-rules (2) 74
D.1 Overview of prototype system 76
D.2 Aspects 7
D.3 Sensor aspect 78
D.4 DriverDoor class (state diagram) L. 78
D.5 Context aspects e 79
D.6 DoorStatus class (state diagram)o 79
D.7 Process aspect 80
D.8 LightingControl class (state diagram) 80
D.9 BatterySaver class (state diagram) L 81
D.10 Timer class (state diagram), 81
D.11 Actuator aspect 82
D.12 Light class (state diagram) L 82
D.13 Rule sets (no BatterySaver) L. 82
D.14 Rule sets (with BatterySaver) L. 83
D.15 Execution result (no BatterySaver) 84
D.16 Execution result (with BatterySaver) 84

X

List of Tables

6.1 Correspondence between variant feature and PLA

Chapter 1

Introduction

The advancement of embedded technologies has made our society increasingly dependent
on embedded systems and increased the size and complexity of embedded software. In
this scenario, embedded software developers must pay attention to not only performance
and size but also extensibility and modifiability. Although most embedded software de-
velopment has been implementation-centric, architecture design of embedded systems has
assumed greater importance today.

One of the characteristics of embedded system is that they are context dependent, i.e.,
embedded systems react to changes in their context, and their behavior is also constrained
by the context. In such systems, contexts are determined in terms of sensor values, and
the behavior of the system is based on these contexts. Similarly, internal process controls
actuator and assumes the context as the result of the control. Since sensors, actuators,
contexts, and internal processing have cross-cutting relationships, we need to encapsulate
them in order to make software modifiable and extensible.

In this thesis, we propose an aspect-oriented modeling approach for context-dependent
embedded software and an aspect-oriented modeling mechanism that facilitates this mod-
eling approach. The approach and mechanism are explained based on an embedded
system—rvehicle illumination system.

There are some applications of aspect-oriented techniques in the field of embedded
software. Though there exist a few works that apply aspect-oriented techniques to archi-
tectural design [15], most other applications are the use of aspect-oriented programming [4]
and the application of aspect-oriented modeling techniques in the context of model-driven
development [9]. This thesis focuses on the application of aspect-oriented techniques to
the architectural design of embedded systems.

As many embedded systems are developed in the context of product-line development
(PLD), we apply our aspect-oriented modeling mechanism to variability management in
PLD design. Thus far, several techniques for utilizing aspect-oriented technologies (AOT's)
for PLD have been proposed. However, the application of AOTs to PLD is not simple and
various issues related to the application, such as invasive change problem that prevents
reusability, have been reported. In this study, we also show how our modeling mechanism
works well in this area.

Chapter 2

Issues in Embedded Software Design

2.1 Characteristics and issues of embedded software
design

One of the important characteristics of embedded systems is strong relation with the
external world; they react to changes in the external world and they try to change the
circumstances. For example, a system reacts to air temperature change, and if the tem-
perature is too high, it works to cool down the air.

In order to function in such a way, embedded systems have sensors, internal processing,
and actuators; they recognize the changes in the external world through the sensors,
perform the internal processing that depends on the changes recognized by the sensors, and
the internal processing may drive actuators to operate some entities in the environment.

These sensors and actuators have many variations. There are a variety of sensors and
actuators different physically, even though they have a logically same function. Also,
there can be multiple ways to recognize an outside change utilizing sensors. For example,
to recognize vehicle speed, a velocity sensor can be used, or a GPS sensor may be used.
Likewise, there may be multiple ways to drive actuators. For example, to reduce vehicle
speed, the engine may be powered down, or the brake can be applied.

During the system’s lifecycle, physical sensors and/or actuators and how to utilize
them can be changed because of various reasons. For example, required accuracy cannot
often be ensured, and which sensors and actuators are used and how to utilize them may
be decided by trial and error; or, in concurrent development, sensors and/or actuators
may be changed, regardless of software, due to hardware design. Also, modification and
addition/deletion of system’s function might be required and internal processing would be
changed. That can cause changes of sensors/actuators to be utilized and usage of them.

In this situation, one of the biggest issues of embedded software design is that it is
difficult to develop design model modifiable. If we directly couple sensors/actuators and
internal processing, we cannot manage these changes mentioned above.

2.2 Context

To tackle the issue described in the previous section, contexts should be clearly recognized
and considered. A context is a surrounding condition that the system needs clearly to
capture and change. Typical conditions that the system needs clearly to capture are:

e context of outside environment; e.g., the temperature, humidity, brightness around
the vehicle.

e context of entire system’s condition; e.g., the position, velocity, acceleration of the
vehicle.

e context of system element’s condition; e.g., the engine status, door position, gear
position.

These contexts are the outside conditions and the system recognizes them by means
of sensor values. As implementation, some contexts may be sensor values themselves, or
values obtained by data fusion of multiple sensors. We call these contexts s-contexts.

Conditions that the system needs to change are:

e context of outside environment; e.g., the temperature in the vehicle, brightness
around the vehicle.

e context of entire system’s condition; e.g., the position, velocity, acceleration of the
vehicle.

e context of system element’s condition; e.g., the engine status of the vehicle, the
position of robot arm.

These contexts are the outside conditions that are supposed as a result of sending
control values to actuators. We call these contexts a-contezts.

We observe that these contexts referred to in a specific domain are stable, as compared
to sensors, actuators and internal processing. For example, in most automotive systems a
door position context is necessary and recognized, however how to recognize this context
and which sensors are utilized for the recognition of this context may widely vary. And
without this context, a internal processing that reacts the change of the door position
may vary and not be so stable, because it has to refer sensors directly.

Therefore, to avoid the problem described in 2.1, it is important to separate the
surrounding conditions that the system needs clearly to capture (or change) and the
means to capture (or changes) these conditions; namely, contexts and sensors/actuators.
This separation will destroy direct coupling of sensors/actuators and internal processing.

2.3 Aspect-oriented context modeling

In 2.2, we pointed out the importance of separating contexts from sensors/actuators and
internal processing. However, how to realize this separation in modeling is not straight
forward. Contexts relate to sensors, actuators, and internal processing in crosscutting
ways. For example, a context may be recognized by multiple sensors; a sensor may
be utilized by multiple contexts; in addition, each of the contexts may require different
interfaces from the same sensor, because different usages are needed to recognize each
context. In other words, contexts crosscut, and are crosscut by, sensors/actuators and
internal processing. Therefore, ordinary modularization and layering is not sufficient to
model such systems.

We have been examining utilization of aspect-oriented technology to model such em-
bedded software; each specific sensor/actuator, context, and internal processing is encap-
sulated as “aspect.” Here, an aspect is like “hyperslice” [42][37] in Hyper/J [3]. That

3

world
sensor s-context process a-context actuator
~7 I~
.- P \ ‘_/ >
S /
[- RN —t [
aspect

——> aspect relationships (defined by aspect-relation-rules)

Figure 2.1: Overview of aspect-oriented context modeling

means an aspect encapsulates a concern by defining a (partial) class structure appro-
priate for that concern, might or might not cut across another, and can be understood
in isolation; crosscutting behavior can be specified by composition and how to compose
aspects are defined outside aspects; there is no base hierarchy and no aspect dominates
the others.

We call this modeling aspect-oriented context modeling. An early sketch of this was
illustrated in [17].

Figure 2.1 schematically presents an overview of the aspect-oriented context modeling.

e Components are categorized as sensors (components that handle sensor values),
s-contexts (components that describe surrounding conditions to be captured), pro-
cesses (components that realize internal processing), a-contexts (components that
describe surrounding conditions to be changed), or actuators (components that con-
trol actuators). The sensors/actuators and processes are indirectly coupled.

e Each component is realized as an aspect. Aspects are independent and self-contained
(similar to the “hyperslice”).

e Aspects are related to each other by composition.

Chapter 3

Aspect-Oriented Modeling
Mechanism

In Chapter 2, we pointed out issues in embedded software design. To facilitate the model-
ing for embedded software design considering the issues, we introduced the aspect-oriented
context modeling. The introduced modeling provides a design policy for embedded soft-
ware.

In order to model embedded software following the design policy, we need a modeling
mechanism that provides us the means to model appropriately crosscutting concerns such
as sensors, actuators, process and contexts. Especially, when we follow the design policy of
aspect-oriented context modeling, it is important to separate relationships among aspects
and make them independent of aspects. The required modeling mechanism is expected
to realize this separation in modeling.

To facilitate the introduced aspect-oriented context modeling, we propose an aspect-
oriented modeling mechanism. An early sketch of this mechanism was illustrated in [32].

Figure 3.1 shows a simple example of the aspect-oriented modeling utilizing the pro-
posed modeling mechanism. In this example, we define three aspects—A, B, and C. Each
aspect comprises a class diagram and state diagrams and is self-contained. The rela-
tionships among aspects are not defined within each aspect but are provided as aspect-
relation-rules. These rules define the inter-locking among the state diagrams of different
aspects. The relationships among aspects given by these rules are intuitively shown by
dashed arrows. These rules are explained in detail in the following sections.

In the following sections, we will explain the modeling mechanism from the following
viewpoints respectively.

e modeling elements
e cxecution semantics

e notation

3.1 Modeling elements

In this section, we will introduce new modeling elements used in this mechanism. Some
“traditional” modeling elements, such as “class,” are also used in the mechanism, without
any change of their meaning. Therefore, these traditional elements will not re-defined

Aspect A Aspect C

elationship | Class diagram|
S %g

N

s e

-
- N\
L N

Class diagram

o=

~

L.
~
.
IN
N
N
A
N

4 N\
Aspect-relation-rules
*A.C1:t1 ->e1"B.C1
*A.C2:11 [B.C2@S51]
«C.C1:11 -> e2”A.C1

- ._gN\-s g
1
/ =
/

relationshipﬁ

Aspect B\\
Class diagram

-

- => event introduction across aspects by aspect-relation-rule
------- » reference to propeties of other aspects by aspect-relation-rule

*Each aspect is defined as a set of class diagram and state diagrams.
*Relationships among aspects are not defined in aspects, but in
aspect-relation-rules.

Figure 3.1: Overview of aspect-oriented modeling utilizing the proposed modeling mech-

anism

nor explained in this section; if we give some constraints on their usages, that will be
explained. All the modeling elements, including newly introduced ones and traditional
ones, will be described as a metamodel, which will be introduced in Appendix B.

3.1.1 Aspect

An aspect is a unit that modularizes a concern, and it is the projection of the entire
software from the viewpoint of the corresponding concern. It is defined as a set including
a static structure model and behavior models. The static structure model is defined as
a class diagram and this diagram contains one or more classes. Each class of the static
structure model has a behavior model. The behavior model is defined as a state diagram,;
That means behavior of objects are described by their states and transitions. Transitions
are trigged by events; events are some occurrences that trigger transitions. Transitions
may have guard conditions and actions.

Although concerns are related to each other, because they cross-cut, each aspect is
defined such that it is self-contained. The relationships among aspects are not defined
within the aspect but as aspect-relation-rules, which will be explained in 3.1.3.

In order to describe these rules, we allow the assignment of an identifier (such as a
unique label) to a transition, if necessary.

In this thesis, we assume that each class has only one instance and instances of classes
are not dynamically created, mainly because the ease of explanation. In embedded soft-
ware field, it is a common way to utilize objects, and we believe that this restriction does
not essentially narrow the applicability of our modeling mechanism.

3.1.2 Aspect-relation

Aspects have cross-cutting relations, when they are used to construct the entire software.
Typical relationships are as follows:

e A particular behavior (e.g., state transition) of a class in aspect A triggers a certain
behavior in a class of aspect B.

e A class in aspect A refers to the properties (e.g., state) of a class in aspect B to
determine its behavior.

A set of such relationships between two aspects to realize a function of the entire
software is called an aspect-relation. An aspect-relation is defined by a rule set and the
rule set is a set of aspect-relation-rules that relate two aspects.

3.1.3 Aspect-relation-rule

We use aspect-relation-rules to define the details of aspect-relations. An aspect-relation-
rule describes the relationships between different aspects in terms of events, transitions,
and guard conditions for the transitions of state diagrams. The different types of rules
are as follows:

e Event-introduction rule: An event-introduction rule introduces events to other as-
pects to trigger a certain behavior when a state transition occurs. For example,
“A1.C1:t1 -> E17A2.C2,” which implies that “when transition t1 fires at class C1
of aspect A1, event E1 is introduced to class C2 of aspect A2.”

e Condition-reference rule: A condition-reference rule provides a guard condition, with
reference to the properties of an aspect, for a state transition in another aspect. For
example, “A1.C1:t1 [A2.C2@S1],” which implies that “transition t1 fires at class C1
of aspect A1 only when class C2 of aspect A2 is in state S1.”

For readability, we showed an example of rule description, such as “A1.Cl:t1 ->
E1"A2.C2” and “Al1.Cl:t1 [A2.C2@S1].” They are just examples of description, and
there would be other possibilities. We place less importance on notations of the rules
than the meanings of them. So far we have not found any problems in this notation we
showed. The syntax of this notation will be explained in 3.3.3.

3.2 Execution semantics

The execution semantics for this mechanism are summarized below.

e Each object in an aspect runs concurrently.
e Each object has a queue for input events.

e Events to an object are stored in the queue. There exists no distinction between
the events from objects in the same aspect and the events introduced by event-
introduction rules.

e Each object can read an event from its queue based on a first-in-first-out policy.
When an object receives an event from its queue, it triggers the corresponding state
transition.

e When an event received from the queue triggers the corresponding state transition,
each object refers to the condition-reference rules specified for the aspects they
belongs to. If there exists a rule stating a guard condition for firing the corresponding
state transition, the state of the specified object is referred to and the condition
is evaluated; if the guard condition is evaluated to be true, the transition fires.
There exists no distinction between the guards defined in state diagrams and those
provided by condition-reference rules.

3.3 Notation

3.3.1 Policy for designing notation

In this modeling mechanism, an aspect is defined in the ordinary object-oriented ways;
it contains one or more classes and the behavior of each class is defined by the state
transitions. Therefore, we do not need any special notation for it. We use class diagrams
for its structure model and state diagrams for its behavior model.

In this study, we use state diagrams for simplicity. A state diagram is a subset of
a state machine diagram; in this diagram, we do not allow the presence of composite
states. In order to describe aspect-relation-rules (see below), we allow the assignment of
an identifier (such as a unique label) to a transition, if necessary.

<<aspect>> A <<aspect>> B
R1

R2
<<aspect>> C

Figure 3.2: Aspect-relation overview diagram

Constructing entire software from multiple aspects using aspect-relations is new. To
see and understand the entire software, we need a new notation. For this purpose, we will
introduce an aspect-relation overview diagram in the next subsection.

3.3.2 Aspect-relation overview diagram

We use an aspect-relation overview diagram to understand the relations between aspects
and to obtain an overview of the entire system comprising mutually related aspects.
The aspect-relation overview diagram shows the aspects and the aspect-relations existing
among them. An aspect is shown as a box with the stereotype “<<aspect>>." An aspect-
relation is expressed as an association between two aspects with a label indicating a rule
set. The definition of the aspect-relation is given by the corresponding rule set. Details
of this rule set need not be described in this diagram; they can be defined somewhere.

Each rule in the rule set is written based on the syntax described in 3.1.3.

Figure 3.2 shows an example of the aspect-relation overview diagram.

3.3.3 Syntax of aspect-relation-rules

In 3.1.3, we introduced aspect-relation-rules. The syntax of the rules is shown in Figure
3.3. Note that rule description following the syntax shown here is one possibility; there
would be other types of notation for the rules. In this thesis, we follow this syntax to
describe the aspect-relation-rules.

Here, we allow arbitrariness (wildcards) in specifying class and transition names.

3.4 Simple example

Figure 3.4 shows a part of software design using our modeling mechanism. In this example,
functionalities related to ensure the safety and functionalities related to an entertainment
service are separated as aspect “SAFECTRL” and aspect “SRVC.” Each aspect has a
class diagram and state diagrams of the classes in the class diagram (in Figure 3.4, some
state diagrams are omitted for the space limitation). These aspects are independent of
each other. The relationships between these two aspects are defined as aspect-relation-
rules. By these rules, the two aspects are related and provide an appropriate function; if
in some dangerous situations, the service is stopped and cannot be started.

aspect_relation_rule
::= event_introduction_rule | condition_reference_rule
event_introduction_rule
::= source_aspect ‘.’ source_class ‘:’ transition_name
‘->’ event_name ‘*’ target_aspect ‘.’ target_class
source_aspect ::= name
source_class ::= arbitrary | name
name ::= name_char+
name_char ::= [a-zA-Z0-9] |
arbitrary ::= name? ‘*’ name?
transition_name ::= arbitrary | name
event_name ::= name
target_aspect ::= name
target_class ::= arbitrary | name
condition_reference_rule
::= source_aspect ‘.’ source_class ‘:’ transition_name ‘[’ condition ‘]’
condition ::= state_condition
state_condition ::= in_state | not_in_state
in_state ::= taget_aspect ‘.’ target_class ‘@’ state
state ::= name
not_in_state ::= ‘!’ in_state

Figure 3.3: Syntax of aspect-relation-rules

10

<<aspect>> SAFECTRL <<aspect>> SRVC

SpeedMeter SCitrl Input Srve

Class diagram Class diagram

.\ tl:on

e

t1 :mid-sprﬁ t2:high-sp
idle warn alarm off on
N t4:low-sp A t3:mid-sp t2:off

State diagram for SCtrl

* State diagram for SpeedMeter is ommitted.

State diagram for Srvc

* State diagram for Input is ommitted.

r

Aspect-relation-rules
1. SAFECTRL.SCtrl:t2 -> offASRVC.Srvc
2. SRVC.Srve:tl [[(SAFECTRL.SCtrl@alarm)]

Figure 3.4: Design using aspect-oriented modeling mechanism

11

Chapter 4

Application of Mechanism to
Architecture Design

In Chapter 2, we pointed out issues in embedded software design and described a desirable
design policy to avoid the issues. In Chapter 3, we introduced a modeling mechanism
that makes it possible to model based on the design policy. In this chapter, again we
will describe the issue in order, and explain how the issue can be settled using the design
policy and the modeling mechanism. The targeted phase for applying of the mechanism
will be discussed as well.

4.1 Design issues and solution

The following is the issue which is tackled in the design of embedded software, and which
we try to settle using the introduced modeling mechanism:

e To increase reusability and modifiability of embedded software design, by localizing
influences of various changes of sensors, internal processing, and actuators.

The background of this issue is increasing complexity of embedded software. In this
situation, quality attributes at development time, such as reusability, is getting more and
more important, as well as quality attributes at run-time, such as performance, which has
been the top priority in the conventional embedded software development.

As described in 2.1, sensors and actuators may frequently be changed in embedded
system development. Therefore, in the design of embedded software, it is necessary to
localize the influences of these changes.

The desirable design policy for the issue is, as mentioned in 2.2 and 2.3, as follows:

1. In order to weaken the direct coupling between sensors/actuators and internal pro-
cess, contexts are placed between sensors/actuators and internal process.

2. Relationships among modules that exist in crosscutting ways have to be separated
from modules and be made independent of them.

To model embedded software based on the design policy, we can utilize the introduced
modeling mechanism; we modularize each of sensors, actuators, internal processing, and
contexts, as an aspect, and define relationships among them as aspect-relation-rules,
separating from aspects.

We will explain this utilization in more detail.

12

For the number 1 in the policy

e Based on the aspect-oriented context modeling, described in 2.3, we recognize
contexts (s-contexts and a-contexts).

e We model each of sensors—such as a door sensor, a power sensor, and a tem-
perature sensor—as an aspect. Likewise, each of actuators, each of internal
processing, each of s-contexts, and each of a-contexts is modeled as an aspect.

e In each aspect, we model only what is indispensable to the corresponding
concern. For example, in a sensor aspect, the changes of the sensor value is
modeled; in a s-context aspect, the changes of the context is modeled; rela-
tionships between the sensor and the s-context are not defined in the sensor
aspect, nor in the s-context aspect.

For the number 2 in the policy

e We define relationships among aspects as aspect-relation-rules. For example, a
relationship between a s-context aspect and a process aspect (aspect of internal
processing), such as “when the context changes from A to B, it triggers a
operation of the process”, is defined as an aspect-relation-rule.

It is possible to separate sensor/actuator, context and internal processing utilizing
conventional modeling techniques. For example, we could adopt the layered architecture
and define sensor/actuator layers as the bottom layer, a context layer as the middle
layer and a process layer as the top layer. In this case, the context layer depends on
the sensor/actuator layers, and the process layer depends on the context layer, i.e. direct
dependencies are defined among layers. Figure 4.1 shows it intuitively. On the contrary, in
our modeling mechanism, each aspect is defined completely separately without depending
on other aspects. This makes each module highly reusable and composable. In Figure
4.2, a model using our modeling mechanism is intuitively shown.

Furthermore, sometimes it is difficult to define a simple interface of each layer. For
example, consider the situation in which two contexts “vehicle speed” context and “safety”
context use the same sensor “velocity sensor.” As each context has its own concern, the
way in which the sensor is used may be different. In this case, the “vehicle speed” context
requires the interface of the sensor to give the vehicle speed. On the other hand, the
“safety” context requires the sensor to give the information whether the vehicle is stopped
or moving. It may be possible to make the sensor to have these two interfaces, but it
makes the role of the sensor ambiguous. On the other hand, in our modeling mechanism,
relationships among aspects are not included in aspects, and each aspect can be defined
more clearly and concisely.

4.2 Target phase

The introduced modeling mechanism is intended to be used for architecture design of
embedded software. It is used as the basis of module construction technique. The mech-

13

process

.
.
Vs

AN
S-context a-context
Vi Vi
sensor actuator

Figure 4.1: Model by the layered architecture

7| process

rule

A s-context

a-context [

rule

rule |

rule

SEnsor

actuator g

Figure 4.2: Model by the proposed mechanism

14

anism comes from the awareness of the issue that we need to increase the reusability and
modifiability of embedded software design, with the increase of its complexity. To meet
such quality attribute requirements, we have to consider them already at the architecture
design phase, not to leave them until the detailed design phase. Therefore, our main
target phase of the mechanism is the architecture design phase.

A typical development flow is, we make architectural design based on our modeling
mechanism, and then implement the system based on the design. As there are gaps
between the execution semantics of our modeling mechanism and that of actual software
platforms, we need to examine implementation strategy.

There can be several approaches to implement software from the model.

e Approaches independent of implementation languages:

Model Driven Development (MDD) approach An approach that places mod-
els as the center of the development [10][23][38] and in most cases implemen-
tation code is generated by tools internally.

Explicitly weaving approach A weaved (composed) model is generated by the
developers or tools. Weaving (composition) of aspects is done by extracting
event introduction and guard condition reference described in rules on state
diagrams in all aspects.

Because the modeling mechanism is based on state transitions, code can be gener-
ated (by the developers or tools) in both approaches, using already known technolo-
gies of code generation (translation) from state transition models [39].

e Approaches dependent on aspect-oriented programming (AOP) languages: we could
utilize AOP languages. For example, if we implement software with AspectJ, we
describe aspect-relation-rules as “aspects” of AspectJ; with Hyper/J, we implement
each aspect of the mechanism as a “hyperslice” and define a composition of Hyper/J
based on aspect-relation-rules. However, we have to consider deeply whether AOP
languages are appropriate to implement embedded software or not.

We believe, in the future, the MDD approach can be useful and promising.

Generally speaking, most MDD approaches [10][23][38] have merits on embedded soft-
ware development, and the same merits seems to be valid using the proposed modeling
mechanism.

And using the MDD approach, we can make use of the important characteristic of the
modeling mechanism; the mechanism makes every aspect independent from each other. In
the MDD approach, the model is the front end to software developers, and generated code
is basically handled by tools internally, and the developers need not to mind it. Hence,
the developers can fully enjoy the merits of our modeling mechanism. This scheme is
similar to the programming language world, in which programmers look at source code
and do not need to care about the machine language.

On the other hand, with the explicitly weaving approach, software developers have to
look at weaved (configured) model and implement the system. In the weaved model, each
part binds to each other and modularization of each aspect is collapsed. Based on the
above reason, we believe the MDD approach is most promising.

15

Chapter 5

Case Study of Embedded Software

In this chapter, we explain the proposed approach using an example of embedded software.
This example is based on an actual embedded software application provided by a company;
however, in this thesis, it is simplified for explanation purposes.

5.1 System description

As the example, we use an embedded software application for vehicle illumination that
controls the interior lights of an automobile based on the statuses of the front doors (the
driver door and the front passenger door) and the power switch. The basic functionality
of the system is illumination control—it turns on the interior light when a door is opened
and turns it off when all doors are closed. Another functionality of the system is the
“battery saver” that prevents the car battery from discharging; more specifically, when
the power switch is turned off and a door is opened, the interior light is turned on at once
but it is turned off after a certain period of time.

5.2 Modeling strategy

Before describing the example in detail, we explain the modeling objective and the mod-
eling strategy. We also briefly outline the application of our aspect-oriented modeling
mechanism for designing the example system.

Objective

The objective is to make the architecture of the system modifiable.

There are multiple types of door sensors (sensors for the doors), power sensor (sensor
for the power switch) and light actuator (actuator for the interior light), and which of
them are actually used may be changed. The system should be modifiable against these
possible changes.

Strategy

In order to make the system modifiable, we apply our aspect-oriented context modeling
for its modeling; “contexts” are recognized and separated from sensors and actuators,

16

and they are placed between the sensors/actuators and internal processing to loosen the
coupling among them.

This system reacts the changes of the door status and the battery status, and tries to
changes the status of the light. These statuses are modeled as the contexts; door context
(statuses of the doors), battery context (status of the battery), and light context (status
of the interior light).

Modeling overview

Based on the strategy described above, we model the system utilizing our aspect-oriented
modeling mechanism. We define each sensor, context and processing as aspect, and relate
them by aspect-relation rules.

For example, we define door sensors, door context and lighting control as aspects, and
relate them in terms of aspect-relation rules.

Likewise, we define power sensor, light actuator, battery context, light context, and
battery saver as aspects, and relate them in terms of aspect-relation rules.

5.3 Aspect-oriented modeling

In this section, we will explain the detail of the design that follows the modeling strategy
mentioned above.
We explain the application of our modeling mechanism in the following order.

1. identify aspects
2. identify relationships among aspects
3. design aspects

4. define aspect-relation rules

1. identify aspects
sensor aspects

The system has five types of sensors related to the control of interior lights—power sen-
sor, driver-door sensor, front-passenger-door sensor, driver-door-lock sensor, and front-
passenger-door-lock sensor. Each of these sensors detects the statuses of their corre-
sponding entities (e.g., the driver door sensor detects the open/closed status of the driver
door). These sensors are modeled as two sensor aspects—“POWER” and “DOOR.” The
POWER aspect includes the “Power” class, and the DOOR aspect includes the follow-
ing classes: “DriverDoor,” “PassengerDoor,” “DDLock” (driver-door-lock sensor), and
“PDLock” (passenger-door-lock sensor). The Power class senses the power on/off sta-
tus. In this example, not all the doors but only the driver door and front-passenger door
influence the behavior of the system. Therefore, the DOOR aspect includes only these
classes.

17

s-context aspects

Two contexts identified by sensors—s-contexts—are required to control the interior lights;
the statuses of the doors and the battery. Because the interior light is turned on and off
according to the status of the doors (whether all the doors are closed or not), the context of
the door status must be captured. In addition, this system has a battery saver function for
which the status of the battery (whether or not the battery is charged) must be captured
in addition to the door status. These contexts are modeled as two s-context aspects—
“DOOR-ST” and “BTRY-ST,” which include the “DoorSt” and “BtrySt” classes, respec-
tively.

process aspects

The internal processes of this system comprise illumination control and battery-saver
functionalities. The illumination-control functionality is essentially employed to switch
the interior lights on and off. The battery-saver functionality is employed to prevent
the battery from discharging—it restricts the lights from remaining on continuously and
prevents lights from being turned on if necessary. These internal processes are modeled
as two process aspects— “LCONTROL” and “BTRYSVR,” which include the “LControl”
and “BSaver” classes, respectively.

a-context aspects

The light has one context that should be controlled by the system; that is whether the
light is on or off. This is modeled as a-context aspect “ON-OFF,” which includes the
“OnOft” class.

actuator aspects

The interior light is modeled as an actuator aspect, which is a hardware wrapper for
physical light. This actuator is modeled as the “LIGHT” actuator aspect, which includes
the “Light” class.

2. identify relationships among aspects

Based on the aspects identified in the previous step, we analyze the system to identify
the relationships among aspects. We examine how these aspects are configured to the
system, and determine basic configuration for it.

The followings are relations for this illumination system. Relations are numbered for
readability reason.

e RS1: between a-context aspect “ON-OFF” and actuator aspect “LIGHT.” If the
state of “ON-OFF” aspect changes, it may cause changes the state of “LIGHT,” i.e.
actually turn on/off the light.

e RS2: between process aspect “BTRYSVR” and a-context aspect “ON-OFF.” If the
state of “BTRYSVR” aspect changes, it may cause changes the state of “ON-OFF,”
i.e. the battery saver may turn off the light. Also, the change of the state of “ON-
OFF” aspect may be affected by the state of “BTRYSVR” aspect, i.e. if the battery
saver restricts lighting, the light status should not be “on.”

18

e RS3: between process aspect “LCONTROL” and a-context aspect “ON-OFF”. If
the state of “LCONTROL” aspect changes, it may cause changes the state of “ON-
OFF,” i.e. the light control controls the on/off-status of the light.

e RS4: between s-context aspect “BTRY-ST” and process aspect “BTRYSVR.” If the
state of “BTRY-ST” aspect changes, it may cause changes the state of “BTRYSVR,”
i.e. charging status of battery affects the behavior of the battery saver. Also, the
change of the “BTRYSVR” aspect may be affected by the state of “BTRY-ST”
aspect, i.e. the battery saver refers the charging status of battery.

e RS5: between s-context aspect “DOOR-ST” and process aspect “BTRYSVR.” If
the state of “DOOR-ST” aspect changes, it may cause changes of the state of
“BTRYSVR,” i.e. if the door opens, the battery saver starts working.

e RS6: between s-context aspect “DOOR-ST” and process aspect “LCONTROL”. If
the state of “DOOR-ST” aspect changes, it may cause changes the state of “LCON-
TROL,” i.e. the light control controls the light status depending on the door status.

e RST: between sensor aspect “POWER” and s-context aspect “BTRY-ST.” If the
state of “POWER” aspect changes, it may cause changes the state of “BTRY-ST,”
i.e. sensor value changes may cause context changes.

e RS8: between sensor aspect “DOOR” and s-context aspect “DOOR-ST.” If the
state of “DOOR” aspect changes, it may cause changes the state of “DOOR-ST),”
i.e. sensor value changes may cause context changes. Also, the change of the state
of “DOOR-ST” aspect may be affected by the state of “DOOR” aspect, i.e. value
of door sensors are referred in deciding whether all doors close or not.

Figure 5.1 shows the overview of aspects and relationship among them in the form of
the aspect-relation overview diagram introduced in 3.3.2.

3. design aspects

Next, we design each aspect separately. Figure 5.2 to Figure 5.7 show the results of the
design. Figure 5.2 shows the DOOR aspect. The description of this aspect includes a
class diagram that shows the four sensors and the relationships among them and state
diagrams that depict the behavior of each class.

Figure 5.3 shows the POWER aspect.

Figure 5.4 shows the DOOR-ST and BTRY-ST aspects.

Figure 5.5 shows the LCONTROL and BTRYSVR aspects. The LControl class con-
trols illumination—it switches the light on and off when its states are On and Off, respec-
tively. It changes its state based on the on and off events. The BSaver class prevents the
battery from discharging—it switches the light off after a certain period of time and pre-
vents it from being turned on again. This class has three states—“Idle” (not activated),
“Limiting” (activated and counting down), and “Forbidding” (lights off and prevents the
light from being turned on). When the “save” event is introduced, the BSaver class is
activated; then, after a certain period of time, the BSaver class enters the Forbidding
state. Finally, upon the introduction of the “release” event, it resets itself.

Figure 5.6 shows the ON-OFF aspect.

19

LIGHT

<<aspect>> <<actuator>>

RS

ON-OFF

<<aspect>> <<a-context>>

RS2

<<aspect>> <<process>>
BTRYSVR

RS4 RS5

<<aspect>> <<s-context>>
BTRY-ST

RS7

<<aspect>> <<sensor>>
POWER

RS3

<<aspect>> <<process>>
LCONTROL

RS6

<<aspect>> <<s-context>>
DOOR-ST

RS8

<<aspect>> <<sensor>>
DOOR

Figure 5.1: Aspect-relation overview diagram for the example

20

<<aspect>> <<sensor>> DOOR

DriverDoor DDLock

PassengerDoor PDLock

Class diagram

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: t1:open [DDLock @ Unlocked] t1:unlock

1

! v v
1

1 . . .

! State diagram for DriverDoor State diagram for DDLock
I

1

: t1:open [PDLock @Unlocked] t1:unlock

1

! % \%
\ State diagram for PassengerDoor State diagram for PDLock
1

Figure 5.2: Sensor aspect—DOOR

<<aspect>> <<sensor>> POWER

Power

Class diagram

tl:on

v

o J&og

State diagram for Power

Figure 5.3: Sensor aspect—POWER

21

<<aspect>> <<context>> BTRY-ST

DoorSt BtrySt

t1:stop
\4
Charging NotCharging

t2:charge

t1:open
8 i V
Closed Open
- ¢ -

2:close

| : |
1 | I
l ! l
| : |
1 | I
l ! :
| : |
l ! :
|
: Class diagram ! Class diagram :
| ! I
: ! :
1 | I
l ! l
| : |
1 | I
| i |
| : |

State diagram for DoorSt

Figure 5.4: S-context aspects—DOOR-ST and BTRY-ST

<<aspect>> <<process>>
LCONTROL

<<aspect>> <<process>> BTRYSVR

BSaver

LControl

Class diagram

tl:on

.\ Idle t3:release Limiting

N4

t2:0 .
t4:release Forbidding

State diagram for LControl
! & State diagram for BSaver !

t2:timeout

1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
| :
1
| :
!)
i Class diagram ! tl:save
1
1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
| :
1
| i
1 1

Figure 5.5: Process aspects—LCONTROL and BTRYSVR

22

<<aspect>> <<a-context>>

I I
I I
I
| ON-OFF i
: I
I I
: OnOff :
| |
: I
| Class diagram :
: I
\ tl:on :
I YV :
I
| of Jeg o]|
| State diagram for OnOff i
I
| |

<<aspect>> <<actuator>> LIGHT

Light

Class diagram

tl:on

N4

o Jeor

State diagram for Light

Figure 5.7: Actuator aspect—LIGHT

Figure 5.7 shows the LIGHT aspect. The Light class is a hardware wrapper for physical
light. It has On/Off states that correspond to the actual light status.

4. define aspect-relation rules

To compose these aspects into the entire system, we define the details of aspect-relations
in terms of the aspect-relation-rules introduced in Chapter 3. Figure 5.8 shows the aspect-
relation-rules for this system.

The name of each rule is the same as that are used in the aspect-relation overview
diagram (Figure 5.1).

These rules realize the behavior of the entire system. For example, when the open event
occurs under the condition that DDLock is unlocked and transition t1 fires at DriverDoor
in DOOR, the open event is introduced to DoorSt in DOOR-ST (by rule 1 of RS8); this
causes transition t1 at DoorSt in DOOR-ST (this state transition is shown by the state

23

RS1

1. ON-OFF.OnOff:t1 -> on*LIGHT.Light

2. ON-OFF.OnOff:12 -> offALIGHT.Light

RS2

1. BTRYSVR.BSaver:t2 -> off "\ON-OFF.OnOff

2. ON-OFF.OnOff:t1 [BTRYSVR.BSaver@Idie]

RS3

1. LCONTROL.LControl:it1 -> on*ON-OFF.OnOff

2. LCONTROL.LControl:t2 -> off \ON-OFF.OnOff
RS4

1. BTRY-ST.BtrySt:t1 -> save”BTRYSVR.BSaver

2. BTRY-ST.BtrySt:t2 -> release"BTRYSVR.BSaver
3. BTRYSVR.BSaver:t1 [BTRY-ST.BtrySt@NotCharging]
RS5

1. DOOR-ST.DoorSt:t1 -> save”BTRYSVR.BSaver
2. DOOR-ST.DoorSt:t2 -> release”BTRYSVR.BSaver
RS6

1. DOOR-ST.DoorSt:t1 -> on"LCONTROL.LControl
2. DOOR-ST.DoorSt:t2 -> off ALCONTROL.LControl
RS7

1. POWER.Power:t1 -> charge"BTRY-ST.BtrySt

2. POWER.Power:t2 -> stop”"BTRY-ST.BtrySt

RS8

1. DOOR.*Door:t1 -> open*DOOR-ST.DoorSt

2. DOOR.*Door:t2 -> close?"DOOR-ST.DoorSt

3. DOOR-ST.DoorSt:t2 [DOOR.*@Closed]

Figure 5.8: Aspect-relation-rules

24

LControl

Light

— ==
L -

——

OnOff

RS6, 1}

DoorSt

diagram for DoorSt in Figure 5.4). This, in turn, introduces the on event to LControl
(by rule 1 of RS6) and it results in the triggering of state transition t1 of LControl (see
Figure 5.5). This transition at LControl introduces the on event to OnOff (by rule 1 of
RS3); simultaneously, transition t1 at DoorSt introduces the save event to BSaver (by
rule 1 of RS5). If BtrySt is in the NotCharging state, the save event triggers transition
t1 at BSaver (by rule 3 of RS4), thereby changing its state to Limiting (see Figure 5.5).
Thus, OnOff in ON-OFF context keeps in the state of Off, because transition t1 fires only
when BSaver is in the Idle state (by rule 2 of RS2); on the other hand, if BtrySt is in the
Charging state, transition t1 fires, and the on event to Light (by rule 1 of RS1) and Light

‘\t1 ‘open

Closed)<—{ Open

te:close

t1:stop

t2:charge

y

v

\
RS8, 11

DriverDodr|. t1:0pen [DDLock@Unlocked]

-

t2:close

Figure 5.9: Schematic of system behavior

BSaver

BtrySt

is lit. Figure 5.9 shows this sequence schematically as an aide for understanding.

25

Chapter 6

Application to Software Product
Line Architecture Design

6.1 Architecture design of software product line

In PLD, it is important to make architecture and components flexibly configurable. AOT's
are considered to be promising techniques for the development of such reusable core assets
[20][24] [36]. The addition or deletion of a feature may cause crosscutting changes in the
design and implementation of core assets, and AOTs are expected to effectively handle
these crosscutting changes. However, the application of AOTs to PLD is not that simple.

One of the problems in applying AOTs to PLD is the management of crosscutting
relationships [8][19]. In most of the existing AOTSs, a crosscutting concern is modeled
or implemented by a module in which functionalities and crosscutting relationships are
encapsulated together. This strong dependency between the functionalities and crosscut-
ting relationships causes a problem because the same functionalities may have different
crosscutting relationships, depending on conditions.

As we have introduced, one of the major characteristics of our aspect-oriented model-
ing mechanism is that we separate aspect-relation-rules (crosscutting relationships) from
aspects (functionalities). This characteristic facilitates the management of crosscutting
relationships mentioned above, and we can effectively apply AOT to develop architecture
and components highly configurable. In other words, we can effectively manage variabil-
ities in design model utilizing AOT.

In this chapter, we propose a variability management technique in which the aspect-
oriented modeling mechanism proposed in Chapter 3 is used to design the product line

architecture (PLA).

6.2 Separating functionalities and crosscutting rela-
tionships

One of the problems in applying AOTs to PLD is the management of crosscutting rela-
tionships. This problem addresses the situation in which the same concern has different
crosscutting relationships, depending on conditions. For example, it has been pointed out
that the addition or deletion of a feature may cause a change in the parts of assets that
depend on the feature as these parts include dependencies related to the variable feature

26

[19]. In the example of an elevator in [19], the cancellation feature is realized as an aspect
whose pointcut designates every call services. However, if an emergency call feature is
added, the pointcut must be changed so as to avoid cancelling the emergency call.

In most AOTSs, a crosscutting concern is modeled or implemented by a module in
which the functionalities (that are necessary to model/implement the concern) and the
crosscutting relationships are encapsulated together. In AspectJ, for example, advices
(that realize the functionalities) and pointcuts (that describe the relationships with others)
are encapsulated in an aspect. In this type of AOTs, the abovementioned problem easily
arises. Several implementation techniques (applicable at the programming level) have
been proposed in order to prevent this problem. However, solutions implemented at the
programming level are not sufficient. From the viewpoint of variability management, it
is important to examine the crosscutting relationships among the functionalities and to
design a PLA that presents a strategy on how functionalities and crosscutting relationships
are realized.

The aspect-oriented modeling mechanism proposed in Chapter 3 encapsulates cross-
cutting concerns by using a mechanism similar to a “hyperslice” of Hyper/J [3]. This
modeling mechanism enables us to separate functionalities and crosscutting relationships.
We propose a variability management technique in which our modeling mechanism is used
to design the PLA. In the following sections, we explain our approach.

6.3 Application of our mechanism to PLD

In this section, we briefly outline the application of our modeling mechanism to PLD.

In the PLA, generally, a feature corresponds to some modules, which realize the nec-
essary functionalities for the feature.

In our modeling mechanism, the functionalities and crosscutting relationships among
them are defined separately: aspects realize functionalities and aspect-relation-rules define
the relationships among the aspects. We use these aspects and their relationships as the
building blocks of the PLA. Therefore, in our PLA, a feature corresponds to some aspects
and their relationships with other aspects.

In order to relate two aspects, an aspect-relation, that is defined by (in general) mul-
tiple aspect-relation-rules, is required. These multiple aspect-relation-rules are managed
as a unit of rule set.

A feature can be optional or alternative; accordingly, optional or alternative aspects
and rule sets are defined in the PLA. In the next section, we will explain how to describe
these variants.

6.4 Product line architecture diagram

To depict the PLA, we introduce a PLA diagram. In our PLA diagrams, variants appear
as variant aspects and variant rule sets. We explain the basic notation of the PLA diagram
in 6.4.1, variant aspects in 6.4.2, and variant rule sets in 6.4.3.

27

<<aspect>>

A
<<aspect>> <<aspect>>
B C

Figure 6.1: Example of PLA diagram

6.4.1 Basic notation

In the PLA diagrams, an aspect is represented as a box with the stereotype “<<aspect>>.”
A rule set is represented as a line between the aspects. Each rule set has an identifier that
can be indicated near the rule set line. Figure 6.1 shows an example of a PLA diagram.

6.4.2 Variant aspect

There are optional aspects and alternative aspects.

Optional aspect: An optional aspect may or may not be used for the selected product
architecture. The stereotype <<optional>> is added for the optional aspect in a
PLA diagram.

Alternative aspect: Among a group of alternative aspects, only one aspect must be
chosen for the selected product architecture. The aspects that are grouped are
shown by constraint notation. If two aspects are present in the group, both the
aspects are connected by a dashed line with arrowheads at both the ends, and the
text string “alternative” is placed near the line. Further, if three or more aspects
are present in the group, a note containing the string “alternative” is attached to
each aspect of the group with a dashed line.

Figure 6.2 (a) and (b) show the example of optional and alternative aspects, respec-
tively.

6.4.3 Variant rule set

There are optional rule sets and alternative rule sets.

Optional rule set: An optional rule set may or may not be used for the selected product
architecture. The stereotype <<optional>> is added for the optional rule set in
a PLA diagram. A rule set related to an optional aspect is optional. Therefore,
the stereotype <<optional>> can be omitted in this case. There can be optional
rule sets among the mandatory (neither optional nor alternative) aspects; in this
case, the stereotype <<optional>> cannot be omitted. Figure 6.3 (a) shows the
examples of optional rule sets.

28

<<optional>>
<<aspect>>
A

(a) optional aspect

<<aspect>> [{alternative}|<<aspect>>

Al <o >1A2
<<aspect>> <<aspect>> <<aspect>>
Al A2 A3

~o 1 -
~ \ Pid
~ -

“1 ({alternative} [~

(b) alternative aspect

Figure 6.2: Optional and alternative aspects

Alternative rule set: Among a group of alternative rule sets, only one rule set must
be chosen for the selected product architecture. The rule sets that are grouped are
shown by the constraint notation. If two rule sets are present in the group, both the
rule sets are connected by a dashed line with arrowheads at both the ends, and the
text string “alternative” is placed near the line. Further, if three or more rule sets
are in the group, a note containing the string “alternative” is attached to each rule
set of the group with a dashed line. Figure 6.3 (b) shows the examples of alternative
rule sets. A rule set related to an alternative aspect is alternative. There can be
alternative rule sets among non-alternative aspects.

Each aspect design (class diagram and state diagrams) and the details of each rule in
the rule sets are described apart from the PLA diagram.

6.4.4 Example of PLA diagram

Figure 6.4 shows a part of an example of a PLA diagram and a rule set description. The
aspect SAFECTRL and SRVC are the same as those in Figure 3.4. These aspects are
mandatory used for all products in the PL, but how to relate these aspects can be different
by the chosen product, because there are two alternative rule sets RS1 and RS2 between
them. The aspect-relation-rules in the rule set RS1 are as the same as those shown in
Figure 3.4. By RS2, an “off” event is introduced from SAFECTRL to SRVC at a different
timing, and the service can be started only when the class SCtrl of aspect SAFECTRL
is in the “idle” state. This behavior is safer than that realized by RS1.

29

<<optional>> <<optional>> <<aspect>>
<<aspect>> <<aspect>> A
A A
RS2 .
RS1 < <optional>> RS1 S <<optional>>
<<aspect>> <<aspect>> <<aspect>>
B B B

H_J

* The meanings of these two PLA diagram are

the same.

(a) optional rule set

{alternative}

-7 N
’

<<aspect>> |{alternative} [<<aspect>> | |<<aspect>> ||<<aspect>> ||<<aspect>>
Al Al A2 A3
RS] RS2 . RS3
RSING-EMAEL “Re U] = .
%1 [{alternative}
<<aspect>> <<aspect>>
B B

(b) alternative rule set

Figure 6.3: Optional and alternative rule sets

30

<<aspect>>

SAFECTRL
RS1 {alternative} RS2
<<aspect>> <<optional>>
SRVC <<aspect>>
EMRGNC-SV
(A part of) PLA diagram
RS1
.1.2.82

1. SAFECTRL.SCtrl:tl -> offASRVC.Srvc
2. SRVC.Srvc:tl [SAFECTRL.SCtrl @idle]

Rule set description

Figure 6.4: Example of PLA design

There is an optional aspect EMRGNC-SV in the PLA diagram. In some products,
this aspect is chosen and provides an emergency-related service. Further, this aspect has
no relationships with the aspect SAFECTRL; therefore, this service is not interrupted by
SAFECTRL.

6.5 Case study: vehicle illumination product line

In this section, we explain the proposed approach using an example of embedded software
product line (PL). The example we use is an embedded software PL for vehicle illumination
that controls the interior lights of an automobile based on the statuses of the doors. Some
products in this PL. may have the “battery saver” function that prevents the car battery
from discharging. And some products may have the “fade control” function; the light is
faded in and out gradually, instead of turned on and off immediately. Also, there is a
sensor variation in this PL; different sensors may be used to realize same functionality.
The software introduced in Chapter 5 is the software of one product included in this
PL. This example is based on an actual embedded software PL provided by a company;
however, in this thesis, it is simplified for explanation purposes.

Before describing the example in detail, we explain the modeling objective and mod-
eling strategy. We also briefly outline the modeling of this PL.

e Objective: The objective is to define PLA so as to make components highly con-
figurable, i.e. to realize effective product derivation.

31

There are sensor variations in this PL. The possible changes caused by these varia-
tions should be localized. Furthermore, functionalities are different in each product.
Sensors/actuators and functionalities cross cut each other; a function may use multi-
ple sensors, and a sensor/actuator may be used by multiple functions. For example,
the battery saver uses door sensors and a power sensor. and the door sensors are
used by the basic lighting control functionality and the battery saver. PLA should
manage these relationships in order to attain flexible configurability.

Strategy: We apply our aspect-oriented modeling mechanism to manage the cross-
cutting relationships. Furthermore, we analyze commonalities and variabilities of
products in this PL, and systematically manage components (aspects and rule sets)
utilizing the PLA diagram.

Products in this PL react the changes of the door status and the battery status,
and tries to changes the status of the light. These statuses are modeled as the con-
texts; door context (statuses of the doors), battery context (status of the battery),
and light context (status of the interior light). Following the aspect-oriented con-
text modeling, we can model each product in terms of aspects (sensors, actuators,
contexts, and processes) and relationships among them.

Though some aspects are shared by every products in the PL, some aspects are
only used by certain products; these variable aspects are expected flexibly added or
removed. In most existing AOTs, crosscutting relationships are not separated from
functionalities, and this lowers configurability. Utilizing our aspect-oriented mod-
eling mechanism, aspects do not depend on other aspects and aspect-relation-rules
encapsulate crosscutting relationship, i.e. we can effectively manage crosscutting re-
lationship. We configure various products in this PL utilizing aspect-relation-rules
and identify rule sets that are used as units when we configure each product.

For example, some products have the battery saver, but others do not. We define
a battery saver aspect, and also identify rule sets each of which relates the battery
saver aspect with other aspects (aspects for the battery context, the door context,
and the light context, respectively). If we need the battery saver, we add the battery
saver aspect with these rule sets. If we do not need it, we just remove the battery
saver aspect and these rule sets. Note that we do not have to modify any aspects
and rule sets depending on system configurations. We use the PLA diagram to
depict PLA in which mandatory, optional and alternative components (aspects and
rule sets) are defined.

Likewise, we can manage other variabilities such as various sensor types.

Modeling overview: Based on the strategy described above, we model PLA for
the PL. By analyzing products in PL, we identify necessary sensors, contexts and
processing. Then we define each of them as aspect, and also define aspect-relation-
rules.

In this PL, there are two types of door sensors; we define each of them as aspect,
and define aspect-relation-rules between the door context aspect and the door sensor
aspects.

This PL has two ways of lighting; simple on/off and fade-in/fade-out. We prepare
two contexts, one for on/off and one for fade-in/fade-out, and define aspect-relation-

32

rules that relate these aspects with other aspects (the light actuator, a battery saver
process, and a lighting control process).

Also, we define a battery saver aspect for the battery saver process, and define
aspect-relation-rules that relate the battery saver aspect with other aspects (the
battery context, the door context, the on-off context and the fade-in/fade-out con-
text).

These aspects and aspect-relation-rules are used to configure each product in PL. We
analyze commonalities and variabilities and how these aspects and aspect-relation-
rules are used to configure each product. We group aspect-relation-rules that are
used together when we configure products in terms of rule set. Some aspects and
rule sets are mandatory, i.e. they are used by every products. Other aspects and
rule sets are optional or alternatively used. Based on this examination we define
PLA and depict it in terms of the PLA diagram.

The detail of the design is explained in the following order:
1. identify features
2. identify aspects and design each aspect

3. design PLA

1. identify features

At first, we analyze what features the PL has and describe them in a feature model.

The basic and common functionality of the system is illumination control—it turns
on the interior light when a door is opened and turns it off when all doors are closed.

An optional feature of the PL is the “battery saver” that prevents the car battery from
discharging; more specifically, when the power switch is turned off and a door is opened,
the interior light is turned on at once but it is turned off after a certain period of time.

In some products for luxurious cars, a “fade control” feature is necessary. This feature
fades the light in and out gradually, instead of turning it on and off immediately.

There are variations in door sensors. In some products, each door has its own door
sensor and each door sensor does not know the status of other doors; other products use
a different type of a door sensor that directly senses the situation wherein all doors are
closed.

The software introduced in Chapter 5, one of the software of one product included in
this PL, has the battery saver feature, but does not have the fade control feature; the
statuses of each door is sensed by its own door sensor and the sensor that directly senses
the situation wherein all doors are closed is not equipped.

We describe these features in the form of feature model [14]. A feature model of this
PL is shown in Figure 6.5.

2. identify aspects and design each aspect

Based on the analysis of the features, we identify aspects of this PL design.
For this identification, we adopt the aspect-oriented context modeling introduced in
2.3 as the basis of categorizing aspects. In the aspect-oriented context modeling, aspects

33

[llumination system

[llumination light control

N\

Battery saver Light control

Sensor Actuator
Power Door Lock Light

TN

All-door Each-door All-lock Each-lock Fade control

Figure 6.5: Feature model of vehicle illumination PL

are categorized as sensors, contexts (s-contexts and a-contexts), processes, or actuators.
This categorization is shown by the stereotypes attached to aspects; <<sensors>>, <<s-
context>> <<process>>, <<a-context>>, and <<actuator>>.

The followings are identified aspects and the design of each aspect.

Actuator aspect: In this PL, the interior light is modeled as an actuator aspect, which
is a hardware wrapper for physical light. This actuator is modeled as the “LIGHT”
actuator aspect, which includes the “Light” class. Figure 6.6 shows the design of
“LIGHT” actuator aspect.

A-context aspect: The light has two contexts that should be controlled by the systems
of the PL; one context is whether the light is on or off, and the other context is
whether the light is fading in or fading out. These are modeled as a-context aspects
“ON-OFF” and “FADE-IN-OUT,” which include the “OnOff” and “Fade” classes,
respectively. Figure 6.7 shows the design of these aspects.

Process aspect: As process aspects, “LCONTROL” and “BTRYSVR” are designed.
The LCONTROL aspect provides the common functionality of illumination control,
that is, it turns the interior light on and off. This aspect has the class “LControl.”
Some products in the PL provides a battery saver function. In order to realize this
functionality, the aspect BTRYSVR is designed. This aspect has the class “BSaver.”
Figure 6.8 shows the design of these process aspects.

S-context aspect: In this PL, because the interior light is turned on and off according

to the status of the doors (whether all the doors are closed or not), the door status

34

<<aspect>> <<actuator>> LIGHT

Light

Class diagram

t2:on

Off

tS5:off

t8:complet t7:g /
FadingOut

[FadingIn] \t4:complete i
/ t3:out i

State diagram for Light

Figure 6.6: Actuator aspect—LIGHT

__

<<aspect>> <<a-context>>
ON-OFF

<<aspect>> <<a-context>>
FADE-IN-OUT

OnOff

Class diagram

Fade

Class diagram

tl:on
\2
ot Jemo
State diagram for OnOff

tl:in

N2

Ou

State diagram for Fade

Figure 6.7: A-context aspect—ON-OFF and FADE-IN-OUT

35

<<aspect>> <<process>> BTRYSVR <<aspect>> <<process>>

LCONTROL

BSaver

LControl

Class diagram

tl:save
0\ v
Idle t:release Limiting
- 1 t2:timeout
t4:release Forbiding

State diagram for BSaver

tl:on

N

State diagram for LControl

1! 1
1! 1
1! 1
11 1
1! 1
1! 1
1 ! 1
1! 1
1! 1
1! 1
1! 1
o Class diagram |
1! 1
1! 1
11 1
1! 1
1! 1
1 ! 1
1! 1
1! 1
11 1
1! 1
1! 1
1 ! 1

Figure 6.8: Process aspect—LCONTROL and BTRYSVR

must be captured. In addition, some products have a battery saver function for
which the status of the battery (whether or not the battery is charged) must be
captured in addition to the door status. These are the contexts recognized through
the sensors; therefore, they are modeled as the s-context aspects; “DOOR-ST” (the
status of the doors) and “BTRY-ST” (the status of the battery), which include the
“DoorSt” and “BtrySt” classes, respectively. Figure 6.9 shows the design of these
aspects.

Sensor aspect: There are three types of sensors: power sensors, door sensors, and lock
sensors. Each of these sensors detects the status of its corresponding entity. In
this PL, there is one type of a power sensor. This is modeled as a sensor aspect
“POWER,” which includes the “Power” class. The door sensor has variations in
this PL: a dedicated sensor for each door, and a sensor that directly senses the
situation wherein all doors are closed. They are separated as the different aspects
“DOOR” and “ALL-DOOR.” The lock status is not directly used, but it influences
the behavior of the door sensors. Therefore, in this PL, we include lock sensors in the
aspects of doors. As a result, the sensor aspect DOOR includes the following classes:
“DriverDoor” (driver door sensor), “DLock” (driver-door-lock sensor), “Passenger-
Door” (passenger door sensor), and “PDLock” (passenger-door-lock sensor). The
sensor aspect ALL-DOOR includes the classes of “AllDoor” and “AllLock.” Figure
6.10 shows the design of the sensor aspects.

It is important that all these aspects are designed to be independent and self-contained.
For example, because the aspect LCONTROL provides the function that turns the illu-
mination lights on and off according to the on/off status of the doors, it has a potential
relationship with the DOOR-ST aspect. However, this relationship is included in neither
LCONTROL nor DOOR-ST. Further, nothing dependent on DOOR-ST is included in the
design of LCONTROL.

36

<<aspect>> <<s-context>>
BTRY-ST

<<aspect>> <<s-context>>
DOOR-ST

BtrySt DoorSt

t1:stop
\4
Charging NotCharging

t2:charge

tl:open
.i Vv
Closed HO en
- t

2:close

i Class diagram | E Class diagram

State diagram for BtrySt

Figure 6.9: S-context aspect—BTRY-ST and DOOR-ST

3. design PLA

Using the identified aspects, we design the PLA.

Figure 6.11 shows the PLA of this vehicle illumination PL. Rule sets are required for
relating the aspects. Figure 6.12 shows the required rule sets. RS1, RS2, ..., RS12 are
the identifiers of the rule sets and correspond to those in Figure 6.11. From RS1 to RS12
in Figure 6.11 are rule sets. Though they are numbered sequentially, the order is not
essential. Some rules are as same as those are defined in Chapter 5, and we put the same
number for these rules for readability reason.

Sensor variation: Because the all-door sensor (the sensor that directly senses the situ-
ation wherein all doors are closed) and the each-door sensor (the sensor that senses
the corresponding door) are alternatively used, as the feature model (Figure 6.5)
shows, the ALL-DOOR and the DOOR aspects are alternative. Further, the rule
set RS12 that relates the aspects ALL-DOOR and DOOR-ST and the rule set RSS8
that relates aspects DOOR and DOOR-ST are alternative.

Battery saver: The battery saver is the optional feature; hence, the aspect BTRYSVR
is optional. The rule sets related to it (RS2, RS4, RS5, and RS10) are also optional.

Fade control: In the feature model, the fade control feature is described as optional.
In the PLA, corresponding to this feature, the FADE-IN-OUT aspect is designed
to be alternative to the ON-OFF aspect because we found that the light fades in
(out) or turns on (off) in a specific product. Therefore, the rule sets related to the
FADE-IN-OUT aspect are also alternative to the rule sets related to the ON-OFF
aspect.

Table 6.1 shows the correspondence between the variant features and the PLA of this
PL.

Based on the PLA, various product design can be derived. For example, the architec-
ture of the product intended for most luxurious vehicles includes the aspects FADE-IN-

37

<<aspect>> <<sensor>>
POWER

Power

tl:on

.\ V
Off t2:0ff -

State diagram for Power

1
1
1
1
1
:
1
1
1
Class diagram !
:
1
:
1
1
1
1

<<aspect>> <<sensor>> DOOR

<<aspect>> <<sensor>>
ALL-DOOR

AllDoor AllLock

Class diagram

t1:open [AllLock @Unlocked]

State diagram for AllDoor

t1:unlock

\
> Tock Unlocked

State diagram for AllLock

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\V 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

DriverDoor DDLock
PassengerDoor PDLock
Class diagram
t1:open [DDLock @ Unlocked] t1:unlock

v

.

t2:close Open

N
Locked > Tock Unlocked

State diagram for DriverDoor

State diagram for DDLock

t1:open [PDLock @Unlocked]
\V

t2:close Open

t1:unlock

\
Locked > Tock Unlocked

State diagram for PassengerDoor

State diagram for PDLock

Figure 6.10: Sensor aspect—POWER, ALL-DOOR, and DOOR

38

RS1

<<aspect>>
<<actuator>>
LIGHT

{alternative}

RS9

<<aspect>> _ <<aspect>>
<<a-context>> | __{alternativel, | <<a-context>>
ON-OFF FADE-IN-OUT

RS2 !g_lt_e_rqa_l ive} alternativglf RS11

RS10 RS3

<<optional>> <<aspect>>
<<aspect>> <<process>>
<<process>> LCONTROL
BTRYSVR

RS4 RS5 RS6
<<optional>> <<aspect>>
<<aspect>> <<s-context>>
<<s-context>> DOOR-ST
BTRY-ST

RS7 RS12_~alternative}
<<optional>> <<aspect>> _ <<aspect>>
<<aspect>> <<sensor>> |{alternative} | sensor>>
<<sensor>> ALL-DOOR DOOR
POWER

Figure 6.11: PLA diagram of vehicle illumination PL

39

Table 6.1: Correspondence between variant feature and PLA

’ Feature \ Aspect \ rule set ‘
Battery saver BTRYSVR, RS2, RS4, RS5
BTRY-ST RS7, RS10
Power sensor POWER RS7

All-door sensor ALL-DOOR RS12
All-lock sensor ALL-DOOR RS12

Each-door sensor | DOOR RS8
Each-lock sensor | DOOR RS82
Fade control FADE-IN-OUT | RS9, RS10, RS11

OUT, BTRYSVR, BTRY-ST, POWER, and ALL-DOOR, and the rule sets RS2, RS4,
RS6, RS7, RS8, RS10, and RS11, along with the mandatory aspects and rule sets.

40

RS1

1. ON-OFF.OnOff:t1 -> on*LIGHT.Light

2. ON-OFF.OnOff:t2 -> offALIGHT.Light

RS9

1. FADE-IN-OUT.Fade:t1 -> in"LIGHT .Light

2. FADE-IN-OUT.Fade:t2 -> out"LIGHT.Light

RS2

1. BTRYSVR.BSaver:t2 -> off \ON-OFF.OnOff

2. ON-OFF.OnOff:t1 [BTRYSVR.BSaver@Idie]
RS10

1. BTRYSVR.BSaver:t2 -> out"FADE-IN-OUT.Fade
2. FADE-IN-OUT.Fade:t1 [BTRYSVR.BSaver@ldle]
RS3

1. LCONTROL.LControl:t1 -> on*ON-OFF.OnOff

2. LCONTROL.LControl:t2 -> offA\ON-OFF.OnOff
RS11

1. LCONTROL.LControl:t1 -> in"FADE-IN-OUT.Fade
2. LCONTROL.LControl:t2 -> out*FADE-IN-OUT.Fade
RS4

1. BTRY-ST.BtrySt:t1 -> save"BTRYSVR.BSaver

2. BTRY-ST.BtrySt:t2 -> release"BTRYSVR.BSaver
3. BTRYSVR.BSaver:t1 [BTRY-ST.BtrySt@NotCharging]
RS5

1. DOOR-ST.DoorSt:t1 -> save"BTRYSVR.BSaver
2. DOOR-ST.DoorSt:t2 -> release”BTRYSVR.BSaver
RS6

1. DOOR-ST.DoorSt:t1 -> on*"LCONTROL.LControl
2. DOOR-ST.DoorSt:t2 -> off'ALCONTROL.LControl
RS7

1. POWER.Power:t1 -> charge"BTRY-ST.BtrySt

2. POWER.Power:t2 -> stop”BTRY-ST.BtrySt

RS12

1. ALL-DOOR.AlIDoor:t1 -> open*DOOR-ST.DoorSt
2. ALL-DOOR.AlIDoor:t2 -> close®"DOOR-ST.DoorSt
RS8

1. DOOR.*Door:t1 -> open*DOOR-ST.DoorSt

2. DOOR.*Door:t2 -> close"DOOR-ST.DoorSt

3. DOOR-ST.DoorSt:t2 [DOOR.*Door@Closed]

Figure 6.12: Rule sets for vehicle illumination PL

41

Chapter 7
Related Works

7.1 Aspect-oriented modeling

In some studies, not only those on aspect-oriented programming but also those on aspect-
oriented modeling and design [40] [41], an aspect is considered as a module of an additional
local characteristic or behavior to the “core concerns,” as typified by the notion of an
aspect in AspectJ [1] . This type of aspect may be useful in certain situations, but it may
be difficult to express design level concerns using these aspects.

Our study is influenced by the concept of the hyperslice in Hyper/J and multi-
dimensional separation of concerns [42]. A hyperslice is a set of conventional modules
that contain all, and only, those units that pertain to, or address, a given concern; hy-
perslices can overlap and are composed to form the complete system [42]. The concept
of an aspect in the proposed mechanism is similar to that of a hyperslice. Based on our
experience in embedded system development, this type of modularization is useful in the
design phase, especially in the initial phase of design, e.g., architectural design.

There exist a few aspect-oriented design approaches that focus on not only the static
structure but also the behavioral structure. These researches are categorized into three
groups.

The first group uses sequence diagrams to denote cross-cutting behaviors (which are
similar to those shown by “join points” and “advices”), for example, Theme/UML [6] and
[18]. We prefer state diagrams because they can define the general behavior of classes,
while sequence diagrams essentially depict only examples of a behavior. Moreover, in
actual embedded software development, state diagrams are widely used to design appli-
cations. For this reason, the proposed modeling mechanism is based on state diagrams,
instead of sequence diagrams.

The second group uses Specification and Description Languages (SDL) [13], for exam-
ple, WEAVR [9]. SDL can be seen as a special kind of state diagram, but it is suitable
for the design of more procedural sides and it may depict more precise and finer-grained
behavior. It seems that WEAVR uses SDL because its purpose is automated code gener-
ation. Modeling elements in WEAVR are again similar to the elements in AspectJ.

The last group uses state diagrams, similar to us. The approach introduced in [11],
models core and cross-cutting concerns as orthogonal regions in the state of a state dia-
gram. These cross-cutting regions are integrated by specifying which events in one region
shall be reinterpreted to have significance in another. With regard to the behavior of
classes in each aspect being defined in terms of a state model and the relationships among

42

them being defined as event introductions, the approach in [11] is similar to our proposed
mechanism. However, there is an important dissimilarity between the two. In our ap-
proach, the coupling between aspects is weakened by introducing aspect-relation-rules.
Event introductions realizing aspect collaborations are defined as rules separated from
aspect definitions. On the other hand, in [11], an event introduced to another aspect
(depicted as another region) is directly defined in an aspect as an action of a transition.
This causes a strong coupling between aspects.

There are few researches that focus on aspect-oriented modeling and/or design for
embedded software. Most researches on aspect-orientation in the embedded software
domain are implementation- and programming-centric, for example, how to use aspect-
oriented languages in embedded software [4]. One interesting research is described in [15].
The architectural view concept in this research provides a general guideline of aspect-
oriented system decomposition and refinement. Our proposed aspect-oriented context
modeling, on the other hand, focuses on embedded systems that capture contexts in the
real world and react to them, and it gives more concrete and specific guidelines for those
types of software.

7.2 Application of AOTs to PLD

In software development, we are required to manage various concerns, and separation
of concerns is one of the most important disciplines. AOTs are technologies of advanced
separation of concerns that handle crosscutting concerns, and are expected to be effectively
applicable to PLD.

However, various problems in the application of AOTs to PLD have been reported.
For example, Mezini et al. compared the feature-oriented programming and the aspect-
oriented programming and pointed out the weakness of AspectJ in terms of variability
management [24]. They also showed how Casar, their aspect-oriented programming en-
vironment that has more expressive development mechanisms, addresses this variabil-
ity problem. Lee et al. examined AspectJ in terms of feature oriented analysis, and
claimed the necessity of guidelines and techniques to handle variability and dependency
[19]. Colyer et al. reported their observation through refactoring large scale middleware
using AOT, in which they identified two types of crosscutting concerns, homogeneous and
heterogeneous [8]. Heterogeneous crosscutting concerns are more difficult to handle, as
they cannot be designated in a homogeneous way. All these researches and experiences
indicate the difficulties of the management of crosscutting relationships, and this thesis
addresses such difficulties.

Though most researches in this field are at the programming level, there are approaches
applying aspect-oriented modeling to PLD. Nyssen et al. showed an application of AOT
to PLD, and claimed the importance of architecture as a means to examine how features
and architectural components should relate [36]. We also believe in the importance of
architecture in applying AOTs, though there is a difference between their assumption of
aspect and ours; what they call “aspect” in modeling is similar to the notion of aspect
in AspectJ, and our modeling is based on our mechanism. We believe our mechanism
facilitates designing architecture.

There are researches on aspect-oriented modeling related to model-driven development
(MDD). Liu et al. examined how aspect-oriented modeling benefits the MDD of PLD [20].

43

Voelter et al. discussed the variability management by combining AOT and MDD [43].
We believe that our modeling mechanism could be the basis of MDD, but we need further
examination on this point.

44

Chapter 8

Discussion

8.1 Characteristics of our mechanism

In this section, we discuss the characteristics of the proposed aspect-oriented modeling
mechanism.

An aspect is independent and there is no dominant aspect.
In our modeling mechanism, an aspect has a static structure which includes at
least one class and each class of the static structure has its behavior model. These
classes and their behavior are defined independently on other aspects. That means
an aspect is self-contained. Because each aspect is defined independently, no base
hierarchy (dominant structure) is needed. Each aspect is not dominant to the others.

In some research, on the other hand, an aspect is a module of an additional local
characteristic or behavior to the “core concern” in a dominant base hierarchy, as
typified by the notion of aspect in AspectJ.

The concept of aspect of our mechanism is similar to “hyperslice” of Hyper/J. From
our experience in embedded system development, this kind of modularization is
useful in the design phase, especially in the initial phase of design, e.g., architectural
design.

Relationships among aspects are separated from aspects.
An aspects is related to others at composition to consist an entire system. This
relation is described as aspect-relation-rules, separately from aspects. It makes
aspects highly reusable.

In AspectJ and some modeling approaches conceptually similar to AspectJ, some
concerns are encapsulated in base hierarchy and others are encapsulated in aspects.
In these approaches, relationships among concerns basically become relationships
between base hierarchy and aspects. (To relate aspects themselves is very difficult.)
And these relationships are embedded in aspects. Those embedded relationships
make aspects lose their independence and may hamper their reusability.

Relationships among aspects are defined based on their behavior.
The above mentioned aspect-relation-rules do not describe correspondence between
elements in different aspects (e.g., class C in aspect A and class C’ in aspect A’ are
the same, or method m of aspect A is overwritten by method m’ of aspect A’), but

45

instead describe event introduction to different aspects triggered by transitions at
some aspects, and reference to states of other aspects when transitions are triggered.

The correspondence between elements in different aspects would be relatively com-
plicated; there may be many types of correspondence, and it would be difficult to
model software with these many correspondence.

In our modeling mechanism, there are just two types of aspect-relation-rules, and
this keeps relationships among aspects relatively simple. There would be more types
of rules, but so far, from our design experience of embedded software, we do not
need any other types of rules.

The mechanism is state transition based.
There are some approaches of aspect-oriented design using UML notation. Many
of them use sequence diagrams to denote cross-cutting behaviors (which are like
those shown by “join points” and “advices”), e.g., in Theme/UML [6]. In our
mechanism, we use state diagrams and aspect-relation-rules, instead of sequence
diagrams. We prefer state diagrams, because they can define general behavior of
classes, but sequence diagrams basically show examples of behavior. And in real
embedded software development, state diagrams are widely used to design software.

We introduced the aspect-oriented modeling mechanism to utilize it in embedded
software architecture design. The mechanism could be used for design of other domain’s
software. To confirm it, we need design experience in other domains and might need
extensions to the mechanism. One of these issue will be explained in Appendix C.

As we have shown in this thesis, our modeling mechanism has merits on modeling
of embedded software. However, the mechanism has demerits as well. First, it can be
difficult to understand behavior of the entire software; local behavior (of aspects) could
be more understandable, but the entire behavior cannot be understood easily. This is
claimed not only to our mechanism, but also to any aspect-oriented technology generally.
This claim is reasonable, but to understand the entire software can be difficult, whenever
we design it with any modularization technique. For this problem, appropriate granularity
of modules, aspects in our mechanism, is important. Also, tools that show the developers
the entire behavior of the model may help. We will show a prototype of such tools in
Appendix D. Also, the original motivation of introducing AOT is that modules have
crosscutting relationships. AOT gives us a strategy to relate these modules; without such
a strategy, the model becomes more complex and more difficult to be understood.

Second, aspect-relation-rules may become so many that the entire model of the soft-
ware can be complicated. This can be happened, however, we believe the concept of our
“aspect-relation” and “rule set” can help. Instead of defining each aspect-relation-rule
separately, we define an aspect-relation described by a group of aspect-relation-rules, and
these rules work together for certain purpose (such as realizing certain function) as a rule
set.

Also, we believe it is important to analyze the trade-off between design with our
mechanism and that with conventional technique such as the layering. If we do not need
higher reusability, or each module and its usage is stable, design with our mechanism is
too much; but when the relationships among modules are complicated and tend to be
easily changed, our mechanism works effectively.

46

8.2 Aspect-oriented technology and product-line de-
velopment

We proposed a variability management technique using our aspect-oriented modeling
mechanism as a means of modeling PLA. We discuss why, how and in what situation
our approach improves the reusability and contributes to making core assets flexibly con-
figurable.

Modularization of crosscutting concerns:

In software engineering, the separation of concerns has been one of the important
disciplines, and many techniques have been developed to support it. However, there
are various concerns that are difficult to separate, such as crosscutting concerns,
and approaches to advanced separation of concerns, such as subject-oriented tech-
nologies, AOT, and Hyperspaces, have been proposed. In PLD, we are also required
to manage crosscutting concerns. For example, the addition or deletion of a feature
may cause crosscutting changes in the design and implementation of core assets.
The basic advantage of our approach is that it makes crosscutting concerns to be
neatly modularized by adopting AOT.

Management of crosscutting relationships:
Though there are multiple approaches to apply AOT to PLD, there are some diffi-
culties. One of the serious problems is the management of crosscutting relationships,
which we discussed in this thesis.

This problem occurs from various reasons. One of them is feature interaction [14]; in
this case, crosscutting relationships differ depending on the combination of features.
Other situation is in handling heterogeneous crosscutting concerns [8]. In this case
also, we cannot designate crosscutting relationships in a homogeneous way. One of
our motivations is to solve these problems in the management of crosscutting rela-
tionships. In our approach, we separate functionalities (aspects in our mechanism)
and crosscutting relationships (aspect-relation-rules). This mechanism makes it pos-
sible to flexibly change crosscutting relationships without changing functionalities.
As functionalities are steadier than crosscutting relationships, our aspects are de-
fined independently from aspect-relation-rules. From this viewpoint, our approach
has an advantage over most existing aspect-oriented modeling approaches that do
not separate functionalities and crosscutting relationships (such as AspectJ).

Aspectual product line architecture:
There are approaches that utilize AOTs in early phases of software development,
but most AOT approaches are at the programming level. Needless to say, tech-
niques at the programming level are important. However, we strongly believe that
in order to use AOT effectively, it is indispensable to examine how to apply AOT
at the architectural level. This is because, first, there is a big gap between the
concepts at the requirement level (such as features) and those at the implementa-
tion level (such as classes or aspects in programming languages). PLA plays an
important role in bridging this gap. In PLA, we decide the strategy of design and
implementation considering how features are modularized by means of architectural
components. Second, the aspectual architecture design provides the support for

47

managing crosscutting relationships. As discussed above, some important reasons
for the problems in the management of crosscutting relationships depend on the
semantics of applications. Feature interaction problems, for example, must be re-
solved by understanding the requirements and the architecture of the system. Our
approach provides the means for modeling PLA in an aspectual way, and this feature
contributes to resolve the problem.

Context modeling as a reference model:
Reusability cannot be improved by merely using an aspect-oriented modeling tech-
nique. In order to use the technique effectively, we must apply it rightly to the right
place. Our context modeling plays a role of reference model that gives directions on
how to utilize the mechanism.

In this thesis, we focus on embedded software, and most embedded software has con-
text dependencies. We have observation that, in this domain, contexts are steadier
than sensors (the means to capture contexts), actuators (the means to control the
external world), and processes (applications). Further, contexts, and, sensors, ac-
tuators, and processes, have crosscutting relationships. For example, a sensor may
be used to capture multiple contexts (speed sensor may be used to decide the speed
context and the safety context), and a context may be determined by multiple sen-
sors (the safety context is determined by fusing the data from speed sensors, gear-
position sensors, sheet- and door-status sensors). Based on our approaches, contexts,
sensors, actuators, and processes are modeled as aspects (of our mechanism), and
crosscutting relationships among them are modeled as aspect-relation-rules. With
that, we can develop steady architecture against changes in sensors, actuators, and
applications.

48

Chapter 9

Conclusion

In this thesis, we examine issues in embedded software design. One of the character-
istics of embedded software is strong relation with the external world through sensors
and actuators which have many variations. This characteristic introduces crosscutting
relationships into design model and makes it difficult to develop reusable model.

In order to manage the problem, we introduced the aspect-oriented context modeling,
and also proposed an aspect-oriented modeling mechanism to facilitate the modeling.
This mechanism has unique characteristics; each aspect is highly independent, and we
define cross-cutting relationships in terms of aspect-relation-rules. This makes embedded
software design model modifiable and composable.

We also proposed a variability management technique utilizing our aspect-oriented
modeling mechanism. Though there are many applications, it is a challenge to apply
AOT to PLD. One of the difficulties is the management of crosscutting relationships. We
showed how our modeling mechanism can effectively manage the crosscutting relationships
and can be applied to PLA design. For this purpose, we proposed a PLA diagram for
aspectual PLA design. We demonstrated how our technique improves reusability of core
assets.

Our future works include the refinement of the mechanism, and provision of modeling
methods and environment for embedded system design.

49

Bibliography

1]
2]
3]
[4]

[5]

[6]

[10]

[11]

[12]

http://www.aspectj.org
http://www.early-aspects.net /
http://www.research.ibm.com/hyperspace/HyperJ /HyperJ.htm

F. Afonso et al. : “Applying aspects to a real-time embedded operating system”,
Proc. 6th workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (ACP4IS’07), 2007.

N. M. Ali and A. Rashid : “A State-based Join Point Model for AOP. Workshop on
Views, Aspects and Roles (2005)

S. Clarke, and R.J. Walker : “Towards a standard design language for AOSD”, Proc.
Ist Int’l Conf. on Aspect-Oriented Software Development (AOSD’02), April 2002.

S. Clarke and E. Baniassad : “Aspect-Oriented Analysis And Design: The Theme
Approach”, Addison-Wesley, 2005.

A. Colyer, and A. Clement : “Large-scale AOSD for middleware”, Proc. 3rd Inter-
national Conference on Aspect-oriented Software Development (AOSD’04), March
2004.

T. Cottenier et al. : “The Motorola WEAVR: model weaving in a large industrial con-
text”, Proc. 6th Int’l Conf. on Aspect-Oriented Software Development (AOSD’07),
March 2007.

B. P. Douglass : “Real-Time Uml: Developing Efficient Objects for Embedded Sys-
tems”, Addison-Wesley, 1999.

T. Elrad et al. : “Expressing aspects using UML behavioral and structural dia-
grams”, Aspect-Oriented Software Development, Pearson Education, Inc., Boston,
MA, September 2004, pp. 459-478.

W. Harrison and H. Ossher : “Subject-oriented programming (a critique of pure
objects)”, Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Washington,D.C., September 1993.

ITU, Z. 100: Specification and Description Language (SDL), International Telecom-
munication Union, 2000

K. C. Kang et.al. : “Feature-Oriented Product Line Engineering”, IEEE Software,
July/August 2002.

50

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

M. Katara, and S. Katz : “Architectural views of aspects”, Proc. 2nd Int’l Conf. on
Aspect-Oriented Software Development (AOSD’03), Boston, MA, March 2003.

G. Kiczales et al. : “Getting Started with AspectJ”, Communications of the ACM,
vol. 44, no. 10, pp.59-65, 2001.

T. Kishi, and N. Noda : “Aspect-oriented context modeling for embedded systems”,
Early-Aspects 2004, 2004.

J. Klein et al. : “Semantic-based weaving of scenarios”, Proc. 5th Int’l Conf. on
Aspect-Oriented software development (AOSD’06), ACM Press, Bonn, Germany,
2006.

K. Lee, et.al. : “Combining Feature-Oriented Analysis and Aspect-Oriented Pro-
gramming for Product Line Asset Development”, Proc. 10th International Software
Product Line Conference (SPLC’06), Aug. 2006.

J. Liu, et.al. : “The Role of Aspects in Modeling Product Line Variabilities”, Proc.
First Workshop on Aspect-oriented Product Line Engineering (AOPLE-1), Oct. 2006.

M. Mahoney, et.al. : “Using Aspects to Abstract and Modularize Statecharts”, The
5th Aspect-Oriented Modeling Workshop (2004)

M. Mahoney, and T. Elrad : “Modeling platform specific attributes of a system
as crosscutting concerns using aspect-oriented statecharts and virtual finite state
machines”, The 6th Aspect-Oriented Modeling Workshop, 2005.

S. J. Mellor and M. J. Balcer : “Executable UML: A Foundation for Model-Driven
Architecture”, Addison-Wesley, 2002.

M. Mezini and K. Osternann : “Variability Management with Feature-Oriented Pro-
gramming and Aspects”, ACM SIGSOFT Software Engineering Notes, Vol.29, Issue
6, Nov. 2004.

N. Noda and T. Kishi : “On Aspect-Oriented Design - An Approach to Design-
ing Quality Attributes -7, The 6th Asia-Pacific Software Engineering Conference
(APSEC’99), pp.230-237, 1999.

N. Noda and T. Kishi : “Aspect-Oriented Design for Quality Attributes” FOSE’99,
pp-52-59, 1999 (in Japanese).

N. Noda and T. Kishi : “On Aspect Oriented Design - Basic Idea -, SE123-06, 1999
(in Japanese).

N. Noda and T. Kishi : “Design Pattern Concerns for Software Evolution”, Interna-
tional Workshop on Principles of Software Evolution (IWPSE), pp158-161, 2001.

N. Noda and T. Kishi : “about Evaluation Methods of Software Architecture”,
SE138-17, pp.121-128, 2002 (in Japanese) .

N. Noda and T. Kishi : “On Aspect-Oriented Design Model”, FOSE 2003, pp181-184,
2003 (in Japanese).

o1

[31]

[32]

[33]

[41]

[42]

[43]

N. Noda and T. Kishi : “A Proposal of Aspect-Oriented Design Model”, SE146-6,
pp47-54, 2004 (in Japanese)

N. Noda and T. Kishi : “An aspect-oriented modeling mechanism based on state
diagrams”, 9th Int’l Workshop on Aspect-Oriented Modeling (AOM’06), October
2006.

N. Noda and T. Kishi : “Design Verification Tool for Product Line Development, tool
demonstration”, 11th Software Product Line Conference (SPLC 2007), the second
proceedings, pp147-148, 2007

N. Noda and T. Kishi : “Aspect-Oriented Modeling for Embedded Software Design”,
Proc. 14th Asia-Pacific Software Engineering Conference (APSEC 2007), Dec. 2007.

N. Noda and T. Kishi : “Aspect-oriented Modeling for Variability Management”,
Proc. 12th Software Product Line Conference (SPLC 2008) to appear.

A. Nyssen et.al. : “Are Aspects useful for Managing Variability in Software Product
Line?”, Aspects and Software Product Lines: An Early Aspects Workshop at SPLC-
Europe 2005, Sep. 2005.

H. Ossher and P. Tarr : “Using multidimensional separation of concerns to (re)shape
evolving software”, Communications of the ACM, vol. 44, no. 10, pp.43-50, 2001.

B. Selic et.al. : “Real-Time Object-Oriented Modeling”, John Wiley&Sons,Inc., 1994

M. Samek : “Practical Statecharts in C/C++: Quantum Programming for Embed-
ded Systems”, Cmp Books, 2002.

D. Stein et.al. : “A UML-based Aspect-Oriented Design Notation”, Proc. 1st Int’l
Conf. on Aspect-Oriented Software Development (AOSD 2002), Enschede, The
Netherlands, April 2002.

J. Suzuki, and Y. Yamamoto : “Extending UML with aspects: aspect support in the
design phase”, Proc. of AOP Workshop at ECOOP’99, June 1999.

P. Tarr et al. : “N degrees of separation: multi-dimensional separation of concerns”,
Proc. 21st Int’l Conf. on Software Engineering (ICSE’99), 1999.

M. Voelter and I. Groher : “Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development”, Proc. 11th International Software Product
Line Conference (SPLC’07), Sep, 2007.

52

Publications

1]

N. Noda and T. Kishi: “An aspect-oriented modeling mechanism based on state
diagrams,” 9th Int’l Workshop on Aspect-Oriented Modeling (AOM ’06), October
2006.

N. Noda and T. Kishi: “Design Verification Tool for Product Line Development,”
11th Software Product Line Conference (SPLC 2007), the second proceedings, pp147-
148, 2007.

N. Noda and T. Kishi: “Aspect-Oriented Modeling for Embedded Software Design,”
Proc. 14th Asia-Pacific Software Engineering Conference (APSEC 2007) Dec. 2007.

N. Noda and T. Kishi: “Aspect-oriented Modeling for Variability Management,”
Proc. 12th Software Product Line Conference (SPLC 2008) to appear.

53

Appendix A

Aspect-Orientedness

Aspect-oriented technologies (AOTSs) are considered to be promising techniques in soft-
ware development today. Software has potentially crosscutting requirements, e.g. func-
tional requirements and non-functional requirements, its functionalities may crosscut each
other, and software modules realizing these functionalities and requirements can crosscut
each other. To manage such crosscutting issues, any technology that decouples software
in just one dimension, e.g. object-oriented technology, is not sufficient; AOTs can handle
this issue.

First AOTs were aspect-oriented programming languages, e.g. AspectJ. Gradually the
concept of aspect has been spreading on entire software development processes; there are
some aspect-oriented design methodologies [6][7], and nowadays many researches about
“early aspects” (aspect-oriented requirements engineering and architecture design) [2] are
carried out.

There are two contrasting modeling paradigms; one is a paradigm as represented by
AspectJ [1] and the other as represented by Hyper/J [3]. In this appendix, first we
briefly explain the general definition of aspects in A.1, and then introduce each of the two
paradigms in A.2 and A.3 respectively.

A.1 General definition

An aspect is an encapsulation of a crosscutting concern.

By traditional modularization mechanisms, such as an “object”, a certain kind of
concern cannot be localized and cuts across multiple modules; this is the crosscutting
concern. Typical crosscutting concerns are:

e concerns needed in development time: some concerns are not included in final prod-
ucts, but may be necessary in development time. E.g, logging, tracing, and profiling.

e concerns related to products’ quality attributes: software has many requirements
about quality attributes, and some of them, especially run-time quality attribute
requirements, are often considered to be met with concerns. E.g., synchronization,
security check, and error handling.

e concerns related to to products’ features: software has many features, and they
often considered concerns. They may be related to “role” and the same entity has
different roles in different concerns. E.g., “personnel” feature and “payroll” feature.

o4

If these crosscutting concerns are left across modules, it hampers readability, under-
standability, reusability, modifiability, and adaptability.

A.2 Aspect in AspectdJ

AspectJ is an aspect-oriented extension to Java [1].
Typical crosscutting concerns handled as aspects in AspectJ are as follows:

e logging

e crror handling

e synchronization

e platform dependent process

The AspectJ language has three critical elements [16]:

e A join point model; it describes the “hooks” where enhancements may be added.
AspectJ employs dynamic join points, in which join points are certain well-defined
points in the execution flow of the program. An example of dynamic join points is
a method call join point that is the point when a method is called.

e A means of identifying join points; pointcut designators identify particular join
points, using method signatures or method properties.

e A means of specifying behavior at join points; advice declaration. They define
additional code that runs at join points.

Basic structure of an aspect is pointcut designators and advice declarations. (Some addi-
tional attributes can be defined in aspects.)
Characteristics of this paradigm is as follows:

e One base hierarchy is necessary. It is a structure defined by ordinary classes. This
is the base and dominant to aspects.

e An aspect must be defined based on the base hierarchy. In other words, it is depen-
dent on classes in the base.

e An aspect tends to be small and additive concern. Because it defines additional
behavior to the base classes’ behavior, it can be difficult to express a “big” concern
constructs software, such as a “feature”.

Figure A.1 provides an intuitive explanation of aspect in AspectJ.

55

one base hierarchy
(dominant class hierarycy)

class
'A
class class class
N TR, =1
aspect aspect

Figure A.1: Aspect in Aspect]

A.3 Aspect in Hyper/J

Hyper/J supports multi-dimensional separation of concerns (MDSOC) [42] for Java.

MDSOC is one approach to separation of concerns, supporting construction, evolu-
tion and integration of software. Concerns to be considered and handled in software
development may widely vary. There are multiple kinds of concerns; for example, “data
concern”, “feature concern”, “business concern”, “nonfunctional concern”, and so on. It
is almost impossible to deal with these variety of concerns in one dimension. Therefore,
MDSOC separates concerns multi-dimensionally. The goals of MDSOC are to enable en-
capsulation of all kinds of concerns in a software system simultaneously, overlapping and
interacting concerns, and on-demand re-modularization. Some of the ideas come from
subject-oriented programming [12].

The above mentioned concerns (e.g. “feature concern” and “nonfunctional concerns”)
are handled as aspects'.

In Hyper/J, each concern is encapsulated in a separated model, which defines and im-
plements a (partial) class hierarchy appropriate for that concern. This separated model is
an aspect?. These models are defined and implemented independent of the others. There-
fore, they can be understood in isolation; they might or might not be overlapped with
the others. To compose entire software of these aspects, a developer writes a declaration,
which indicates how the aspects are related, and how the composition is to be carried out.
Because this declaration is separately written from the definition of aspects, the aspects
do not lose their independence.

Characteristics of this paradigm is as follows:

e No base hierarchy is needed. There is no dominant model to aspects.

In Hyper/J, the term of “aspect” is not used. However, in this appendix, “aspect” is used to express
a general concept, in order to show the similar concept in each language in an easily understandable way.
The corresponding original term in Hyper/J is “hyperslice.”

2“hyperslice” in the term of Hyper/J.

56

(no base hierarchy, and no dominant aspect)

Aspect Aspect Aspect
(class hierarchy (class hierarchy (class hierarchy
appropriate to a appropriate to a appropriate to a

concern) concern) concern)

S A 7
Composition Composition
declaration declaration

Figure A.2: Aspect in Hyper/J

e Each aspect is independent and self-contained. Potential relationship (to make up
the entire software) between aspects are not defined in aspects. No aspect dominates
the others.

e An aspect can be easily describe a “big” concern, such as a “feature,” because each
aspect can includes a (partial) class hierarchy appropriate for that concern.

Figure A.2 provides an intuitive explanation of aspect in Hyper/J.

57

Appendix B

Metamodel of Aspect-Oriented
Modeling

This appendix describes the MOF based metamodel of our aspect-oriented model. This
metamodel provides the clear meanings of the modeling elements in our aspect-oriented
modeling (AOM) and their relationships.

B.1 Overview

The metamodel contains three packages: AOM_StaticStructure, AOM_Behavior,
AOM_AspectRelation. The AOM_StaticStructure package holds the elements used to
show the static structure, which can be described in the form of class diagrams. The
AOM _Behavior package contains the elements used to describe the behavior of each aspect,
which can be described in the form of statemachine diagrams. The AOM_AspectRelation
package describes the elements necessary for providing the relationships among aspects,
which is given in the aspect-relation-rules form. Figure B.1 shows these packages and
their relationships.

In the following three sections, elements of each package can be explained. Classes
with the names used in UML2 have same characteristics of the corresponding UML2
classes and are consistent with them. Therefore, the explanation of those classes may be
omitted in the following sections.

B.2 AOM _StaticStructure package

Figure B.2 shows the AOM_StaticStructure package. Each element of this package is
described from B.2.1 to B.2.6.

B.2.1 Classifier (from UML)

A classifier is a classification of instances, it describes a set of instances that have features
in common.

Description Classifier is an abstract metaclass. It is defined in UML. To define an
aspect, it is included into the metamodel of the AOM.

58

Classifier

Class

1]

ADM_StaticStructure

)

I
q{im;}]m‘tbb

—

AOM_Behavior

)

I
qqim*nr‘t}}

—

AOM_AspectRelation

Figure B.1: Packages

StructuralFeature

relationEnd
RelationEnd

* 2

Figure B.2: AOM _StaticStructure

29

AspectRelation

+ aspectRelaion

B.2.2 StructuralFeature (from UML)
A structural feature is a typed feature of a classifier that specifies the structure of instances

of the classifier.

Description StructuralFeature is an abstract metaclass. It is defined in UML. To define
an end of relation between aspects, it is included into the metamodel of the AOM.

B.2.3 Class (from UML)
A class describes a set of objects that share the same specification of features, constraints,

and semantics.

Description Class is a kind of classifier. It is defined in UML. To define an aspect, it
is included into the metamodel of the AOM.

B.2.4 Aspect
An aspect is a unit that modularizes a concern, and it is the projection of the entire

software from the viewpoint of the corresponding concern.

Generalizations

e “Classifier (from UML)”

Description Aspect is a kind of classifier. Aspect is the projection of the entire software
from the viewpoint of a specific concern, therefore, Aspect contains multiple Classes.
Aspect may be seen as a special Class having composite aggregation with other Classes.
However, inherited Aspect nor nested Aspect is not allowed. Aspect is related to other
Aspect by AspectRelation. RelationEnd is not navigable from Aspect. That means
Aspect does not know to which Aspect it is related.

Associations

e class : Class [*

Classes that are contained in this Aspect.

B.2.5 AspectRelation

An aspect-relation is an association between aspects. To compose a system with aspects,
aspects are related to each other. This relationship is defined as an aspect-relation.

Description AspectRelation is a special kind of association. It relates two Aspects.

Associations

e relationEnd : RelationEnd [2]

RelationEnds that are at the both end of the AspectRelation.

60

B.2.6 RelationEnd

An relation end is the end of aspect-relation. An aspect-relation has two end. It holds
the value of multiplicity defined for corresponding aspect-relation.

Generalizations

e “StructuralFeature (from UML)”

Description RelationEnd is the end of AspectRelation. AspectRelation has two Re-
lationEnd. RelationEnd is a kind of StructuralFeature, which is a subclass of Multiplic-
ityElement (from UML). Therefore, RelationEnd holds the value of multiplicity defined
for corresponding AspectRelation.

Associations
e aspectRelation : AspectRelation
AspectRelation that holds the RelationEnd.
e aspect : Aspect

AspectRelation that holds the RelationEnd.

B.3 AOM _Behavior package

Figure B.3 shows the AOM_Behavior package.

This package contains no new elements extending UML2. All elements are defined
in UML2. Relationships among the elements are simplified in this package, being in
consistency with UML2.

Each element of this package is described briefly from B.3.1 to B.3.7.

B.3.1 Class (from AOM StaticStructure)

A class has behavior that may be defined by a statemachine.
Description Class may be associated with one StateMachine that defines its behavior.

Associations
e stateMachine : StateMachine [0..1]

StateMachine that defines the behavior of the Class.

B.3.2 StateMachine (from UML)

A statemachine describes the state transition of an entity.

61

AOM_StaticStructure:Class

+ class

+ statelachine

1

StateMachine

1.% | State
+ stat
01 +stater}lﬂach|ne v sourcel1 1|+ target
1
+outgoingl = : .
+ stateMachine +Incaming
+ transitio .
1 +| Transition
0.1 1
+trigger | /* 01 quard
Trigger Constraint
1 + gvent
Event

Figure B.3: AOM_Behavior

62

Description Statemachine may describes the state transition of Class. It has multiple
States and multiple Transitions. It is defined in UML.

Associations
e class : Class [0..1]
Class whose behavior is define by the StateMachine.
e state : State [1..%]
States included in the StateMachine.
e transition : Transition [1..%]

Transitions included in the StateMachine.

B.3.3 State (from UML)

A state models a situation during which some invariant condition holds.

Description State models a situation during which some invariant condition holds. It
is defined in UML. In the AOM metamodel, State is a simple state that does not have
substates.

Associations
e outgoing : Transition [*]
Transition that goes out from the State.
e incoming : Transition [*]

Transition that comes into the State.

B.3.4 Transition (from UML)

A transition is a directed relationship between states.

Description Transition is a directed relationship between States. It is triggered by
Event and may be constrained by Constraint. It is defined in UML.

Associations
e source : State
State that is the source of the Transition.
e target : State

State that is the target of the Transition.

63

e trigger : Trigger [*]
Triggers that trigger firing of the Transition.
e guard : Constraint [0..1]

A guard is a constraint that provides a control over the firing of the
transition.

B.3.5 Trigger (from UML)

A trigger relates an event to execution of transitions.
Description Trigger relates Event to the execution of Transition. It is defined in UML.

Associations
e cvent : Event

Event that causes the Trigger.

B.3.6 Event (from UML)

An event is the description of some occurrence that may potentially trigger some effects,
especially state transitions.

Description FEvent works as Trigger. Event is associated to Trigger, but Trigger is not
navigable from Event. Event is defined in UML.

B.3.7 Constraint (from UML)

A constraint is a condition or restriction for the purpose of declaring some of the semantics.
In this package, it is used to express a guard condition for firing transitions.

Description Constraint specifies a condition for firing Transition. It is defined in UML.

B.4 AOM_AspectRelation package

Figure B.4 shows the AOM_AspectRelation package. FEach element of this package is
described from B.4.1 to B.4.9.

B.4.1 AspectRelation (from AOM StaticStructure)

An aspect-relation is associated to a set of aspect-relation-rules.

Description AspectRelation is associated with RuleSet that is a set of aspect-relation-
rules.

64

1 1
AOM_Structure:AspectRelation RuleSet

+aspectRelation + ruleSet

1 + ruleSet

*
= +rule

Rule

-

ConditionReferenceRule EventintroductionRule

+firedTransition
1 + refaren

AOM_Behavior::State AOM_Behavior:Transition

0.1 + providedGuard + introducedEvent

AOM_Behavior::Constraint AOM_Behavior:Event

Figure B.4: AOM_AspectRelation

Associations
e ruleSet : RuleSet

RuleSet that is associated to the AspectRelation.

B.4.2 RuleSet

A rule set is a set of aspect-relation-rules. It describes the detail of an aspect-relation.

Description RuleSet is associated with AspectRelation, and consists of one or more
Rules. RuleSet gives a behavioral detail of the corresponding AspectRelation.

Associations
e aspectRelation : AspectRelation
AspectRelation that is associated to the RuleSet.

e rule : Rule [1..%]

Rules that are composed in the RuleSet.

B.4.3 Rule

A rule—aspect-relation-rule—describes the detail of relationships between aspects.

65

Description Rule describes the detail of AspectRelation between Aspects. It is an
abstract metaclass.

Associations
e ruleSet : RuleSet

RuleSet that includes the Rule.

B.4.4 ConditionReferenceRule

A condition-reference rule is a kind of aspect-relation-rule and provides a guard condition,
with reference to the properties of an aspect, for a state transition in another aspect.

Generalizations

° LLRule77

Description ConditionReferenceRule indicates a condition-reference rule. It is a kind of
Rule. ConditionReferenceRule has associations with State (from AOM_Behavior), Tran-
sition (from AOM_Behavior), and Constraint (from AOM_Behavior). These associations
indicate relation occurred dynamically; when a rule is evaluated, these relationships are
observed. ConditionReferenceRule refers the State of the object described in the rule,
and that provide the guard in the form of Constraint, and if the guard is true, Transition
is fired.

Associations
e referedState : State [*]
States that are referred when the ConditionReferenceRule is evaluated.
e providedGuard : Constraint [0..1]
Constraint that is provided as a guard condition to Transition.
e firedTransition : Transition

Transition that may be fired after the ConditionReferenceRule is evalu-
ated.

B.4.5 EventIntroductionRule

An event-introduction rule is a kind of aspect-relation-rule and introduces events to other
aspects to trigger a certain behavior when a state transition occurs.

Generalizations

° LLRule”

66

Description EventIntroductionRule indicates a event-introduction rule. It is a kind of
Rule. EventIntroductionRule has associations with Transition (from AOM_Behavior) and
Event (from AOM_Behavior). These associations indicate relation occurred dynamically;
when a rule is evaluated, these relationships are observed. EventIntroductionRule refers
the Transition described in the rule, and introduce Event.

Associations

e referencedTransition : Transition
Transition referenced by the EventIntroductionRule.
e introducedEvent : Event [1..%]

Events that are introduced when the EventIntroductionRule is evaluated.

B.4.6 State (from AOM _Behavior)

A state is referred by an condition-reference rule.

Description State models a situation during which some invariant condition holds.
State in the AOM metamodel is defined in the AOM _Behavior package. State is associ-
ated to ConditionReferenceRule, but ConditionReferenceRule is not navigable from State.
That means State does not know to which ConditionReferenceRule it is related.

B.4.7 Constraint (from AOM_Behavior)

A constraint is provided by an condition-reference rule to a transition as a guard condition.

Description Constraint specifies a condition for firing Transition. Constraint in the
AOM metamodel is defined in the AOM_Behavior package. Constraint is associated to
ConditionReferenceRule, but ConditionReferenceRule is not navigable from Constraint.
That means Constraint does not know to which ConditionReferenceRule it is related.

B.4.8 Transition (from AOM _Behavior)

A transition may be fired, as a result of evaluating a condition-reference rule. Or it
observed by an event-introduction rule.

Description Transition is a directed relationship between States. Transition in the
AOM metamodel is defined in the AOM _Behavior package. Transition is associated to
ConditionReferenceRule, but ConditionReferenceRule is not navigable from Transition.
That means Transition does not know to which ConditionReferenceRule it is related.
Likewise, Transition is associated to EventIntroductionRule, but Transition does not know
to which EventIntroductionRule it is related.

B.4.9 Event (from AOM Behavior)

An event is introduced by an event-introduction-rule.

67

Description Event works as Trigger. Event in the AOM metamodel is defined in the
AOM _Behavior package. Event is associated to EventIntroductionRule, but EventIntro-
ductionRule is not navigable from Event. That means Event does not know to which
EventIntroductionRule it is related.

68

Appendix C

Rule Extension

In this thesis, we assume that each class has only one instance, because it is a common
way to utilize objects in embedded software field. However, if we remove this restriction,
it may make our modeling mechanism more applicable. Basically, this restriction does
not affect the mechanism except the aspect-relation-rules. In this appendix, we examine
the extension of the rules.

C.1 Generalization of aspect-relation-rules

We remove the restriction, namely, we assume that each class has one or more instances.
The other assumption, that instances of classes are not dynamically created, is kept.

For this new assumption, we have to identify different instances of the same class. To
identify the instances, we use index numbers which are serial in the class. These indexes
are given at the initial time.

Our event-introduction rule is, e.g., “when transition t1 fires at class C1 of aspect Al,
event E1 is introduced to class C2 of aspect A2.” If classes can have multiple instances,
the correspondence between objects of class C1 and objects of class C2 has to be clarified.
Using the indexes, the aspect-relation-rules can be extended in the following two ways:

e Corresponding the instances with the same index number.

— “when transition t1 fires at object O(i) of class C1 of aspect Al, event E1 is
introduced to object O’(i) of class C2 of aspect A2.”

e Corresponding an arbitrary instance of C1 to all instances of C2.

— “when transition t1 fires at object O(i) of class C1 of aspect Al, event E1 is
introduced to all objects of class C2 of aspect A2.”

Here, O(i) means the number i object of the class, where i is an index number.

Our condition-reference rule is, e.g., ‘transition t1 fires at class C1 of aspect Al only
when class C2 of aspect A2 is in state S1.” In the same way as the event-introduction
rule extension, the correspondence between objects of class C1 and objects of class C2
has to be clarified. The rule can be extended in the following ways:

e Corresponding the instances with the same index number.

69

— “transition t1 fires at object O(i) of class C1 of aspect Al only when object
O’(i) of class C2 of aspect A2 is in state S1.”

e Corresponding an arbitrary instance of C1 to all instances of C2.
— “transition t1 fires at object O(i) of class C1 of aspect A1 only when all objects
class C2 of aspect A2 is in state S1.”
— “transition t1 fires at object O(i) of class C1 of aspect Al only when any one
object of class C2 of aspect A2 is in state S1.”

Based on the above, we extend our aspect-relation-rules as follows.

Event-introduction rule:

e A1.C1:t1 -> E17A2.C2

— implies that “when transition t1 fires at an arbitrary object of class C1
of aspect A1, event El is introduced to an object with the corresponding
index of class C2 of aspect A2.”

— note: if class C2 only has the unique instance, event El is introduced to
that unique instance.

o A1.C1:t1 -> E17A2.C2.__all

— implies that “when transition t1 fires at an arbitrary object of class C1 of
aspect A1, event El is introduced to all objects of class C2 of aspect A2.”

Condition-reference rule:

o AL.CL:tl [A2.02@S]]

— implies that “transition t1 fires at any arbitrary object class C1 of aspect
A1, only when the object with the corresponding index of class C2 of
aspect A2 is in state S1.”

— note: if class C2 only has the unique instance, the state of that unique
instance is referred.

o A1.CL:tl [A2.C2._all@S]]

— implies that “transition t1 fires at any arbitrary object class C1 of aspect
A1, only when all of the objects of class C2 of aspect A2 is in state S1.”

e A1.C1:t1 [A2.C2.__any@S]]

— implies that “transition t1 fires at any arbitrary object class C1 of aspect

A1, only when any one arbitrary object of class C2 of aspect A2 is in state
S1.”

The syntax of the extended rules is shown in Figure C.1.

70

aspect_relation_rule

::= event_introduction_rule | condition_reference_rule
event_introduction_rule

::= source_aspect ‘.” source_class ‘:’ transition_name

‘->” event_name ‘"’ target_aspect ‘.” target_class all_obj_disignation?

source_aspect ::= name
source_class ::= arbitrary | name
name ::= name_char+
name_char ::= [a-zA-Z0-9] | ¢’
arbitrary ::= name? ‘*’ name?
transition_name ::= arbitrary | name
event_name ::= name
target_aspect ::= name
target_class ::= arbitrary | name
all_obj_disignation ::= °.” all_obj
all_obj ::=*__all’
condition_reference_rule

::= source_aspect ‘.” source_class ‘:’ transition_name ‘[’ condition ‘]’
condition ::= state_condition
state_condition ::= in_state | not_in_state
In_state ::= taget_aspect °.” target_class obj_disignation? ‘@’ state

obj_disignation ::= *.” any_or_all_obj
any_or_all_obj ::= any_obj | all_obj
any_obj ::= ‘__any’

state ::= name

not_in_state ::= ‘!’ in_state

Figure C.1: Syntax of extended aspect-relation-rules

71

C.2 Application of extended aspect-relation-rules

We explain the usage of the extended aspect-relation-rules with examples. The same
example described in Chapter 5 is used with a little modification.

First, we change the example so that the system controls multiple interior lights of
the very same type. These lights are equipped in a vehicle (maybe in different places)
and turned on and off at the same time. In this case, the lights are modeled as multiple
instances of the same Light class in the LIGHT actuator aspect. Although the number
of instances of the Light class is multiple, that of the OnOff class in ON-OFF a-context
aspect can be one. Because all the light instances are turned on (off) at the same time,
only one on-off context is sufficient. Figure C.2 shows the aspects of LIGHT and ON-
OFF, along with an object diagram of the static structure of each aspect, respectively.
The aspect-relation between these two aspects, RS1 in Figure 5.1 in 5.3, is also changed.
Figure C.3 shows the modified aspect-relation-rules. These rules mean: when the state
of the unique object of OnOff in ON-OFF changes from Off to On (from On to Off), the
on (off) event is introduced to all instances of Light in LIGHT.

Second, we change door sensors of the example. In the example in Chapter 5, the
DriverDoor and PassengerDoor sensors are used. It can be a typical model of embedded
software. However, if the very same sensor is attached to each door, we may model one
Door class with multiple objects. Figure C.4 shows this situation. The context the system
captures is the same; whether all doors are closed or not. Therefore, the DOOR-ST s-
context aspect is as same as the example in Chapter 5. The aspect-relation between these
two aspects, RS8 in Figure 5.1 in 5.3, is also changed. Figure C.5 shows the modified
aspect-relation-rules. The rule 1 (of RS8) means: when the state of any object of Door in
DOOR changes from Closed to Open, the open event is introduced to the unique object of
DoorSt in DoorSt. Although the basic meaning of this rule is that the event is introduced
to the one corresponding object, the event is always introduced to the same object in
this case, because the DoorSt class has a unique instance only. The rule is understood
likewise. The rule 3 means: the transition t2 of unique object DoorSt in DOOR-ST fires
(its state changes from Open to Closed) only when all objects of Door in DOOR are in
the state of Closed.

This extension can make the aspect-relation-rules to be used in wider areas. When
modularization with the concept of aspects in our mechanism is possible and useful in
the design of software, our mechanism can work well for the software, even if it is not
for embedded system. We had studied and confirmed that this kind of modularization
is possible and useful other than in embedded software domain. One example is the
encapsulation of “design pattern concern” [28]. We need further study to clarify the
effective use of our mechanism in non-embedded software domain.

72

<<aspect>> <<actuator>> LIGHT

light1:Light
Light

light2:Light

tl:on

light3:Light

\2

o Je o

State diagram for Light

1

1

:

1

1

1

:

1

! Class diagram
:

1

1

1

1

: Object diagram for LIGHT
1

1

<<aspect>> <<a-context>>

! 1

! 1

| ON-OFF :

- |

! 1

: OnOff !

! 1

! 1

: Class diagram ! onoff:OnOff
! 1

: 1

I tl:on '

: v !

! 1

| I Object diagram for ON-OFF
: State diagram for OnOff \

1

Figure C.2: LIGHT and ON-OFF aspects of modified example

RS1
1. ON-OFF.OnOff:t1 -> on*LIGHT.Light.__all
2. ON-OFF.OnOff:t2 -> off"LIGHT .Light.__all

Figure C.3: Modified aspect-relation-rules (1)

73

<<aspect>> <<sensor>> DOOR

Door

DLock

Class diagram

t1:open [DLock @ Unlocked]

v

t2:close -

State diagram for Door

t1:unlock

\V
> Tock Unlocked

State diagram for DLock

<<aspect>> <<context>> DOOR-ST

DoorSt

2:close

t1:open
8 i V
Closed Open
- t -

| Class diagram

State diagram for DoorSt

door1:Door lock1:DLock
door2:Door lock2:DLocK
door3:Door lock3:DLocK
door4:Door lock4:DLocK
Object diagram for DOOR

doorst:DoorSt

Object diagram for DOOR-ST

Figure C.4: DOOR and DOOR-ST aspects of modified example

RS8

1. DOOR.Door:t1 -> open*DOOR-ST.DoorSt
2. DOOR.Door:t2 -> close"DOOR-ST.DoorSt
DOOR-ST.DoorSt:t2 [DOOR.Door.__ all@Closed]

Figure C.5: Modified aspect-relation-rules (2)

74

Appendix D

Modeling Example by Prototype
System

This appendix describes a modeling example by a prototype system that supports the
modeling mechanism proposed in this thesis.

D.1 Objective

The objective of introducing a modeling example is to demonstrate the usefulness of the
modeling mechanism based on an actual working prototype.

One of the important characteristics of our modeling mechanism is that aspects are
defined without depending on other aspects, and aspect-relation-rules relate aspects so as
to configure them as a system. This characteristic increases the reusability of aspects, i.e.
we can define different system configuration by switching aspect-relation-rules without
modifying aspects. We demonstrate this modeling features utilizing a prototype system.

D.2 Prototype system

In this section, we introduce a prototype system we have developed.
Figure D.1 shows an overview of the prototype system.

e The prototype consists of modeler, configurater and execution engine.

e Modeler has capability to define aspects and aspect-relation-rules. Aspects are
defined in terms of class diagram and state diagram. A set of aspect-relation-rules
is a set of rules written in textural form. Modeler can define multiple sets of aspect-
relation-rules, and each set of them corresponds to a system configuration.

e Configurater configures a system from defined aspects and aspect-relation-rules and
outputs configured model. If there defined multiple sets of aspect-relation-rules,
users select one set to specify a system configuration.

e Execution engine runs the configured model and shows an execution result in terms
of sequence diagram.

75

Modeler

define define
Aspects [Aspect-relation-
- class-diagram c rules
- state-diagram C
use Configurater select and use
configurate
[Configured]
Model
use
Execution
engine
output

Execution result
- sequence diagram

Figure D.1: Overview of prototype system

76

Concretely speaking, the prototype is developed on Eclipse platform, and utilizes UML
plug-in as a modeler and SPIN as a simulation engine.

The prototype does not fully implement the modeling mechanism described in the
thesis. The followings are major limitations of this prototype.

e [t supports only event-introduction-rule, and does not support condition-reference
rule.

e The notation of aspect-relation-rules is different from that is introduced in this
thesis.

D.3 Modeling example

We have defined model of vehicle illumination system introduced in Chapter 5. The
model is basically the same as that introduced in Chapter 5, but due to the limitation of
the prototype system mentioned above, some parts of the model are simplified. Also, we
omit some parts of model that are not used in the model execution described in the next
section.

D.3.1 Aspects
Overview

Figure D.2 shows the top level class diagram. Each aspect is depicted as UML package
stereotyped as “aspect.” There defined four aspects “sensor,” ”context,” “process” and
“actuator.” Here, “context” is s-context; we omit a-context for simplification of this
example.

I R 1 [1]

waspects waspects zaspects zaspects
2 sensor B context B process B actuator

Figure D.2: Aspects

Sensor aspect

Figure D.3 shows the class diagram of “sensor” aspect. In this aspect, class “DriverDoor”
is defined.

Figure D.4 shows the state diagram of “DriverDoor” class. There defined two states
“Close” and “Open,” and also defined transitions from “Close” state to “Open” state

7

#PrOCESEs

@ DriverDoor

Figure D.3: Sensor aspect

(labeled as “2open”), and from “Open” state to “Close” state. As guard conditions are
“true,” state transition can always occur.

Close

20pen(true]

[true]

Figure D.4: DriverDoor class (state diagram)

Context aspect

Figure D.5 shows the class diagram of “context” aspect. In this aspect, class “DoorStatus”
is defined.

Figure D.6 shows the state diagram of “DoorStatus” class. There defined two states
“Close” and “Open,” and also defined transitions from “Close” state to “Open” state
(labeled as “2open”), and from “Open” state to “Close” state.

Each state has an entry action which read input from message queue (named “ds”)
to temporary variable “x.” The transition from “Close” state to “Open” state is fired
by message “open,” and the transition from “Open” state to “Close” state is fired by
message “close.”

Process aspect

Figure D.7 shows the class diagram of “process” aspect. In this aspect, classes “Lighting-
Control,” “BatterySaver” and “Timer” are defined.

Figure D.8 shows the state diagram of “LightingControl” class. There defined two
states “Off” and “On,” and also defined transitions from “Off” state to “On” state (labeled

78

PrOCeEsss

® DoorStatus

Figure D.5: Context aspects

20pen[z==0open]

ertry fds ¥ x

Qpen
[x==Cloze]

entry fds ¥ x

Figure D.6: DoorStatus class (state diagram)

as “20n”), and from “On” state to “Off” state.

Each state has an entry action which reads input from message queue (named “Ic”) to
temporary variable “x.” The transition from “Off” state to “On” state is fired by message
“open,” and the transition from “On” state to “Off” state is fired by message “close.”

Figure D.9 shows the state diagram of “BatterySaver” class. There defined three
states “Idle,” “Lighting” and “Forbidding,” and also defined transitions from “Idle” state
to “Lighting” state, from “Lighting” state to “Idle” state, from “Lighting” state to “For-
bidding” state, and from “Forbidding” state to “Idle” state.

Each state has an entry action which reads input from message queue (named “bs”)
to temporary variable “x.” The transition from “Idle” state to “Lighting” state is fired by
message “save,” the transition from “Lighting” state to “Idle” state is fired by message
“release,” the transition from “Lighting” state to “Forbidding” state is fired by message
“tout,” and the transition from “Forbidding” state to “Idle” state is fired by message
“release.”

In entering “Lighting” state, a variable “tset” is set to true, and “Timer” class starts
counting time. In exiting “Lighting” state, this variable is set to false.

Figure D.10 shows the state diagram of “Timer” class. There defined two states “idle”
and “done,” and also defined transitions from “idle” state to “done” state and “done”

79

H#RrOCeEEE PFOCESTs

@ LightingControl © BatterySaver

HPFOCESss

@ Timer

Figure D.7: Process aspect

entry flo 7 x SOn[x==open]

entry flo Y x

Figure D.8: LightingControl class (state diagram)

[#==cloze]

state to “idle” state.

This class is not defined in the model in Chapter 5, but in this example we model it
in order to realize timeout; i.e. if a variable “tset” is true, it may send “tout” message to
message queue “bs” (or before sending the message, “tset” turned back to false.)

Actuator aspect

Figure D.11 shows the class diagram of “actuator” aspect. In this aspect, class “Light”
is defined.

Figure D.12 shows the state diagram of “Light” class. There defined two states “Oft”
and “On,” and also defined transitions from “Off” state to “On” state and from “On”
state to “Off” state.

Each state has an entry action which reads input from message queue (named “It”) to
temporary variable “x.” The transition from “Off” state to “On” state is fired by message
“on,” and the transition from “On” state to “Off” state is fired by message “off.”

80

entry Fhs T x

[x==zave] \I

i Lighting \I
I\ entry ftzet=true; hs 7 x; taet=falze
[x==releaze]
e

Forbidding

ertry fbs 7 x Forbidding[x==tout]

[#==releaze]

Figure D.9: BatterySaver class (state diagram)

. [t=et==true]dhs= ! tout

[tzet==falze]

Figure D.10: Timer class (state diagram)

D.3.2 Aspect-relation-rules definition

We have defined two system configurations. One is illumination system without bat-
tery saver, and the other is that with battery saver. In order to realize these different
configurations, we define the following sets of aspect-relation-rules.

As we have mentioned, our prototype supports event-introduction rule. Though the
notation is slightly different, we use the notation introduced in this thesis in oder to avoid
confusion.

We do not implement condition-reference rule in our prototype, and we do not use
this rule in the example.

81

#PRrOCEsEs

@ Light

Figure D.11: Actuator aspect

Y|
Off
entry Ft Y x sl
]\ on

ity 1t 7
[x==0ff] srtry L

Figure D.12: Light class (state diagram)

Illumination system without battery saver

Figure D.13 shows a set of aspect-relation-rules for a system configuration without battery
saver. Each rule has the following meaning.

e If transition labeled “20pen” in the state model of class “DriverDoor” in “sensor”
aspect fires, then event “open” is introduced to class “DoorStatus” in “context”
aspect.

o [f transition labeled “20pen” in the state model of class “DoorStatus” in “context”
aspect fires, then event “open” is introduced to class “LightingControl” in “process”
aspect.

e [f transition labeled “20n” in the state model of class “LightingControl” in “process”
aspect fires, then event “on” is introduced to class “Light” in “actuator” aspect.

sensor.DriverDoor:20pen -> open”context.DoorStatus
context.DoorStatus:20pen -> open”process.LightingControl
process.LightingControl:20n -> on*actuator.Light

Figure D.13: Rule sets (no BatterySaver)

82

Illumination system with battery saver

Figure D.14 shows a set of aspect-relation-rules for a system configuration with battery
saver. This set includes the same three rules that are included in the aspect-relation-rules
for illumination system without battery saver, and also includes the following rules.

e [f transition labeled “20pen” in the state model of class “DoorStatus” in “context”
aspect fires, then event “save” is introduced to class “BatterySaver” in “process”
aspect.

o [f transition labeled “2Forbidding” in the state model of class “BatterySaver” in
“process” aspect fires, then event “oft” is introduced to class “Light” in “actuator”
aspect.

sensor.DriverDoor:20pen -> open”context.DoorStatus
context.DoorStatus:20pen -> open”process.LightingControl
context.DoorStatus:20pen -> saveprocess.BatterySaver
process.LightingControl:20n -> on”actuator.Light
process.BatterySaver:2Forbidding -> off*actuator.Light

Figure D.14: Rule sets (with BatterySaver)

D.4 Result

We configure a system with the aspect-relation-rules in Figure D.13, and execute the
configured system.

Figure D.15 shows a snapshot of the execution depicted in sequence diagram. This
diagram shows the following behavior:

1. “DriverDoor” class in “sensor” aspect goes into state “Open.”
2. “DoorStatus” class in “context” aspect goes into state “Open.”
3. “LightingControl” class in “process” aspect goes into state “On.”

4. “Light” class in “actuator” aspect goes into state “On.”

As rules do not relate “BatterySaver” class with classes in other aspects, “BatterySaver”
class (and consequently “Timer” class) does not work. Namely, the Light keeps on light-
ing.

Then we configure a system with the aspect-relation-rules in Figure D.14, and execute
the configured system.

Figure D.16 shows a snapshot of the execution depicted in sequence diagram. This
diagram shows the following behavior:

1. “DriverDoor” class in “sensor” aspect goes into state “Open.”

83

‘ sensor::DriverDoor
=1, pid=1

context::DoorStatus process::BatterySaver process:LightingCont... process:Timer actuator:Light
id=1, pid= id=1, pid= id=1, pid=: id=1, pid=4 id=1, pid=G id=1, pid=6
]
P \ | | \ \
Close[33] [clopen | ‘
end_EfiD_STATE[26] J__. [T Tt ifan é
Open391 Idlel501 onisdl idlesy = Onfi1Tl

Figure D.15: Execution result (no BatterySaver)

2. “DoorStatus” class in “context” aspect goes into state “Open.”

3. “LightingControl” class in “process” aspect goes into state “On.”
4. “BatterySaver” class in “process” aspect goes into state “Lighting.”
5. “Light” class in “actuator” aspect goes into state “On.”

6. “Timer” class in “process” aspect start counting time, sends “tout” message to
“BatterySaver” and goes into state “Done.”

7. “BatterySaver” class in “process” aspect goes into state “Forbidding.”

8. “Light” class in “actuator” aspect goes into state “Off.”

As rules relate “BatterySaver” to other classes, it works. Namely, the Light is once
turned on, but after that battery saver works and the Light is turned off. Namely, the
Light does not keep on lighting, and saves a battery from discharging.

sensor:DriverDoor context:DoorStatus process::BatterySaver process:LightingCont... process:Timer actuator:Light
id=1, pid=1 id=1, pid=2 id=1, pid=3 id=1, pid=: id=1, pid=5 id=1, pid=8
]
sootrn \ \ \ \ |
i} L Close[33] "] —‘—Jm m ‘ ‘ |
end_EilD_STATE[26] letatl = | |
Lightingl571 off78] o |
lbs! tout
L Off[111]
[foff] -
fo0t — s
Open3s] Forbidding[66] onfs4] = idle[95] = OfiT110]

Figure D.16: Execution result (with BatterySaver)

As we have demonstrated above, we can configure two different systems by switching
sets of aspect-relation-rules, without modifying aspects.

84

