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PÉTER URBÁN
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1. INTRODUCTION

Distributed systems and applications are notoriously difficult to build. This is
mostly due to the unavoidable concurrency in such systems, combined with the
difficulty of providing a global control. This difficulty is greatly reduced by relying
on group communication primitives that provide higher guarantees than standard
point-to-point communication. One such primitive is called total order1 broad-
cast.2 Informally, the primitive ensures that messages sent to a set of processes
are delivered by all those processes in the same order. Total order broadcast is an
important primitive that plays, for instance, a central role when implementing the
state machine approach (also called active replication) [Lamport 1978a; Schneider
1990; Poledna 1994]. It also has other applications, such as clock synchronization
[Rodrigues et al. 1993], computer supported cooperative writing, distributed shared
memory, and distributed locking [Lamport 1978b]. More recently, it was also shown
that an adequate use of total order broadcast can significantly improve the perfor-
mance of replicated databases [Agrawal et al. 1997; Pedone et al. 1998; Kemme
et al. 2003].

Literature on total order broadcast. There exists a considerable amount of litera-
ture on total order broadcast, and many algorithms, following various approaches,
have been proposed to solve that problem. It is, however, difficult to compare them
as they often differ with respect to their actual properties, assumptions, objectives,
or other important aspects. It is hence difficult to know which solution is best
suited to a given application context. When confronted with new requirements,
the absence of a roadmap to the problem of total order broadcast can lead engi-
neers and researchers to either develop new algorithms rather than adapt existing
solutions (thus reinventing the wheel), or use a solution poorly suited to the appli-
cation needs. An important step to improve the present situation is to provide a
classification of existing algorithms.

Related work. Previous attempts have been made at classifying and comparing
total order broadcast algorithms [Anceaume 1993b; Anceaume and Minet 1992;
Cristian et al. 1994; Friedman and van Renesse 1997; Mayer 1992]. However, none
is based on a comprehensive survey of existing algorithms, and hence they all lack

1Total order broadcast is also known as atomic broadcast. Both terminologies are currently in
use. There is a slight controversy with respect to using one over the other. We opt for the former,
that is, “total order broadcast,” because the latter is somewhat misleading. Indeed, atomicity
suggests a property related to agreement rather than to total order (defined in Sect. 2), and the
ambiguity has already been a source of misunderstandings. In contrast, “total order broadcast”
unambiguously refers to the property of total order.
2Total order multicast is sometimes used instead of total order broadcast. The distinction between
the two primitives is explained later in the paper (Sect. 3). When the distinction is not important,
we use the term total order broadcast.
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generality.
The most complete comparison so far was done by Anceaume and Minet [1992]

(an extended version was later published in French by Anceaume [1993b]), who
take an interesting approach based on the properties of the algorithms. Their
paper raises some fundamental questions that inspired a part of our work. It is,
however, a little outdated now. In addition, the authors only study seven different
algorithms, which are not truly representative; for instance, none is based on a
communication history approach (one of the five classes of algorithms; details in
Sect. 4.4).

Cristian et al. [1994] take a different approach, focusing on the implementation of
the algorithms rather than their properties. They study four different algorithms,
and compare them using discrete event simulation. They find interesting results
regarding the respective performance of different implementation strategies. Nev-
ertheless, they fail to discuss the respective properties of the different algorithms.
Besides, as they compare only four algorithms, this work is less general than An-
ceaume’s.

Friedman and van Renesse [1997] study the impact of packing messages on the
performance of algorithms. To this purpose they study six algorithms, including
those studied by Cristian et al. [1994]. They measure the actual performance of
those algorithms and confirm the observations made by Cristian et al. [1994]. They
show that packing several protocol messages into a single physical message indeed
provides an effective way to improve the performance of algorithms. The compar-
ison also lacks generality, but this is quite understandable as this is not the main
concern of their paper.

Mayer [1992] defines a framework in which total order broadcast algorithms can
be compared from a performance point of view. The definition of such a framework
is an important step toward an extensive and meaningful comparison of algorithms.
However, the paper does not actually compare the numerous existing algorithms.

Contributions. In this paper, we propose a classification of total order broadcast
algorithms based on the mechanism used to order messages. The reason for this
choice is that the ordering mechanism is the characteristic with the strongest influ-
ence on the communication pattern of the algorithm: two algorithms of the same
class are hence likely to exhibit similar behaviors. We define five classes of order-
ing mechanisms: communication history, privilege-based, moving sequencer, fixed
sequencer, and destinations agreement.

In this paper, we also provide a vast survey of about sixty published total or-
der broadcast algorithms. Wherever possible, we mention the properties and the
assumptions of each algorithm. This is however not always possible because the
information available in the papers is often not sufficient to accurately characterize
the behavior of the algorithm (e.g., in the face of a failure).

Structure. The paper is logically organized into four main parts: specification,
ordering mechanisms and taxonomy, fault-tolerance, and survey. More precisely,
the paper is structured as follows. Section 2 presents the specification of the total
order broadcast problem (also known as atomic broadcast). Section 3 extends the
specification by considering the characteristics of destination groups (e.g., single
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Table I. Notation.

M set of all valid messages.
Π set of all processes in the system.

sender(m) sender of message m.
Dest(m) set of destination processes for message m.
Πsender set of all sending processes in the system.
Πdest set of all destination processes in the system.

versus multiple groups). In Section 4, we define five classes of total order broad-
cast algorithms, according to the way messages are ordered: communication history,
privilege-based, moving sequencer, fixed sequencer, and destinations agreement. Sec-
tion 5 discusses system model issues in relation to failures. Section 6 presents the
main mechanisms on which total order broadcast algorithms rely to ensure fault-
tolerance. Section 7 gives a broad survey of total order broadcast algorithms found
in the literature. Algorithms are grouped along their respective classes, and we dis-
cuss their principal characteristics. Section 8 discusses some other issues of interest
that are related to total order broadcast. Finally, Section 9 concludes the paper.

2. SPECIFICATION OF TOTAL ORDER BROADCAST

In this section, we give the formal specification of the total order broadcast prob-
lem. As there are many variants of the problem, we present here the simplest
specification, and discuss other variants in Section 3.

2.1 Notation

Table I summarizes some of the notations used throughout the paper. M is the
set containing all possible valid messages. Π denotes the set of all processes in the
system. Given some arbitrary message m, sender(m) designates the process in Π
from which m originates, and Dest(m) denotes the set of all destination processes
for m.

In addition, Πsender is the set of all processes in Π that can potentially send some
valid message.

Πsender = {p | p can send some message m ∈M} (1)

Likewise, Πdest is the set of all potential destinations of valid messages.

Πdest
def=

⋃
m∈M

Dest(m) (2)

2.2 Process Failures

The specification of total order broadcast requires the definition of the notion of a
correct process. The following set of process failure classes are commonly consid-
ered:

—Crash failures. When a process crashes, it ceases functioning forever. This means
that it stops performing any activity including sending, transmitting, or receiving
any message.

—Omission failures. When a process fails by omission, it omits performing some
actions such as sending or receiving a message.

c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004
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—Timing failures. A timing failure occurs when a process violates some of the
timing assumptions of the system model (details in Sect. 5.1). Obviously, this
type of failures does not exist in asynchronous system models, because of the
absence of timing assumptions in such systems.

—Byzantine failures. Byzantine failures are the most general type of failures. A
Byzantine component is allowed any arbitrary behavior. For instance, a faulty
process may change the content of messages, duplicate messages, send unsolicited
messages, or even maliciously try to break down the whole system.

A correct process is defined as a process that never expresses any of the faulty
behaviors mentioned above.

2.3 Basic Specification of Total Order Broadcast

We can now give the simplest specification of total order broadcast. Formally, the
problem is defined in terms of two primitives, which are called TO-broadcast(m)
and TO-deliver(m), where m ∈ M is some message. When a process p executes
TO-broadcast(m) (respectively TO-deliver(m)), we may say that p TO-broadcasts
m (respectively TO-delivers m). We assume that every message m can be uniquely
identified, and carries the identity of its sender, denoted by sender(m). In addition,
we assume that, for any given message m and any run, TO-broadcast(m) is executed
at most once. In this context, total order broadcast is defined by the following
properties [Hadzilacos and Toueg 1994; Chandra and Toueg 1996]:

(Validity) If a correct process TO-broadcasts a message m, then it eventually
TO-delivers m.

(Uniform Agreement) If a process TO-delivers a message m, then all correct
processes eventually TO-deliver m.

(Uniform Integrity) For any message m, every process TO-delivers m at most
once, and only if m was previously TO-broadcast by sender(m).

(Uniform Total Order) If processes p and q both TO-deliver messages m and
m′, then p TO-delivers m before m′ if and only if q TO-delivers m before m′.

A broadcast primitive that satisfies all these properties except Uniform Total
Order (i.e., that provides no ordering guarantee) is called a reliable broadcast.

Validity and Uniform Agreement are liveness properties. Roughly speaking, this
means that at any point in time, no matter what has happened up to that point,
it is still possible for the property to eventually hold [Charron-Bost et al. 2000].
Uniform Integrity and Uniform Total Order are safety properties. This means that,
if at some point in time the property does not hold, no matter what happens later,
the property cannot eventually hold.

2.4 Non-Uniform Properties

In the above definition of total order broadcast, the properties of Agreement and
Total Order are uniform. This means that these properties do not only apply to
correct processes, but also to faulty ones. For instance, with Uniform Total Order,
a process is not allowed to deliver any message out of order, even if it is faulty.
Conversely, (non-uniform) Total Order applies only to correct processes, and hence
does not put any restriction on the behavior of faulty processes.
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Fig. 1. Violation of Uniform Agreement (example)

Uniform properties are strong guarantees that might make life easier for appli-
cation developers. Not all applications need uniformity, however, and enforcing
uniformity often has a cost. For this reason, it is also important to consider weaker
problems specified using non-uniform properties, though non-uniform properties
may lead to inconsistencies at the application level. However, an application might
protect itself from non-uniformity by voting (e.g., given an application that collects
replies from the destinations of a total order broadcast, the application may vote
on the replies received, and consider a reply to be effective only after receiving the
same reply from a majority). Non-uniform Agreement and Total Order are specified
as follows:

(Agreement) If a correct process TO-delivers a message m, then all correct
processes eventually TO-deliver m.

(Total Order) If two correct processes p and q both TO-deliver messages m
and m′, then p TO-delivers m before m′ if and only if q TO-delivers m before m′.

The combinations of uniform and non-uniform properties define four different
specifications to the problem of fault-tolerant total order broadcast. Those def-
initions constitute a hierarchy of problems, as discussed extensively by Wilhelm
and Schiper [1995]. However, for simplicity, we say that a total order broadcast
algorithm is uniform when it satisfies both Uniform Agreement and Uniform To-
tal Order, and we say that an algorithm is non-uniform when it enforces neither
(i.e., only their non-uniform counterparts). We give no special name to the two
hybrid definitions.

Figure 1 illustrates a violation of the Uniform Agreement property with a simple
example. In this example, the sequencer p1 sends a message m using total order
broadcast. It first assigns a sequence number to m, then sends m to all processes,
and finally delivers m. Process p1 crashes shortly afterwards, and no other process
receives m (due to message loss). As a result no correct process (e.g., p2) will
ever be able to deliver m. Uniform Agreement is violated, but not (non-uniform)
Agreement: no correct process ever delivers m (p1 is not correct).

Note 1 Byzantine failures and uniformity. Algorithms tolerant to Byzantine fail-
ures can guarantee none of the uniform properties given in Sect. 2.3. This is under-
standable as no behavior can be enforced on Byzantine processes. In other words,
nothing can prevent a Byzantine process from (1) delivering a message more than
once (violates Integrity), (2) delivering a message that is not delivered by other
processes (violates Agreement), or (3) delivering two messages in the wrong order
(violates Total Order).
c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004
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Fig. 2. Contamination of correct processes (p1, p2) by a message (m4) based on an inconsistent
state (p3 delivered m3 but not m2).

Reiter [1994] proposes a more useful definition of uniformity for Byzantine sys-
tems. He distinguishes between crashes and Byzantine failures. He says that a
process is honest if it behaves according to its specification, and corrupt otherwise
(i.e., Byzantine), where honest processes can also fail by crashing. In this context,
uniform properties are those which are enforced by all honest processes, regardless
whether they are correct or not. This definition is more sensible that the stricter
definition of Sect. 2.3, as nothing is required from corrupt processes.

Note 2 Safety/liveness and uniformity. Charron-Bost et al. [2000] have shown
that, in the context of failures, some non-uniform properties that are commonly
believed to be safety properties are actually liveness properties. They have proposed
refinements of the concept of safety and liveness that avoid the counterintuitive
classification.

2.5 Contamination

The problem of contamination comes from the observation that, even with the
strongest specification (i.e., with Uniform Agreement and Uniform Total Order),
total order broadcast does not prevent a faulty process p from reaching an incon-
sistent state before it crashes. This is a serious problem because p can “legally”
TO-broadcast a message based on this inconsistent state, and thus contaminate
correct processes [Gopal and Toueg 1991; Anceaume and Minet 1992; Anceaume
1993b; Hadzilacos and Toueg 1994].

2.5.1 Illustration. Figure 2 illustrates an example [Charron-Bost et al. 1999;
Hadzilacos and Toueg 1994] in which an incorrect process contaminates the correct
processes. Process p3 delivers messages m1 and m3, but not m2. So, its state is
inconsistent when it multicasts m4 to the other processes before crashing. The
correct processes p1 and p2 deliver m4, thus becoming contaminated by the incon-
sistent state of p3. It is important to stress again that the situation depicted in
Figure 2 satisfies even the strongest specification presented so far.

2.5.2 Specification. It is possible to extend or reformulate the specification of
total order broadcast in such a way that it disallows contamination. The solution
consists in preventing any process from delivering a message that may lead to an
inconsistent state.

Aguilera, Delporte-Gallet et al. [2000] propose a reformulation of Uniform Total
Order which, unlike the traditional definition, is not prone to contamination as it
does not allow gaps in the delivery sequence:

c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004
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(Gap-free Uniform Total Order) If some process delivers message m′ after
message m, then a process delivers m′ only after it has delivered m.

As an alternative, an older formulation uses the history of delivery and requires
that, for any two given processes, the history of one is a prefix of the history of
the other. This is expressed by the following property [Anceaume and Minet 1992;
Cristian et al. 1994; Keidar and Dolev 2000]:

(Prefix Order) For any two processes p and q, either hist(p) is a prefix of hist(q)
or hist(q) is a prefix of hist(p), where hist(p) and hist(q) are the sequences of
messages delivered by p and q, respectively.

Note 3. The specification of total order broadcast using Prefix Order precludes
the dynamic join of processes (e.g., with a group membership). This can be circum-
vented, but the resulting property is much more complicated. For this reason, the
simpler alternative proposed by Aguilera, Delporte-Gallet et al. [2000] is preferred.

Note 4 Byzantine failures and contamination. Contamination cannot be avoided
in the face of arbitrary failures. This is because a faulty process may be inconsis-
tent even if it delivers all messages correctly. It may then contaminate the other
processes by broadcasting a bogus message that seems correct to every other pro-
cess [Hadzilacos and Toueg 1994].

2.6 Other Ordering Properties

The Total Order property (see Sect. 2.3), restricts the order of message delivery
based solely on the destinations, that is, the property is independent of the sender
processes. The definition can be further restricted by two properties related to the
senders, namely, FIFO Order and Causal Order.

2.6.1 FIFO order. Total Order alone does not guarantee that messages are de-
livered in the order in which they are sent (i.e., in first-in/first-out order). Yet, this
property is sometimes required by applications in addition to Total Order. The
property is called FIFO Order:

(FIFO Order) If a correct process TO-broadcasts a message m before it TO-
broadcasts a message m′, then no correct process delivers m′ unless it has
previously delivered m.

2.6.2 Causal order. The notion of causality in the context of distributed systems
was first formalized by Lamport [1978b]. It is based on the relation “precedes”3

(denoted by −→), defined in his seminal paper and extended later in Lamport
[1986b]. The relation “precedes” is defined as follows.

Definition 1. Let ei and ej be two events in a distributed system. The transitive
relation ei −→ ej holds if any one of the following three conditions is satisfied:

(1) ei and ej are two events on the same process, and ei comes before ej ;
(2) ei is the sending of a message m by one process and ej is the receipt of m by

another process; or,

3Lamport initially called the relation “happened before” [Lamport 1978b], but he renamed it
“precedes” in later work [Lamport 1986b; 1986a].
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(3) There exists a third event ek such that, ei −→ ek and ek −→ ej (transitivity).

This relation defines an irreflexive partial ordering on the set of events. The
causality of messages can be defined by the “precede” relationship between their
respective sending events. More precisely, a message m is said to precede a mes-
sage m′ (denoted m ≺ m′) if the sending event of m precedes the sending event
of m′.

The property of causal order for broadcast messages is defined as follows [Hadzi-
lacos and Toueg 1994]:

(Causal Order) If the broadcast of a message m causally precedes the broadcast
of a message m′, then no correct process delivers m′ unless it has previously
delivered m.

Hadzilacos and Toueg [Hadzilacos and Toueg 1994] also prove that the property
of Causal Order is equivalent to combining the property of FIFO Order with the
following property of Local Order.

(Local Order) If a process broadcasts a message m and a process delivers m
before broadcasting m′, then no correct process delivers m′ unless it has previ-
ously delivered m.

Note 5 State-machine approach. A total order broadcast ensuring causal order
is, for instance, required by the state machine approach [Lamport 1978a; Schneider
1990]. However, we think that some applications may require causality, some others
not.

2.6.3 Source ordering. Some papers (e.g., [Garcia-Molina and Spauster 1991;
Jia 1995]) make a distinction between single source and multiple source ordering.
These papers define single source ordering algorithms as algorithms that ensure
total order only if a single process broadcasts messages. This is a special case
of FIFO broadcast, easily solved using sequence numbers. Source ordering is not
particularly interesting in itself, and hence we do not discuss the issue further in
this paper.

3. PROPERTIES OF DESTINATION GROUPS

So far, we have presented the problem of total order broadcast, wherein messages
are sent to all processes in the system. In other words, all valid messages are
addressed to the entire system:

∀m ∈M (Dest(m) = Π) (3)

A multicast primitive is more general in the sense that it can send messages to any
chosen subset of the processes. In other words, we can have two valid messages sent
to different destinations sets, or the destination set may not include the message
sender:

∃m ∈M (sender(m) 6∈ Dest(m)) ∧ ∃mi,mj ∈M (Dest(mi) 6= Dest(mj)) (4)

Although in wide use, the distinction between broadcast and multicast is not
precise enough. This leads us to discuss a more relevant distinction, namely between
closed versus open groups, and between single versus multiple groups.

c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004
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3.1 Closed versus Open Groups

In the literature, many algorithms are designed with the implicit assumption that
messages are sent within a group of processes. This originally comes from the fact
that early work on this topic was done in the context of parallel machines [Lamport
1978a] or highly available storage systems [Cristian et al. 1995]. However, most
distributed applications are now developed by considering more open interaction
models, such as the client-server model, N -tier architectures, or publish/subscribe.
For this reason, it is necessary for a process to be able to multicast messages to
a group to which it does not belong. Consequently, we consider it an important
characteristic of algorithms to be easily adaptable to open interaction models.

3.1.1 Closed group algorithms. In closed groups algorithms, the sending process
is always one of the destination processes:

∀m ∈M (sender(m) ∈ Dest(m)) (5)

So, these algorithms do not allow external processes (processes that are not mem-
bers of the group) to multicast messages to the destination group.

3.1.2 Open group algorithms. Conversely, open group algorithms allow any ar-
bitrary process in the system to multicast messages to a group, whether or not the
sender process belongs to the destination group. More precisely, there are some
valid messages the sender of which is not one of the destinations:

∃m ∈M (sender(m) 6∈ Dest(m)) (6)

Open group algorithms are more general than closed group algorithms: the former
can be used with closed groups while the opposite is not true.

3.2 Single versus Multiple Groups

Most algorithms presented in the literature assume that all messages are multicast
to one single group of destination processes. Nevertheless, a few algorithms are
designed to support multiple groups. In this context, we consider three situations:
single group, multiple disjoint groups, and multiple overlapping groups. We also
discuss how useless trivial solutions can be ruled out with the notion of minimality.
Since the ability to multicast messages to multiple destination sets is critical for
certain classes of applications, we regard this ability as an important characteristic
of an algorithm.

3.2.1 Single group ordering. With single group ordering, all messages are mul-
ticast to one single group of destination processes. As mentioned above, this is
the model considered by a vast majority of the algorithms that are studied in this
paper. Single group ordering can be defined by the following property:4

∀mi,mj ∈M (Dest(mi) = Dest(mj )) (7)

4This definition and the following ones are static. They do not take into account the fact that
processes can join groups and leave groups. Nevertheless, we prefer these simple static definitions,
rather than more complex ones that would take dynamic destination groups into account.
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3.2.2 Multiple groups ordering (disjoint). In some applications, the restriction
to one single destination group is not acceptable. For this reason, algorithms have
been proposed that support multicasting messages to multiple groups. The simplest
case occurs when the multiple groups are disjoint groups. More precisely, if two
valid messages have different destination sets, then these sets do not intersect:

∀mi,mj ∈M (Dest(mi) 6= Dest(mj ) ⇒ Dest(mi) ∩Dest(mj ) = ∅) (8)

Adapting algorithms designed for one single group to work in a system with
multiple disjoint groups is almost trivial.

3.2.3 Multiple groups ordering (overlapping). In case of multiple groups order-
ing, it can happen that groups overlap. This can be expressed by the fact that some
pairs of valid messages have different destination sets with a non-empty intersection:

∃mi,mj ∈M (Dest(mi) 6= Dest(mj ) ∧Dest(mi) ∩Dest(mj ) 6= ∅) (9)

The real difficulty of designing total order multicast algorithms for multiple
groups arises when the groups can overlap. This is easily understood when one
considers the problem of ensuring total order at the intersection of groups. In this
context, Hadzilacos and Toueg [1994] give three different properties for total order
in the presence of multiple groups: Local Total Order, Pairwise Total Order, and
Global Total Order.5

(Local Total Order) If correct processes p and q both TO-deliver messages m
and m′ and Dest(m) = Dest(m ′), then p TO-delivers m before m′ if and only
if q TO-delivers m before m′.

Local Total Order is the weakest of the three properties. It requires that total
order be enforced only for messages that are multicast within the same group.

Note also that multiple unrelated groups can be considered as disjoint groups
even if they overlap. Indeed, destination processes belonging to the intersection of
two groups can be seen as having two distinct identities, one for each group. It
follows that an algorithm for distinct multiple groups can be trivially adapted to
support overlapping groups with Local Total Order.

As pointed out by Hadzilacos and Toueg [1994], the total order multicast prim-
itive of the first version of Isis [Birman and Joseph 1987] guaranteed Local Total
Order.6

(Pairwise Total Order) If two correct processes p and q both TO-deliver mes-
sages m and m′, then p TO-delivers m before m′ if and only if q TO-delivers
m before m′.

Pairwise Total Order is strictly stronger than Local Total Order. Most notably,
it requires that total order be enforced for all messages delivered at the intersection
of two groups.

5The ordering properties cited here are subject to contamination, see Sect. 2.5. Contamination
can be avoided by formulating these properties similarly to the Gap-free Uniform Total Order
property.
6It should be noted that, if the transformation is trivial from a conceptual point of view, the
implementation was certainly a totally different matter, especially in the mid-80’s.
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As far as we know, there is no straightforward algorithm to transform a total order
multicast algorithm that enforces Local Total Order into one that also guarantees
Pairwise Total Order (except for trivial solutions; see Sect. 3.2.4). Hadzilacos and
Toueg [1994] observe that, for instance, Pairwise Total Order is the order property
guaranteed by the algorithm of Garcia-Molina and Spauster [1989; Garcia-Molina
and Spauster [1991].

Pairwise Total Order alone may lead to unexpected situations when there are
three or more overlapping destination groups. For instance, Fekete [1993] illustrates
the problem with the following scenario. Consider three processes pi, pj , pk, and
three messages m1,m2,m3 that are respectively sent to three different overlapping
groups G1 = {pi, pj}, G2 = {pj , pk}, and G3 = {pk, pi}. Pairwise Total Order
allows the following histories on pi, pj , pk:

pi : · · ·TO-deliver(m3) −→ · · · −→ TO-deliver(m1) · · ·
pj : · · ·TO-deliver(m1) −→ · · · −→ TO-deliver(m2) · · ·
pk : · · ·TO-deliver(m2) −→ · · · −→ TO-deliver(m3) · · ·

This situation is prevented by the specification of Global Total Order [Hadzilacos
and Toueg 1994], which is defined as follows:

(Global Total Order) The relation < is acyclic, where < is defined as follows:
m < m′ if and only if any correct process delivers m and m′, in that order.

Note 6. Fekete [1993] gives another specification for total order multicast which
also prevents the scenario mentioned above. The specification, called AMC, is
expressed as an I/O automaton [Lynch and Tuttle 1989; Lynch 1996] and uses the
notion of pseudo-time to impose an order on the delivery of messages.

3.2.4 Minimality and trivial solutions. Any algorithm that solves the problem
of total order broadcast in a single group can easily be adapted to solve the problem
for multiple groups with the following approach:

(1) form a super-group with the union of all destination groups;
(2) whenever a message m is multicast to a group, multicast it to the super-group,

and
(3) processes not in Dest(m) discard m.

The problem with this approach is its inherent lack of scalability. Indeed, in very
large distributed systems, even if the destination groups are individually small,
their union is likely to cover a very large number of processes.

To avoid this sort of solution, Guerraoui and Schiper [2001] require the implemen-
tation of total order multicast for multiple groups to satisfy the following minimality
property:

(Strong Minimality) The execution of the algorithm implementing total or-
der multicast for a message m involves only sender(m), and the processes in
Dest(m).

This property is often too strong: it disallows many interesting algorithms that
use a small number of external processes for message ordering (e.g., algorithms
which disseminate messages along some propagation tree). A weaker property
would allow an algorithm to involve a small set of external processes.
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3.2.5 Transformation algorithm. Delporte-Gallet and Fauconnier [2000] pro-
pose a generic algorithm that transforms a total order broadcast algorithm for
a single closed group into one for multiple groups. The algorithm splits destination
groups into smaller entities and supports multiple groups with Strong Minimality.

3.3 Dynamic Groups

The specification in Sect. 2 is the standard specification of total order broadcast
in a static system, that is, a system in which all processes are created at system
initialization. In practice it is, however, often desirable that processes join and
leave groups at runtime.

A dynamic group is a group of processes with a membership that can change
during the computation: processes can dynamically join or leave the group, or can
be removed from the group (removal in the face of failures is discussed later in
Sect. 6.2). With a dynamic group, the successive memberships of the group are
called the views of the group [Chockler, Keidar, and Vitenberg 2001].

With dynamic groups, the basic communication abstraction is called view syn-
chrony, which can be seen as the counterpart of reliable broadcast in static systems.
Reliable broadcast is defined by the Validity, Agreement and Uniform Integrity
properties of Sect. 2. Roughly speaking, View Synchrony adopts a similar defini-
tion while relaxing the Agreement property.7 Total order broadcast in a system
with dynamic groups can thus be specified as view synchrony plus a property of
total order.

3.4 Partitionable Groups

In a wide-area network, the network can temporarily become partitioned; that is,
some of the nodes can no longer communicate, as all links between them are broken.
When this happens, destination groups can be split into several isolated subgroups
(or partitions). There are two main approaches to coping with partitioned groups:
(1) the primary partition membership, and (2) the partitionable membership.

With the primary partition membership, one of the partitions is recognized as
the primary partition.8 Only processes that belong to the primary partition are
allowed to deliver messages, while the other processes must wait until they can
merge back with the primary partition.

In contrast, the partitionable group membership allows all processes to deliver
messages, regardless of the partition they belong to. Doing so requires adapting
the specification of total order broadcast. Chockler, Keidar, and Vitenberg [2001]
define three order properties in a partitionable system: Strong Total Order (mes-
sages are delivered in the same order by all processes that deliver them), Weak
Total Order (the order requirement is restricted within a view), and Reliable Total
Order (extends the Strong Total Order property to require processes to deliver a
prefix of a common sequence of messages within each view). In other words, with

7Discussing this primitive in detail is beyond the scope of this survey (see paper by Chockler,
Keidar, and Vitenberg [2001] for details).
8A simple way to do this is to recognize as primary partition only one which retains a majority
of the processes from the previous view. This does not ensure that a primary partition always
exists, but it guarantees that, if one exists, it is unique.
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14 · X. Défago et al.

Fig. 3. Classes of total order broadcast algorithms.

only slight differences, Strong Total Order corresponds to the Uniform Total Order
property of Sect. 2.3, and Reliable Total Order to the Prefix Ordering property of
Sect. 2.5. Other properties, such as Validity, are also defined differently in partition-
able systems. This is explained in considerably more detail by Chockler, Keidar,
and Vitenberg [2001] and Fekete et al. [2001].

4. MECHANISMS FOR MESSAGE ORDERING

In this section, we propose a classification of total order broadcast algorithms in
the absence of failures. The first question that we ask is: “who builds the order?”
More specifically, we are interested in the entity which generates the information
necessary for defining the order of messages (e.g., timestamp or sequence number).

We identify three different roles that a participating process can take with respect
to the algorithm: sender, destination, or sequencer. A sender process is a process ps

from which a message originates (i.e., ps ∈ Πsender ). A destination process is a
process pd to which a message is sent (i.e., pd ∈ Πdest). Finally, a sequencer process
is not necessarily a sender or a destination, but is somehow involved in the ordering
of messages. A given process may simultaneously take several roles (e.g., sender
and sequencer and destination). However, we represent these roles separately as
they are conceptually different.

According to the three different roles mentioned above, we define three basic
classes for total order broadcast algorithms, depending whether the order is respec-
tively built by a sequencer, the sender, or destination processes. Among algorithms
of the same class, significant differences remain. To account for this problem, we
introduce a further division, leading to five subclasses in total. These classes are
named as follows (see Fig. 3): fixed sequencer, moving sequencer, privilege-based,
communication history, and destinations agreement. Privilege-based and moving
sequencer algorithms are commonly referred to as token-based algorithms.

The terminology defined in this paper is partly borrowed from other authors. For
instance, “communication history” and “fixed sequencer” were proposed by Cristian
and Mishra [1995]. The term “privilege-based” was suggested by Dahlia Malkhi in
a private discussion. Finally, Le Lann and Bres [1991] group algorithms into three
classes based on where the order is built. Unfortunately, their definition of classes
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is specific to a client-server architecture.
In the remainder of this section, we present each of the five classes and illustrate

each class with a simple algorithm. The algorithms are merely presented for the
purpose of illustrating the corresponding category, and should not be regarded as
full-fledged working examples. Although inspired by existing algorithms, they are
largely simplified, and none of them is fault-tolerant.

Note 7 Atomic blocks. The algorithms are written in pseudocode, with the as-
sumption that blocks associated with a when-clause are executed atomically with
respect to two when clauses of the same process, except when a process is blocked
on a wait statement. This assumption greatly simplifies the expression of the algo-
rithms with respect to concurrency.

4.1 Fixed Sequencer

In a fixed sequencer algorithm, one process is elected as the sequencer and is re-
sponsible for ordering messages. The sequencer is unique, and the responsibility is
not normally transfered to another processes (at least in the absence of failure).

The approach is illustrated in Figure 4 and Figure 5. One specific process takes
the role of a sequencer and builds the total order. To broadcast a message m, a
sender sends m to the sequencer. Upon receiving m, the sequencer assigns it a
sequence number and relays m with its sequence number to the destinations. The
latter then deliver messages according to the sequence numbers. This algorithm
does not tolerate the failure of the sequencer.

In fact, three variants of fixed sequencer algorithms exist. We call these three vari-
ants “UB” (unicast-broadcast), “BB” (broadcast-broadcast), and “UUB” (unicast-
unicast-broadcast), taking inspiration from Kaashoek and Tanenbaum [1996].

In the first variant, called “UB” (see Fig. 6(a)), the protocol consists of a unicast
to the sequencer, followed by a broadcast from the sequencer. This variant generates
few messages, and it is the simplest of the three approaches. It is, for instance,
adopted by Navaratnam et al. [1988], and corresponds to the algorithm in Figure 5.

In the second variant, called “BB” (Fig. 6(b)), the protocol consists of a broadcast
to all destinations plus the sequencer, followed by a second broadcast from the
sequencer. This generates more messages than the previous approach, except in
broadcast networks. However, it can reduce the load on the sequencer, and makes
it easier to tolerate the crash of the sequencer. Isis (sequencer) [Birman et al. 1991]
is an example of the second variant.

The third variant, called “UUB” (Fig. 6(c)), is less common than the others. In
short, the protocol consists of the following steps. The sender requests a sequence
number from the sequencer (unicast). The sequencer replies with a sequence num-
ber (unicast). Then, the sender broadcasts the sequenced message to the destination
processes.9

4.2 Moving Sequencer

Moving sequencer algorithms are based on the same principle as fixed sequencer
algorithms, but allow the role of sequencer to be transferred between several pro-

9The protocol to tolerate failures is complex.
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Fig. 4. Fixed sequencer algorithms.

Sender:
procedure TO-broadcast(m) { To TO-broadcast a message m }

send (m) to sequencer

Sequencer:
Initialization:

seqnum := 1
when receive (m)

sn(m) := seqnum
send (m, sn(m)) to all
seqnum := seqnum + 1

Destinations (code of process pi):
Initialization:

nextdeliverpi := 1
pendingpi := ∅

when receive (m, seqnum)
pendingpi := pendingpi ∪ {(m, seqnum)}
while ∃(m′, seqnum′) ∈ pendingpi : seqnum′ = nextdeliverpi do

deliver (m′)
nextdeliverpi := nextdeliverpi + 1

Fig. 5. Simple fixed sequencer algorithm.

(a) variant UB (b) variant BB (c) variant UUB

Fig. 6. Common variants of fixed sequencer algorithms.

cesses. The motivation is to distribute the load among them. This is illustrated
in Figure 7, where the sequencer is chosen among several processes. The code exe-
cuted by each process is, however, more complex than with a fixed sequencer, which
explains the popularity of the latter approach. Notice that, with moving sequencer
algorithms, the roles of sequencer and destination processes are normally combined.
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Fig. 7. Moving sequencer algorithms.

Sender:
procedure TO-broadcast(m) { To TO-broadcast a message m }

send (m) to all sequencers

Sequencers (code of process si):
Initialization:

receivedsi := ∅
if si = s1 then

token.seqnum := 1
token.sequenced := ∅
send token to s1

when receive m
receivedsi := receivedsi ∪ {m}

when receive token from si−1

for each m′ in receivedsi \ token.sequenced do
send (m′, token.seqnum) to destinations
token.seqnum := token.seqnum + 1
token.sequenced := token.sequenced ∪ {m′}

send token to si+1 (mod n)

Destinations (code of process pi):
Initialization:

nextdeliverpi := 1
pendingpi := ∅

when receive (m, seqnum)
pendingpi := pendingpi ∪ {(m, seqnum)}
while ∃(m′, seqnum′) ∈ pendingpi s.t. seqnum′ = nextdeliverpi do

deliver (m′)
nextdeliverpi := nextdeliverpi + 1

Fig. 8. Simple moving sequencer algorithm.

Figure 8 shows the principle of moving sequencer algorithms. To broadcast a
message m, a sender sends m to the sequencers. Sequencers circulate a token mes-
sage that carries a sequence number and a list of all messages to which a sequence
number has been attributed (i.e., all sequenced messages). Upon reception of the
token, a sequencer assigns a sequence number to all received yet unsequenced mes-
sages. It sends the newly sequenced messages to the destinations, updates the
token, and passes it to the next sequencer.

Note 8. Similar to fixed sequencer algorithms, it is possible to develop a moving
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18 · X. Défago et al.

sequencer algorithm according to one of three variants. However, the difference
between the variants is not as clearcut as it is for a fixed sequencer. It turns out
that all of the moving sequencer algorithms surveyed follow the equivalent of the
fixed sequencer variant BB. Hence, we do not discuss this issue any further.

Note 9. As mentioned, the main motivation for using a moving sequencer is to
distribute the load among several processes, thus avoiding the bottleneck caused
by a single process. This is illustrated in several studies (e.g., [Cristian et al. 1994;
Urbán et al. 2000]). One could then wonder when a fixed sequencer algorithm
should be preferred to a moving sequencer algorithm. There are, in fact, at least
three possible reasons. First, fixed sequencer algorithms are considerably simpler,
leaving less room for implementation errors. Second, the latency of fixed sequencer
algorithms is often better, as shown by Urbán et al. [2000]. Third, it is often
the case that some machines are more reliable, more trusted, better connected, or
simply faster than others. When this is the case, it makes sense to use one of them
as a fixed sequencer (see MTP in Sect. 7.1.2).

4.3 Privilege-Based

Privilege-based algorithms rely on the idea that senders can broadcast messages
only when they are granted the privilege to do so. Figure 9 illustrates this class
of algorithms. The order is defined by the senders when they broadcast their
messages. The privilege to broadcast (and order) messages is granted to only one
process at a time, but this privilege circulates from process to process among the
senders. In other words, due to the arbitration between senders, building the total
order requires solving the problem of FIFO broadcast (easily solved with sequence
numbers at the sender), and ensuring that passing the privilege to the next sender
does not violate this order.

Figure 10 illustrates the principle of privilege-based algorithms. Senders circulate
a token message that carries a sequence number to be used when broadcasting the
next message. When a process wants to broadcast a message m, it must first wait
until it receives the token message. Then, it assigns a sequence number to each of
its messages and sends them to all destinations. Following this, the sender updates
the token and sends it to the next sender. Destination processes deliver messages
in increasing sequence numbers.

Note 10. In privilege-based algorithms, senders usually need to know each other
in order to circulate the privilege. This constraint makes privilege-based algorithms
poorly suited to open groups, in which there is no fixed and previously known set
of senders.

Note 11. In synchronous systems, privilege-based algorithms are based on the
idea that each sender process is allowed to send messages only during predetermined
time slots. These time slots are attributed to each process in such a way that no two
processes can send messages at the same time. By ensuring that the communication
medium is accessed in mutual exclusion, the total order is easily guaranteed. The
technique is also known as time division multiple access (TDMA).

Note 12. It is tempting to consider that privilege-based and moving sequencer
algorithms are equivalent, since both rely on a token passing mechanism. However,
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Fig. 9. privilege-based algorithms.

Senders (code of process si):
Initialization:

tosendsi := ∅
if si = s1 then

token.seqnum := 1
send token to s1

procedure TO-broadcast(m) { To TO-broadcast a message m }
tosendsi := tosendsi ∪ {m}

when receive token
for each m′ in tosendsi do

send (m′, token.seqnum) to destinations
token.seqnum := token.seqnum + 1

tosendsi := ∅
send token to si+1 (mod n)

Destinations (code of process pi):
Initialization:

nextdeliverpi := 1
pendingpi := ∅

when receive (m, seqnum)
pendingpi := pendingpi ∪ {(m, seqnum)}
while ∃(m′, seqnum′) ∈ pendingpi s.t. seqnum′ = nextdeliverpi do

deliver (m′)
nextdeliverpi := nextdeliverpi + 1

Fig. 10. Simple privilege-based algorithm.

they differ in one significant aspect: the total order is built by senders in privilege-
based algorithms, whereas it is built by sequencers in moving sequencer algorithms.
This has at least two major consequences. First, moving sequencer algorithms are
easily adapted to open groups. Second, in privilege-based algorithms the passing of
the token is necessary to ensure the liveness of the algorithm, whereas with moving
sequencer algorithms, it is mostly used for improving performance, e.g., by doing
load balancing.

Note 13. It is difficult to ensure fairness with privilege-based algorithms. Indeed,
if a process has a very large number of messages to broadcast, it could keep the token
for an arbitrarily long time, thus preventing other processes from broadcasting their
own messages. To overcome this problem, algorithms often enforce an upper limit
on the number of messages and/or the time that some process can keep the token.
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Once the limit is passed, the process is compelled to release the token, regardless
of the number of messages remaining to be broadcast.

4.4 Communication History

In communication history algorithms, as in privilege-based algorithms, the delivery
order is determined by the senders. However, in contrast to privilege-based algo-
rithms, processes can broadcast messages at any time, and total order is ensured
by delaying the delivery of messages. The messages usually carry a (physical or
logical) timestamp. The destinations observe the messages generated by the other
processes and their timestamps, i.e., the history of communication in the system,
to learn when delivering a message will no longer violate the total order.

There are two fundamentally different variants of communication history algo-
rithms. In the first variant, called causal history, communication history algorithms
use a partial order defined by the causal history of messages and transform this par-
tial order into a total order. Concurrent messages are ordered according to some
predetermined function. In the second variant, known as deterministic merge, pro-
cesses send messages timestamped independently (thus not reflecting causal order)
and delivery takes place according to a deterministic policy of merging the streams
of messages coming from each process.

Figure 11 illustrates a typical communication history algorithm of the first vari-
ant. The algorithm, inspired by Lamport [1978b], works as follows. The algorithm
uses logical clocks [Lamport 1978b] to “timestamp” each message m with the logical
time of the TO-broadcast(m) event, denoted ts(m). Messages are then delivered in
the order of their timestamps. However, we can have two messages m and m′ with
the same timestamp. To arbitrate between these messages, the algorithm uses the
lexicographical order on the identifiers of sending processes. In Figure 11, we refer
to this order as the (ts(m), sender(m)) order, where sender(m) is the identifier of
the sender process.

A simple example of the second variant is illustrated in Figure 12. The algorithm
assumes that communication is FIFO and that sender processes broadcast messages
at the same rate. Destination processes execute an infinite loop where they accept,
in a round-robin fashion, a single message from each sender process. Aguilera and
Strom [2000] (Sect. 7.4.9), for instance, propose a more elaborate algorithm based
on the same principle.

Note 14. The algorithms of Figure 11 and Figure 12 are not live. Indeed, con-
sider the algorithm of Figure 11 and a scenario where a single process p broadcasts
a single message m while no other process ever broadcasts any message. According
to the algorithm in Figure 11, a process q can deliver m only after it has received,
from every process, a message that was broadcast after the reception of m. This is
of course impossible if at least one of the processes never broadcasts any message.
To overcome this problem, communication history algorithms proposed in the lit-
erature usually send empty messages when no application messages are broadcast.

Note 15. In synchronous systems, communication history algorithms rely on
synchronized clocks, and use physical timestamps (timestamps coming from the
synchronized clocks) instead of logical ones. The nature of such systems makes it
unnecessary to send empty messages in order to ensure liveness. Indeed, this can
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Senders and destinations (code of process p; assumes FIFO channels):
Initialization:

receivedp := ∅ { Messages received by process p }
deliveredp := ∅ { Messages delivered by process p }
LCp [p1 . . . pn ] := {0 , . . . , 0} { LCp [q]: logical clock of process q, as seen by p }

procedure TO-multicast(m) { To TO-multicast a message m }
LCp [p] := LCp [p] + 1
ts(m) := LCp [p]
send FIFO (m, ts(m)) to all

when receive (m, ts(m))
LCp [p] := max(ts(m),LCp [p]) + 1
LCp [sender(m)] := ts(m)
receivedp := receivedp ∪ {m}
deliverable := ∅
for each message m′ in receivedp \ deliveredp do

if ts(m′) ≤ minq∈Π LCp [q] then
deliverable := deliverable ∪ {m′}

deliver all messages in deliverable, in increasing order of (ts(m), sender(m))
deliveredp := deliveredp ∪ deliverable

Fig. 11. Simple communication history algorithm (causal history).

Senders and destinations (assumes FIFO channels):
procedure TO-multicast(m) { To TO-multicast a message m }

send FIFO (m) to all
forever do

for each process p in Πsender do
wait until receive m′ from p
deliver (m′)

Fig. 12. Simple communication history algorithm (deterministic merge).

be seen as an example of the use of time to communicate [Lamport 1984].

4.5 Destinations Agreement

In destinations agreement algorithms, as the name indicates, the delivery order
results from an agreement between destination processes (see Fig. 13). We distin-
guish three different variants of agreement: (1) agreement on a message sequence
number, (2) agreement on a message set, or (3) agreement on the acceptance of a
proposed message order.

Figure 14 illustrates an algorithm of the first variant: for each message, the
destination processes reach an agreement on a unique (yet not consecutive) sequence
number. The algorithm is adapted from Skeen’s algorithm (Sect. 7.5.1), although
it operates in a decentralized manner. Briefly, the algorithm works as follows. To
broadcast a message m, a sender sends m to all destinations. Upon receiving
m, a destination assigns it a local timestamp and sends this timestamp to all
destinations. Once a destination process has received a local timestamp for m
from all destinations, a unique global timestamp sn(m) is assigned to m, calculated
as the maximum of all local timestamps. Messages are delivered in the order of
their global timestamp, that is, a message m can only be delivered once it has
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Fig. 13. Destinations agreement algorithms.

Sender:
procedure TO-broadcast(m) { To TO-broadcast a message m }

send (m) to destinations

Destinations (code of process pi):
Initialization:

stampedpi := ∅
receivedpi := ∅
LCpi := 0 { LCpi : logical clock of process pi }

when receive m
tsi (m) := LCpi

receivedpi := receivedpi ∪ {(m, tsi (m))}
send (m, tsi (m)) to destinations
LCpi := LCpi + 1

when received (m, tsj (m)) from pj

LCpi := max(tsj ,LCpi + 1 )
if received (m, ts(m)) from all destinations then

sn(m) := max
k=1 ···n

tsk (m)

stampedpi := stampedpi ∪ {(m, sn(m))}
receivedpi := receivedpi \ {m}
deliverable := ∅
for each (m′, sn(m′)) ∈ stampedpi s.t. ∀m′′ ∈ receivedpi : sn(m′) < tsi (m

′′)
do

deliverable := deliverable ∪ {(m′, sn(m′))}
deliver all messages in deliverable in increasing order of (sn(m), sender(m))
stampedpi := stampedpi \ deliverable

Fig. 14. Simple destinations agreement algorithm.

been assigned its global timestamp sn(m) and no other undelivered message m′

can possibly receive a timestamp sn(m ′) smaller or equal to sn(m). As with the
communication history algorithm (Fig. 11), the identifier of the message sender is
used to break ties between messages with the same global timestamp.

The most representative algorithm of the second variant of agreement is the
algorithm proposed by Chandra and Toueg [1996] (Sect. 7.5.4). The algorithm
transforms total order broadcast into a sequence of consensus problems.10 Each

10 The consensus problem is informally defined as follows: every process proposes some value,
and all processes must eventually decide on the same value, which must be one (any one) of the
proposed values.
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instance of the consensus decides on a set of messages to deliver, i.e., consensus
number k allows the processes to agree on a set Msgk of messages. For k < k′, the
messages in Msgk are delivered before the messages in Msgk′

. The messages in a
set Msgk are delivered according to some predetermined order (e.g., in lexical order
of their identifiers).

With the third variant of agreement, a tentative message delivery order is first
proposed (usually by one of the destinations). Then, the destination processes
must agree either to accept or to reject the proposal. In other words, this variant
of destinations agreement relies on an atomic commitment protocol. The algorithm
proposed by Luan and Gligor [1990] typically belongs to the third variant.

Note 16. There is a thin line between the second and the third variants of agree-
ment. For instance, Chandra and Toueg’s total order broadcast algorithm relies on
consensus, as described above. However, when it is combined with the rotating co-
ordinator consensus algorithm [Chandra and Toueg 1996], the resulting algorithm
can be seen as an algorithm of the third form. Indeed, the coordinator proposes a
tentative order (given as a set of message plus message identifiers) that it tries to
validate. Thus it is important to note that two seemingly identical algorithms may
use different forms of agreement, simply because they are described at different
levels of abstraction.

4.6 Time-Free versus Time-Based Ordering

We introduce a further distinction between algorithms, orthogonal to the above
classification. The distinction is between algorithms that use physical time for
message ordering, and algorithms that do not use physical time. For instance,
in Sect. 4.4 (see Fig. 11) we presented a simple communication-history algorithm
based on logical time. It is indeed possible to design a similar algorithm that uses
the physical time (and synchronized clocks) instead.

In short, we distinguish algorithms with time-based ordering, that rely on physical
time, and algorithms with time-free ordering that do not use physical time.

5. CONCEPTUAL ISSUES RELATED TO FAILURES

In Sect. 4, we discussed ordering mechanisms, ignoring the problem of failures.
Mechanisms for fault-tolerance are discussed below in Sect. 6. However, fault-
tolerance cannot be discussed without some prior discussion on system model issues.
This is done in this section.

5.1 Synchrony and Timeliness

The synchrony of a system defines the timing assumptions that are made on the
behavior of processes and communication channels. More specifically, one usually
considers two major parameters. The first parameter is the process speed interval,
which is given by the difference between the speed of the slowest and the fastest
processes in the system. The second parameter is the communication delay, which
is given by the time elapsed between the sending and the reception of messages.
The synchrony of the system is defined by considering various bounds on these two
parameters.

c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004



24 · X. Défago et al.

A system wherein both parameters have a known upper bound is called a syn-
chronous system. At the other extreme, a system in which process speed and
communication delays are unbounded is called an asynchronous system. Between
those two extremes lie the definition of various partially synchronous system models
[Dolev et al. 1987; Dwork et al. 1988].

A third model that is considered by several total order broadcast algorithms is
the timed asynchronous model defined by Cristian and Fetzer [1999]. In its most
simple form, this model can be seen as an asynchronous model with the notion
of physical time and an assumption that “most messages are likely to reach their
destination within a known delay δ” [Cristian et al. 1997; Cristian and Fetzer 1999].

5.2 Impossibility Results

There is an important theoretical result related to the consensus problem (see
Footnote 10, p. 22). It has been proved that there is no deterministic solution to
the problem of consensus in asynchronous systems if just a single process can crash
[Fischer et al. 1985]. Dolev et al. [1987] have showed that total order broadcast can
be transformed into consensus, thus proving that the impossibility of consensus also
holds for total order broadcast. These impossibility results were the motivation to
extend the asynchronous system with the introduction of oracles to make consensus
and total order broadcast solvable.11

5.3 Oracles

In short, a (distributed) oracle can be seen as some component that processes
can query. An oracle provides information that algorithms can use to guide their
choices. The oracles most frequently considered in distributed systems are failure
detectors and coin flips. Since the information provided by these oracles make
consensus and total order broadcast solvable, they augment the power of the asyn-
chronous system model.

5.3.1 Failure detectors. A failure detector is an oracle that provides information
about the current status of processes, for instance, whether a given process has
crashed or not.

The notion of failure detectors has been formalized by Chandra and Toueg [1996].
Briefly, a failure detector is modeled as a set of distributed modules, one module FDi

attached to each process pi. Any process pi can query its failure detector module
FDi about the status of other processes.

Failure detectors may be unreliable, in the sense that they provide information
that may not always correspond to the real state of the system. For instance,
a failure detector module FDi may provide the erroneous information that some
process pj has crashed whereas, in reality, pj is correct and running. Conversely,
FDi may provide the information that a process pk is correct, while pk has actually
crashed.

11Chandra and Toueg [1996] show that consensus can be transformed into total order broadcast.
The result holds also for arbitrary failures [Chandra and Toueg 1996]. So, consensus and total
order broadcast are equivalent problems, i.e., if there exists an algorithm that solves one problem,
then it can be transformed into an algorithm that solves the other problem.
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To reflect the unreliability of the information provided by failure detectors, we
say that a process pi suspects some process pj whenever FDi , the failure detector
module attached to pi, returns the (unreliable) information that pj has crashed.
In other words, a suspicion is a belief (e.g., “pi believes that pj has crashed”) as
opposed to a known fact (e.g., “pj has crashed and pi knows that”).

There exist several classes of failure detectors, depending on how unreliable the
information provided by the failure detector can be. Classes are defined by two
properties, called completeness and accuracy, that constrain the range of possi-
ble mistakes. In this paper, we consider four different classes of failure detectors,
called P (perfect), 3P (eventually perfect), S (strong), and 3S (eventually strong).
The four classes share the same property of completeness, and only differ by their
accuracy property [Chandra and Toueg 1996]:

(Strong Completeness) Eventually every faulty process is permanently sus-
pected by all correct processes.

(Strong Accuracy) No process is suspected before it crashes. [class P]
(Eventual Strong Accuracy) There is a time after which correct processes

are not suspected by any correct process. [class 3P]
(Weak Accuracy) Some process is never suspected. [class S]
(Eventual Weak Accuracy) There is a time after which some correct process

is never suspected by any correct process. [class 3S]

A failure detector of class 3S with a majority of correct processes allows us to
solve consensus [Chandra and Toueg 1996]. Moreover, Chandra et al. [1996] have
shown that a failure detector of class 3S is the weakest failure detector that allows
us to solve consensus.12

5.3.2 Random oracle. Another approach to extend the power of the asynchronous
system model is to introduce the ability to generate random values. For instance,
processes could have access to a module that generates a random bit when queried
(i.e., a Bernoulli random variable).

This approach is used by a class of algorithms called randomized algorithms.
Those algorithms can solve problems such as consensus (and so total order broad-
cast) in a probabilistic manner. The probability that such algorithms terminate
before some time t goes to one as t goes to infinity (e.g., [Ben-Or 1983; Chor and
Dwork 1989]). Note that solving a problem deterministically and solving it with
probability 1 are not the same.

5.4 Uniformity for Free

In Sect. 2 we explained the difference between uniform and non-uniform specifica-
tions. Guerraoui [1995] shows that any algorithm that solves Consensus with 3P
(respectively S, 3S), also solves Uniform Consensus with 3P (respectively S, 3S).

It is easy to show that this result also holds for total order broadcast. As-
sume that there exists an algorithm that solves non-uniform total order broadcast

12The weakest failure detector to solve consensus is usually said to be 3W, which differs from 3S
by satisfying a weak completeness property instead of Strong Completeness. However, Chandra
and Toueg [1996] prove the equivalence of 3S and 3W.
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(non-uniform Agreement, non-uniform Total Order) with 3P, S or 3S, but does
not solve uniform total order broadcast. Using the transformation of total order
broadcast to consensus (see Sect. 5.2), this algorithm could be used to obtain an
algorithm that solves non-uniform consensus but not consensus. This is in con-
tradiction with Guerraoui [1995]. Hence we have proven that enforcing uniformity
has no additional cost in the asynchronous models with 3P, S, and 3S failure
detectors.

Note however that the result does not hold for total order broadcast algorithms
that rely on a perfect (P) or almost perfect failure detector (see Sect. 5.5).

5.5 Process Controlled Crash

Process controlled crash is the ability given to processes to kill other processes or
to commit suicide. In other words, this is the ability to artificially force the crash
of a process. Allowing process controlled crash in a system model augments its
power. Indeed, this makes it possible to transform severe failures (e.g., omission,
Byzantine) into less severe failures (e.g., crash), and to emulate an “almost perfect”
failure detector. However, this power does not come without a price.

Automatic transformation of failures. Neiger and Toueg [1990] present a tech-
nique that uses process controlled crash to transform severe failures (e.g., omission,
Byzantine) into less severe ones (i.e., crash failures). In short, the technique is
based on the idea that processes have their behavior monitored. Then, whenever a
process begins to behave incorrectly (e.g., omission, Byzantine), it is killed.13

However, this technique cannot be used in systems with lossy channels, or those
subject to partitions. Indeed, in such contexts, processes might end up killing each
other until not a single one is left alive in the system.

Emulation of an almost perfect failure detector. A perfect failure detector (P) sat-
isfies both strong completeness and strong accuracy (no process is suspected before
it crashes [Chandra and Toueg 1996]). In practical systems, perfect failure detec-
tors are extremely difficult to implement because of the difficulty in distinguishing
crashed processes from very slow ones. The idea of the emulation is simple: when-
ever a failure detector suspects a process p, then p is killed (forced to crash). Fetzer
[2003] proposes a different emulation, based on reliable watchdogs, to ensure that
no process is suspected before it crashes.

Cost of a free lunch. Process controlled crash has a price. A fault-tolerant algo-
rithm can only tolerate the crash of a bounded number of processes. In a system
with process controlled crash, this limit includes not only genuine failures, but also
failures provoked through process controlled crash. This means that each provoked
failure effectively decreases the number of genuine failures that can be tolerated,
thus degrading the actual fault-tolerance of the system.

6. MECHANISMS FOR FAULT-TOLERANCE

The total order broadcast algorithms described in Sect. 4 are not tolerant to failures:
if a single process crashes, the properties specified in Sect. 2.3 are not satisfied. To

13The actual technique is more complex than what is described here, but this gives the basic idea.
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be fault-tolerant, total order broadcast algorithms rely on various techniques pre-
sented in this section. Note that it is difficult to discuss these techniques without
getting into specific implementation details. Nevertheless, we try to keep the dis-
cussion as general as possible. Notice also that algorithms may actually combine
several of these techniques, e.g., failure detection (Sect. 6.1) with resilient commu-
nication patterns (Sect. 6.3).

6.1 Failure Detection

A recurrent pattern in all distributed algorithms is for a process p to wait for a
message from some other process q. If q crashes, process p is blocked. Failure
detection is one basic mechanism to prevent p from being blocked.

Unreliable failure detection has been formalized by Chandra and Toueg [1996] in
terms of two properties: accuracy and completeness (see Sect. 5.3.1). Completeness
prevents the blocking problem just mentioned. Accuracy prevents algorithms from
running forever without solving the problem.

Unreliable failure detectors might be too weak for some total order broadcast al-
gorithms, which require reliable failure detection information, provided by a perfect
failure detector, known as P (see Sect. 5.5).

6.2 Group Membership Service

The low-level failure detection mechanism is not the only way to address the block-
ing problem mentioned in the previous section. Blocking can also be prevented by
relying on a higher level mechanism, namely a group membership service.

A group membership service is a distributed service that is responsible for man-
aging the membership of groups of processes (see Sect. 3.4 and survey by Chockler,
Keidar, and Vitenberg [2001]). The successive memberships of a group are called
the views of the group. Whenever the membership changes, the service reports
changes to all group members, by providing them with the new view.

A group membership service usually provides strong completeness: if a process p
member of some group G crashes, the membership service provides to the surviving
members of G a new view from which p is excluded. In the primary-partition model
(see Sect. 3.4), the accuracy of failure notifications is ensured by forcing the crash of
processes that have been incorrectly suspected and excluded from the membership,
a mechanism called process-controlled crash (see Sect. 5.5).

Moreover in the primary-partition model, the group membership service provides
consistent notifications to the group members: the successive views of a group are
notified in the same order to all of its members.

To summarize, while failure detectors provide inconsistent failure notifications, a
group membership service provides consistent failure notifications. Moreover, total
order algorithms that rely on a group membership service for fault tolerance, ex-
ploit another property that is usually provided along with the membership service,
namely view synchrony (see Sect. 3.3). Roughly speaking, view synchrony ensures
that between two successive views v and v′, processes in the intersection v ∩ v′

deliver the same set of messages. Group membership service and view synchrony
have been used to implement complex group communication systems (e.g., Isis [Bir-
man and van Renesse 1994], Totem [Moser et al. 1996], Transis [Dolev and Malkhi
1994;1996; Amir et al. 1992], Phoenix [Malloth et al. 1995; Malloth 1996]).
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6.3 Resilient Communication Patterns

As shown in the previous sections, an algorithm can rely on a failure detection
mechanism or on a group membership service to avoid the blocking problem. To
be fault-tolerant, another solution is to avoid any potential blocking pattern.

Consider for example a process p waiting for n − f messages, where n is the
number of processes in the system, and f the maximum number of processes that
may crash. If all correct processes send a message to p, then the above pattern is
non-blocking. We call such a pattern a resilient pattern. If an algorithm uses only
resilient patterns, it avoids the blocking problem without using any failure detector
mechanism or group membership service. Such algorithms have, for instance, been
proposed by Rabin [1983], Ben-Or [1983], and Pedone et al. [2002] (the first two
are consensus algorithms; see Footnote 10, p. 22).

6.4 Message Stability

Avoiding blocking is not the only problem that fault-tolerant total order broadcasts
algorithms have to address. Figure 1 (page 6) illustrates a violation of the Uniform
Agreement property. Notice that this problem is unrelated to blocking.

The mechanism that solves the problem is called message stability. A message m
is said to be k-stable if m has been received by k processes. In a system in which at
most f processes may crash, f+1-stability is the important property to detect: if
some message m is f+1-stable, then m is received by at least one correct process.
With such a guarantee, an algorithm can easily ensure that m is eventually received
by all correct processes. f+1-stability is often simply called stability. The detection
of stability is generally based on some acknowledgment scheme or token passing.

Another use for message stability is the reclaiming of resources. Indeed, when
a process detects that a message has become stable throughout the system, it can
release resources associated with that message.

6.5 Consensus

The mechanisms described so far are low-level mechanisms on which fault-tolerant
total broadcast algorithms may rely.

Another option for a fault-tolerant total order broadcast algorithm is to rely
on higher level mechanisms that solve all the problems related to fault tolerance
(i.e., the problems mentioned above). The consensus problem (see Footnote 10,
p. 22) is such a mechanism. Some algorithms solve total order broadcast by reducing
it into a consensus problem. This way, fault tolerance, including failure detection
and message stability detection, is hidden within the consensus abstraction.

6.6 Mechanisms for Lossy Channels

Apart from the mechanisms used to tolerate process crashes, we need to say a few
words about mechanisms to tolerate channel failures. First, it should be mentioned
that several total order broadcast algorithms avoid the issue by relying on some
communication layer that takes care of message loss (i.e., these algorithms assume
reliable channels and hence do not discuss message loss). In contrast, other al-
gorithms are built directly on top of lossy channels, and so address message loss
explicitly.
c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004



Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey · 29

Table II. Abbreviations used in Tables III–V.

© yes
4 somewhat explained in the text
× no

spec. special explained in the text
inf. informal explained in the text
NS not specified means also “not discussed”
n/a not applicable
+a positive acknowledgment
-a negative acknowledgment

GM group membership
FD failure detector/detection

Cons. consensus
RCP resilient communication patterns
ByzA. Byzantine agreement

To address message loss, the standard solution is to rely on a positive or a neg-
ative acknowledgment mechanism. With positive acknowledgment, the reception
of messages is acknowledged; with negative acknowledgment, the detection of a
missing message is signaled. The two schemes can be combined.

Token-based algorithms (i.e., moving sequencer or privilege-based algorithms)
rely on token passing to detect message losses: the token can be used to convey
acknowledgments, or to detect missing messages. So token-based algorithms use
the token for ordering purpose, but also for implementing reliable channels.

7. SURVEY OF EXISTING ALGORITHMS

This section provides an extensive survey of total order broadcast algorithms. We
present about sixty algorithms published in scientific journals or conference pro-
ceedings over the past three decades. We have done every possible efforts to be
exhaustive, and we are quite confident that this paper presents a good picture of
the field at the time of writing. However, because of the continuous flow of papers
on the subject, we might have overlooked one algorithm or two.

In Tables III–V, we present a condensed overview of all surveyed algorithms, in
which we summarize the important characteristics of each algorithm. The tables
present only factual information about the algorithms, as it appears in the relevant
papers. In particular, the tables do not present information that is the result of
extrapolation, or non-obvious deduction; the exception is when we had to inter-
pret information to overcome differences in terminology. Also, properties that are
discussed in the original paper, yet not proved correct, are reported as “informal”
in the tables. For the sake of conciseness, several symbols and abbreviations have
been used throughout the tables; they are explained in Table II. For each algorithm,
Tables III–V provide the following information:

(1) General information, i.e., the ordering mechanism (see Sect. 4), and whether
the mechanism is time-based or not (Sect. 4.6).

(2) The General information rows are followed by rows describing the assump-
tions upon which the algorithm is based, i.e., what is provided to it:
(a) The System model rows specify the synchrony assumptions, the assumptions

made about process failures (rows: crash, omission, Byzantine) and commu-
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nication channels (rows: reliable, FIFO). Reliable channels guarantee that if a
correct process p sends a message m to a correct process q, then q will even-
tually receive m [Aguilera et al. 1999]. The row partitionable shows if the
algorithm works with partitionable membership semantics (see Sect. 3.4). In
particular, algorithms in which only processes in a primary partition can work
are not considered partitionable.

(b) The rows called Condition for liveness discuss the assumptions necessary to
ensure the liveness of the algorithm:
—The row live...X means that the liveness of the algorithm requires the liveness

of the building block X (on which the algorithm relies). For example, live...
GM means that the algorithm is live if the group membership building block
on which the algorithm relies is itself live.

—The row other adds the following information: NS = not specified means
that liveness is not discussed in the paper; n/a = not applicable means that
no additional assumption is needed to ensure liveness (this applies mostly to
algorithms that assume a synchronous model); 4 = somewhat and spec. =
special refers to a discussion of liveness below in the paper; recovery means
that the algorithm is blocking, i.e., liveness requires the recovery of crashed
processes; 3P/3S refers to the failure detector needed to ensure liveness.

(c) The next group of rows indicate the building block(s) used by the algorithm.
The building blocks considered are: view synchrony (Sect. 6.2), which encom-
passes a group membership service; reliable broadcast (Sect. 2.3) causal broad-
cast (Sect. 2.6.2); consensus (Sect. 4.5); or other. Other can be either ByzA.
= Byzantine agreement14 or spec.=special, which means that the explanation
is in the text.

(3) After discussing what is provided “to” the algorithms, we discuss what is
provided “by” the algorithms.
(a) The first rows give the Properties ensured by the algorithms. As discussed

in Sect. 2, total order broadcast is specified by the following properties: Va-
lidity, Uniform Agreement, Uniform Integrity, Uniform Total Order. Validity
and Uniform Integrity do not appear in the table. The reason is that these
properties are rarely discussed in the papers (authors usually assume they are
trivially ensured).
We first discuss Agreement and Uniform Agreement, then Total Order and
Uniform Total Order. Finally, we mention whether the algorithm additionally
ensures FIFO order or causal order. In all these entries, one would might ex-
pect either a yes or a no. Unfortunately many papers do not provide proofs
(often only informal arguments), which means that these properties can be
questioned. In this case, inf. = informal appears in the table. If an algorithm
does not discuss the properties of total order broadcast at all, the correspond-
ing entry mentions NS = not specified. If the non-uniform property is only

14In the Byzantine agreement problem, also commonly known as the “Byzantine generals problem”
[Lamport et al. 1982], every process has an a priori knowledge that a particular process s is
supposed to broadcast a single message m. Informally, the problem requires that all correct
processes deliver the same message, which must be m if the sender s is correct. As the name
indicates, Byzantine agreement has mostly been studied in relation with Byzantine failures.
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discussed informally, then the corresponding entry for the uniform property is
left empty (in an informal discussion, the distinction between the uniform and
the non-uniform property usually does not appear). ©/× (=yes/no) appears
in some entries for the uniform property, meaning that these algorithms pro-
vide several levels of Quality of Service (QoS), which include a uniform and a
non-uniform version of the algorithm, where the non-uniform version is more ef-
ficient. Moreover, for being able to compare non-partitionable algorithms with
partitionable algorithms, we consider the properties enforced by the former
when executed in a non-partitionable system model.
For the rows FIFO order and causal order, © = yes appears only if this char-
acteristic is explicit in the paper. Otherwise the entry is simply left blank.
Finally, if an algorithm is not fault-tolerant, then the distinction between the
uniform and the non-uniform properties does not make sense. In this case the
entry mentions n/a = not applicable.

(b) The rows called destination groups tell whether the algorithm supports the total
order broadcast of a message to multiple groups (row multiple), and whether
the algorithms support open groups (see Sect. 3). The entry is left blank if the
issue is not discussed explicitly in the paper.

(4) The last group of rows, called Fault-tolerant mechanisms, discusses the mech-
anisms used to provide fault tolerance. The row process mentions the mechanisms
used to tolerate process crashes (see Sect. 6). Note that some of these fault-tolerant
mechanisms also appear as building blocks. However, not all building blocks have
been reported as fault-tolerant mechanisms (e.g., reliable broadcast, causal broad-
cast).15

The row comm. mentions the mechanisms used to address message losses. Most of
the algorithms assume underlying reliable channels, in which case the entry men-
tions n/a = not applicable. The acronyms +a and -a indicate a positive, respectively
negative, acknowledgment mechanism. The other entries are flood (flooding), spe-
cial (explanation in the text below), and GM = group membership. In the context
of unreliable channels, the GM mechanism is used in the case were some process p
waits for a message from some other process q: if no message is received (e.g., due
to loss), then p requests the exclusion of q from the membership.

In Sections 7.1 through 7.6, we give a brief description of each individual algo-
rithm, to complement the information provided in the tables. Unlike the tables,
the textual descriptions also present information that we have deduced from the
relevant papers. In some cases, the lack of technical details about the algorithms
(in particular in case of failures) leads us to extrapolate their behavior. In this case,
we have attempted to avoid being too assertive (by, e.g., using the conditional)
and kindly recommend that the reader treat this speculative information with an
appropriate degree of uncertainty.

We think that it is useful to stress again the respective roles of the tables and the
accompanying text in Sections 7.1 to 7.6. The tables provide factual information

15The decision of what is a fault-tolerance mechanism and what is not is somewhat arbitrary. We
have decided to keep the number of mechanisms mentioned in Sect. 6 low, i.e., to mention only
key mechanisms.
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Table III. Overview of total order broadcast algorithms (part I).
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Table IV. Overview of total order broadcast algorithms (part II).
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Table V. Overview of total order broadcast algorithms (part III).

S
k
e
e
n

L
u
a
n

L
e

L
a
n
n
C

h
a
n
d
r
a
R

o
d
r
ig

u
e
s

A
T

R
S
c
a
l-

F
r
it

z
k
e
o
p
t
im

.
p
r
e
fi
x

g
e
n
e
r
ic

t
h
r
if
t
y

w
e
a
k

Q
u
ic

k
-A

A
M

p

a
lg

o
ri

th
m

G
li
g
o
r

B
r
e
s

T
o
u
e
g

R
a
y
n
a
l

a
t
o
m

e
t

a
l.

A
B
c
a
s
t
a
g
r
e
e
m

.
b
c
a
s
t

g
e
n
e
r
ic

o
r
d
e
r
.

x
A

M
p

§
7
.5

.1
§
7
.5

.2
§
7
.5

.3
§
7
.5

.4
§
7
.5

.5
§
7
.5

.6
§
7
.5

.7
§
7
.5

.8
§
7
.5

.9
§
7
.5

.1
0
§
7
.5

.1
1
§
7
.5

.1
2
§
7
.5

.1
3
§
7
.5

.1
4
§
7
.5

.1
5

G
e
n
e
ra

l

c
la

ss
d
e
st

in
a
ti

o
n
s

a
g
re

e
m

e
n
t

ti
m

e
-b

a
se

d
S
y
s
te

m
m

o
d
e
l

sy
n
ch

ro
n
y

a
sy

n
ch

ro
n
o
u
s

sy
n
c
.

c
ra

sh
©

©
©

©
sp

e
c
.

©
©

©
©

©
©

©
©

©
©

o
m

is
si

o
n

©
©

B
y
z
a
n
ti

n
e

©

p
a
rt

it
io

n
a
b
le

re
li
a
b
le

©
©

©
©

©
©

©
©

©
©

n
/
a

©
F
IF

O
©

©
n
/
a

C
o
n
d
it
io

n
n
e
e
d
e
d

fo
r

li
v
e
n
e
s
s

li
v
e

..
.

C
o
n
s.

C
o
n
s.

C
o
n
s.

C
o
n
s.

C
o
n
s.

C
o
n
s.

C
o
n
s.

B
y
z
A

.
o
th

e
r

N
S

N
S

N
S

3
P

4
4

sp
e
c
.

B
u
il
d
in

g
b
lo

c
k
s

v
ie

w
sy

n
c
.

re
li
a
b
le

b
.

©
©

©
©

©
©

©
c
a
u
sa

l
b
.

c
o
n
se

n
su

s
©

©
©

©
©

©
©

o
th

e
r

sp
e
c
.

sp
e
c
.

sp
e
c
.

B
y
z
A

.
P
ro

p
e
r
ti
e
s

e
n
s
u
re

d

A
g
re

e
m

e
n
t

in
f.

in
f.

×
©

©
©

©
©

©
©

©
©

©
©

©
U

n
if
.

A
n
/
a

×
©

©
©

©
×

©
©

©
©

©
/
×

©

T
o
ta

l
O

rd
e
r

in
f.

in
f.

©
©

©
©

©
©

©
©

©
©

©
©

©
U

n
if
.

T
O

×
×

©
©

©
©

×
©

©
©

©
©

/
×

×

F
IF

O
o
rd

e
r

©
©

c
a
u
sa

l
o
rd

.
©

©

D
e
s
ti
n
a
ti
o
n

g
ro

u
p
s

m
u
lt

ip
le

©
©

©
o
p
e
n

©
©

F
a
u
lt

to
le

ra
n
c
e

m
e
c
h
a
n
is

m

p
ro

c
e
ss

G
M

F
D

R
C

P
C

o
n
s.

C
o
n
s.

G
M

C
o
n
s.

C
o
n
s.

C
o
n
s.

C
o
n
s.

C
o
n
s.

n
/
a

R
C

P
C

o
n
s.

G
M

c
o
m

m
.

n
/
a

-a
R

C
P

n
/
a

g
o
ss

ip
.

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

about each algorithm, as it was published in the relevant papers. In contrast,
the text provides complementary information, including information that we have
extrapolated. In particular, the text explains the originality of each algorithm, and
complements items that are left vague in the tables (i.e., those points are vague in
the paper). In particular, for some of the algorithms, the properties reported in
the tables are weaker than those the algorithm might ensure. In such a case, the
text below mentions (and discusses) the stronger property that might hold. We
emphasize this point, as misunderstanding the respective roles of text and tables
might lead to the erroneous impression that text and tables are in contradiction.
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7.1 Fixed Sequencer Algorithms

Regardless of the variant they adopt (see Sect. 4.1), all sequencer algorithms as-
sume an asynchronous system model and use time-free ordering. They tolerate
crash failures, except for Rampart which additionally tolerates Byzantine failures.
Also, they all rely on process-controlled crash to cope with failure; either explicitly
(e.g., Tandem), or through group membership and exclusion (e.g., Isis, Rampart).

7.1.1 Amoeba. The Amoeba [Kaashoek and Tanenbaum 1996] group commu-
nication system supports algorithms of the first two variants of fixed sequencer
algorithms. The first one corresponds to the variant UB (unicast-broadcast) illus-
trated in Figure 6(a) (Sect. 4.1). The second variant corresponds to BB (broadcast-
broadcast), see Fig. 6(b). The two variants share the same properties.

Amoeba assumes lossy channels and implements message retransmission as part
of the total order broadcast algorithm. Amoeba uses a combination of positive
and negative acknowledgments. The actual protocol is quite complex because it
is combined with flow control, and also tries to minimize the communication cost.
Amoeba tolerates failures using a group membership service. Suspected processes
are excluded from the group as the result of the unilateral decision of a single
process.

The properties of the Amoeba algorithms are only discussed informally in the
paper. However, since messages are delivered before they are stable, the algorithm
can only satisfy the non-uniform properties of Agreement and Total Order.

7.1.2 MTP. MTP [Armstrong et al. 1992] is an algorithm primarily designed for
video streaming and other similar multimedia applications. The algorithm assumes
that the system is not uniform with respect to the probability of process failures.
In particular, it assumes that a process, called the master process, never fails. The
master is then designated as the sequencer, and the protocols follow variant UUB
(unicast-unicast-broadcast, see Fig. 6(c)). When a process p has a message m to
broadcast, p requests a sequence number for m from the sequencer. Once it has
obtained the sequence number, it sends m together with the sequence number, to all
destinations and the master. At the same time, destination processes learn about
the status of previous messages and deliver those that have been accepted by the
master.

The protocol tolerates crash failures of destination processes and senders, since
all parts involving decisions are executed by the master. The failure of the master
is briefly discussed at the end of the paper. The authors suggest that the master
could be rendered more resilient by introducing redundancy and using replication
techniques.

7.1.3 Tandem. The Tandem global update protocol [Carr 1985] is a fixed se-
quencer algorithm of variant UUB (see Fig. 6(c)). The algorithm allows at most
one application message to be broadcast at a time, and thus does not need sequence
numbers. Later, Cristian et al. [1994] describe a variant UB of Tandem that allows
concurrent broadcasts (and thus needs sequence numbers).

7.1.4 Garcia-Molina and Spauster. The algorithm proposed by Garcia-Molina
and Spauster [1991] is based on a propagation graph (a forest) to support multiple
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overlapping groups. The propagation graph is constructed is such a way that each
group is assigned a starting node. Senders send their messages to the corresponding
starting nodes and messages travel along the edges of the propagation graph. Or-
dering decisions are resolved along the path. When used in a single group setting,
the algorithm behaves like other fixed sequencer algorithms (i.e., the propagation
graph is a tree of depth 1).

The algorithm assumes an asynchronous model and requires synchronized clocks.
However, synchronized clocks are only needed to yield bounds on the behavior of
the algorithm when crash failures occur. Neither the ordering mechanism nor the
fault tolerance mechanism actually need them.

In the event of failures, the algorithm behaves in an unconventional manner.
Indeed, if a non-leaf process p crashes, then its descendants in the propagation graph
do not receive any message until p has recovered. Hence, the algorithm tolerates
process crashes only if those processes are guaranteed to eventually recover.

7.1.5 Jia. Jia [1995] proposed another algorithm based on propagation graphs,
which creates simpler graphs than the algorithm of Garcia-Molina and Spauster
(see Sect. 7.1.4). Unfortunately, the algorithm originally proposed by Jia [1995] is
incorrect. Chiu and Hsiao [1998] provide a correction to the algorithm which works
only in a more restricted model (i.e., only for closed groups). Also, Shieh and Ho
[1997] provide a correction to the message complexity calculated by Jia [1995].

Jia’s algorithm relies on the notion of meta-groups, which is defined in the paper
as “the set of processes which have exactly the same group memberships” (i.e., the
set of processes which belong to the exact same set of destination groups). The
meta-groups are organized into propagation trees, according to the membership
they represent. The flow of messages is streamlined down the trees, thus creating
the delivery order.

Jia [1995] describes a form of group membership mechanism which is used to
redefine the parts of the propagation graph that must change when a process is
deleted. Jia also suggests that, unlike Garcia-Molina and Spauster’s algorithm
(Sect. 7.1.4), the nodes in the tree consist of entire meta-groups rather than single
processes. Thus, messages would not be stopped unless all members in an interme-
diary meta-group fail. The issue is, however, only addressed informally.

7.1.6 Isis (sequencer). Birman et al. [1991] describe several broadcast primitives
of the Isis system, including a total order broadcast primitive called ABCAST. The
ABCAST primitive is implemented using a fixed sequencer algorithm (different
from the algorithm used in earlier versions of the system; see Sect. 7.5.1). The Isis
(sequencer) algorithm is a fixed sequencer algorithm of variant BB (see Fig. 6(b)),
which uses a causal broadcast primitive. The algorithm assumes crash failures.

Being constructed over a causal broadcast primitive, the Isis ABCAST algorithm
preserves causal order. Moreover, although the algorithm does not support total
order for multiple overlapping groups, causal order is nevertheless preserved in
this context. The total order broadcast algorithm ensures only the non-uniform
properties of Agreement and Total Order.

For fault tolerance, the total order broadcast algorithm relies on a group mem-
bership service and on the property of view synchrony (Sect. 6.2).
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Finally, the authors also briefly mention that moving the role of the sequencer in
the absence of failures might be a way to avoid a bottleneck. However, the idea is
not developed further.

7.1.7 Navaratnam et al.. Navaratnam et al. [1988] propose a fixed sequencer
protocol of variant UB (see Fig. 6(a)).

The fault tolerance of the algorithm relies on a group membership service and the
ability to exclude wrongly suspected processes. Similar to Amoeba (Sect. 7.1.1),
the decision to exclude a suspected process can be taken unilaterally by one single
process.

The properties of this algorithm are discussed informally, and it is easy to see that
it satisfies the non-uniform properties of Agreement and Total Order. The authors
also make a brief remark suggesting that the algorithm does not guarantee uniform
properties, but the wording is a little ambiguous and the information provided in
the paper is not sufficient to verify this interpretation.

7.1.8 Phoenix. Phoenix [Wilhelm and Schiper 1995] consists of three algorithms
which provide different levels of guarantees. The first algorithm (weak order) only
guarantees Total Order and Agreement. The second algorithm (strong order) guar-
antees both Uniform Total Order and Uniform Agreement. Then, the third algo-
rithm (hybrid order) combines both guarantees on a per message basis.

The three algorithms are based on a group membership service and view syn-
chrony (see Sect. 3.3).

7.1.9 Rampart. Unlike other sequencer algorithms, which only assume crash
failures, the algorithm of Rampart [Reiter 1994; 1996] is designed to tolerate Byzan-
tine failures. This sets this algorithm somewhat apart from the other sequencer
algorithms.

Rampart assumes an asynchronous system model with reliable FIFO channels,
and a public key infrastructure in which every process initially knows the public
key of every other process. In addition, communication channels are assumed to
be authenticated, so that the integrity of messages between two honest (i.e., non-
Byzantine) processes is always guaranteed.

Unlike most early work on Byzantine failures, Rampart treats honest and Byzan-
tine processes separately. In particular, the paper defines uniformity as a property
that applies to honest processes only (see Note 1 in Sect. 2.4). With this definition,
Rampart satisfies both Uniform Agreement and Uniform Total Order.

The algorithm is based on a group membership service, which requires that at
least one third of all processes in the current view reach an agreement on the
exclusion of some process from the group. This condition is necessary because
Byzantine processes could otherwise purposely exclude correct processes from the
group.

7.2 Moving Sequencer Algorithms

We describe here four moving sequencer algorithms, all of which are time-free. To
the best of our knowledge, there is no time-based moving sequencer algorithm. It
is actually questionable whether time-based ordering would even make sense for
algorithms of this class.
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The four algorithms behave in a very similar fashion. Actually, Pinwheel (Sect. 7.2.4),
RMP (Sect. 7.2.2), and DTP (Sect. 7.2.3) are all three based on Chang and Maxem-
chuck’s algorithm (Sect. 7.2.1), which they all improve in a different way. Pinwheel
is optimized for a uniform message arrival pattern, RMP provides various levels
of guarantees, and DTP provides a faster detection of message stability. The four
algorithms also handle process failures very similarly, using a reformation algorithm
(see Sect. 7.2.1). Except for DTP (Sect. 7.2.4) all algorithms rely on a logical ring
along which the token circulates.

The four algorithms tolerate message loss by relying on a message retransmission
protocol that combines positive and negative acknowledgments. More precisely, the
token carries positive acknowledgments, but when a process detects that a message
is missing, it sends a negative acknowledgment to the token site. The negative
acknowledgment scheme is used for message retransmission, whereas the positive
scheme is used to detect message stability.

7.2.1 Chang and Maxemchuck. The algorithm proposed by Chang and Max-
emchuk [1984] is based on the existence of a logical ring along which a token is
passed. The process that holds the token, also known as the token site, is re-
sponsible for sequencing the messages that it receives. The passing of the token
simultaneously serves two purposes: (1) the transmission of the sequencer role,
and (2) the detection of message stability. Point 2 requires that the logical ring
spans all destination processes. This requirement is, however, not necessary for or-
dering messages (point 1), and hence the algorithm qualifies as a sequencer-based
algorithm according to our classification.

When a process failure is detected (perhaps wrongly) or when a process recovers,
the algorithm goes through a reformation phase. The reformation phase redefines
the logical ring and elects a new initial token holder. The reformation algorithm
can be seen as an ad-hoc implementation of a group membership service.

The properties of the total order broadcast algorithm are discussed only infor-
mally. Nevertheless, it seems plausible that the algorithm ensures Uniform Total
Order and Uniform Agreement.

7.2.2 RMP. RMP [Whetten et al. 1994] differs from the other three algorithms
in that it is designed to operate with open groups. Beside, the authors claim
that “RMP provides multiple multicast groups, as opposed to a single broadcast
group.” However, according to their description, supporting multiple multicast
groups is merely a characteristic associated with the group membership service. It
is hence dubious that “multiple groups” is used with the meaning that total order
is guaranteed for processes that are at the intersection of two groups (see discussion
in Sect. 3.2).

Depending on the user’s choice, RMP satisfies Agreement, Uniform Agreement,
or neither of these properties. However, in order to ensure the strong guarantees,
RMP must assume that a majority of the processes remain correct and always
connected. Also, RMP does not preclude the contamination of the group.

7.2.3 DTP. As mentioned, DTP [Kim and Kim 1997] differs from the other
algorithms of this class in that it does not rely on a logical ring for the passing of the
token. Instead, DTP follows a heuristic whereby the token is always passed to the
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process seen as the least active. Doing this ensures that messages are acknowledged
more quickly when the activity (i.e., broadcasting messages) is not uniformly spread
among processes.

7.2.4 Pinwheel. The originality of Pinwheel [Cristian et al. 1997] is that the
token circulates among the processes at a speed proportional to the global activity
of the sending processes (i.e., broadcasting rate).

Pinwheel assumes that a majority of the processes remains correct and connected
at all time (majority group). The algorithm is based on the timed asynchronous
model of Cristian and Fetzer [1999]. Although it relies on physical clocks for time-
outs, Pinwheel does not need to assume that these clocks are synchronized. Fur-
thermore, the algorithm is time-free since time is not used for ordering messages.

Pinwheel can ensure Uniform Total Order, given an adequate support from its
group membership (not detailed in the paper). Beside, Pinwheel only satisfies
(non-uniform) Agreement, but the authors argue that the algorithm could easily
be modified to satisfy Uniform Agreement [Cristian et al. 1997]. Doing this would
only require that destination processes wait until a message is known to be stable
before delivering it. The authors claim that the algorithm preserves causal order,
but this is valid only under certain restrictions that make the problem trivial to
solve.16

7.3 Privilege-Based Algorithms

Like moving sequencer algorithms, most privilege-based algorithms are based on
a logical ring, and for most of them rely on some kind of group membership or
reconfiguration protocol to handle process failures.

7.3.1 On-demand. The On-demand protocol [Cristian et al. 1997], unlike other
privilege-based algorithms, does not rely on a logical ring. Instead, processes with
a message to broadcast must obtain the token by issuing a request to the current
token holder. As a consequence, the protocol is more efficient if senders send long
bursts of messages and such bursts rarely overlap. Also, in contrast with the other
algorithms, all processes must be aware of the identity of the token holder. So, the
passing of the token is done using a broadcast.

The on-demand protocol relies on the same model as the Pinwheel protocol
(Sect. 7.2.4). In other words, it assumes a timed asynchronous system model,
and physical clocks for timeouts.

A similar algorithm, called Reqtoken, is also described by Friedman and van
Renesse [1997].

7.3.2 Train. The Train protocol [Cristian 1991] is inspired by the image of a
train that transports messages and circulates among processes. More concretely,
a token (a.k.a., the train) moves along a logical ring and carries the messages.
When a process gets the token, it receives the new messages carried by the token,
acknowledges them, and appends its own messages to the token. Then, it passes the
token to the next process. The Train protocol, where messages are carried by the

16In systems with a single closed group where processes are only allowed to communicate using
total order broadcast, causal order is satisfied trivially by simply enforcing FIFO order.
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token, comes in clear contrast with the other algorithms of the same class, where
messages are broadcast directly to the destinations. The Train protocol is hence
less attractive than the others in a broadcast network.

7.3.3 Token-FD. Ekwall et al. [2004] also present an algorithm based on token
passing in a ring. The algorithm is special because it relies on an unreliable failure
detector to tolerate failures, whereas all other token-based algorithms use a form
of group membership.

In the basic version of the algorithm, the token is the only carrier of information,
just as in the Train protocol (an optimization is also described, in which the token
carries message identifiers). However, the token is sent not only to the immediate
successor in the ring, but to f +1 successors, where f is the number of crashes that
the algorithm tolerates. The additional copies are only used if a process suspects the
crash of its predecessor. For its liveness, the algorithm requires a failure detector
defined specifically for rings. This failure detector is stronger than 3S but weaker
than 3P (see Sect. 5.3.1).

7.3.4 Totem. The specificity of Totem [Amir et al. 1995] compared to other
privilege-based algorithms is that it is designed for partitionable systems. The
ordering guarantee ensured is Strong Total Order. Totem provides both (non-
uniform) agreement and total order (called agreed order) and uniform agreement
and total order (called safe order) when operated in a non-partitionable system.
Causal order is also ensured.

The algorithm uses a membership protocol, which has the responsibility to detect
processor failures, network partitioning and loss of the token. When such failures
are detected, the membership protocol reconstructs a new ring, generates a new
token, and recovers messages that had not been received by some of the processors
when the failure occurred.

The authors observe that while moving sequencer algorithms (in which holding
the token is not required to broadcast a message) have good latency at low loads,
latency increases at high loads and in the presence of processor crashes. Moreover,
according to Agarwal et al. [1998], the ring and the token passing scheme make
privilege-based algorithms highly efficient in broadcast LANs, but less suited to
interconnected LANs. To overcome this problem, they extend Totem to an en-
vironment consisting of multiple interconnected LANs. The resulting algorithm
performs better in such an environment, but otherwise has the same properties as
the original single-ring one.

7.3.5 TPM. TPM [Rajagopalan and McKinley 1989] is closely related to Totem.
The main difference is that TPM is not partitionable (it only supports primary
partition membership). Moreover, TPM only provides uniform agreement and
total order. Finally, while TPM only supports a closed group, the authors discuss
some ideas on how to extend the algorithm to support multiple closed groups.

Rajagopalan and McKinley [1989] also propose a modification of TPM in which
retransmission requests are sent separately from the token, in order to improve the
behavior in networks with a high rate of message loss.
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7.3.6 Gopal and Toueg. Gopal and Toueg’s [1989] algorithm is based on the
round synchronous model. The round synchronous model is a computation model in
which the execution of processes is synchronized according to rounds. During each
round, every process performs the same actions: (1) send a message to all processes,
(2) receive a message from all non-crashed processes, and then (3) perform some
computations.

The algorithm works as follows. For each round, one of the processes is designated
as the transmitter. The transmitter of some round r is the only process which is
allowed to broadcast new application messages in round r. In that round the other
processes broadcast acknowledgments of previous messages. Messages are delivered
once they are acknowledged, three rounds after their initial broadcast.

7.3.7 RTCAST. RTCAST [Abdelzaher et al. 1996] was designed for applica-
tions that need real-time guarantees. The algorithm assumes a synchronous system
with synchronized clocks. These strong guarantees allow for simplification in the
protocol. The paper also shows how the maximum token rotation time can be used
for the admission control and schedulability analysis of real-time messages (with
the goal to guarantee the delivery deadline of these messages).

7.3.8 MARS. MARS [Kopetz et al. 1991] is based on the technique of time
division multiple-access (TDMA; see Note 11, p.18). TDMA consists in having
predetermined periodic time slots assigned to each process. Processes are then
allowed to send or broadcast messages messages only during their own time slots.
The system assumes that processes have synchronized clocks whereby they are able
to accurately determine the beginning and the end of their own time slot. In
addition, communication is assumed to be reliable and with bounded delays.

Based on the mutual exclusion provided by TDMA and the communication
model, total order broadcast is easily implemented. The ordering mechanism can
be seen as similar to Gopal and Toueg’s algorithm (Sect. 7.3.6), but in a time-based
model and where communication uses time rather than messages [Lamport 1984].

Kopetz et al. [1991] do not discuss the behavior of their total order broadcast
algorithm in the presence of failures. This makes it difficult to determine whether
the algorithm is uniform or not. We believe that it is not uniform, simply because
uniformity induces a cost in performance that the authors are unlikely to consider
affordable.

7.4 Communication History Algorithms

7.4.1 Lamport. The principle of Lamport’s algorithm [Lamport 1978b], which
uses logical clocks, was explained in Sect. 4.4 (see Fig. 11). Actually, the paper
describes a mutual exclusion algorithm. However it is straightforward to derive a
total order broadcast algorithm from the mutual exclusion algorithm. Since the
delivery order of a message m is determined by the timestamp of the broadcast
event of m, the total order is an extension of causal order. The algorithm is not
tolerant to failures.

A similar algorithm is described by Attiya and Welch [1994], when comparing
consistency criteria.
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7.4.2 Psync. The Psync algorithm [Peterson et al. 1989] is used in several group
communication systems: Consul [Mishra et al. 1993], Coyote [Bhatti et al. 1998],
and Cactus [Hiltunen et al. 1999]. In Psync, processes dynamically build a causality
graph of messages they receive. Psync then delivers messages according to a total
order that is an extension of the causal order.

Psync assumes an asynchronous system model with (permanent) crash failures
and (transient) lossy communication. To tolerate process failures, the algorithm
seems to assume a perfect failure detector, although this is not said explicitly in
the paper. To implement reliable channels, the algorithm uses negative acknowl-
edgments (to request the retransmission of lost messages).

Psync is specified only informally. Nevertheless, we believe that the protocol
ensures Total Order in the absence of failures. The behavior in the face of failures
is unfortunately not described in enough detail to make a confident claim about it.
Agreement is a little more complex. In the absence of message loss, Psync ensures
Agreement. However, with certain combinations of process crash and message
loss, it is possible that some correct processes discard messages that are otherwise
delivered by others. Hence, when message loss is considered, Agreement can be
violated. This problem is discussed in detail by the authors, who relate it to an
instance of the “last acknowledgment problem.”

Malhis et al. [1996] provide an analysis of the performance of Psync in the pres-
ence of message loss. They conclude that Psync performs well if broadcasts are
frequent and message loss rare, but performs poorly when broadcasts are infre-
quent and message loss common. They show that the performance can be improved
by regularly sending empty messages, as is done by other communication history
algorithms (see Note 14 in Sect. 4.4).

7.4.3 Newtop (symmetric). Ezhilchelvan et al. [1995] propose two algorithms:
a symmetric one and an asymmetric one. The symmetric algorithm extends Lam-
port’s algorithm (Sect. 7.4.1) in several ways: it makes it fault-tolerant, allows a
process to be member of multiple groups, and allows the broadcast of a message to
multiple groups. As for Lamport’s algorithm, Newtop preserves causal order.

Newtop is based on a partitionable group membership service (see Sect. 3.4).
The Newtop platform leaves it to applications to decide whether or not they should
maintain more than one subgroup in such a situation. Newtop satisfies the property
of Weak Total Order mentioned in Sect. 3.4.

The asymmetric algorithm belongs to a different class, and is hence discussed in
the relevant section (Sect. 7.6.1). The two algorithms (symmetric and asymmetric)
can easily be combined to allow the use of the symmetric algorithm in some groups,
and the asymmetric algorithm in others.

7.4.4 Ng. Ng [1991] presents an communication history algorithm that uses a
minimum-cost spanning tree to propagate messages. The ordering of messages is
based on Lamport’s clocks, similar to Lamport’s algorithm. However, messages and
acknowledgments are propagated and gathered, using a minimum-cost spanning
tree. The use of a spanning tree improves the scalability of the algorithm and
makes it adequate for wide-area networks.
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7.4.5 ToTo. The ToTo algorithm [Dolev et al. 1993] ensures Weak Total Order
(see Sect. 3.4; called “agreed multicast” in [Dolev et al. 1993]). It is build on top
of the Transis partitionable group communication system [Dolev and Malkhi 1996].
ToTo extends the order of an underlying causal broadcast algorithm. It is based on
dynamically building a causality graph of received messages. The Transis system
offers both a uniform and a non-uniform variant of the algorithm. A particularity
of ToTo (non-uniform variant) is that, to deliver a message m, a process must have
received acknowledgments for m from as few as a majority of the processes in the
current view (instead of all view members).

7.4.6 Total. The Total algorithm [Moser et al. 1993] is built on top of a reliable
broadcast algorithm called Trans (Trans is defined together with Total). How-
ever, Trans is not used as a black box (which explains why we did not list reliable
broadcast as a building block for this algorithm in Table IV). Trans uses an ac-
knowledgment mechanism that defines a partial order on messages. Total extends
the partial order of Trans into a total order. Two variants are defined: the more
efficient one tolerates f < n/3 crashes and the other tolerates f < n/2 crashes.

The Total algorithm fulfills the Agreement property (in fact, Uniform Agree-
ment) with high probability. Actually Total requires the underlying Trans reliable
broadcast protocol to provide probabilistic guarantees about not reordering mes-
sages. This has some similarities with the notion of weak ordering oracles (see
Sect. 7.5.13).

Moser and Melliar-Smith [1999] propose an extension of Total to tolerate Byzan-
tine failures.

7.4.7 ATOP. ATOP [Chockler et al. 1998] is an algorithm following the de-
terministic merge approach (Sect. 4.4). The focus of the paper is on adapting
the algorithm to different and possibly changing sending rates. A pseudo-random
number generator is used in computing the delivery order.

The paper is mostly concerned with ensuring an ordering property. This property
is Strong Total Order, defined in the context of partitionable systems (Sect. 3.4).
The algorithm ensures FIFO order, and ensures causal order only trivially (see
Footnote 16, p.39).

7.4.8 COReL. The COReL algorithm [Keidar and Dolev 2000] is built on top
of a partitionable group membership service like Transis. The underlying service
should also offer Strong Total Order (Sect. 3.4) as well as causal order. COReL
gradually builds a global order (Reliable Total Order) by tagging messages accord-
ing to three different color levels (red, yellow, green). A message starts as red (no
knowledge about its position in the global order) then passes to yellow (received and
acknowledged when the process is a member of a majority component) and green
(all members of the majority component acknowledged the message, and its posi-
tion in the global order is known). Green messages are delivered to the application.
Messages are retransmitted and promoted to green whenever partitions merge. All
acknowledgments sent by the algorithm are piggybacked. COReL provides the fol-
lowing liveness guarantee: if eventually there is a stable majority component, all
messages sent by the members of this component are delivered.

COReL also supports process recovery if processes are equipped with stable stor-
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age. This requires that processes log each message that is sent (before sending the
message) and each message that is received (before sending an acknowledgment).

Fekete et al. [2001] formalize a variant of the COReL algorithm and the guaran-
tees offered by the underlying group membership service, using I/O automata.

7.4.9 Deterministic merge. The main motivation for the deterministic merge
algorithm of Aguilera and Strom [2000] is to minimize the expected time that a
message is delayed to ensure total order, and to have as few messages as possible sent
by destination processes. The algorithm is designed for systems in which several
senders send a constant stream of messages (at an approximately fixed rate). In
this algorithm, each received message deterministically defines the sender of the
next message to be accepted. The algorithm relies on approximately synchronized
clocks that are used by senders to put a physical timestamp on their messages.
Upon receiving such a timestamped message, a destination process computes (using
the timestamp and the sending rates of messages) the next sender from which it
will accept a message. The quality of the synchronization is important to ensure
good performance of the algorithm, but it is not required for its correctness. The
algorithm is most efficient if clocks are synchronized (but works even if they are
not) and each sender sends messages at some fixed rate known a priori (the rate
may be different for each sender). To ensure the liveness of the algorithm, senders
need to send empty messages when they have no message to send (these messages
divide the execution into independent epochs). The algorithm, as described, is not
fault-tolerant.

7.4.10 HAS. Cristian et al. [1995] propose a collection of total order broad-
cast algorithms (called HAS) that assume a synchronous system model with ε-
synchronized clocks. The authors describe three algorithms—HAS-O, HAS-T , and
HAS-B—that are respectively tolerant to omission failures, timing failures, and
Byzantine failures. These algorithms are based on the principle of information
diffusion, which is itself based on the notion of flooding or gossiping. In short,
when a process wants to broadcast a message m, it timestamps it with the time of
emission T according to its local clock, and sends it to all neighbors. Whenever a
process receives m for the first time, it relays it to its neighbors. Processes deliver
message m at time T +∆, according to their local clocks (where ∆ is constant that
depends on the topology of the network, the number of failures tolerated, and the
maximum clock drift ε).

The paper proves that the three HAS algorithms satisfy Agreement. The authors
do not prove Total Order but, by the properties of synchronized clocks and the
timestamps, Uniform Total Order is not too difficult to enforce. However, if the
synchronous assumptions do not hold, the algorithms could violate the safety of
the protocol (i.e., Total Order) rather than just its liveness.

7.4.11 Redundant broadcast channels. Cristian [1990] presents an adaption of
the HAS-O algorithm (omission failures) to broadcast channels. The system model
assumes the availability of f+1 independent broadcast channels (or networks) that
connect all processes together, thus creating f+1 independent communication paths
between any two processes (where f is the maximum number of failures). Compared
to HAS-O, the algorithm for redundant broadcast channels issues significantly fewer
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messages.

7.4.12 Quick-S. Berman and Bharali [1993] present several closely related total
order broadcast algorithms in a variety of system models. In synchronous sys-
tems (3 variants in the paper) the algorithms are similar to the HAS algorithms:
messages are timestamped (with physical or logical timestamps, depending on the
system model), and a message timestamped with T can be delivered at T + ∆
for some value of ∆. The difference is that they use a Byzantine agreement algo-
rithm with a bounded termination time to send messages. There are algorithms
that work with Byzantine failures and ones that work with crash failures only; the
latter ensure Uniform Prefix Order. For Byzantine failures, the algorithm ensures
only non-uniform properties. This is because, unlike the specification of Rampart
(Sect. 7.1.9), the specification used by Quick does not distinguish between Byzan-
tine processes and those that only fail by crashing.

The paper also presents an algorithm for asynchronous systems. However, this
algorithm belongs to the class of destinations agreement algorithms and is discussed
there (Quick-A; Sect. 7.5.14).

7.4.13 ABP. The principle of ABP [Minet and Anceaume 1991b; Anceaume
1993a] is close to the principle of Lamport’s algorithm (Sect. 7.4.1): messages
are delivered according to timestamps attached to messages by their sender. Each
process manages a local sequence number variable, used to timestamp messages. Let
process p broadcast message m. In the first phase, m and its timestamp value tsm
are sent to all processes. Any process q that receives message m sends back a
reply to p. The reply of process q to p may also include some message m′ if q
had previously broadcast m′ with the same timestamp value (tsm′ = tsm). Upon
reception of all replies from correct processes, process p knows the set Msg(tsm) of
all messages with the same timestamp value tsm . Process p delivers those messages
(ordered according to the identifier of the sender of each message). Process p also
broadcasts the set Msg(tsm), thus allowing the other processes to deliver the same
sequence of messages.

7.4.14 Atom. In Atom [Bar-Joseph et al. 2002], streams of messages from all
senders are merged in a round-robin fashion. To make the algorithms live, senders
need to send empty messages if they have no message to send. This approach can
be seen as a special case of deterministic merge (see Sect. 7.4.9).

7.4.15 QoS preserving atomic broadcast. Bar-Joseph et al. [2000] present an-
other algorithm, based on the same ordering mechanism as Atom (Sect. 7.4.14).
As its name indicates, the QoS preserving algorithm provides support for quality
of service (QoS), unlike Atom. On the other hand, the QoS preserving algorithm
does not guarantee Agreement (i.e., uniform or not), and only non-uniform Total
Order.

7.5 Destinations Agreement Algorithms

7.5.1 Skeen. Skeen’s algorithm, described by Birman and Joseph [1987], was
used in an early version of the Isis toolkit. The algorithm corresponds roughly to
the algorithm in Figure 14. The main difference is that Skeen’s algorithm computes
the global timestamp in a centralized manner, whereas the algorithm in Figure 14
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46 · X. Défago et al.

does it in a decentralized way. Fault tolerance is achieved using a group membership
service, which excludes suspected processes from the group.

Dasser [1992] propose a simple optimization of Skeen’s algorithm called TOMP,
where additional information is appended to protocol messages in order to deliver
application messages a little earlier.

7.5.2 Luan and Gligor. Luan and Gligor [1990] proposed an algorithm based
on majority voting. The idea is the following. Upon execution of TO-broadcast(m),
message m is sent to all processes. Upon reception of m by some process q, m is put
into q’s receiving buffer. The message delivery order is then decided by a voting
protocol, which can be initiated by any of the processes. In case of concurrent
initiation of the protocol, an arbitration rule is used.

Voting is initiated by broadcasting an “invitation” message. Consider this mes-
sage broadcast by process p. Processes reply by sending the content of their receiv-
ing buffer to p. Process p waits for a majority of replies. Based on the messages
received, process p then constructs a sequence of message identifiers, and broad-
casts this sequence. A process receiving the sequence sends an acknowledgment to p.
Once p has received acknowledgments from a majority of processes, the proposed
sequence is committed.

To summarize, the protocol tries to reach consensus among the destination pro-
cesses on a sequence of messages. However, the authors did not identify consensus
as a subproblem to solve, which makes the protocol more complex. The conse-
quence is also that the conditions under which liveness is ensured are not discussed
(and difficult to infer).

7.5.3 Le Lann and Bres. Le Lann and Bres [1991] wrote a position paper dis-
cussing total order broadcast in a system with omission faults. The paper sketches
a total order broadcast algorithm based on quorums.

7.5.4 Chandra and Toueg. Chandra and Toueg [1996] propose a transformation
of atomic broadcast into a sequence of consensus problems, wherein each consensus
decides on a set of messages, easily transformed into a sequence of messages. The
transformation uses reliable broadcast. The idea of this transformation, described
in Sect. 4.5, is not repeated here.

The algorithm assumes an asynchronous system model, reliable broadcast, and
a black box that solves consensus. The algorithm is extremely elegant, in the sense
that all difficult issues related to fault tolerance are hidden in the consensus black
box.

There have been several proposals to optimize this algorithm. For example,
Mostéfaoui and Raynal [2000] propose an optimistic approach in which the consen-
sus algorithm is split into two parts. The first phase is optimized, but does not
always succeed. If this happens, the full consensus algorithm is executed.

7.5.5 Rodrigues and Raynal. Rodrigues and Raynal [2000] present a total order
broadcast algorithm in a model where processes have access to stable storage and
may recover after a crash. The algorithm is very close to the Chandra-Toueg
algorithm (Sect. 7.5.4): it uses the same transformation of total order broadcast
to consensus. The only difference is that, because of the crash-recovery model, the
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algorithm relies on the crash-recovery consensus algorithm of Aguilera, Chen, and
Toueg [2000]).

7.5.6 ATR. Delporte-Gallet and Fauconnier [1999] describe the ATR algorithm,
which is based on an abstraction called Synchronized Phase System (SPS). The SPS
abstraction is defined in an asynchronous system. An SPS decomposes the execu-
tion of an algorithm in rounds, almost like a synchronous round model. The ATR
algorithm distinguishes between even and odd rounds. In even rounds, processes
send ordered sets of messages to each other. Upon reception of these messages, each
process constructs a sequence of messages. In the subsequent odd round, processes
try to validate the order and deliver messages.

7.5.7 SCALATOM. SCALATOM [Rodrigues et al. 1998] is based on Skeen’s
algorithm (Sect. 7.5.1) and supports the broadcast of messages to multiple groups.
The algorithm satisfies the Strong Minimality property (Sect. 3.2.4). The global
timestamp is computed using a variant of Chandra and Toueg’s [1996] consensus
algorithm (Sect. 7.5.4). SCALATOM corrects an earlier algorithm called MTO
[Guerraoui and Schiper 1997].

7.5.8 Fritzke et al.. Fritzke et al. [2001] also propose an algorithm for the broad-
cast of messages to multiple groups. The algorithm satisfies the Strong Minimality
property (Sect. 3.2.4). Consider a message m broadcast to multiple groups. First,
the algorithm uses consensus to decide on the timestamp of m within each desti-
nation group. The destination groups then exchange information to compute the
final timestamp, and a second consensus is executed in each group to update the
logical clock.

7.5.9 Optimistic atomic broadcast. Optimism is a technique used for several
years in the context of concurrency control [Bernstein et al. 1987] and file system
replication [Guy et al. 1993]. However, it was only recently been considered in the
context of total order broadcast [Pedone 2001].

The optimistic atomic broadcast algorithm of Pedone and Schiper [1998; 2003]
is based on the experimental observation that messages broadcast in a LAN are
usually received in the same order by every process. When this assumption is met,
the algorithm delivers messages very quickly. However, if the assumption does not
hold, the algorithm is less efficient than other algorithms (but still delivers messages
in total order).

Unlike most optimistic algorithms, the optimistic atomic broadcast of Pedone and
Schiper [2003] is optimistic internally. This means that the optimistic mechanism
of the algorithm is not apparent to the application. In other words, there is no
weakening of the delivery properties.

7.5.10 Prefix agreement. Anceaume [1997] defines a variant of consensus, called
prefix agreement, wherein processes agree on a stream of values rather than on
a single value. Considering streams rather than single values makes the prefix
agreement algorithm particularly well suited to solve total order broadcast. The
total order broadcast algorithm uses prefix agreement to repeatedly decide on the
sequence of messages to be delivered next.
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7.5.11 Generic broadcast. Generic broadcast [Pedone and Schiper 1999; 2002]
is not a total order broadcast per se. Instead, the algorithm assumes a conflict
relation on the messages, and two messages m and m′ are delivered in the same
order at each destination process only if they conflict. Two messages m and m′

that do not conflict are not ordered by the algorithm. If all messages conflict,
then generic broadcast provides the same guarantee as total order broadcast. If
no messages conflict, then generic broadcast provides the guarantees of (uniform)
reliable broadcast. The strong point of this algorithm is that performance varies
according to the required “amount of ordering”: the generic broadcast algorithm
uses a consensus algorithm only in case of conflicts.

7.5.12 Thrifty generic broadcast. Aguilera, Delporte-Gallet et al. [2000] also
propose a generic broadcast algorithm. When conflicting messages are detected,
Pedone and Schiper [2002] solve generic broadcast by reduction to consensus, while
Aguilera et al. [2000] solve generic broadcast by reduction to total order broadcast.
In addition, the algorithm is thrifty in the sense that, if there is a time after which
broadcast messages do not conflict with each other, then eventually atomic broad-
cast is no longer used. The algorithm of Pedone and Schiper [2002] also satisfies
this property with respect to consensus, but the property was not identified in the
paper.

7.5.13 Weak ordering oracles. Pedone et al. [2002] define a weak ordering ora-
cle as an oracle that orders messages that are broadcast, but is allowed to make
mistakes (i.e., the messages broadcast may be delivered out of order). This oracle
models the behavior observed in local-area networks, where broadcast messages
are often spontaneously delivered in total order. The paper shows that total order
broadcast can be solved using a weak ordering oracle. If the optimistic assumption
is met, the proposed algorithm, which assumes f < n

3 , solves total order broadcast
in two communication steps.

Interestingly, the algorithm has the same structure as the randomized consensus
algorithm proposed by Rabin [1983]. The authors mention also that the weak
ordering oracle could be used to design an total order broadcast algorithm with the
same structure as the randomized consensus algorithm proposed by Ben-Or [1983].

7.5.14 Quick-A. Berman and Bharali [1993] present a series of four algorithms,
three of which belong to another class (see Quick-S; Sect. 7.4.12). Their algorithm
for asynchronous systems is quite different from their algorithms for synchronous
systems (Sect. 7.4.12). Processes maintain a round number, and broadcast messages
are timestamped with this round number. The processes then execute a sequence
of randomized binary consensus, to decide on the round in which messages are to
be delivered.

7.5.15 AMp/xAMp. The AMp [Veŕıssimo et al. 1989] and xAMp [Rodrigues and
Veŕıssimo 1992] algorithms rely on the assumption that most of the time broadcast
messages are received by all destination processes in the same order (a realistic
assumption in LANs, as already mentioned). So, when a process broadcasts a
message, it initiates a commitment protocol. If the messages are received in order
by all destination processes, then the outcome is positive: all destination processes
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commit and deliver the message. Otherwise, the message is rejected and the sender
must try again (thus potentially leading to a livelock).

7.6 Hybrid Algorithms

Here we discuss algorithms that do not fit into one of our five classes of total order
broadcast algorithms. These algorithms usually combine two different ordering
mechanisms.

7.6.1 Newtop (asymmetric). Ezhilchelvan et al. [1995] propose two algorithms;
one symmetric and the other asymmetric. The symmetric algorithm was described
earlier (Sect. 7.4.3).

The asymmetric algorithm uses a sequencer process, and allows a process to
be member of multiple groups (each group has an independent sequencer). For
ordering, the algorithm uses Lamport’s logical clocks in addition to the sequencer.
Hence the asymmetric algorithm is a hybrid between a communication history
algorithm (due to the use of Lamport’s clocks) and a fixed sequencer algorithm.
The asymmetric algorithm, like the symmetric one, preserves causal order delivery.
However, note that a process p which is a member of more than one group, cannot
broadcast a message m to a group immediately after broadcasting some message m′

to a different group. Process p can only deliver m′ after it has delivered m. Hence,
the asymmetric algorithm does not technically allow a message to be broadcast to
more than one group.

As mentioned earlier, Newtop supports the combination of groups even if one
group uses the asymmetric algorithms and the other group uses the symmetric one.
Also, Newtop is based on a partitionable group membership service.

7.6.2 Rodrigues et al.. Rodrigues et al. [1996] present an algorithm optimized
for large networks. The algorithm is hybrid: on a local scale, a sequence number is
attached to each message by a fixed sequencer, and on a global scale, the ordering
is of type communication history. More precisely, each sender p has an associated
sequencer process that issues a sequence number for each message of p. The original
message and its sequence number are sent to all, and messages are finally ordered
using a standard communication history technique (see Sect. 7.4.1). The authors
also describe interesting heuristics to change the sequencer process. The reasons for
such changes can be failures, membership changes or changes in the traffic pattern.

7.6.3 Indulgent uniform total order. Vicente and Rodrigues [2002] propose an
optimistic algorithm for wide-area networks. The algorithm is based on external
optimism, as initially proposed by Kemme et al. [[1999]; [2003]]. This means that
the algorithm distinguishes between two delivery events following the broadcast of
message m: the optimistic delivery, denoted Opt-deliver(m), and the traditional
total order delivery denoted Adeliver(m). Upon Opt-deliver(m) the delivery order
of m is not yet decided. However, the application can start processing m. If later
Adeliver(m) invalidates the optimistic delivery order, then the application must
rollback and undo the processing of m. The optimism of Kemme et al. [2003] is
related to the spontaneous total ordering in LANs.

The optimistic algorithm of Vicente and Rodrigues [2002] extends the hybrid
algorithm of Rodrigues et al. [1996] (Sect. 7.6.2). The delivery order is determined

c©2004 ACM. Appears in ACM Comp. Surv., Vol. 36, No. 4, pp. 372–421, December 2004
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by sequence numbers attached to messages. A sequence number attached to a
message m must be validated by a majority of processes before the total order of
m is decided. Nevertheless, the algorithm optimistically delivers m according to its
sequence number before the sequence number is actually validated.

7.6.4 Optimistic total order in WANs. Optimistic total order broadcast algo-
rithms rely heavily on the assumption that messages are very often received by
all processes in some spontaneous total order. This assumption was motivated by
observations made in local networks, often over a single hub. The assumption is,
however, questionable for wide-area networks, in which the spontaneous total or-
der is significantly less likely to occur. Sousa et al. [2002] propose a time-based
solution to address this problem and increase the probability of spontaneous total
order in wide-area networks. The technique, called delay compensation, consists in
artificially delaying received messages, so that all destinations will process them at
roughly the same time. A delay is kept for each incoming communication channel,
and the duration of this delay is adapted dynamically.

8. OTHER WORK ON TOTAL ORDER AND RELATED ISSUES

Apart from papers proposing total order broadcast algorithms, there is other closely
related work that is worth mentioning.

Backoff protocol. Chockler, Malkhi, and Reiter [2001] describe a replication pro-
tocol which emulates state machine replication [Lamport 1978a; Schneider 1990].
The protocol is based on quorum systems and relies on a mutual exclusion protocol.
Basically, a client process wanting to perform some operation op on the replicated
servers proceeds as follows: the client first waits to enter the critical section, and
then (1) accesses a quorum of replicas to get an up-to-date state σ of the replicated
servers, (2) performs the operation op on σ which leads to a new state σ′, and
(3) updates a quorum of replicas with the new state σ′. The protocol is safe even if
the mutual exclusion protocol violates safety (more than one process in the critical
section): safety of the mutual exclusion protocol is only needed to ensure progress
of the replication protocol.

Optimistic active replication. Felber and Schiper [2001] describe another repli-
cation protocol that is integrated with a total order broadcast algorithm. The
replication protocol is based on an optimistic fixed sequencer total order broadcast
algorithm, which is executed among the servers. The optimistic algorithm may lead
some servers to deliver messages out of order, in which case these servers have to
rollback. Rollback is limited to servers; client processes never have to rollback.

Probabilistic protocols. Recently, Felber and Pedone [2002] have proposed a total
ordered broadcast algorithm with probabilistic safety. This means that their al-
gorithms enforce the properties of total order broadcast with a known probability.
Doing so gives room for extremely scalable solutions, but is only acceptable for
applications with very weak requirements. In particular, Felber and Pedone [2002]
propose a specification where agreement is guaranteed with probability γa, total
order with probability γo, and validity with probability γv. The authors propose
an algorithm based on gossiping and discuss sufficient conditions under which their
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algorithm can enforce the above properties with probability one.

Hardware-based protocols. Due to their specificity, we have deliberately omitted
algorithms that make explicit use of dedicated hardware. They however deserve to
be cited here. Some protocols are based on a modification of the network controllers
(e.g., [Jalote 1998; Minet and Anceaume 1991a]). The idea is to slightly modify the
network so that it can be used as a virtual sequencer. In our classification system,
these protocols can be classified as fixed sequencer protocols. Some other protocols
rely on the characteristics of specific networks such as a specific topology [Córdova
and Lee 1996] or the ability to reserve buffers [Chen et al. 1996].

Performance of total order broadcast algorithms. Compared to the host of publi-
cations describing algorithms, relatively few papers are concerned with evaluating
the performance of total order broadcast (e.g., [Cristian et al. 1994; Friedman
and van Renesse 1997; Mayer 1992], described in Sect. 1). Recently, we present
a comparative performance analysis based on the classification developed in this
survey [Défago et al. 2003]: algorithms are taken from all five classes of ordering
mechanisms, and both uniform and non-uniform algorithms are considered. Urbán
et al. [2003] go beyond simply evaluating some algorithm or comparing different
algorithms: they propose benchmarks including well-defined performance metrics,
workloads, and faultloads describing how failures and related events occur.

Formal methods. Formal methods have been applied to the problem of total order
broadcast, in order to verify the properties of algorithms [Zhou and Hooman 1995;
Toinard et al. 1999; Fekete et al. 2001]; and to the problem of consensus, in order to
construct a truly formal proof for an algorithm [Nestmann et al. 2003]. The proofs
of Fekete et al. [2001] were subsequently checked by a theorem prover. Liu et al.
[2001] use the notion of meta-properties to describe and analyze a protocol which
switches between two total order broadcast algorithms.

Group communication controversy. Eleven years ago, Cheriton and Skeen [1993]
published a polemic about group communication systems that provide causally and
totally ordered communication primitives. Their major argument against group
communication systems was that systems based on transactions are more efficient,
while providing a stronger consistency model. This was subsequently answered
by Birman [1994] and Shrivastava [1994]. More than a decade later, it appears
that work on transaction systems and on group communication systems tend to
influence each other for a mutual benefit [Schiper and Raynal 1996; Agrawal et al.
1997; Pedone et al. 1998; Kemme and Alonso 2000; Wiesmann et al. 2000; Kemme
et al. 2003].

9. CONCLUSION

The vast literature on total order broadcast and the large number of published
algorithms show the complexity of the problem. However, this abundance of infor-
mation is a problem by itself, because it makes it difficult to understand the exact
tradeoffs associated with each proposed solution.

The main contribution of this paper is the definition of a classification for total
order broadcast algorithms, which makes it easier to understand the relationship
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between them. This also provides a good basis for comparing the algorithms and
understanding some tradeoffs. Furthermore, the paper has presented a vast survey
of most of the existing algorithms and discussed their respective characteristics.

In spite of the large number of total order broadcast algorithms published, most
are merely improvements or variants of each other (even if this is not immediately
obvious to the untrained eye). Actually, there are only a few truly original algo-
rithms, but a large collection of various optimizations. Nevertheless, it is important
to stress that clever optimizations of existing algorithms often have a very signifi-
cant impact on performance. For instance, Friedman and van Renesse [1997] show
that piggybacking messages, in spite of its simplicity, can significantly improve the
performance of algorithms.

Even though the specification of the total order broadcast problem dates back
to some of the earliest publications about the subject, few papers actually specify
the problem that they solve. In fact, too few algorithms are properly specified, let
alone proven correct. Gladly, this is changing and we hope that this paper will
contribute to more rigorous work in the future. Without pushing formalism to
extremes, a clear specification and a sound proof of correctness are as important
as the algorithm itself. Indeed, they clearly define the limits within which the
algorithm can be used.
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