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Abstract

In most state-of-the-art voice gender conversion systems, the
converted speech still sounds unnatural, which is mainly at-
tributed to the insufficient smoothness of the converted spec-
tra between frames and ineffective spectral modification. In
this paper, we present a new method for voice gender conver-
sion using a speech analysis technique called temporal de-
composition (TD). TD is used to model spectral evolution
effectively. Instead of modifying speech spectra frame by
frame, we only need to modify event targets and event func-
tions, and the smoothness of the converted speech is ensured
by the shape of the event functions. To overcome the inef-
fective spectral modification, we explore Gaussian mixture
model (GMM) parameter sets for an input of TD to flexi-
bly model the spectral envelope, and develop a new method
of modifying GMM parameters in accordance with formant
scaling factors. For transforming fundamental frequencies,
our system is based on STRAIGHT, which is a very high-
quality vocoder. Experimental results show that the quality of
the speech converted by the proposed method is significantly
improved.

1. Introduction

The aim of voice gender conversion is to modify female
(male) speech so that it sounds as if it was spoken by a male
(female). Voice gender conversion has applications in voice
output systems such as Text-to-Speech synthesis, multimedia
voice applications, or in voice gender normalization for im-
proved speech compression or recognition. The challenge of
voice gender conversion is to convert the gender-related pa-
rameters of the speech signal without affecting smoothness
and naturalness. For a long time, it was believed that pitch
was the dominant cue in voice gender perception. However,
Childers and Wu [1] showed that grouped formant informa-
tion gave a higher automatic gender distiniction success rate
than pitch information. Therefore, both the glottal and vocal-
tract-related features of the source speech signal need to be
modified in voice gender conversion systems.

A variety of approaches to voice gender conversion have
been discussed. Most voice gender conversion methods a
based on a parametric source-filter model of speech - o-
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duction [2, 3, 4]. In [2] and [3], formant modification is
performed by linear frequency-scale mapping applied to the
speech spectrum. This does not accurately reflect the fre-
quency difference between male and female speech, and the
quality of the converted speech is not very natural. To over-
come the disadvantages of linear frequency-scale mapping,
Jung et al. [4] refined the method proposed in [3] by splitting
the speech signal into two complementary frequency bands
to separate F4 from the other formants, and modifying each
subband with different formant scaling factors. However, this
method still uses LP (linear prediction) coefficients to repre-
sent and modify the spectral envelope. Because of the limita-
tion of standard LP-based techniques in independently modi-
fying important formant characteristics such as amplitude and
bandwidth, the quality of the speech is not enhanced.

In addition, all the methods mentioned above modify the
speech spectra and fundamental frequency frame by frame,
and rarely apply any constraints between frames. When there
are unexpected modifications in some frames, the modified
speech may be not smooth. As a result, there are some clicks
in the converted speech, which lead to a degradation of speech
quality.

In this paper, we propose a new voice gender conversion
system using temporal decomposition [5]. To model the spec-
tral evolution, we employ the modified restricted temporal
decomposition (MRTD) algorithm [6]. For spectral modifi-
cation, we use GMM parameters [7, 8] to model the speech
spectrum, and develop a new method of modifying GMM pa-
rameters in accordance with formant scaling factors. Note
that the GMM parameters used here are different from those
often used to model the distribution of acoustic features in
state-of-the-art methods for voice conversion. In addition,
since the fundamental frequency and vocal tract information
are not independent, modifying them separately will often
degrade the quality of converted speech. Therefore, a high-
quality analysis-synthesis framework, STRAIGHT [9] is uti-
lized in this study.

2. Spectral Modification using Temporal Decomposition

2.1 Temporal decomposition

As mentioned earlier, a shortcoming of conventional spectral
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modification methods is that they do not take into account the
correlation between frames, resulting in clicks in the modified
speech because of the discontinuous spectral contour. There-
fore, we employ TD to solve this problem.

In articulatory phonetics, speech is described as a sequence
of distinct articulatory gestures, each of which produces an
acoustic event that should approximate a phonetic target. Be-
cause of the overlap of the gestures, these phonetic targets are
often only partly realized.

Atal proposed a method based on the temporal decomposi-
tion of speech into a sequence of overlapping target functions
and corresponding target vectors [5], in which the target vec-
tors may be associated with ideal articulatory positions, and
the target functions describe the temporal evolution of these
targets, as given in Eq. (1).

K
§(n) =) agr(n), 1<n<N (1)
k=1

where ag, the k" event vector, is the speech parameter cor-
responding to the kt" target. The temporal evolution of this
target is described by the k** event function, ¢x(n). ¥(n) is
the approximation of the n*" spectral parameter vector y(n),
and is produced by the TD model. N and K are the num-
ber of frames in the speech segment and the number of event
functions, respectively.

To modify speech spectra, we only need to modify the
speech spectra of event vectors and the corresponding event
functions instead of modifying the speech spectrum frame by
frame. The smoothness of modified speech will be ensured by
the shape of the event functions. This leads to easy modifica-
tion of the speech spectra, as well as ensuring the smoothness
of the modified spectra between frames, and thereby enhances
the converted speech quality.

The original method of TD is known to have two major
drawbacks of high computational cost and high parameter
sensitivity to the number and locations of events. A number
of modifications have been explored to overcome these draw-
backs. Imr this study, we employ the MRTD algorithm [6].
The reasons for using MRTD in this work are twofold: (i) the
MRTD algorithm enforces a new property on the event func-
tions, named the “well-shapedness” property, to model the
temporal structure of speech more effectively [6]; (i) event
targets can convey the speaker’s identity [10].

2.2 Speech spectrum modeling using Gaussian mixture
meodel (GMM)

One of the most important properties of spectral modifica-
tion is that it is sufficiently flexible to perform a variety of
modifications within the speech spectra. The standard spec-
tral modification techniques are limited by their inability to
independently control important formant characteristics such
as amplitude and bandwidth.
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Zolfaghan and coworkers proposed a technique applying
the expectation maximization (EM) algorithm to fit a set of
Gaussian mixtures to the smoothed magnitude spectra of a
speech signal [7, 8]. The estimated means, standard devia-
tions, and mixture weights of the Gaussians can be related
to the locations, bandwidths, and amplitudes of the formants,
respectively. The ability to independently control the param-
eters of each Gaussian component enables a precise estimate
of the spectral envelope, a wide variety of modifications, and
independent control of the formants.

2.3 Smoothed-spectrum representation by STRAIGHT

The characteristic shape of the speech spectrum can present
problems for estimating a set of Gaussian components. The
voiced speech spectrum is characterized by a number of pitch
peaks separated by the fundamental frequency. If the pitch
peaks are separated by a high fundamental frequency, a max-
imum can be found by estimating a Gaussian component for a
single-pitch peak, and ignoring the adjacent harmonics. This
results in a very small variance for that Gaussian. There-
fore, the high-quefrency effects of the excitation from the
spectrum are removed to improve the representation of the
spectral envelope by the Gaussian mixture fitting method. In
this work, we model the STRAIGHT smoothed spectrum us-
ing a mixture of Gaussians. STRAIGHT is fundamentally a
source-filter-type vocoder designed for the high-quality anal-
ysis/modification/synthesis of speech. It uses a pitch-adaptive
spectral analysis scheme combined with a surface reconstruc-
tion method in the time-frequency plane to remove signal pe-
riodicity. This results in a smooth spectral representation free
of glottal excitation information. Fig. 1 shows an estimated
mixture distribution of six Gaussians, and an STRAIGHT
smoothed spectrum that is obtained by the analysis of one
frame of speech.
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Figure 1: Mixture of Gaussians (6 components) fit to an
STRAIGHT smoothed spectrum (top), and an STRAIGHT
smoothed spectrum of one frame (bottom)
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2.4 GMM parameters as an input of TD

As mentioned earlier, speech spectrum modeling using GMM
enables a precise estimate of the spectral envelope, a wide
variety of modifications, and independent control of the for-
mants in a frame. However, if frames are processed indepen-
dently, it may generate discontinuous features. To overcome
this drawback, we investigate GMM parameters as an input
of TD. Using TD and GMM, we can deal with the two draw-
backs of conventional spectral modification methods, the in-
sufficient smoothness of the modified spectra between frames
and the ineffective spectral modification.

Among GMM parameters, the mean components are the
most significant parameters, since they are related to formant
locations. To apply TD for analyzing GMM parameters, only
the mean components are used as input parameters in this
study. Although it is undesirable to have a mixed set of in-
put parameters at several stages of the TD procedure, other
parameters can be decomposed by TD by investigating the
relations among parameters or using other event functions,
and this will be explored in our future work.

3. New Spectral Modification Algorithm

Formant frequency is one of the most important parameters
in characterizing speech, and using formant frequency as a
parameter can control parameters that are directly connected
to the speech production process. GMM parameters are re-
lated to formant information, but they are not true formants
in terms of obtaining the resonances in the speech signal. To
modify GMM parameters in accordance with formant scaling
factors, it is necessary to find a relation between formants and
GMM parameters. We propose a new method of modifying
GMM parameters in accordance with formant frequencies.
The spectral modification algorithm is described as follows.
We first extract GMM parameters from the smooth spec-
tral envelope. The precise estimate of the spectral envelope
depends on many factors, such as the number of Gaussian
components estimated, the sampling frequency, and the num-
ber of iterations used in the EM algorithm. In the next step,
we find the peaks of the spectral envelope reconstructed from
the GMM parameters. Since not all these peaks are formants,
we have to identify by how much these peaks will be shifted.
We divide the frequency range into 4 subbands correspond-
ing to the first four formant frequency ranges, and the scaling
factor of each peak is determined to be the scaling factor of
the formant to which the peak belongs. Then, on the basic the
geometric characteristic of normal distribution, i.e. the empir-
ical rule, we find which GMM components contribute to this
peak. If this peak is located between [y, — 30m; tbm +30m],
where pi,, is the mean and 0., is the standard deviation of
Gaussian component m, we regard Gaussian component m as
contributing to this peak. We shift the mean component of
this Gaussian component by the scaling factor of this peak.
Note that every mean component is shifted only once. After
shifting the Gaussian components, we reconstruct the modi-

Journal of Signal Processing, Vol. 11, No. 4, July 2007

0.014

0.012

o
o
=

o
=]
=1
@

Magnitude
[=d
(=3
3

2000 3000 4000 5000

Frequency (Hz)

0 10‘00 6000
Figure 2: Example of spectral envelope modification algo-
rithm applied to a spectrum: AF1 = 30%, AF2 = 25%,
AF3 = 20%, and AF4 = 15%
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Figure 3: Block diagram of the proposed voice gender con-
version system

fied spectral envelope. An example of spectral modification
algorithm applied to a spectrum is shown in Fig. 2.

4. Proposed Voice Gender Conversion System

As mentioned above, the two most important features that
show major differences between genders, formant frequen-
cies and fundamental frequencies, are modified in our sys-
tem. A block diagram of the proposed voice gender conver-
sion system is shown in Fig. 3.

First, STRAIGHT decomposes input speech signals into
spectral envelopes, FO (fundamental frequency) information,
and aperiodic components. Since the spectral envelopes can
be further analyzed into GMM parameters, MRTD is em-
ployed in the next step to decompose the mean components
of GMM parameters into event targets and event functions.
These targets are modified in accordance with shift factors,
and then re-synthesized as mean parameters by TD recon-
struction. In the next step, the modified GMM parameters are
synthesized as spectral envelopes by GMM synthesis. The
fundamental frequency contour is modified by simply multi-
plying the FO by a scaling factor. Finally, STRAIGHT syn-
thesis is employed to output the modified speech.
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Table 1: Analysis conditions for experiments

Sampling frequency 12 kHz
Window length 40 ms
STRAIGHT Window shift 1 ms
FFT points 1024
Proposed [teration of EM algorithm | 30 times
method GMM components 14
Method in {12] | LSF order 14

Table 2: Subjective listening results (1) STRAIGHT +
LSF (2) STRAIGHT + GMM (3) the proposed system
(STRAIGHT + TD + GMM)

Correct Gender
Identification (%)
M A0 @& 6
MtoF 83.3 1938|938 273|315 3.19
FtoM 100 | 100 | 100 | 3.10 | 3.58 | 3.63

Type of
Conversion

Mean Opinion Score

5. Experiments and Results

To evaluate the performance of the proposed method, a num-
ber of experiments were conducted.

Our perception of spoken-voice gender relies heavily on
the phonation or voicing process, which is associated mainly
with vowel sounds. We therefore extract the fundamental fre-
quency, and the first four formant frequencies from the- five
Japanese vowels spoken by two speakers (one male and one
female) in the ATR Japanese speech database [11] to formu-
late the scaling factors for our voice gender conversion sys-
tem. To modify other syllables, we use the same scaling fac-
tors of the vowel that is nearest to the syllable.

We then compare the quality of speeches converted by the
proposed method with those converted by two other systems.
All three systems use STRAIGHT to modify the fundamen-
tal frequency. In the first system, a newly proposed algo-
rithm for formant modification in the LSF domain [12] is em-
ployed (STRAIGHT+LSF). In the second system, speech is
converted frame by frame by using only GMM parameters to
modify the spectral envelope (STRAIGHT+GMM). Six ut-
terances of the ATR Japanese speech corpus spoken by two
speakers (one male and one female) are used for evaluation.
The analysis conditions are listed in Table 1.

We presented the synthesized sounds to 8 listeners, and
asked them to identify the gender of the person who was
speaking, and to rate the perceptual quality of the speech on
a five-point scale (1: bad, 2: poor, 3: fair, 4: good, 5: ex-
cellent). Table 2 shows the average scores, which indicate
that the subjective quality of the proposed method is superior
to that of the first system and slightly better than that of the
second system.

6. Conclusions

In this paper, we have presented a new method for voice gen-
der conversion. The method ensures the smoothness of con-
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verted speech by TD. The method also overcomes the prob-
lem of ineffective spectral modification. The effectiveness of
the proposed method was confirmed by subjective test results.
Because of time limitation, we only focused on the two most
important features related to gender difference, formant fre-
quencies and fundamental frequencies. We believe that fur-
ther improvement can be made by analyzing the air transition
difference between male and female speakers. To utilize this
difference in our proposed voice conversion system, we only
need to modify the event functions.
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