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Abstract: In this paper, we propose a novel noise reduction system using a hybrid

noise estimation technique and post-filtering which is effective in dealing with localized and

non-localized noise components. To suppress localized noises, we develop a hybrid noise

estimation technique that combines a reformulated multi-channel estimation technique and a

soft-decision single-channel estimation technique. Final estimation accuracy is significantly

improved by a speech absence probability estimator which considers the strong correlations of

speech presence uncertainty between adjacent frequency components and consecutive frames.

The estimated spectra of localized noises are subtracted from those of noisy observations

by spectral subtraction. The non-localized noises are further reduced by a multi-channel

post-filter which minimizes the mean squared error of log-spectra. An estimator for the a

priori speech absence probability is derived from the coherence characteristic of the noise field

at spectral subtraction output, improving the spectral enhancement of the desired speech

signal. Experimental results demonstrated that the hybrid estimation technique produces

more accurate spectral estimates for localized noises and the proposed noise reduction system

results in significant improvements in terms of objective speech quality measures: segmental

SNR (SEGSNR) and Mel-Frequency Cepstral Coefficient (MFCC) distance and subjective

speech quality measures: spectrograms and listening tests in various noise conditions.

Keywords: Hybrid Noise Estimation; Post-Filtering; Coherence Function; Speech Presence

Uncertainty
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1 Introduction

Recent years, noise reduction systems have been in great demand for an increasing number

of speech applications, such as automatic speech recognition (ASR) systems and celluar

telephony. Although the ASR systems have achieved high recognition accuracy in labora-

tory environments where the training conditions match the testing conditions to a large

degree, their performance seriously degrades in the real-world environments where various

kinds of noises result in a mismatch between training conditions and testing conditions for

the ASR systems [1]. Adverse environments also deteriorate the quality of speech that is

transmitted in speech communication systems [2]. One direct solution to this problem is

to use a head-set or hand-held equipment, which is inconvenient for users. One potential

solution is to construct a noise reduction system as a front-end processor for these systems.

So far, a variety of noise reduction algorithms have been proposed in the literature

[2]-[10]. Generally speaking, all of these algorithms can be classified into two categories:

single-channel techniques and multi-channel techniques according to the number of sensors

they need. Compared to the single-channel technique, the multi-channel technique is

substantially superior in reducing noise and enhancing speech, due to its spatial filtering

capability of suppressing the interfering signals arriving from directions other than the

specified look-direction [3]. Therefore, multi-channel noise reduction approaches have

attracted increasing research interests.

The linearly constrained adaptive beamformer, first presented by Frost, keeps the

signals arriving from the desired look-direction intact while suppressing the signals from

other directions by minimizing the output power of the beamformer [6]. A generalized

sidelobe canceller (GSC) beamformer, as an alternative implementation structure of Frost

beamformer, has been widely researched [7]. In the GSC beamformer, adaptive signal

processing is normally used to avoid cancellation of the desired speech signal [7]. However,

adaptive signal processing decreases the stability of the noise reduction system under

practical conditions. A small-scale subtractive beamformer-based noise reduction system

has recently been proposed by Akagi et al. [9][10][11]. Its superiority lies in its high noise

suppression capability, especially for sudden noises, with only small number of microphones

and the analytical noise estimation scheme. And its weakness lies in the assumption that

only localized noise components exist in the environment.

Among multi-channel noise reduction systems, post-filtering is normally needed to

improve the entire performance in practical applications [14]. A multi-channel post-filter,

first presented by Zelinski, is based on the auto- and cross- spectral densities of the input
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signals, assuming zero cross-correlation between noise signals on different microphones [15].

Recently, it has been extended to a generalized expression based on a priori knowledge

of the noise field [16]. Moreover, Bitzer et al. showed that neither GSC nor Wiener post-

filter can work well at low frequencies in diffuse noise field [18][19]. An alternative solution,

proposed by Meyer [20], applies spectral subtraction in low frequencies and a Wiener filter

in high frequencies at the beamformer output. The two main drawbacks of these filtering

approaches lie in their inability to suppress spatially correlated noises, and the required

voice activity detector (VAD) or the a priori knowledge of the noise field.

In this paper, the problem of suppressing both localized and non-localized noises is

dealt with by a novel noise reduction system based on a hybrid noise estimation tech-

nique and post-filtering. Based on a generalized signal model and a robust and accurate

speech absence probability estimator, a hybrid noise estimation technique is presented,

dealing with the inherent grating sidelobes of small size microphone arrays and the inabil-

ity of single-channel techniques to estimate non-stationary noises. This hybrid estimation

technique produces much more accurate spectral estimates for the localized noise compo-

nents, which are then reduced by spectral subtraction. Presumably, the desired signals

are strongly correlated in the frequencies of interest at different microphones and the

non-localized noise signals are modelled as diffuse noises at spectral subtraction output.

A novel estimator for the a priori speech absence probability is derived based on the

coherence characteristic of the noise filed at spectral subtraction output. Subsequently,

the residual non-localized noises are further suppressed by a multi-channel post-filter of

which the gain function is improved by the a priori speech absence probability estima-

tor. The performance of the proposed noise estimation/reduction systems is evaluated

and compared to that of other conventional estimation/reduction systems in various noise

conditions.

The remainder of this paper is organized as follows. In section 2, a generalized signal

model is introduced along with an overview of the proposed noise reduction system. In

section 3, the localized noises are first estimated by a hybrid estimation technique and

are subsequently subtracted from observations. In section 4, an estimator for the a priori

speech absence probability is presented which improves the suppression capability for the

non-localized noises of the multi-channel post-filter. The superiorities of the proposed

noise estimation/reduction systems are verified in various noise conditions in section 5.

Finally, some conclusions are drawn in section 6.
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2 An Overview of the Proposed Noise Reduction System

In this section, a generalized signal model is introduced and an overview of the proposed

noise reduction system is given.

Considering a microphone array with three linearly and equidistant distributed omni-

directional microphones in a noisy environment, shown in Fig. 1, a generalized signal

model is assumed in which the observed signals consist of three components. The first

is the desired speech signal arriving from a direction such that the difference in arrival

time between the two main microphones is 2ζ. The second is localized noise signals

arriving from directions such that the time differences are 2δk (k = 1, 2, ...,K) and the

third is non-localized noise signal, modelled as diffuse noise, propagating in all directions

simultaneously. Thus, the observed signals imposing on three microphones (left, center

and right), denoted by l(t), c(t) and r(t), can be given by:

l(t) = s(t− ζ) +
K∑

k=1

nc
k(t− δk) + nuc

l (t), (1)

c(t) = s(t) +
K∑

k=1

nc
k(t) + nuc

c (t), (2)

r(t) = s(t+ ζ) +
K∑

k=1

nc
k(t+ δk) + nuc

r (t), (3)

where nc
k and nuc

. denote k-th localized noise signal and non-localized noise signal, respec-

tively.

Based on this generalized signal model, the intention of our work is to reduce both

localized and non-localized noises while keeping the desired signal distortionless. To imple-

ment this idea, a noise reduction system is constructed as shown in Fig. 2, which mainly

consists of the following modules:

• Time delay compensation: This module compensates for the effect of propagation

between speech source and microphones on the desired speech signal. It is assumed

that the output signals of the module are perfectly time aligned and represented by

the same symbols, only setting ζ = 0 in Eqs. (1)-(3), for notational simplicity.

• Spectral analysis: The time aligned signals are analyzed by Short Time Fourier

Transform (STFT), outputting the amplitude spectra and phase spectra.

• Localized noise suppression: To suppress localized noise signals, their spectra are

first estimated by a hybrid noise estimation approach which effectively combines
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a multi-channel technique and a single-channel technique in a parallel structure.

For the multi-channel technique, an estimation approach based on a reformulated

subtractive beamformer is adopted. For the single-channel technique, a soft-decision

based approach is used. Moreover, considering the strong correlations of speech pres-

ence uncertainty between adjacent frequency components and consecutive frames,

we derive a robust and accurate speech absence probability estimator, which greatly

improves the estimation accuracy of the hybrid estimation technique for localized

noises. The final spectral estimates are subtracted from those of noisy observations

by spectral subtraction.

• Non-localized noise suppression: To further suppress the residual non-localized dif-

fuse noise, a multi-channel post-filter, minimizing the mean square error of the log-

spectra, is adopted. Moreover, an estimator for the a priori speech absence proba-

bility is derived based on the coherence characteristic of the noise field at spectral

subtraction output. The a priori speech absence probability further enhances the

noise suppression performance of the multi-channel post-filter.

• Spectral synthesis: The enhanced speech signal is synthesized by using inverse STFT

and the overlap-and-add technique.

The two main modules mentioned above, localized noise suppression and non-localized

noise suppression, will be discussed in detail in sections 3 and 4.

3 Localized Noise Suppression Using a Hybrid Noise Esti-

mation Technique and Spectral Subtraction

In this section, we focus on suppressing localized noise components. To do this, we first

propose a hybrid estimation technique to obtain the spectral estimates of localized noises

which are then subtracted from those of noisy observations.

3.1 A Hybrid Noise Estimation Technique

A hybrid noise estimation technique which combines a reformulated multi-channel estima-

tion approach and a single-channel estimation approach is described in this subsection.
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3.1.1 The Multi-Channel Noise Estimation Approach

Based on the generalized signal model, the multi-channel noise estimation approach we

previously proposed can be reformulated as follows.

The time-aligned signals l(t), c(t) and r(t) are shifted ±τ in the time domain (τ �= 0),

and two subtractive beamformers in the time domain are constructed as [11]:

glr(t) =
1
4
{[l(t+ τ) − l(t− τ)] − [r(t+ τ) − r(t− τ)]}, (4)

gcr(t) =
1
4
{[c(t+ τ) − c(t− τ)] − [r(t+ τ) − r(t− τ)]}. (5)

In order to simplify implementation, the differences of non-localized noises at different

microphones are assumed to be small enough to be ignored. Then, the two beamformers

in the frequency domain can be derived as [11]:

Glr(λ, ω) = sinωτN c(λ, ω)sinωδ, ωi−1 ≤ ω < ωi, (6)

Gcr(λ, ω) = sinωτN c(λ, ω)ejω
δ
2 sinω

δ

2
, ωi−1 ≤ ω < ωi, (7)

(i = 1, 2, ..., I, ω0 = 0, ωI = π, )

where (i) N c(λ, ω) and δ denote the spectrum and the virtual direction of arrival (DOA) of

the integrated localized noise signal in sub-band (ωi−1 ≤ ω < ωi), respectively; (ii) λ and

ω are the frame index and the frequency index. Note that the outputs of two subtractive

beamformers do not contain any desired speech signal components which have been blocked

successfully. Given the virtual DOA of the integrated noise signal, the spectra of localized

noise can be easily estimated from the outputs of the beamformers, represented as (τ = δ)

[11]:

N̂ c
m(λ, ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Glr(λ, ω)/sin2ωδ, sin2ωδ > ε1 ,

Gcr(λ, ω)e−jω δ
2 /sin2ω δ

2 , sin2 ωδ < ε1 and sin2 ω δ
2 > ε2,

Gcr(λ, ω)/ε2, otherwise,

(8)

where (i) the subscript m in N̂ c
m(λ, ω) indicates the spectral values are estimated by this

multi-channel technique; (ii) ε1 and ε2 are two threshold values determined experimentally

(ε1 = 0.5 and ε2 = 0.1 in this work). And the virtual direction of the integrated localized

noise signal can be computed from the outputs of two beamformers by the algorithm in

[11].
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3.1.2 Analysis and Improvement of the Multi-channel Noise Estimation Ap-

proach

The multi-channel noise estimation approach has a great ability to estimate the spectra

for localized noises arriving from determinable directions. However, when the condition

ωδ = 2kπ holds, the localized noise spectra can not be accurately estimated since the

beamformers do not output any signal. In this case, estimation accuracy of this multi-

channel approach was degraded since an approximation was used in [11]. This phenomenon

corresponds to the grating sidelobes of the microphone arrays with small physical size.

To deal with this problem, we propose a hybrid noise estimation technique in which

a single-channel estimation approach is incorporated when the multi-channel estimation

approach fails. In this hybrid estimation technique, the values of sin2ωδ and sin2ω δ
2 , in

Eq. (8), determine whether the output of the single-channel approach or that of the

multi-channel approach should be the final output of this hybrid structure. When the

maximum of sin2ωδ and sin2ω δ
2 is larger than a threshold ε (an empirical constant), the

output of the multi-channel approach is more accurate and preferable as the final output.

Otherwise, the output of the single-channel approach is more accurate and preferable as

the final output. Thus, the final spectral estimates of the localized noises by the proposed

hybrid estimation technique can be given by:

N̂ c(λ, ω) =

⎧⎨
⎩ N̂ c

m(λ, ω), max (sin2ωδ, sin2ω δ
2) > ε,

N̂ c
s (λ, ω), otherwise,

(9)

(ωi−1 ≤ w < ωi, i = 1, 2, ..., I)

where N̂ c
m(λ, ω) and N̂ c

s (λ, ω) represent the spectral estimates of localized noises by the

multi-channel technique, given by Eq. (8), and by the single-channel technique detailed

in the following subsection.

3.1.3 The Single-Channel Noise Estimation Approach

As Eq. (9) shows, the spectra of localized noises, N̂ c
s (λ, ω), should be computed by a

single-channel estimation approach. In this work, a soft-decision single-channel approach

is adopted since it can adaptively update the noise spectra, given by:

|N̂ c
s (λ, ω)|2 = ηn(λ, ω) (10)

= αηηn(λ− 1, ω) + (1 − αη)E
[|N(λ, ω)|2|C(λ, ω)

]
,

where (i) C(λ, ω) denotes the STFT of c(t) in Eq. (2); (ii) ηn(λ, ω)=E
[|N(λ, ω)|2] is the

variance of the noise signal; (iii) αη (0 < αη < 1) is a forgetting factor controlling the
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update rate of noise estimation. Under the speech presence uncertainty, the second term

in the right side of Eq. (10) can be estimated as the spectra of observed signals during

speech pauses or it can hold the values obtained in the previous pauses during speech

active periods, given by:

E
[|N(λ, ω)|2|C(λ, ω)

]
= q(λ, ω)|C(λ, ω)|2+(1 − q(λ, ω)) ηn(λ− 1, ω), (11)

where q(λ, ω) denotes the speech absence probability. As Eq. (11) shows, the spectral

estimation capability of the single-channel approach can be significantly enhanced through

a speech absence probability estimator detailed in the following subsection, improving the

final estimation accuracy of the hybrid technique.

3.1.4 A robust and accurate speech absence probability estimator

Under the assumption of complex Gaussian statistic model and applying the Bayes rule and

total probability theorem, the speech absence probability conditioned on the observations

can be given by [24]:

q(λ, ω) =

(
1 +

1 − q
′
(λ, ω)

q′(λ, ω)
1

1 + ξ(λ, ω)
exp

(
ξ(λ, ω)γ(λ, ω)
1 + γ(λ, ω)

))−1

, (12)

where (i) q
′
(λ, ω) is the a priori speech absence probability; (ii) ξ(λ, ω) = ηs(λ, ω)/ηn(λ, ω)

and γ(λ, ω) = |C(λ, ω)|2/ηn(λ, ω) are the a priori SNR and a posteriori SNR, as named

in [24], and ηs(λ, ω) represents the variance of speech signal.

Eq. (12) demonstrates that for the given a priori speech absence probability q
′
(λ, ω),

the speech absence probability q(λ, ω) is greatly dependent on the a priori SNR ξ(λ, ω)

and a posteriori SNR γ(λ, ω). It is believed that accurate and robust speech absence

probability estimates can be obtained only when ξ(λ, ω) and γ(λ, ω) are accurate and

robust enough. Consequently, we now turn to the issue of improving the accuracy and

robustness of the a priori SNR ξ(λ, ω) and a posteriori SNR γ(λ, ω) estimates.

Taking into account the strong correlation of speech presence uncertainty in adjacent

frequency bins and consecutive frames, we propose two estimators for the a priori SNR

ξ(λ, ω) and a posteriori SNR γ(λ, ω).

• In the frequency domain, the estimates of ξ(λ, ω) and γ(λ, ω) are smoothed by

applying a normalized window b of size 2D + 1, given by:

ξ̃(λ, ω) =
k=w+D∑
k=w−D

b(k)ξ(λ, k), (13)

γ̃(λ, ω) =
k=w+D∑
k=w−D

b(k)γ(λ, k). (14)
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Estimation accuracy of ξ(λ, ω) and γ(λ, ω) is improved due to the fact the noise

spectra in adjacent frequencies are likely to be estimated by the multi-channel esti-

mation technique with high accuracy. Furthermore, this frequency-smoothing pro-

cedure eliminates fluctuations of the a priori SNR ξ(λ, ω) and a posteriori SNR

γ(λ, ω) along the frequency axis on the time-frequency plane, which results in more

robust SNRs estimates.

• In the time domain, the frequency-smoothed estimates of the a priori SNR ξ̃(λ, ω)

and a posteriori SNR γ̃(λ, ω) are further processed based on the previous values,

given by:

ξ̄(λ, ω) = αξ
S̃2(λ− 1, ω)
ηn(λ− 1, ω)

+ (1 − αξ)max[γ̃(λ, ω) − 1, 0], (15)

γ̄(λ, ω) = γ̃(λ, ω), (16)

where αξ (0 < αξ < 1) is a forgetting factor and S̃(λ− 1, ω) is the enhanced signal

by spectral subtraction in the previous frame, given by Eq. (18). Actually, Eq. (15)

is just the decision-directed scheme detailed in [24]. It is of interest to note that the

smoothing operation in the time domain is not carried out for the a posteriori SNR,

since it should be calculated from the current observations and independent on the

previous observations.

Based on the time-frequency smoothed a priori SNR ξ̄(λ, ω) and a posteriori SNR

γ̄(λ, ω), the speech absence probability q(λ, ω) can be obtained as:

q(λ, ω) =

(
1 +

1 − q
′
(λ, ω)

q′(λ, ω)
1

1 + ξ̄(λ, ω)
exp

(
ξ̄(λ, ω)γ̄(λ, ω)
1 + γ̄(λ, ω)

))−1

, (17)

where q
′
(λ, ω) is given by: q

′
(λ, ω) = 1−Plocal(λ, ω)Pglobal(λ, ω)Pframe(λ, ω). And Plocal(λ, ω),

Pglobal(λ, ω) and Pframe(λ, ω) correspond to the speech presence probabilities which are

estimated based on the speech energy distribution in a local frequency window, a larger

frequency window and neighboring frames in the time-frequency domain respectively, de-

tailed in [26].

It should be pointed out that high spectral estimation accuracy of the proposed hybrid

estimation technique is ensured by the good combination of the multi-channel estima-

tion approach and the single-channel estimation approach from several aspects. Firstly, as

shown in Eq. (9), the final spectral estimates are computed by the multi-channel approach,

which produces the real spectral estimates, in most cases. Secondly, estimation accuracy

of the single-channel approach is significantly improved, which is attributed to the multi-

channel estimation approach and the speech absence probability estimator. Since accurate
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spectral estimates by the multi-channel approach are likely to be distributed around those

determined by the single-channel approach, accuracy and robustness of the speech ab-

sence probability estimator can be ensured by applying the time-frequency smoothed a

priori SNR and a posteriori SNR which are more accurate. Furthermore, the accurate

and robust speech absence probability produces more accurate spectral estimates by the

single-channel estimation approach, improving the accuracy by final spectral estimates by

the proposed hybrid noise estimation technique. Thus, to a certain degree, the hybrid

estimation technique deals with the inherent grating sidelobes of small-size microphone

arrays and the inability of single-channel approach to estimate the non-stationary noises.

3.2 Suppress Localized Noise With Spectral Subtraction

The proposed hybrid noise estimation technique gives accurate spectral estimates for local-

ized noises. Subsequently, the estimated spectra are subtracted from those of the observed

noisy signals by the spectral subtraction method, given by [5]:

S̃(λ, ω) =

⎧⎨
⎩ C(λ, ω) − αN̂(λ, ω), C(λ, ω) > αN̂(λ, ω),

βC(λ, ω), otherwise,
(18)

where α and β are the overestimation factor and spectral floor factor. In our case,

since the spectral estimates of localized noises are of high accuracy, α = 1 is set to avoid

distorting the speech signal. And β is determined experimentally.

4 Non-localized Noises Suppression With Post-Filtering

In this section, we address the problem of suppressing the residual non-localized noises

by employing a multi-channel post-filter. In our proposed noise reduction system, the

well-known optimally-modified log-spectral amplitude (OM-LSA) estimator is adopted as

post-filter due to: its superiority in eliminating ”musical noises”[26] resulting from the

spectra subtraction given by Eq. (18). An estimator for the a priori speech absence

probability is derived based on the coherence characteristic of the noise field at spectral

subtraction output. The further spectral enhancement of the desired speech signal is

achieved by modifying the gain function of the post-filter with the newly obtained a priori

speech absence probability estimator.
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4.1 OM-LSA Estimator

The basic idea of the OM-LSA estimator is to minimize the mean square error between

the log-spectra of the desired speech signals and their optimal estimates. Under speech

presence uncertainty and based on the assumption of complex Gaussian statistic model,

the OM-LSA estimator is given by [26]:

G(λ, ω) = GH1(λ, ω)1−qp(λ,ω)G
qp(λ,ω)
min , (19)

where (i) Gmin is an empirical constraint constant; (ii) qp(λ, ω) is the speech absence

probability (different from q(λ, ω)) which is calculated at spectral subtraction output.

(iii) GH1(λ, ω) is the gain function of the traditional MMSE-LSA estimator when speech

is surely present, defined by [25]:

GH1(λ, ω) =
ξp(λ, ω)

1 + ξp(λ, ω)
exp

(
1
2

∫ ∞

vp(λ,ω)

e−t

t
dt

)
, (20)

where (i) vp(λ, ω) = γp(λ, ω)ξp(λ, ω)/(1 + ξp(λ, ω)); (ii) ξp(λ, ω) and γp(λ, ω) are the a

priori SNR and a posteriori SNR that are computed at spectral subtraction output.

It is of interest to note that the speech absence probability qp(λ, ω), in Eq. (19),

should be calculated again with Eq. (17) at spectral subtraction output. And, a novel

estimator for the a priori speech absence probability q
′
p(λ, ω) should be designed, since

the energy distribution of the spectral subtraction output has been changed which results

in the failure of the energy-based scheme in [26].

4.2 Coherence Function of Noise Fields

To characterize the noise field, a widely used measure is the magnitude-squared coherence

(MSC), more commonly referred to as coherence, defined as:

Γxy(λ, ω) =
|φxy(λ, ω)|2

φxx(λ, ω)φyy(λ, ω)
, (21)

where (i) φxy(λ, ω) is the cross-spectral density between two signals x(t) and y(t); (ii)

φxx(λ, ω) and φyy(λ, ω) are the auto-spectral densities of x(t) and y(t), respectively. The

auto- and cross-spectral densities of the signals, φxx(λ, ω) and φxy(λ, ω), can be estimated

in a recursive way as:

φxx(λ, ω) = αφφxx(λ− 1, ω) + (1 − αφ)X(λ, ω)X∗(λ, ω), (22)

φxy(λ, ω) = αφφxy(λ− 1, ω) + (1 − αφ)X(λ, ω)Y ∗(λ, ω), (23)

where αφ (0 < αφ < 1) is a forgetting factor controlling the update of auto- and cross-

spectral densities.
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In the generalized signal model given by Eqs. (1)-(3), non-localized noises are modelled

as diffuse noise characterized by the following MSC function:

Γ(ω) =
∣∣∣∣sin (ωd/υ)

ωd/υ

∣∣∣∣
2

, (24)

where d and υ are the distance between microphones and the velocity of sound.

Fig. 3 illustrates the MSCs computed with the noise signals recorded in a car envi-

ronment and the theoretical MSC of diffuse noise field. Obviously, the measured MSCs

follow the trend of the theoretical MSC of the diffuse noise field with some relative vari-

ances. Furthermore, at the output of spectral subtraction, the diffuse characteristic of

non-localized noises is kept, since the hybrid estimation technique based noise suppression

algorithm aims to reduce only localized noises with little influence on non-localized noises.

This fact is confirmed by the MSC functions, shown in Fig. 4, computed with the input

signals and the output signals of spectral subtraction when only the diffuse noises are feed

into the system.

4.3 A Priori Speech Absence Probability Estimator

This subsection deals with the problem of detecting the desired speech signal at spectral

subtraction output based on the MSC function computed with the output signals.

Fig. 5 shows an example of the average MSC value over all frequencies at spectral

subtraction output when the speech signals are spatially strong correlated and the noises

are spatially weak correlated. It is obvious to know that the MSC can be used to detect

speech signal due to its capability in discriminating the desired speech signals and inter-

fering noises. This fact has been used under the assumption that the noises are spatially

uncorrelated over all frequencies at different microphones [27]. A novel estimator for the

a priori speech absence probability is designed at spectral subtraction output based on

diffuse noise field assumption in the following.

Let us first give some assumptions upon which the a priori speech absence probability

estimator is based:

• The desired speech signal and interfering noises are statistically independent;

• The desired speech signal is strong correlated over all frequencies of interest at

different microphones;

• The residual non-localized noises at the output of the spectral subtraction are mod-

elled as diffuse noises.
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At spectral subtraction output, the MSC function Γ(λ, ω), is first calculated based on

the output signals which are obtained by subtracting the estimated localized noise spectra

from those of noisy observations on left, center and right microphones, as shown in Eq.

(18). The output signals at different frequencies are characterized by different coherence

values, as shown in Fig. 4. This observation motivates that the MSC spectra at spectral

subtraction output are divided into two parts: the low frequency region with high noise

coherence and the high frequency region with low noise coherence. The transient frequency

between two regions is the first minimum frequency of the MSC function of diffuse noise

field, given by f = υ/(2d), where d and υ are the distance between adjacent microphones

and sound velocity.

To determine the a priori speech absence probability in the high frequency region and

in the low frequency region, we proposed two different schemes described as follows:

• In the high frequency region, the MSC spectra are divided into E sub-bands with

a feasible bandwidth, BW , and are averaged over the frequencies in each sub-band,

obtaining the averaged MSC Γ̄e(λ, ω)(e = 1, 2, ..., E) in e-th sub-band. The aver-

aged MSC Γ̄e(λ, ω) provides an informative clue for determining the a priori speech

absence probability in e-th sub-band. If a high coherence (higher than a threshold

Tmaxe) is detected, a speech present state is detected presumably. If a low coher-

ence (lower than a threshold Tmine) is detected, a speech absent state is detected

presumably. Note that the a priori speech absence probability decreases as the

MSC at spectral subtraction output increases. For the MSC values in the range

[Tmine, Tmaxe], the a priori speech absence probabilities are derived by interpola-

tion between 1 and 0. Thus, the a priori speech absence probability in the high

frequency region, q
′
p,h(λ, ω), is given by:

q
′
p,h(λ, ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, Γ̄e(λ, ω) > Tmaxe ,

1, Γ̄e(λ, ω) < Tmine ,

Tmaxe−Γ̄e(λ,ω)
Tmaxe−Tmine

, otherwise,

ω ∈ [ωlow
e , ωhigh

e ], (25)

where ωlow
e and ωhigh

e are the low and high boundaries of e-th sub-band.

• In the low frequency region, the MSC spectra computed with the output signals in

the low frequency region fail to discriminate the speech signal and interfering diffuse

noises, since both of them are strongly correlated. Based on the MSC value Γ̄(λ, ω)

computed and averaged over the frequencies higher than the transient frequency and
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Table 1: parameters set in the experiments

M = 256 ε1=0.5 ε2 =0.1 ε=0.1 D=2 I = 32

αξ =0.98 α = 1.0 β=0.001 BW =32 αφ =0.7 Θ=12

Tmaxe=0.7 Tmine=0.2 Tmax =0.7 Tmin =0.2 Gmin =0.005 υ = 340m/s

following the same concept used in high frequency region, we derive an estimator for

the a priori speech absence probability in the low frequency region, q
′
p,l(λ, ω), given

by:

q
′
p,l(λ, ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, Γ̄(λ, ω) > Tmax ,

1, Γ̄(λ, ω) < Tmin ,

Tmax−Γ̄(λ,ω)
Tmax−Tmin , otherwise,

(26)

and

Γ̄(λ, ω) =
1
E

E∑
e=1

Γ̄e(λ, ω). (27)

The a priori speech absence probability estimates, given by Eqs. (25) and (26), are

then incorporated into the post-filtering, further improving the spectral enhancement of

the desired speech signal.

5 Experiments and Discussions

In this section, two sets of experiments were conducted to evaluate and compare the perfor-

mance of the proposed noise estimation/reduction methods with that of other traditional

noise estimation/reduction methods. The first set of experiments was devoted to show

the pure contribution of the hybrid noise estimation technique. The second set was to

evaluate the performance of the proposed noise reduction approach as a complete system,

compared to several conventional noise reduction systems, in the simulated and real-world

noise environments.

All parameters set in our experiments are listed in Table 1.

5.1 Evaluation of The Hybrid Noise Estimation Approach

In the first set of experiments, we concentrated on the improvement in estimation accuracy

of the proposed hybrid noise estimation technique for localized noise signals compared to

the corresponding single-channel and multi-channel estimation techniques.
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5.1.1 Sound Data

To objectively evaluate the performance of the proposed hybrid noise estimation technique,

54 clean speech sentences, selected from ATR database and uttered by 3 male and 3 female

speakers, were used. The tested noises consisted of synthesized noises (white Gaussian

noise and pink noise) and real-world car noise. The speech data and noise data were first

resampled to 12 kHz and linearly quantized at 16 bits. The noisy signals were generated

by mixing the clean speech signals with the directional tested noises with directions of

arrival (DOAs) 10-80 degrees to the right.

5.1.2 Evaluation Measure

The performance of the proposed hybrid noise estimation technique was evaluated and

compared to the corresponding single-channel and multi-channel techniques in terms of

Normalized Estimation Error (NEE), defined as:

NEE =
1
L

L∑
λ=1

20log10

⎛
⎜⎜⎜⎜⎜⎝

M−1∑
ω=0

(∣∣∣N̂ c(λ, ω) −N c(λ, ω)
∣∣∣)

M−1∑
ω=0

N c(λ, ω)

⎞
⎟⎟⎟⎟⎟⎠ , (28)

where N̂ c(λ, ω) and N c(λ, ω) are the estimated noise spectrum and ”ideal” noise spectrum

respectively; M and L are the length of STFT and the number of frames. It should be

noted that the smaller NEE represents the more accurate noise estimate obtained by the

tested estimation technique.

5.1.3 Evaluation Results

The average NEEs over the noise signals with different DOAs in the tested noise condi-

tions are listed in Table 2. Table 2 demonstrates that the normalized noise estimation error

is consistently decreased for all the tested noise conditions, especially for directional car

noise, when the proposed hybrid noise estimation technique is used. This improvement

amounts to 3 dB compared to the single-channel estimation technique alone and 5 dB

compared to the multi-channel estimation technique alone in localized car noise environ-

ment. Fig. 6 illustrates typical examples of the NEE comparisons of the single-channel,

multi-channel and hybrid noise estimation techniques in localized white and car noise envi-

ronments. All the observations obtained from Table 2 and Fig. 6 verify the superiority of

our proposed hybrid noise estimation technique compared to the multi-channel estimation

alone technique and the signal-channel estimation alone technique.
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Table 2: Average NEEs in various noise conditions

white pink car

single-channel -5.2842 -4.6423, -6.7910

multi-channel -12.8905 -10.2486, -4.5205

hybrid -13.3378 -11.1818 -9.7014

5.2 Evaluation of The Noise Suppression System

The second set of experiments was conducted to evaluate the performance of the proposed

noise reduction method as a complete system in the simulated and real-world noise envi-

ronments. Furthermore, its performance was compared with the performance of other con-

ventional noise reduction systems, including Delay-and-Sum Beamformer, Delay-and-Sum

Beamformer with multi-channel Wiener post-filter [28], single-channel OM-LSA estimator

[26] and the subtractive beamformer alone system [11], under various noise conditions in

terms of objective and subjective evaluation measures.

5.2.1 Sound Data

In the simulated noise environment, the input noise signals consisted of a localized noise

signal (directional car noise with DOA of 40 degrees to the right) and a non-localized noise

signal (diffuse noise). The diffuse noise field was generated by placing 18 independent pink

noise sources around the microphone array. The noisy data were obtained by adding the

recorded input noise signals to the clean speech signals which were same as those used in

the first set of experiments at various global SNR levels in the range [-5, 20] dB.

In the real-world noise environment, an equi-spaced linear array, consisting of three

microphones with inter-element interval of 10cm, was mounted above the windshield in

the car. Car noise signals were recorded while the car was running on the highway at

speed of 50 km/h and 100 km/h with the air-condition on. Speech data were same as

those used in first set of experiments selected from ATR database. The first set of input

microphone signals were generated by mixing the clean speech signals and car noise signals

at various global SNR levels in the range [-5, 20] dB. The second set of input noisy signals

was generated by mixing the speech signal, car noises with the speed of 100 km/h and

another interfering speech voice (localized noise) with DOA of 60 degree to the right. This

interfering speech voice was used to imitate the passenger’s voice in car environment.
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5.2.2 Objective Evaluation Measures

The objective evaluation measures used in our experiments include Segmental SNR (SEGSNR)

and Mel-Frequency Cepstral Coefficient (MFCC) Distance.

Segmental SNR (SEGSNR) is a widely used objective evaluation criterion for speech

enhancement or noise reduction algorithms since it is more correlated to subjective results

[35]. SEGSNR is defined as the ratio of the power of ”ideal” clean speech to that of

the noise signal embedded in a noisy signal or in an enhanced speech signal by tested

algorithms over all frames, given by:

SEGSNR =
1
L

L−1∑
λ=0

10log10

⎛
⎜⎜⎜⎜⎜⎝

M−1∑
j=0

[s(λM + j)]2

M−1∑
j=0

[ŝ(λM + j) − s(λM + j)]2

⎞
⎟⎟⎟⎟⎟⎠ , (29)

where (i) s(.) and ŝ(.) are the reference speech signal and noisy signal or enhanced signals

processed by the tested algorithms; (ii) L and M represent the number of frames in the

signal and the number of samples per frame (equal to the length of STFT).

A second evaluation measure, MFCC distance, is defined as the distance between

MFCCs of a clean speech signal and those of a noisy signal or enhanced signal, which can

be represented as:

dmfcc =
1
|Φ|

∑
λ∈Φ

Θ∑
θ=0

(
ψθ − ψ

′
θ

)2
, (30)

where Φ represents the set of frames in which speech is present and |Φ| its cardinality;

ψθ and ψ
′
θ are the MFCCs of the clean speech signal and noisy signal or enhanced speech

signals, respectively; Θ = 12 denotes the order of the MFCCs.

5.2.3 Objective Evaluation Results

Fig. 7 shows the experimental results of the tested noise reduction systems in terms of

SEGSNR in the simulated and real-world noise environments at various noise levels. Sig-

nificant noise suppression performance is achieved consistently by employing the proposed

noise reduction system in the tested conditions. Compared to the noisy inputs and the en-

hanced signals by the Delay-and-Sum beamformer with/without post-filter, the SEGSNE

improvements of the proposed system amount to about 20 dB in low SNRs and about 15

dB in high SNRs for all the tested noise conditions. These are larger than the enhanced

signals from other traditional systems, especially when the passenger is speaking. The
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significant SEGSNR improvement of the proposed noise reduction system is attributed to

its sufficient capability in suppressing both the localized and non-localized noises simulta-

neously.

Fig. 8 shows the experimental results of the tested noise reduction systems in terms of

MFCC distance in the simulated and real-world environments at various noise levels. The

MFCC distances of the enhanced signals are decreased by all the test systems, especially in

low SNRs, compared to those of the noisy input signal. Among the tested noise reduction

systems, the lowest MFCC distances are achieved by the proposed system in all noise

environments at various noise levels. The improvement in MFCC distance sense of the

proposed noise reduction system can be attributed to its spatial filtering capability in

discriminating desired speech from interfering noises.

5.2.4 Subjective Evaluations

Subjective evaluations and comparisons of the tested noise reduction systems were per-

formed using speech spectrograms and listening tests. Typical examples of speech spec-

trograms are illustrated in Fig. 9 for the real-world car noise environment with the speed

of 100 km/h and interfering passenger’s voice. Figs. 9 (c) and (d) demonstrate that the

outputs of the Delay-and-Sum beamformer without/with post-filter are characterized by

the high level of noise due to its small physical size (3ch in this work) and incapability in

reducing the correlated noise in low frequencies. The single-channel OM-LSA estimator

suppresses a large amount of diffuse noise components while there is less suppression for

the spatially correlated interfering passenger’s voice, as shown in Fig. 9 (e). Fig. 9 (f)

illustrates that the hybrid estimation technique based noise suppression system alone suc-

ceeds in suppressing the localized passenger’s interfering voice and fails in suppressing the

non-localized diffuse noise components. The further spectral enhancement, shown in Fig.

9 (g), is achieved by the proposed noise reduction system which is effective in suppressing

both the localized and non-localized noise components simultaneously. This improvement

is attributed to the fact that not only the statistic characteristic of the signals but also the

spatial characteristics of the noise field are taken into account in the proposed noise re-

duction system, which thus provides more possibilities in distinguishing the desired speech

and undesired signals including localized and non-localized signals.

For the listening tests, the sounds data (clean, noisy and enhanced speech sounds),

in car environment with speed of 100 km/h and interfering passenger’s voice, were first

grouped into various pairs and each of which was then randomly presented to 8 subjects
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through binaural earphones at a comfortable loudness level. Scheffe’s paired comparison

method was used to evaluate the preference of enhanced speeches in terms of seven-grade

scores [-3, 3]. Then, preference of enhanced speeches at various SNRs was calculated as

the score normalized with the number of subjects and sentences in our experiments. The

experimental results at various SNRs, illustrated in Fig. 10, shows that our proposed

noise reduction system also yields the highest scores compared to other traditional noise

reduction systems, which further verifies the superiority of the proposed noise reduction

in listening sense as well.

6 Conclusions

In this paper, we presented a novel noise reduction system using a hybrid noise estimation

technique and post-filtering based on a generalized signal model. The final estimation

accuracy of the hybrid estimation technique for localized noise components was improved

by a robust and accurate speech absence probability estimator. The estimated localized

noise spectra were then suppressed by spectral subtraction. At spectral subtraction out-

put, a novel estimator for the a priori speech absence probability was derived based on

the coherence characteristic of the noise field and it further enhanced the noise reduction

performance of the post-filter for non-localized noises.

The proposed hybrid noise estimation technique was evaluated and its performance was

further compared to that of the conventional noise estimation techniques in various local-

ized noise environments. The experimental results showed the hybrid estimation technique

yielded the smallest estimation error among the tested estimation techniques. And, the

proposed noise reduction system was evaluated and its performance was further compared

to that of the conventional noise reduction systems in various noise conditions in terms

of the objective and subjective measures. The experimental results showed that among

the tested noise reduction systems the proposed system was able to reduce both localized

and non-localized noises and consistently achieved the best noise reduction performance

without additional distortion of the desired speech signal in the tested noise environments.
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Figure 1: Relationship between microphone array and acoustic signals

Figure 2: Block diagram of the proposed noise reduction system
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Figure 3: Magnitude-squared coherence in car environments: Theoretical MSC (solid line)

and measured MSCs in a car environment with speeds of 50 km/h (dotted line) and 100

km/h (dashed line). The distance between adjacent microphones is 10 cm.
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Figure 4: Magnitude-squared coherence in car environments: Theoretical MSC (solid line)

and measured MSCs at the input of the system (dashdot line) and at output of the spectral

subtraction (dashed line). The distance between adjacent microphones is 10 cm.
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Figure 6: Normalized Noise Estimation Error (dB) for signals processed by single-channel tech-

nique (dashdot), multi-channel technique (dashed) and hybrid technique (solid) under white noise

conditions (a) and car noise conditions (b).
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Figure 7: Average segmental SNR (dB) at delay-and-sum beamformer output (◦), delay-

and-sum beamformer with postfilter output (�), single-channel OM-LSA output (*), spec-

tral subtraction output (�) and proposed system output (�), in various noise conditions:

Simulated condition (a); Car environment with a speed of 50 km/h (b); Car environ-

ment with a speed of 100 km/h (c); Car environment with the speech of 100 km/h and

passenger’s interfering voice (d).
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Figure 8: Average MFCC distances at center microphone (×), delay-and-sum beamformer

output (◦), delay-and-sum beamformer with postfilter output (�), single-channel OM-LSA

output (*), spectral subtraction output (�) and proposed system output (�), in various

noise conditions: Simulated condition (a); Car environment with a speed of 50 km/h (b);

Car environment with a speed of 100 km/h (c); Car environment with a speech of 100

km/h and passenger’s interfering voice (d).
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Figure 9: Speech spectrograms. Clean signal at center microphone (a); Noisy signal at center

microphone (b); Delay-and-sum beamformer output (c); Delay-and-sum beamformer with postfilter

output (d); Single-channel OM-LSA output (e); Spectral subtraction output (f); Proposed system

output (g). Noise condition: car environment with a speed of 100 km/h and passenger’s interfering

voice.
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Figure 10: Listening test results. Comparisons of clean speech (Clean), noisy speech (Noisy) and

enhanced speeches by delay-and-sum beamformer (DS), delay-and-sum beamformer with postfilter

(DS+Post), single-channel OM-LSA (OM-LSA), the subtractive beamformer based system (S.S.)

and proposed noise reduction system (Proposed) for listening in various SNRs. SNR = -5 dB (a);

SNR = 0 dB (b); SNR = 5 dB (c); SNR = 10 dB (d); SNR = 15 dB (e); SNR = 20 dB (f). Noise

condition: car environment with the speed of 100 km/h and passenger’s interfering voice.
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