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Abstract The performance degradation of speech communication systems in noisy en-

vironments inspired increasing research on speech enhancement and noise reduction. As a

well-known single-channel noise reduction technique, spectral subtraction (SS) has widely

been used for speech enhancement. However, the spectral order β set in SS is always fixed to

some constants, resulting in performance limitation to a certain degree. In this paper, we first

analyze the performance of the β-order generalized spectral subtraction (GSS) in terms of

the gain function to highlight its dependence on the value of spectral order β. A data-driven

optimization scheme is then introduced to quantitatively determine the change of β with the

change of the input signal-to-noise ratio (SNR). Based on the analysis results and considering

the non-uniform effect of real-world noise on speech signal, we propose an adaptive β-order

GSS in which the spectral order β is adaptively updated according to the local SNR in each

critical band frame by frame as in a sigmoid function. The performance of the proposed

adaptive β-order GSS is finally evaluated objectively by segmental SNR (SEGSNR) and log-

spectral distance (LSD), and subjectively by spectrograms and mean opinion score (MOS),

using comprehensive experiments in various noise conditions. Experimental results show that

the proposed algorithm yields an average SEGSNR increase of 2.99 dB and an average LSD

reduction of 2.71 dB, which are much larger improvement than that obtained with the com-

peting SS algorithms. The superiority of the proposed algorithm is also demonstrated by the

highest MOS ratings obtained from the listening tests.
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1 Introduction

Acoustic background noises present in daily-life environments significantly degrade the

performance of many speech applications, such as speech communication systems and

sound-based human-machine interaction. To solve these problems and further improve

the performance of these applications in adverse environments, it is therefore essential to

apply effective speech enhancement algorithms as a front-end processor [1].

A variety of speech enhancement algorithms have been reported in the literature [1].

Among them, single-channel techniques play a crucial role, since the number of micro-

phones is limited on account of some practical requirements. As a well-known single-

channel speech enhancement method, spectral subtraction (SS) was first proposed more

than twenty years ago and has been widely used due to its simplicity in implementation

and its effectiveness in reducing additive noise [2]. The basic concept underlying SS is

to subtract the estimated spectrum of the noise signal, which is originally calculated in

non-speech periods, from that of the noisy signal [2].

Spectral subtraction has recently been modified and improved to overcome its short-

comings (e.g., low noise reduction performance and artifact “musical” noises) in different

ways [2, 3, 4, 6, 10, 13, 14]. Boll applied several secondary procedures to the processed

signals after SS to further attenuate residual noise [2]. To enhance noise reduction ability

and mitigate the “musical” noise, Berouti et al. introduced two additional parameters, an

oversubtraction factor that controls the amount of noise to be subtracted and a spectral

flooring factor that mitigates the “musical” noise [3]. Furthermore, Schless et al. sug-

gested to set both the oversubtraction factor and the spectral flooring factor based on

the current signal-to-noise ratio (SNR), achieving higher noise reduction performance [4].

Evans et al. [5] gave a possible explanation for the higher noise reduction performance

and the lower “musical” noise achieved with that method [4] in the context of automatic

speech recognition. Kamath et al. proposed to empirically set different oversubtraction

factors in different subbands, resulting in improved speech quality and largely reduced

“musical” noise in colored noise conditions [6]. Moreover, the performance of SS was also

enhanced by continuously updating noise estimates even in speech-presence periods, by

using a minimum statistic noise estimation technique [7, 8] or a quantile-based noise esti-

mation technique [9], instead of noise estimation in non-speech periods only. More recently,

Sim et al. derived a short-time spectral amplitude estimator of the speech signal based

on a parametric formulation of the generalized spectral subtraction (GSS) by minimizing

the mean-square error (MSE) between the speech spectrum and its estimate [10].
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Following the work presented in [10], the original SS and its modifications can be

summarily represented as
∣∣Ŝ

∣∣β = a
∣∣X

∣∣β − b
∣∣N̂

∣∣β , where Ŝ, X and N̂are the short-time

Fourier transforms (STFTs) of the clean speech estimate, the noisy signal and of the

noise estimate; a and b are the coefficient parameters, | · | denotes the module operator,

and β is the spectral order on which we focus in this research. In the traditional SS

algorithms mentioned above, the spectral order β is always fixed to some constant. For

example, β = 1.0 corresponds to the amplitude SS [2, 13] and β = 2.0 corresponds to the

power SS [3, 6, 7, 8, 9]. Constant values of β involve a low computational cost and result

in a certain degree of noise reduction. Interestingly, the results of two researches [10, 14]

indicate that the SS method using β with a relatively small value (e.g., β = 1.0 or β = 0.5)

reduces a large degree of noise components, leading to a “cleaner” processed signal in

conditions of low SNR. For high SNRs, a large value of β (e.g., β = 2.0) is preferred

to preserve the speech components. Therefore, the appropriate value of β is dependent

on the noise conditions that are considered (i.e., the SNR). You et al. suggested to

determine a constant value for the spectral order β in each frame according to the frame

SNR as in a linear function under the short-time spectral amplitude (STSA) estimator

scenario [11] [12]. Obviously, this algorithm assumes a uniform effect of noise on speech

signals in the frequency domain and a linear dependence of the β value on the local input

SNR conditions, which are not satisfied in practical environments.

Overall, the fixed β values set in the traditional algorithms imply that the noise signal

affects the desired signal to a constant SNR degree, which is not reasonable in relation to

real-world noise signals and limits the performance improvement of the SS algorithms. In

practical environments, however, the desired signal is always contaminated by noise in a

time-varying frequency-dependent way, resulting in varying SNRs in the time-frequency

domain. Therefore, it is believed that adaptively assigning different appropriate values

to the spectral order β according to the current noise conditions (e.g., SNR) is useful in

improving the performance of SS algorithms.

To overcome the drawbacks of the traditional SS methods, in this paper, we investigate

the performance dependence of the β-order GSS on the value of spectral order β, describe

this dependence quantitatively through a data-driven optimization procedure, and further

propose an adaptive β-order GSS for speech enhancement. The characteristics of the β-

order GSS are analyzed in terms of the gain function, with a special focus on the impact

of the β value on the noise reduction performance of the β-order GSS. Results of the

analysis indicate that the value of β should be increased as the input SNR increases
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to preserve speech components, and should be decreased as the input SNR decreases to

enhance noise reduction performance. The change tendency of β with the local input SNR

is quantitatively derived through a data-driven optimization procedure, which shows that

the optimized β varies with the local SNR in a way that can be approximated by a sigmoid

function. Moreover, considering the non-uniform effect of real-world noise on speech signal

in the time-frequency domain, we propose to determine the value of the spectral order β

adaptively according to the local input SNR in each subband frame by frame as in the

sigmoid function. Experimental results in various noise conditions demonstrate that the

proposed method outperforms the traditional SS algorithms in terms of both objective

and subjective evaluation measures.

The remainder of this paper is organized as follows. Section 2 formulates the problem to

solve and describes the β-order GSS. Section 3 discusses the characteristics of the β-order

GSS to highlight the impact of the spectral order β on the noise reduction performance of

the β-order GSS. In Section 4, the non-uniform effect of real-world noise on speech signal

in the time-frequency domain is discussed, a data-driven optimization procedure is then

introduced to derive the quantitative change tendency of the value of β with the local

input SNR, and an adaptive β-order GSS is finally proposed in which the spectral order

β is adaptively adjusted according to the local input SNRs as in the sigmoid function.

Section 5 details the implementation of the proposed adaptive β-order GSS. Experimental

results are provided in Section 6 followed by general discussions on the traditional and

proposed SS algorithms in Section 7. Conclusions are finally given in Section 8.

2 β-order generalized spectral subtraction

2.1 Problem formulation

Let s(t) and n(t) denote the speech signal and the uncorrelated additive noise signal,

respectively, where t is the discrete-time index. The observed noisy signal x(t) is the sum

of the original clean speech signal s(t) and the disturbing noise n(t), given by

x(t) = s(t) + n(t). (1)

Applying the short-time Fourier transform (STFT), the observed signal in the time-

frequency domain is represented as

X (k, `) = S(k, `) + N(k, `), (2)
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where k and ` are the frequency bin index and the time frame index, respectively; X(k, `),

S(k, `) and N(k, `) are STFTs of the corresponding signals.

The β-order generalized spectral subtraction (GSS) method is defined as [10]

∣∣∣Ŝβ (k, `)
∣∣∣
β

= aβ (k, `)
∣∣∣X(k, `)

∣∣∣
β
− bβ(k, `)E

[∣∣∣N(k, `)
∣∣∣
β
]
, (3)

where β is the spectral order, Ŝβ (k, `) denotes the estimate of the speech spectrum using

the β-order GSS method, aβ(k, `) and bβ(k, `) are the coefficient parameters used in the

β-order GSS method, and E[·] is the expectation operator. Note that the speech spectrum

estimate Ŝβ(k, `) and the parameters aβ(k, `) and bβ(k, `) are dependent not only on time

and frequency, but also on the spectral order β . The formulation in Eq. (3) describes

the original SS method and a number of its modifications. If β = 1.0, the expression in

Eq. (3) represents the amplitude SS [2, 13]. If β = 2.0, the expression represents the power

SS [3, 6, 7, 8, 9].

2.2 β-order generalized spectral subtraction

The parameters aβ(k, `) and bβ(k, `) in the β-order GSS are determined and optimized by

minimizing the mean-square error eβ(k, `) between the β-order speech spectrum amplitude
∣∣S(k, `)

∣∣β and its estimate
∣∣Ŝβ(k, `)

∣∣β , that is,

(
aβ(k, `), bβ(k, `)

)
= arg min

a, b
E

{[
eβ(k, `)

]2
}

, (4)

where

eβ(k, `) =
∣∣S(k, `)

∣∣β −
∣∣Ŝβ(k, `)

∣∣β. (5)

To simplify the derivation procedure, it is further assumed that each individual spec-

tral component of speech and noise signals is a statistically independent complex Gaussian

random, as considered in [15, 17]. Under this complex Gaussian assumption and substi-

tuting Eqs. (2) and (3) into Eq. (5), the optimal parameters are then determined by

differentiating Eq.(5) with respect to the individual parameters followed by setting the

results equal to zero. As a result, the parameters aβ(k, `) and bβ(k, `) are derived as [10]

aβ(k, `) =

[
ξβ(k, `)

]β

1 +
[
ξβ(k, `)

]β
, (6)

bβ(k, `) =

[
ξβ(k, `)

]β

1 +
[
ξβ(k, `)

]β

(
1− [

ξβ(k, `)
]−β

2

)
, (7)
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where ξβ(k, `) is referred to as the a priori SNR [15], defined as

ξβ(k, `) =
E

[∣∣Ŝβ(k, `)
∣∣2

]

E
[∣∣N̂(k, `)

∣∣2
] , (8)

where N̂(k, `) is the estimate of the noise spectrum calculated in speech pauses in the

current implementation. The estimate of the a priori SNR, ξβ(k, `), is updated in a

decision-directed scheme [15], significantly decreasing the residual “musical” noise, as de-

tailed in [16]. Substituting the optimal parameters in Eqs. (6) and (7) into Eq. (3), the

gain function of the β-order GSS method is finally represented as [10]

Ĝβ

(
k, `

)
=

∣∣Ŝβ(k, `)
∣∣

∣∣X(k, `)
∣∣ (9)

=

{ [
ξβ(k, `)

]β

1 +
[
ξβ(k, `)

]β

} 1
β
{

1−
(

1−
[
ξβ(k, `)

]−β
2

)
Γ
(

β

2
+ 1

)(
1

γ(k, `)

)β
2

} 1
β

,

where Γ(·) denotes the Gamma function, and γ(k, `) is the a posteriori SNR [15] defined

as

γ(k, `) =
E

[∣∣X(k, `)
∣∣2

]

E
[∣∣N̂(k, `)

∣∣2
] . (10)

Note that in addition to the a priori SNR ξβ(k, `) and the a posteriori SNR γ(k, `) on

which the traditional SS algorithms are always dependent, the gain function of the β-order

GSS given in Eq. (9) is further a function of the spectral order β.

3 Analysis of β-order generalized spectral subtraction

In this section, we analyze the performance of the β-order GSS in terms of the gain function

that is defined in Eq. (9) to highlight its dependence on the value of the spectral order β.

For clarity, the frequency bin index k and the frame index ` are omitted in this section.

In order to make the following discussion more easily understandable, it should first be

noted a the low gain function normally leads to a high noise reduction and concomitantly

a high speech distortion; on the other hand, a high gain function generally yields a low

speech distortion and a low noise reduction. Concerning the analysis of the β-order GSS,

Fig. 1 (a) plots the gain of the β-order GSS versus the a priori SNR ξ for some typical

values of β when γ = 10 dB; Fig. 1 (b) plots the gain of the β-order GSS versus the a

posteriori SNR γ when ξ = 10 dB. Fig. 1 demonstrates that for a fixed β, the gain of the

β-order GSS increases as the a priori SNR and the a posteriori SNR increase, resulting in a
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decreasing noise reduction. This observation is reasonable because a high degree of noise

reduction is only needed in low input SNR conditions. More importantly, for different

typical values of β, the different gains of the β-order GSS result in different degrees of

noise reduction performance. The dependence of the performance of the β-order GSS on

the value of β is further highlighted in Fig. 2, which plots the gain function versus the

values of β for different the a priori SNRs and for different the a posteriori SNRs. Fig. 2

indicates that the gain function of the β-order GSS increases (i.e., the degree of noise

reduction decreases) as the value of β increases, especially at relatively high input SNRs.

Moreover, a low spectral order β generates a low gain function, corresponding to a high

noise reduction and a large speech distortion. These analytical results indicate that the

noise reduction performance of the β-order GSS is greatly dependent on the value of the

spectral order β, and that the β value that offers the best performance in different SNR

conditions should also be different (i.e., the β value is dependent on the current SNR).

Therefore, it is feasible for the β-order GSS to achieve higher noise reduction with lower

speech distortion by adjusting the spectral order β to an appropriate value.

In the traditional SS methods [2, 3, 4, 6, 10, 13, 14], however, the spectral order

β is always fixed to certain constants (e.g., β = 1.0 and β = 2.0) for all frames and

all frequency bins. The β value that is computed to give an acceptable noise reduction

performance at a low SNR, corresponding to a low gain function, normally introduces

severe speech distortion at a high SNR. On the other hand, the β value that is calculated

to yield an acceptable performance at a high SNR, corresponding to a high gain function,

generally provides low noise reduction performance at a low SNR. More specifically, if a

extremely high β value is used in a speech-absence frame/band, residual noises will be

observed due to the use of a large gain function. If an extremely low β value is used in

a speech-presence frame/band, part of the speech component will be removed, although

the noise components are also attenuated through an extremely low gain function. As a

result, the fixed values of β, which are independent of the current noise conditions, result

in the performance limitation of the traditional SS methods, especially in time-varying

real-world noise conditions.

As discussed above, the value of the spectral order β has a great influence on the

performance of the β-order GSS. Considering the fact that the SNRs in practical conditions

are time-varying and frequency-dependent (see detailed discussion in Section 4.1), the

value of β should be adaptively updated according to the current SNR, finally improving

the performance of the β-order GSS. In our proposed adaptive β-order GSS, therefore,
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we can exploit the relationship between the performance of the β-order GSS and the β

value by adjusting β to an appropriate value to attenuate noise components as much as

possible while preserving speech components. More specifically, a small value of β is used

in a speech-absence frame/band (i.e., a low SNR) to enhance noise reduction through a

low gain, and large value of β is utilized in a speech-presence frame/band (i.e., a high

SNR) to preserve speech components through a high gain. In this case, though noise

components are also less attenuated, they are always masked by the strong concurrent

speech components. Therefore, the influence of the β value on the gain of the β-order GSS

provides flexibility in suppressing noise components and preserving speech components,

by adjusting the spectral order β to an appropriate value according to local SNRs in the

time-frequency domain.

4 Adaptive β-order generalized spectral subtraction

As discussed in Section 2, the gain function of the β-order GSS in Eq. (9) was derived

under the assumption that each spectral component of speech and noise signals follows

a statistically independent Gaussian distribution [10]. Though the independent Gaussian

distribution is statistically reasonable and widely used due to its simplicity [15], the strong

correlation of the spectral components between adjacent frequency bins has recently been

taken into account [17, 18]. Considering these strong correlations, the appropriate value of

β should be determined depending not only on the knowledge of the current frequency bin

under consideration but also on that of the neighboring bins. This is believed to greatly

improve the robustness and accuracy of the estimated β value.

4.1 Non-uniform effect of noise on speech in the time-frequency domain

In the traditional SS methods, the constant values of the spectral order β imply that

the desired speech signal is contaminated by additive noise at a constant SNR across all

frequency bins in a time-invariant way. This is not the case, however, with real-world noise

(e.g., car noise and babble noise). In real-world environments, noise signals that are mostly

time-varying and colored affect target speech signal non-uniformly over the entire signal

and the whole spectrum. In the time domain, speech signals are a highly non-stationary

signal whose characteristics vary greatly over time, e.g., the speech-presence period is

completely different from the speech-absence period. Moreover, characteristics of noise

signals also change over time due to the time-varying properties of the noise sources.
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The time-varying characteristics of speech and noise signals result in the change of the

local SNR over time, further indicating that the value of β should vary with time. In the

frequency domain, the energy of speech is not uniformly distributed over all frequency bins,

e.g., the frequency components corresponding to the formants are generally characterized

by a high energy of speech. Moreover, the colorness of real-world noise generally affects

a speech signal to a different degree in the different frequency bins. Thus, the frequency-

dependent properties of speech and noise signals result in changes of the local SNR with

frequency, further indicating that the value of β should vary with frequency. As a result,

the value of β should be adaptively updated according to the current local SNR in the

time-frequency domain .

These characteristics are highlighted by a typical example shown in Fig. 3, in which

the speech signal (“Sekando arubamu o happyou shitekara tuâ ni deru.”) is corrupted by

real-world car noise at a global SNR of 10 dB. Fig. 3 demonstrates that the local SNR

greatly varies with time due to the time-varying characteristics of the speech and noise

signals, and also changes significantly for different subbands because of the colorness of

the noise signal and of the non-uniform spectral energy distribution of the speech signal.

As a result, the speech signal corrupted by real-world noise is normally characterized by

different local SNRs in different partitions in the time-frequency domain. Accordingly, the

appropriate value of the spectral order β must be adaptively determined according to the

local SNR in the time-frequency domain.

4.2 Adaptive scheme for an appropriate value of spectral order β

4.2.1 Data-driven optimization of spectral order β

The discussions on the performance dependence of the β-order GSS on the value of β in

Section 3 indicate that it is desirable to increase the value of β as the SNR increases to

preserve the speech components, and to decrease the value of β as the SNR decreases to

enhance the noise reduction performance. After knowing these qualitative results, one

further problem that has to be solved is to determine how the appropriate (optimized)

value of β quantitatively changes as the local input SNR changes. Since it is difficult

to theoretically solve this problem, we turn to model this change tendency through a

data-driven optimization approach.

The basic idea of the data-driven optimization that we exploited is to find the appropri-

ate value of the spectral order β that is able to minimize the distance between the spectral

amplitude of the clean signal and that of its estimate. In our data-driven optimization
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procedure, ten speech sentences were randomly selected from the NTT database [19], and

two noise signals (“car” and “babble”) were taken from the NOISEX-92 database [20].

The speech and noise signals were first downsampled to 8kHz and then mixed with an

global SNR ranging from −40 to 40 dB. We assume that the noise spectrum is known a

prior in this optimization procedure. For a given value of β, the gain function of the β-

order GSS is calculated using Eq. (9), and then used to enhance the target speech signal.

Furthermore, considering the mechanism of human perception, we propose to optimize

the spectral order β in each critical subband by minimizing the distance between the

spectral amplitude
∣∣S(k, `)

∣∣ of the clean signal and that of its estimate
∣∣Ŝβ(k, `)

∣∣ in the

corresponding subband, that is,

βopt
m = arg min

0.1≤β≤3.0




ωm+1∑

k=ωm

∣∣∣
∣∣S(k, `)

∣∣−
∣∣Ŝβ(k, `)

∣∣
∣∣∣

 , (11)

where the range of β is empirically confined to [0.1, 3.0], and ωm denotes the boundary

frequency of the m-th critical band. Though only ten speech sentences are used in the

optimization procedure, we should note that the optimization is performed in the following

scenarios: in each frames (each speech sentence is divided into 220−350 overlapping frames

by windowing before Fourier transform.), in each critical subband (e.g., 18 subbands) and

at the different global SNR conditions (that is, −40 to 40 dB with the step of 10 dB). It is

therefore believed that the parameters obtained from the optimization procedures might

be able to be applied in other different conditions.

Fig. 4 shows the scatter plots of the optimized β value against the local input SNR

(defined in Eq. (12) below) and the mean curve, as well as the fitted sigmoid function

in the “car” and “babble” noise conditions. The results shown in Fig. 4 indicate that:

(1) The optimal β value should increase (decrease) as the local input SNR increases (de-

creases), which proves the analysis results discussed in Section 3; (2) There exists a strong

correlation between the optimal β value and the local input SNR; (3) Most importantly,

the change tendency of the appropriate value of β with the change of the local input SNR

can be approximated by a sigmoid function defined in Eq. (13) below, which quantitatively

describes the dependency of the noise reduction performance of the β-order GSS on the

spectral order β and motivates us to model this change tendency with a sigmoid function

in our proposed algorithm.
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4.2.2 Adaptive determination of spectral order β

Considering the strong correlation of spectral components between adjacent frequency

bins [17, 18], we propose to update the value of β according to the local SNR in each sub-

band instead of the instantaneous SNR in each individual frequency bin. This estimation

scheme greatly improves the robustness and accuracy of the β estimate due to the use of

the information of the neighboring frequencies. Considering the mechanism of human per-

ception, the whole spectrum is first divided into subbands according to the critical-band

scale [21]. Then, the local SNR ρ(m, `) in the m-th critical band and the `-th frame is

calculated as

ρ(m, `) = 10 log10




∑ωm+1

k=ωm

∣∣∣|X(k, `)| − |N̂(k, `)|
∣∣∣
2

∑ωm+1

k=ωm

∣∣∣N̂(k, `)
∣∣∣
2


 , (12)

where ωm denotes the boundary frequency of the m-th critical band.

As shown in Section 4.2.1, the average change of the optimized β value with the change

of the local input SNR is well approximated by a sigmoid function. Therefore, we propose

to determine the appropriate estimate of the spectral order β̃(m, `) according to the local

SNR ρ(m, `) in each critical band frame by frame by use of the sigmoid function, given by

β̃(m, `) =
B

1 + e−A
[
ρ(m,`)−D

] , (13)

where the parameter A controls the changing speed of the value of β̃(m, `) with respect to

the local SNR ρ(m, `), B determines the range of the value of β̃, and D denotes the shift

along the SNR axis.

In addition to updating the spectral order β̃(m, `) according to the local SNR in the

time-frequency domain, we limit the value of β̃(k, `) to a minimum value βmin, since

an extremely low β value introduces severe speech distortion through an extremely low

gain function. As a result, the appropriate value of the spectral order β̂(m, `) is finally

determined as

β̂(m, `) = max
[
β̃(m, `), βmin

]
. (14)

5 Implementation of adaptive β-order generalized spectral

subtraction

The proposed adaptive β-order generalized spectral subtraction consists of three main

blocks: spectral analysis/synthesis, adaptive spectral order β estimation and noise sup-

pression, illustrated in Fig. 5.

11



In the proposed method, the observed noisy signal is first windowed by a half-overlapped

hanning window of 512 samples, and then spectrally analyzed using the fast Fourier trans-

form (FFT). With the 8 kHz sampling rate used in our implementation, this gives a window

length of 64 ms.

To adaptively determine the appropriate value of the spectral order β, the frequency

components are grouped into 18 subbands with the boundary frequencies calculated in

the critical-band scale that has been shown to be advantageous for human perception.

The noise spectrum estimation is performed in the speech pauses with the help of a voice

activity detector (VAD) that is manually done in the current implementation. Based on

the local SNR ρ(m, `) in Eq. (12), we compute the appropriate spectral order estimate

β̂(k, `) using Eqs. (13) and (14).

To perform noise suppression, the a priori SNR and the a posteriori SNR are first

calculated with Eqs. (8) and (10), respectively. With the newly obtained spectral order

estimate β̂(m, `), the gain function can be computed using Eq. (9) and used to suppress

noise signals.

At the last step, the enhanced speech spectrum is generated by combining the enhanced

speech amplitude spectrum with the phase of the noisy inputs. The enhanced speech signal

is finally synthesized by computing the inverse STFT, and by overlapping and adding two

consecutive frames according to the overlap-and-add method.

6 Experiments and results

To validate the usefulness of the proposed adaptive β-order generalized spectral subtrac-

tion (PRO-SS), its performance was investigated in various noise conditions and further

compared to that of the traditional SS algorithms, including the power SS (POW-SS) by

setting β = 2.0 in [10] , the amplitude SS (AMP-SS) by setting β = 1.0 in [10], and the

SS algorithm (SR-SS) by setting β = 0.5 in [10]. Note that the traditional SS algorithms

were implemented by setting the spectral order β to the fixed values (2.0, 1.0 and 0.5) in

the gain function of the GSS defined in Eq. (9). The reasons for the implementation and

comparison are: (i) The PRO-SS method is a derivation of the GSS algorithm in [10]. The

comparison would highlight the added-value of the PRO-SS algorithm that we propose

here. (ii) Since, in our PRO-SS algorithm, the “decision-directed” scheme [15] is used to

estimate the a priori SNR, our algorithm should be compared to those that also use the

“decision-directed” SNR estimation. This comparison will avoid the necessity to measure

the contribution of the “decision-directed” SNR estimation, instead of the contribution of
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the proposed adaptive scheme for the spectral order. The performance was evaluated in

terms of both objective and subjective speech quality measures.

6.1 Experimental configuration

We assess the performance of the PRO-SS objectively and subjectively with the following

experiments: we randomly selected 40 clean continuous speech sentences produced by two

females and two males from the NTT speech database with a sampling rate of 44.1kHz at

16 bits [19]. Three types of noise sources, “car”, “babble (speech-like)” and “train”, were

chosen from the NOISEX-92 database [20]. The clean speech and noise signals were first

downsampled to 8kHz. The noise signals were then scaled to obtain a prescribed input

SNR, before they were added to the clean speech signal. We generated noisy speech signals

artificially by adding various noise signals to the clean signals at different SNRs ranging

from 0 to 15 dB with a 5-dB step size. Note that the car noise was a stationary signal,

whereas the babble and train noises were non-stationary signals with different degrees

of non-stationarity. The parameters used in the PRO-SS method which were introduced

in Section 4.2.2 and used in Fig. 4 were set as follows: A = 0.1, B = 2.0, D = 7 and

βmin = 0.1; the spectral floor used has a empirical value of 0.01, and a commonly used

value of 0.98 was used for the smoothing factor in the decision-directed approach of the a

priori SNR.

6.2 Objective evaluation

6.2.1 Evaluation measures

To evaluate the spectral subtraction methods for speech enhancement, two objective speech

quality measures were used: segmental SNR (SEGSNR) and log-spectral distance(LSD).

The first, segmental SNR (SEGSNR), is a widely used objective evaluation measure for

speech enhancement algorithms and has been proved to be closely correlated to subjective

speech quality [22]. SEGSNR is defined as the ratio of the power of clean speech to that of

noise signal embedded in a noisy signal or an enhanced signal by the studied algorithms,

given by [23]

SEGSNR =
10
L

L−1∑

`=0

log10




K−1∑

k=0

[s(`K + k)]2

K−1∑

k=0

[ŝ(`K + k)− s(`K + k)]2




, (15)

where s(.) is the reference speech signal, ŝ(.) is the noisy signal or the enhanced signal

13



processed by the tested algorithms, and L and K represent the number of frames in

the signal and the size of STFT, respectively. The SNR in each frame is limited to the

perceptually meaningful range between 35 and −10 dB. This prevents the segmental SNR

measure from being biased in the frames that do not contribute significantly to overall

speech quality [24]. Note that a higher SEGSNR means a higher speech quality of the

enhanced signal.

The second measure is log-spectral distance (LSD), which is often used to assess the

distortion of the desired speech signal [25]. LSD is defined as the difference between the

log spectrum of the clean speech and that of the noisy signal or the enhanced signal by

the studied algorithms, given by [25]

LSD =
10
L

L−1∑

`=0

(
1
K

K∑

k=0

[
1og10AS(k, `)− 1og10AŜ(k, `)

]2
) 1

2

, (16)

where AS(k, `) , max{|S(k, `)|2, δ} is the clipped spectral power, such that the log-

spectrum dynamic range is confined to about 50 dB (that is, δ = 10−50/10 max
k,`

{|S(k, `)|2}).

Note that a lower LSD level indicates less speech distortion.

6.2.2 Evaluation results

The experimental results of SEGSNR and LSD averaged across all sentences in the three

noise conditions are summarized in Tables 1 and 2, respectively. Table 1 shows that, except

for the SR-SS, the three other tested algorithms (i.e., POW-SS, AMP-SS and PRO-SS)

all improve the SEGSNR to different degrees in all noise conditions at all SNR levels,

especially at the low SNRs. Using the SR-SS method, slight SEGSNR improvements are

observed in the low SNR conditions and disappear in the middle and high SNR conditions,

resulting in the worst speech enhancement performance among the tested algorithms. This

is because the SR-SS reduces the noise signal at the cost of severe target signal distortion,

which is demonstrated with waveforms and spectrograms in Section 6.3.1. With regard to

the POW-SS and AMP-SS methods, the PRO-SS consistently yields the highest SEGSNR

improvements in all conditions. In car noise conditions, for instance, compared with the

noisy inputs, the POW-SS and the AMP-SS, the average SEGSNR improvements achieved

by our PRO-SS method amount to 3.83 dB, 1.45 dB and 0.48 dB, respectively. On average,

in comparison of noisy inputs, the PRO-SS yields a SEGSNR improvement of about 2.99

dB averaged across all tested conditions, which is much higher than those of traditional

algorithms (i.e., 1.77 dB for the POW-SS, 2.62 dB for the AMP-SS, and −0.56 dB for

the SR-SS). Therefore, the PRO-SS generates the output signal with the highest speech
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quality. This achievement can be attributed to the utilization of the time-varying and

frequency-dependent spectral order β in the proposed method. Moreover, from a careful

observation of Table 1, we note that the SEGSNR improvements achieved with the PRO-

SS method in the car noise conditions are higher than those in the babble and train noise

conditions. This is because the noise signal in the car environment is much more stationary

than the noise signals in the babble and train noise conditions, and the noise estimation

that is performed in non-speech periods in the current implementation is more suitable

for stationary noise.

Concerning the results of LSD shown in Table 2, we can observe that, except for the

SR-SS, the three other tested algorithms lead to a decrease of LSDs in all noise conditions

at all SNRs, especially at low SNRs. The SR-SS gives higher LSD results, even compared

with the noisy input signals, especially in high SNR conditions, owing to severe speech

distortion. With respect to the traditional POW-SS and AMP-SS methods, the proposed

PRO-SS consistently yields the lowest LSDs for all conditions and all SNRs. On average,

compared to the noisy inputs, the PRO-SS produces a reduction of LSD of about 2.71

dB averaged across all tested conditions, which is much higher than that obtained with

the traditional algorithms (i.e., 2.05 dB for the POW-SS, 2.57 dB for the AMP-SS and

1.43 dB for the SR-SS). That is, the enhanced speech signal processed with the adaptive

PRO-SS method contains the lowest speech distortion in comparison to those obtained

with other traditional SS methods. This achievement can specifically be attributed to the

use of high gains in speech-presence periods due to high β values.

6.3 Subjective evaluation

6.3.1 Waveforms and spectrograms

The first subjective evaluation of the studied SS algorithms was performed using waveforms

and spectrograms. Typical examples of waveforms and spectrograms, corresponding to the

sentence “Sekando arubamu o happyou shitekara tuâ ni deru.”, corrupted by car noise at

10 dB, are plotted in Fig. 6. Fig. 6(b) shows that the target speech signal is highly

corrupted by the car noise in all frequency bins and all time frames, especially in the low

frequencies. Fig. 6(c) shows that the output of the traditional POW-SS (i.e., β = 2.0) is

still characterized by high-level noise. This is because a high gain function is exploited in

the POW-SS, due to the use of a relatively high value of β. The noise components are

further reduced by using the lower gain function of the traditional AMP-SS(i.e., β = 1.0)

when the β value is low, as shown in Fig. 6(d). The SR-SS greatly reduces the noise
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components as well as the speech components, leading to severe speech distortion, as

shown in Fig. 6(e). In contrast, Fig. 6 (f) demonstrates that our adaptive PRO-SS is able

to suppress the car noise components with very low speech distortion in the time-frequency

domain through the use of the time-varying frequency-dependent spectral order β.

6.3.2 Listening tests

The performance of the adaptive PRO-SS was also evaluated using the listening tests.

To reduce the length of the subjective evaluations, only a subset of 12 sample sentences,

uttered by two female speakers and two male speakers, were drawn and contaminated

by car noise, babble noise and train noise at two different SNR levels, 5 dB and 10 dB.

The resulting 72 noisy speech sentences were then processed with the four algorithms:

POW-SS, AMP-SS, SR-SS and PRO-SS.

The listening tests involved eight volunteers of between 22 and 30 years of age. The

test for each listener lasted approximately 2 hours, consisting of four 20-min sessions,

separated by a short 10-min break. The tested speech materials were randomly presented

to each listener through a headphone, and the listeners were free to adjust the sound

volume to a comfortable level. The listeners were instructed to rate the quality of the

enhanced output signals based on their preference in terms of mean opinion score (MOS):

1=bad, 2=poor, 3=fair, 4=good, 5=excellent.

The MOS results presented in Table 3 show that among the tested algorithms, the

PRO-SS consistently produced the highest MOS ratings in three noise conditions and

at two SNR levels. With respect to the POW-SS, the PRO-SS offers on average ap-

proximately a one-point improvement, and a 0.5-point improvement compared with the

AMP-SS averaged in all tested conditions. The highest MOS result indicates that our

adaptive PRO-SS produces the enhanced signal of the highest speech quality, being pre-

ferred by the listeners. Moreover, from a careful observation of Table 3, we see that,

compared with other traditional SS algorithms, the MOS rates achieved with the PRO-SS

are reduced in the babble and train noise conditions. This performance reduction is due

to the VAD-based noise estimation approach and the highly non-stationary characteristics

of the babble and train noises. These results are consistent with the objective results

discussed in the previous section.

The subjective MOS results were also statistically analyzed by performing multiple

paired comparisons (Tukey’s HSD) between the MOS ratings obtained with speech signals

enhanced by use of the three tested SS algorithms. The results are listed in Table 4. In the
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table, asterisks indicate significant differences between the MOS scores of two enhanced

signals processed by the corresponding two algorithms. Table entries denoted as “n.s.”

stand for a non-significant difference between the MOS results of two enhanced signals.

Table 4 shows that the PRO-SS provides statistically significant improvement of speech

quality compared with the POW-SS in all tested noise conditions. Compared to the AMP-

SS, significant improvements were observed in a few conditions, the car and train noise

conditions at 10 dB. However, when compared to the SR-SS, no statistically significant

improvement was obtained with our proposed algorithm in any tested conditions. This

possibly is because the listener controls the volume during the tests, which might mitigate

the speech distortion introduced by the SR-SS algorithm.

As a result, the proposed adaptive PRO-SS gives a statistically significant performance

improvement of speech enhancement in almost all the tested environments compared with

the traditional SS algorithms.

7 Discussion

In this section, we present a general discussion on the traditional SS algorithms and the

proposed adaptive β-order GSS.

In the traditional SS algorithms, the spectral order β is usually fixed to some constants

(e.g., 1.0, 2.0). The traditional SS algorithms with the constant values of the spectral order

β demonstrate a certain degree of noise reduction. One of merits of these algorithms is

the low computational cost, i.e., its simplicity in implementation. Although an approach

in which the value of β is updated according to the frame SNR in a linear function has

recently been reported by You et al. [12], this approach neglects the non-uniform effect

of noise on speech signals in the time-frequency domain and the non-linear dependence of

the value of β on the local SNR in real conditions.

In the proposed adaptive β-order GSS algorithm, the spectral order β is adaptively

determined according to the local SNR in the time-frequency domain, which is motivated

by the following facts: the performance of the GSS algorithm is dependent on the value of

the spectral order β, as analyzed in Section 3, and the background noise affects the target

signal non-uniformly in the time-frequency domain, as discussed in Section 4.1. Compared

to the traditional SS algorithms with fixed β values, the proposed adaptive β-order GSS

algorithm demonstrates the following beneficial characteristics: (1) the spectral order β

is time-varying and frequency-dependent due to the change of acoustic environments;

(2) the β value is updated according to the local SNR, which indicates the degree of
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corruption of target signal by the background noise. Compared with You’s algorithm, the

proposed adaptive β-order GSS has the following advantages: (1) the non-uniform effect

of noise on speech signals in the time-frequency domain is fully taken into account; (2)

the average change of the spectral order β with the local SNR is described by a sigmoid

function that is derived through a data-driven optimization procedure, instead of using

a linear function. The effectiveness and superiorities of the propose adaptive β-order

GSS algorithm in reducing noise signal and preserving the target speech signal have been

confirmed by comprehensive experiments.

To demonstrate the change of the spectral order β with the local input SNR, as an

example, the adaptation of the spectral order β for the same utterance as that used in

Fig. 3 is exemplified in Fig. 7. From Figs. 3 and 7, it can be seen that with the proposed

adaptive β-order GSS, the spectral order β is adaptively adjusted to a small value at low

SNR and to a large value at high SNR, according to the local SNRs in the time-frequency

domain. The proposed adaptive β-order GSS is superior in suppressing noise components

and preserving speech components under real-world noise conditions, because it takes into

account the frequency-dependent and time-varying characteristics of the spectral order β.

8 Conclusion

In this paper, we first qualitatively analyzed the performance of the β-order GSS and

highlighted its dependence on the value of the spectral order β, which provides the the-

oretical principle of this research. The quantitative relationship between the optimal β

value and the local SNR was learned through a data-driven optimization procedure. We

then proposed an adaptive β-order GSS for speech enhancement in which the value of β

is adaptively updated according to the local SNRs in the time-frequency domain as in the

sigmoid function. Comprehensive experimental results in various noise conditions show

that the proposed adaptive β-order GSS outperforms the traditional SS methods in terms

of both objective and subjective speech quality measures.

In the current implementation, the spectrum of the noise signal is estimated in the

speech-absence periods with the help of a voice activity detector. Future work on this

algorithm will include the integration of advanced noise estimation approaches, such as

the minimum statistic tracking noise estimation approach [7] and/or the improved minima

controlled recursive averaging approach [26], as well as a further improvement by consider-

ing the human auditory-motivated mechanisms. Given the good preliminary performance

of the adaptive β-order GSS, future work in this direction is expected to lead to additional
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promising performance improvements in speech enhancement.
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Figure 1: (a) β-order GSS gain versus the a priori SNR ξ for different values of β when γ = 10

dB; (b)β-order GSS gain versus the a posteriori SNR γ for different values of β when ξ = 10 dB.
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Figure 2: (a) β-order GSS gain versus the value of β for different the a priori SNRs when γ = 10

dB; (b)β-order GSS gain versus the value of β for different the a posteriori SNRs when ξ = 10

dB.
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(“Sekando arubamu o happyou shitekara tuâ ni deru.”) corrupted by real-world car noise for a
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Figure 4: Scatter plot of the optimized β value with respect to the input local SNR, the mean of

the scattered (solid line) and the fitted sigmoid function (dashed line) with the parameters A = 0.1,

B = 2.0, D = 7, (a) in the car noise condition and (b) in the babble noise condition. The mean

is shown as the solid line.
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Figure 6: Speech waveforms and spectrograms. (a) Original clean speech signal: “Sekando

arubamu o happyou shitekara tuâ ni deru.”; (b) Noisy signal in the car noise condition at the

SNR of 10 dB; (c) Enhanced signal processed by the traditional power SS when β = 2.0 (POW-

SS); (d) Enhanced signal processed by the traditional amplitude SS when β = 1.0 (AMP-SS);

(e) Enhanced signal processed by the traditional SS when β = 0.5 (SR-SS); (f) Enhanced signal

processed by the proposed adaptive β-order GSS (PRO-SS).
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28



Table 1: Segmental SNR [dB] of the noisy signal, the traditional power SS output when β = 2.0

(POW-SS), the traditional amplitude SS output when β = 1.0 (AMP-SS), the traditional SS output

when β = 0.5 (SR-SS), and of the proposed adaptive β-order GSS (PRO-SS) output, in the car,

babble and train noise conditions.

Algorithm Car Babble Train

0 5 10 15 0 5 10 15 0 5 10 15

Noisy −3.23 0.01 3.50 7.22 −3.01 0.22 3.71 7.43 −3.06 0.18 3.67 7.40

POW-SS 0.02 2.97 5.77 8.26 −0.77 2.11 4.98 7.55 −0.37 2.31 4.97 7.46

AMP-SS 0.95 3.83 6.77 9.37 0.22 2.94 5.76 8.38 0.63 3.06 5.55 7.98

SR-SS −0.65 0.73 2.29 3.89 −0.88 0.60 2.19 3.80 −0.78 0.56 2.03 3.56

PRO-SS 1.33 4.49 7.39 9.62 0.72 3.36 6.03 8.48 1.05 3.42 5.85 8.19

Table 2: Log-spectral distance [dB] of the noisy signal, the traditional power SS output when

β = 2.0 (POW-SS), the traditional amplitude SS output when β = 1.0 (AMP-SS), the traditional

SS when β = 0.5 (SR-SS), and of the proposed adaptive β-order GSS (PRO-SS) output, in the

car, babble and train noise conditions.

Algorithm Car Babble Train

0 5 10 15 0 5 10 15 0 5 10 15

Noisy 8.34 6.00 4.22 2.88 9.03 6.40 4.36 2.86 13.00 9.40 6.37 4.01

POW-SS 5.43 4.02 2.95 2.18 6.44 4.59 3.28 2.35 8.02 5.90 4.22 2.94

AMP-SS 4.73 3.60 2.72 2.11 5.43 4.07 3.03 2.29 6.42 4.96 3.79 2.90

SR-SS 5.75 5.02 4.33 3.77 5.88 5.11 4.42 3.86 6.48 5.68 5.01 4.45

PRO-SS 4.67 3.47 2.60 2.08 5.12 3.91 2.96 2.21 5.98 4.85 3.67 2.87
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Table 3: Mean opinion score of the traditional power SS output when β = 2.0 (POW-SS), the

traditional amplitude SS output when β = 1.0 (AMP-SS), the traditional SS with β = 0.5 (SR-SS),

and of the proposed adaptive β-order GSS (PRO-SS) output, in the car, babble and train noise

conditions.

Algorithm Car Babble Train

5 10 5 10 5 10

POW-SS 2.10 2.44 2.28 2.28 2.37 2.49

AMP-SS 2.71 3.09 2.64 2.89 2.70 2.95

SR-SS 2.65 2.98 2.70 3.00 2.67 3.02

PRO-SS 3.12 3.43 2.98 3.20 3.15 3.52

Table 4: Results obtained from the statistical analysis of MOS ratings for the traditional power

SS when β = 2.0 (POW-SS), the traditional amplitude SS when β = 1.0 (AMP-SS), the traditional

SS with β = 0.5 (SR-SS) and the proposed adaptive β-order GSS (PRO-SS). Table entries denoted

with asterisks “*” indicate significant differences (p = 0.05) between the MOS ratings of two signals

enhanced by the two corresponding algorithms; those denoted with “n.s.” indicate non-significant

differences between the MOS ratings.

Algorithm pairs Car Babble Train

5-dB 10-dB 5-dB 10-dB 5-dB 10-dB

(
PRO-SS, POW-SS

)
* * * * * *

(
PRO-SS, AMP-SS

)
n.s. * n.s. n.s. n.s. *

(
PRO-SS, SR-SS

)
n.s. n.s. n.s. n.s. n.s. n.s.
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