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Abstract. We study the problem of rounding a real-valued matrix into an integer-valued matrix
to minimize an Lp-discrepancy measure between them. To define the Lp-discrepancy measure, we
introduce a family F of regions (rigid submatrices) of the matrix and consider a hypergraph defined
by the family. The difficulty of the problem depends on the choice of the region family F . We first
investigate the rounding problem by using integer programming problems with convex piecewise-
linear objective functions and give some nontrivial upper bounds for the Lp discrepancy. We propose
“laminar family” for constructing a practical and well-solvable class of F . Indeed, we show that the
problem is solvable in polynomial time if F is the union of two laminar families. Finally, we show
that the matrix rounding using L1 discrepancy for the union of two laminar families is suitable for
developing a high-quality digital-halftoning software.
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1. Introduction. Rounding is an important operation in numerical computa-
tion and plays key roles in digitization of analog data. Rounding of a real number a
is basically a simple problem: We round it to either �a� or �a�, and we usually choose
the one nearer to a. However, we often encounter a datum consisting of more than
one real number instead of a singleton. If it has n numbers, we have 2n choices for
rounding since each number is rounded into either its floor or ceiling. If the original
data set has some feature, we need to choose a rounding so that the rounded result
inherits as much of the feature as possible. The feature is described by using some
combinatorial structure; we indeed consider a hypergraph H on the set. A typical
input set is a multidimensional array of real numbers, and we consider a hypergraph
whose hyperedges are its subarrays with contiguous indices. In this paper, we focus on
two-dimensional arrays; in other words, we consider rounding problems on matrices.

1.1. Rounding problem and discrepancy measure. Given an M×N matrix
A = (aij)1≤i≤M,1≤j≤N of real numbers, its rounding is a matrix B = (bij)1≤i≤M,1≤j≤N

of integral values such that bij is either �aij� or �aij� for each (i, j). There are 2MN

possible roundings of a given A, and we would like to find an optimal rounding with
respect to a given criterion. This is called the matrix rounding problem. Without loss
of generality, we can assume that each entry of A is in the closed interval [0, 1] and
each entry is rounded to either 0 or 1.
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In order to give a criterion to determine the quality of roundings, we define a
distance in the space of all [0, 1]-valued M × N matrices. Let n = MN . Let F be a
family of regions (i.e., subsets) of the M ×N integer grid GMN . Let A = A(GMN ) be
the space of all [0, 1]-valued matrices with the index set GMN , and let B = B(GMN )
be its subset consisting of all {0, 1}-valued matrices. Let R be a region in F .1 For an
element A ∈ A, let A(R) be the sum of entries of A located in the region R, that is,

A(R) =
∑

(i,j)∈R

aij .

We define a distance DistFp (A, A′) between two elements A and A′ in A for a positive
integer p by

DistFp (A, A′) =

[∑
R∈F

|A(R)− A′(R)|p
]1/p

.

The distance is called the Lp distance with respect to F . The L∞ distance with
respect to F is defined by

DistF∞(A, A′) = lim
p→∞ DistFp (A, A′) = max

R∈F
|A(R)− A′(R)|.

Using the notations above, we can formally define the matrix rounding problem.
Lp-optimal matrix rounding problem. P(GMN ,F , p): Given a [0, 1]-matrix A ∈ A,

a family F of subsets of GMN , and a positive integer p, find a {0, 1}-matrix B ∈ B
that minimizes

DistFp (A, B) =

[∑
R∈F

|A(R)− B(R)|p
]1/p

.

Also, we are interested in the following combinatorial problem.
Lp-discrepancy bound. Given a [0, 1]-matrix A ∈ A, a family F of subsets of

GMN , and a positive integer p, investigate upper and lower bounds of

D(GMN ,F , p) = sup
A∈A

min
B∈B

DistFp (A, B).

The pair (GMN ,F) defines a hypergraph on GMN , and D(GMN ,F ,∞) is called
the inhomogeneous discrepancy of the hypergraph [6]. Abusing the notation, we call
D(GMN ,F , p) the (inhomogeneous) Lp discrepancy of the hypergraph and also often
call DistFp (A, B) the Lp-discrepancy measure of (the quality of) the output B with
respect to F .

1.2. Motivation and our application. The most popular example of the fam-
ily F is the set of all rectangular subregions in GMN (i.e., the set of all rigid submatri-
ces), and the corresponding L∞-discrepancy measure is utilized in many application
areas such as Monte Carlo simulation and computational geometry. Unfortunately, if
we consider the family of all rectangular subregions, the discrepancy bound (for the

1Strictly speaking, R can be any subset of GMN . Although we implicitly assume that R forms
some connected portion on the grid GMN , the connectivity assumption is not used throughout the
paper.
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L∞ measure) is known to be Ω(log n) and O(log3 n). See Beck and Sós’s survey [6]
for the theory. It seems hard to find an optimal solution to minimize the discrepancy.
In fact, it is NP-hard [2].

Therefore, we seek a family of regions for which low discrepancy rounding is useful
in an important application and also can be computed in polynomial time. For the
application, L∞ rounding is not always suitable, and Lp discrepancy (with p = 1 or
2) is preferable. For the purpose, we present a geometric structure of a family of
regions reflecting the combinatorial discrepancy bound and computational difficulty
of the matrix rounding problem.

In particular, we focus on the digital-halftoning application of the matrix rounding
problem, where we should consider smaller families of rectangular subregions as F .
More precisely, the input matrix represents a digital (gray) image, where aij represents
the brightness level of the (i, j)-pixel in the M × N pixel grid. Typically, M and N
are between 256 and 4096, and aij is an integral multiple of 1/256: This means
that we use 256 brightness levels. If we want to send an image using fax or print it
out by a dot (or ink-jet) printer, brightness levels available are limited. Instead, we
replace A by an integral matrix B so that each pixel uses only two brightness levels.
Here, it is important that B looks similar to A; in other words, B should be a good
approximation of A.

For each pixel (i, j), if the average brightness level of B in each of its neighbor-
hoods (regions containing (i, j) in a suitable family of regions) is similar to that of A,
we can expect that B is a good approximation of A. For this purpose, the set of all
rectangles is not suitable (i.e., it is too large), and we may use a more compact family.
Moreover, since human vision detects global features, the L1 or L2 measure should
be better than the L∞ measure to obtain a clear output image. This intuition is
supported by our experimental results; for example, edges of objects are often blurred
in the output based on the L∞-discrepancy measure, while they are sharply displayed
if we use the L1-discrepancy measure.

1.3. Known results on L∞ measure. For the L∞ measure, the following
beautiful combinatorial result is classically known.
Theorem 1.1 (Baranyai [5]). Given a real-valued matrix A = (aij) and a family

F of regions consisting of all rows, all columns, and the whole matrix, there exists an
integer-valued matrix B = (bij) such that |A(R)−B(R)| < 1 holds for every R ∈ F .

Translating the theorem in our terminologies, the L∞ discrepancy of the matrix
rounding problem for the family of regions consisting of all rows, all columns, and the
whole matrix is bounded by 1. Also, the combinatorial structure and algorithmic as-
pects of roundings of (one-dimensional) sequences with respect to the L∞-discrepancy
measure are investigated in recent studies [2, 19].

The incidence matrix C(GMN ,F) = (Cij) of the hypergraph (GMN ,F) is defined
by Cij = 1 if the jth element of GMN belongs to the ith region Ri in F and 0 other-
wise.2 A hypergraph is called unimodular if its incidence matrix is totally unimodular,
where a matrix C is totally unimodular if the determinant of each square submatrix
of C is equal to 0, 1, or −1.

Both the Baranyai problem and the sequence rounding problems correspond to
rounding problems with respect to unimodular hypergraphs. The L∞-discrepancy
problem can be formulated as an integer programming problem, and the unimod-
ularity implies that its relaxation has an integral solution. A classical theorem of

2We implicitly assume a one-dimensional ordering of elements in GMN .
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Ghouila-Houri [10] implies that unimodularity is a necessary and sufficient condition
for the existence of a rounding with a L∞ discrepancy less than 1. Moreover, the
following sharpened result is given by Doerr [7].
Theorem 1.2. If (GMN ,F) is a unimodular hypergraph, there exists a rounding

B = (bij) of A = (aij) satisfying

|A(R)− B(R)| < min

{
1− 1

n + 1
, 1− 1

m

}

for every R ∈ F , where n = MN , m = |F|.
This bound is sharp. Moreover, L∞-optimal rounding can be computed in poly-

nomial time if F is unimodular.

1.4. Our results. We would like to consider the Lp-discrepancy measure instead
of the L∞-discrepancy measure. If the hypergraph is unimodular, an |F|1/p upper
bound for the Lp discrepancy can be derived from Theorem 1.2 trivially. We first
improve the upper bound to 1

2 |F|1/p for p ≤ 3 and show that the bound is tight. We
also consider the family F , consisting of all 2 × 2 rigid submatrices, for which the
matrix rounding problem is known to be NP-hard [2] (accordingly, the family is not
unimodular).

Next, we consider the optimization problem. If the hypergraph is unimodular,
the rounding minimizing the Lp discrepancy can be computed in polynomial time
by translating it to a separable convex programming problem and applying known
general algorithms [11, 12]. However, we want to define a class of region families for
which we can compute the optimal solution more efficiently, as well as a class that is
useful in applications (in particular, the digital-halftoning application). We consider
the union of two laminar families (defined in section 3) and show that the matrix
rounding problem can be formulated into a minimum cost flow problem, and hence
solved in polynomial time. Finally, we implemented the algorithm using LEDA [14].
Some output pictures of the algorithm applying to the digital-halftoning problem are
included.

2. Mathematical programming formulations.

2.1. Formulation as a piecewise-linear separable convex programming
problem. We give a formulation of the Lp-discrepancy problem into an integer con-
vex programming problem where the objective function is a separable convex function,
i.e., a sum of univariate convex functions.

Introducing a new variable yi = B(Ri) =
∑

(j,k)∈Ri
bjk for each Ri ∈ F , the

problem P(GMN ,F , p) is described in the following form:

(P1) : minimize

[ ∑
Ri∈F

|yi − A(Ri)|p
]1/p

subject to yi =
∑

(j,k)∈Ri

bjk, i = 1, . . . , m = |F|,

and B ∈ B(GMN ).

When p < ∞, the objective function can be replaced with
∑

Ri∈F |yi−ci|p, where ci =
A(Ri) =

∑
(j,k)∈Ri

ajk is a constant depending only on input values. Now |yi − ci|p
is a convex function independent of other yj ’s. The constraints yi =

∑
(j,k)∈Ri

bjk,
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i = 1, . . . , m, are represented by (−I, C(GMN ,F))Y = 0 using the incidence matrix
C(GMN ,F) defined in section 1.3, where Y = (y1, . . . , ym, b11, . . . , bMN )T and I is an
identity matrix.

Although the objective function is now a separable convex function, its nonlin-
earity makes it difficult to analyze the properties of the solution. Thus, we apply the
idea of Hochbaum and Shanthikumar [11] to replace |yi − ci|p with a piecewise-linear
convex continuous function fi(yi) which is equal to |yi − ci|p for each integral value
of yi in [0, |Ri|]. This is because we need only integral solutions, and, if each bpj

is
integral, yi must be a nonnegative integer less than or equal to |Ri|. Typically for
p = 1, fi(yi) is illustrated in Figure 1.

f i(yi)

 ci ci  ci

Fig. 1. Conversion of the convex objective function |yi − ci| into a piecewise-linear convex
function fi(yi) with integral breakpoints (shown in bold lines).

Thus, we obtain the following problem (P2):

(P2) : minimize
∑
Ri∈F

fi(yi)

subject to yi =
∑

(j,k)∈Ri

bjk, i = 1, . . . , m = |F|,

and B ∈ B(GMN ).

Thus, we can formulate the problem into an integer programming problem where
the objective function is a separable piecewise-linear convex function.

2.2. Relaxation and totally unimodularity. Let (P3) be the continuous re-
laxation obtained from (P2) by replacing the integral condition of bij with the condi-
tion 0 ≤ bij ≤ 1. Note that this is different from the continuous relaxation of (P1),
since the objective function of (P2) is larger than that of (P1) at nonintegral values.

If the matrix is totally unimodular, (P3) has an integral solution by the theorem
below. This is a key to derive discrepancy bounds and also algorithms.

Theorem 2.1 (Hochbaum and Shanthikumar [11]). A nonlinear separable convex
optimization problem min{∑n

i=1 fi(xi) | Ax ≥ b} on linear constraints with a totally
unimodular matrix A can be solved in polynomial time.

This theorem is translated into our terminologies as follows.

Corollary 2.2. The matrix rounding problem P(GMN ,F , p) for p < ∞ is
solved in polynomial time in n = MN if its associated incidence matrix C(GMN ,F)
is totally unimodular.
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3. Geometric families of regions defining unimodular hypergraphs. In
this section we consider interesting classes of families whose associated incidence ma-
trices are totally unimodular. We call such a family a unimodular family, since the
associated hypergraph is unimodular. A family F = {R1, R2, . . . , Rm} is a partition
family (or a partition) of GMN if

⋃m
i=1 Ri = GMN and Ri ∩ Rj = ∅ for any Ri �= Rj

in F . A k-partition family is a family of regions on a matrix which is the union of k
different partitions of GMN .

A family F of regions on a grid GMN is a laminar family if one of the following
holds for any pair Ri and Rj in F : (1) Ri ∩ Rj = ∅, (2) Ri ⊂ Rj , or (3) Rj ⊂ Ri.
The family is also called a laminar decomposition of the grid GMN . In general, a
k-laminar family is a family of regions on a matrix which is the union of k different
laminar families.
Proposition 3.1. A 2-laminar family is unimodular.
Direct applications of Proposition 3.1 lead to various unimodular families of re-

gions. The family of regions defined in Baranyai’s theorem is a 2-laminar family. Also,
take any 2-partition family consisting of 2× 2 regions on a matrix. For example, take
all 2×2 regions with their upper left corners located in even points (where the sums of
their row and column indices are even). The set of all those regions defines 2-partition
families Feven and Fodd, where Feven (resp., Fodd) consists of all 2 × 2 squares with
their upper left corners lying at even (resp., odd) rows (see Figure 2). This kind of
family plays an important role in section 5.2 and also in our experiment.

A 3-partition family is not unimodular in general. However, there are some fam-
ilies which are not 2-laminar but unimodular: For example, the set of all rectangular
rigid submatrices of size 2 (i.e., domino tiles) is a 4-partition family, but it is unimod-
ular.

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

F even F odd

Fig. 2. 2-partition family of 2 × 2 regions.

4. Algorithms for computing the optimal rounding. The arguments so
far guarantee the polynomial-time solvability of our problem. However, we needed a
more practical algorithm for our experiments that runs fast for large-scale problem
instances. In this section we will show how to solve the matrix rounding problem
for a 2-laminar family based on the minimum-cost flow algorithm. To improve the
readability, we mainly discuss the case for the L1-discrepancy measure.

Our main result is the following.
Theorem 4.1. Given a [0, 1]-matrix A and a 2-laminar family F , an optimal

binary matrix B that minimizes the distance DistF1 (A, B) is computed in O(n2 log2 n)
time, where n is the number of matrix elements.

Proof. We can transform the problem into that of finding a minimum-cost circu-
lation flow in the network defined as follows.
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Let F be a 2-laminar family given as the union of two laminar families F1 =
{R0, R1, . . . , Rm} and F2 = {R′

0, R′
1, . . . , R′

m′} over the grid GMN , where R0 and R′
0

are the entire region GMN . The network to be constructed consists of three parts.
The first part is an in-tree T1 derived from F1 whose root is R0; the second one is an
out-tree T2 from F2 whose root is R′

0; and the third part connects T1 and T2. The
lattice structure implied by F1 naturally defines an in-tree T1 such that the vertex set
is the set of regions in F1, and there is a directed edge (Ri, Rj) if and only if Ri ⊆ Rj

and there is no other region Rk such that Rj ⊆ Rk ⊆ Ri. Then each region Ri, i ≥ 1,
has a unique outgoing edge, which is denoted by e(Ri). We can similarly define T2

for the laminar family F2, in which the edge direction is reversed in T2; that is, each
node R′

i, i ≥ 1, has a unique incoming edge, which is denoted by e(R′
i).

In addition, leaves of T1 and T2 are connected by edges corresponding to elements
of GMN . Because of the definition of F1 and F2, each element (k, l) of GMN belongs
to exactly one region in F1 which is a leaf in T1 and to exactly one region in F2 which
is a leaf in T2. If (k, l) belongs to Ri and R′

j , then we have a directed edge e(i, j) from
R′

j to Ri. Finally, we draw an edge from R0 to R′
0.

Now we define the capacity and cost coefficient of each edge. (The lower bound on
the flow of each edge is defined to be 0.) The capacity of an edge e(i, j) is determined
simply as 1 because the value associated with an element of GMN is to be rounded
to 0 or 1.

Determining the cost coefficients of edges e(Ri) and e(R′
j) are not straightforward,

although the cost coefficients of e(i, j)s and e(R0, R′
0) are defined to be 0s. This is

because each term of the objective function depends on the difference between B(Ri)
and A(Ri) or between B(R′

j)− A(R′
j); that is, |B(Ri)− A(Ri)| or |B(R′

j)− A(R′
j)|.

Recall the argument in section 2: To prove the polynomial-time solvability we
have introduced a new variable yk = B(Rk) =

∑
(i,j)∈Rk

bij . |B(Rk) − A(Rk)| is
converted into |yk − ck|, where ck = A(Rk) =

∑
(i,j)∈Rk

aij is a constant determined

by input values. |yk − ck| is further replaced by the piecewise-linear convex function
fk(yk) which coincides with |yk − ck| at each integral value of yk.

To reflect the new form of the objective function (see Figure 1), we replace each
edge e(Rk) by three parallel edges with different capacities and costs: e1(Rk) has
capacity �ck� and cost c1 = −1. e2(Rk) has capacity �ck� − �ck� and cost c2 =
�ck�+ �ck� − 2ck. For the third edge e3(Rk), its capacity is ∞ and its cost is c3 = 1.
Since c1 ≤ c2 ≤ c3, to minimize the overall cost for these three edges the flow at
e2(Rk) is zero unless the first edge e1(Rk) is full; that is, the flow at e1(Rk) is �ck�.
Similarly, flow at e3(Rk) is positive only if the two edges e1(Rk) and e2(Rk) are both
full.

The cost associated with an edge is determined by multiplying the above coef-
ficient to the flow in the edge. When the total amount of flow in the three edges
is given by yk, the total cost is given by fk(yk) − ck in any case (see, e.g., Ahuja,
Magnanti, and Orlin [1]). Since ck is a constant, the constant term does not affect
the optimality.

Once a network is constructed, we can find an optimal rounding in time
O(|E| logU(|E|+ |V | log |V |)) for a network with node set V and edge set E and the
largest integral capacity U , using the scaling algorithm by Edmonds and Karp [8]. In
our case, |V |, |E|, and U are all O(n), and thus we have O(n2 log2 n), where n is the
number of matrix elements.

Theorem 4.2. Given a [0, 1]-matrix A and a 2-laminar family F , an optimal
binary matrix B that minimizes the distance DistFp (A, B) (p ≥ 2) can be computed
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in O(n2 log3 n) time.
Proof. In this case, fi is a piecewise-linear convex function with O(n) break

points. We apply the convex-cost flow algorithm [18]. We omit details.

5. Upper bounds for the Lp discrepancy.

5.1. Lp discrepancy for a unimodular hypergraph. In this subsection, we
prove the following theorem for the Lp discrepancy of a unimodular family.
Theorem 5.1. If F is unimodular and p ≤ 3, for any A ∈ A we have

min
B∈B

DistFp (A, B) ≤ 1

2
|F|1/p.

Proof. There exists B̂ ∈ B such that |B̂(Ri)− A(Ri)| ≤ 1 holds for any Ri. The
existence of such B̂ is known by Theorem 1.2. However, for completeness, we shall
give the proof. Consider the problem (P2) and its continuous relaxation (P3). It is
then obvious that

bij = aij for every i and j and(5.1)

yk = A(Rk) for every Rk ∈ F

is a feasible solution to (P3). Now we add lower and upper bound constraints for each
variable yk:

�A(Rk)� ≤ yk ≤ �A(Rk)�.

Notice that the addition of these constraints to (P3) maintains total unimodularity
of the constraints. Let (P4) denote the problem (P3) with these constraints. Since
fk(yk) is a linear function in the interval [�A(Rk)�, �A(Rk)�], (P4) is a linear program.

Since (P3) has a feasible solution satisfying all constraints of (P4), (P4) also has a
feasible solution. Since (P4) is a linear program over totally unimodular constraints,
its optimal solution is an integral solution, and the corresponding objective value gives
an upper bound on the optimal objective value of (P2). Thus, the objective value
for (P4) of the above defined feasible solution gives an upper bound on the optimal
objective value of (P2).

Let us now estimate the upper bound on fk(yk) at yk = A(Rk). Let a = A(Rk)−
�A(Rk)�. We then have fk(�A(Rk)�) = ap and fk(�A(Rk)�) = (1− a)p. Therefore,

fk(A(Rk)) = ap(1− a) + (1− a)pa(5.2)

holds. We can see fk(A(Rk)) ≤ (1/2)p holds if p ≤ 3. Thus, the optimal objective
value of (P4) is at most (1/2)p|F|. Since the optimal objective value of (P4) is an
upper bound on that for (P2), (1/2)p|F| gives an upper bound on the optimal objective
value for (P2).

It is easy to give an instance to show that the bound is tight: Consider Baranyai’s
problem on a matrix having 1

2 entries in its diagonal position (other entries are zeros).
For the case p > 3, we have the following.
Theorem 5.2. If F is unimodular and p > 3, for any A ∈ A we have

min
B∈B

DistFp (A, B)

≤ (pp/(p + 1)p+1 + 2p(p − 1)/(p + 1)p+1)1/p|F|1/p.
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Proof. This follows from the fact that ap(1 − a) + (1 − a)pa < pp/(p + 1)p+1 +
2p(p − 1)/(p + 1)p+1 for 0 ≤ a ≤ 1.

The term (pp/(p + 1)p+1 + 2p(p − 1)/(p + 1)p+1)1/p is 0.550 and 0.587 if p = 4
and p = 5, respectively, and it is always less than p/(p + 1).

5.2. Discrepancy bounds for the family of 2 × 2 regions. The method
in the previous subsection does not work for a nonunimodular case. A simple but
interesting family defining a nonunimodular hypergraph is the family of all 2 × 2
regions of A. The known upper bound is merely 5

3 |F|1/p from the corresponding L∞
result [3]. We obtain the following result.
Theorem 5.3. For any A ∈ A(GMN ) and a family F of 2 × 2 regions of the

matrix, we have

min
B∈B

DistF1 (A, B) ≤ 3

4
|F|.

Proof. Let us consider the matrix rounding problem P = P(GMN ,F , 1) for the
family F of all 2 × 2 regions. We define another problem P̂ defined over another
family F̂ of regions consisting of two tiles:

T1 = {(i, j), (i + 1, j)} for (i, j) ∈ GMN ,

T2 = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)} for (i, j) ∈ GMN and i + j = even.

Let B∗ and B̂ denote the optimal binary matrix for P and P̂ , respectively.
We now show ∑

R∈F
|A(R)− B∗(R)| ≤ 3|F|/4.

Let (R1, R2) be a partition of a 2 × 2 region R into two disjoint 2 × 1 regions.
Then for any A and B we have

|A(R)− B(R)|(5.3)

≤ |A(R1)− B(R1)|+ |A(R2)− B(R2)|.
Recall that F consists of all 2 × 2 regions and F̂ consists of constrained 2 × 2

regions and all 2×1 regions. Then F\F̂ consists of 2×2 regions that are not included
in F̂ , F ∩ F̂ consists of 2× 2 regions that are included in F̂ , and F̂\F consists of all
2× 1 regions. Now we have∑

R∈F
|A(R)− B∗(R)|(5.4)

=
∑

R∈F\F̂
|A(R)− B∗(R)|+

∑
R∈F∩F̂

|A(R)− B∗(R)|

≤
∑

R∈F\F̂
|A(R)− B̂(R)|+

∑
R∈F∩F̂

|A(R)− B̂(R)|

≤
∑

R∈F∩F̂
|A(R)− B̂(R)|+

∑
R∈F̂\F

|A(R)− B̂(R)|

(from (5.3))

=
∑
R∈F̂

|A(R)− B̂(R)|.
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Since F̂ is a 2-laminar family, its associated incidence matrix is totally unimodular. As
in the proof of Theorem 5.1, we consider the linear program Q̂′ which is a continuous
relaxation of P̂ with the additional constraints

�A(Rk)� ≤ yk ≤ �A(Rk)�

for all Rk ∈ F̂ . From the total unimodularity of the incidence matrix, there exists
an optimal solution to Q̂′ such that it is integral. Let B̂′ denote such solution. For a
feasible solution to Q̂′ defined by

bij = aij for every i and j(5.5)

and yk = A(Rk) for every Rk ∈ F̂ ,

its objective value gives an upper bound on the optimal objective value of Q̂′ which
in turn gives an upper bound on the optimal objective value of P̂ . Therefore, we have∑

Rk∈F̂
|A(Rk)− B̂(Rk)| ≤

∑
Rk∈F̂

|A(Rk)− B̂′(Rk)|(5.6)

≤
∑

Rk∈F̂
fk(A(Rk)).

From Theorem 5.1, the rightmost term of (5.6) is bounded by |F̂ |/2, which is al-
most equal to 3|F|/4 for a sufficiently large n. This completes the proof of the
theorem.

6. Application to digital halftoning. The quality of color printers has been
drastically improved in recent years, mainly based on the development of the fine
control mechanism. On the other hand, there seems to be no great invention on the
software side of the printing technology. What is required is a technique to convert a
continuous-tone image into a binary image consisting of black and white dots so that
the binary image looks very similar to the input image. From a theoretical standpoint,
the problem is how to approximate an input [0, 1]-array by a binary array. Since this
is one of the central techniques in computer vision and computer graphics, a great
number of algorithms have been proposed (see, e.g., [13, 9, 4, 15, 17]). However, there
have been very few studies toward the goal of achieving an optimal binary image under
some reasonable criterion; maybe it is because the problem itself is very practically
oriented. A desired output image is the one which looks similar to the input image
to the human visual system. The most popular distortion criterion that is used in
practice is perhaps frequency weighted mean square error (FWMSE) [16], which is
defined by

W (G, X) =
∑

(i,j)∈GMN

[
K∑

k=−K

K∑
l=−K

v|k||l|ai+k,j+l −
K∑

k=−K

K∑
l=−K

v|k||l|bi+k,j+l

]2

.

Here, V = (v|k||l|), −K ≤ k, l ≤ K, is an impulse response that approximates the
characteristics of the human visual system and K is some small constant, say 3. Our
discrepancy measure which has been discussed in this paper is a hopeful replacement.
Indeed, the L2-discrepancy measure can be regarded as a simplified version of the
FWMSE criterion.
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We have implemented the algorithm using LEDA [14] functions for finding
minimum-cost flow and applied it to several test images to compare its results with
the error diffusion algorithm which is most commonly used in practice. The data we
used for our experiments are standard high precision picture data created by the In-
stitute of Image Electronics Engineers of Japan, which include four standard pictures
called “Bride,” “Harbor,” “Wool,” and “Bottles.” They are color pictures of eight
bits each in RGB. Their original picture size is 4096 × 3072. In our experiments we
scaled them down to 1024× 768 in order to shorten the running time of the program.
Figure 3 shows experimental results for “Wool” to compare our algorithm with error
diffusion. Our algorithm has been implemented using a 2-laminar family defined by
the two tiles (b) and (c) depicted in Figure 4. We have used the L1 measure. By our
experience through experiments, it seems hard to have such a nice-looking output by
the L∞ measure.

Fig. 3. Experimental results. Output images by the error diffusion algorithm (above) and the
algorithm in this paper (below).

7. Concluding remarks. We have considered the matrix rounding problem
based on Lp-discrepancy measure. Although we have shown that the measure is
useful in application to the digital-halftoning application, the current algorithm is too
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(a) (b) (c)

Fig. 4. Three different partitions of the image plane (a) by 2× 2 squares, (b) vertically shifted
2 × 2 squares, and (3) cross patterns consisting of five pixels.

slow if we want to require speed together with the high-quality requirement. The
problem comes from the quadratic time complexity. It is desired to design a faster
algorithm (even an approximation algorithm). Moreover, it is an interesting question
to investigate what kind of region families give the best criterion for the halftoning
application. Once we know such a region family, it is valuable to design an algorithm
(heuristic algorithm if the problem for solving the optimal solution is intractable) for
the criterion.
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