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Abstract

This paper presents a new approximation algorithm for a vehicle routing problem on a
tree�shaped network with a single depot
 Customers are located on vertices of the tree� and
each customer has a positive demand
 Demands of customers are served by a �eet of identical
vehicles with limited capacity
 It is assumed that the demand of a customer is splittable� i
e
�
it can be served by more than one vehicle
 The problem we are concerned with in this paper
asks to �nd a set of tours of the vehicles with minimum total lengths
 Each tour begins at
the depot� visits a subset of the customers and returns to the depot without violating the
capacity constraint
 We propose a �

��	��approximation algorithm for the problem �exactly�
�
p
��� ������ which is an improvement over the existing �
��approximation


�



� Introduction

In this paper we consider a capacitated vehicle routing problem on a tree�shaped network with
a single depot
 Let T � �V�E� be a tree� where V is a set of n vertices and E is a set of edges�
and r � V be a designated vertex called depot
 Nonnegative weight w�e� is associated with
each edge e � E� which represents the length of e
 Customers are located at vertices of the
tree� and a customer at v � V has a positive demand D�v�
 Thus� when there is no customer
at v� D�v� � � is assumed
 Demands of customers are served by a set of identical vehicles with
limited capacity
 We assume throughout this paper that the capacity of every vehicle is equal
to one� and that the demand of a customer is splittable� i
e
� it can be served by more than one
vehicle
 Each vehicle starts at the depot� visits a subset of customers to �partially� serve their
demands and returns to the depot without violating the capacity constraint
 The problem we
deal with in this paper asks to �nd a set of tours of vehicles with minimum total lengths to
satisfy all the demands of customers
 We call this problem TREE�CVRP


Vehicle routing problems have long been studied by many researchers �see ��� �� �� ��� �
�
for a survey�� and are found in various applications such as scheduling of truck routes to deliver
goods from a warehouse to retailers� material handling systems and computer communication
networks
 Recently� AGVs �automated guided vehicle� and material handling robots are often
used in manufacturing systems� but also in o�ces and hospitals� in order to reduce the material
handling e�orts
 The tree�shaped network can be typically found in buildings with simple
structures of corridors and in simple production lines of factories


Vehicle scheduling problems on tree�shaped networks have recently been studied by several
authors �
� ��� ��� ��� �	� ���
 Most of them dealt with a single�vehicle scheduling that seeks
to �nd an optimal tour under certain additional constraints


However� TREE�CVRP has not been studied in the literature until very recently
 In �����
Hamaguchi and Katoh ���� proved its NP�hardness and proposed a �
��approximation algorithm
����� considered the variant of TREE�CVRP where demand of each customer is not splittable
and gave ��approximation algorithm
� For general undirected networks� the problem contains
TSP �traveling salesman problem� as a special case� and thus it is not only NP�hard but APX�
hard �except the result by ��� for Euclidean�CVRP in the plane�
 However� when restricted
to tree�shaped networks� the complexity of TREE�CVRP was not clear
 It is shown that
TREE�CVRP is strongly NP�complete by a reduction from bin�packing problem ����


Thus� we turn our attention on developing approximate algorithms for the problem
 Since
TREE�CVRP is a special class of general CVRP� approximation algorithms originally developed
for CVRP on general undirected networks can be used to approximately solve TREE�CVRP

In particular� the iterated tour partitioning �ITP� heuristic proposed by Haimovich and Rinooy
Kan ���� and Altinkemer and Gavish ��� provides � � ��� �

k
�� approximation for such general

CVRP when ��approximation algorithm for TSP is available� where the capacity of every
vehicle is assumed to be equal to k and the demand of every customer is a positive integer

For instance� if the famous �
��approximate algorithm for TSP by Christo�des ��� is used� the
approximation factor becomes ��� � ����k
 For tree�shaped networks� TSP can be optimally
solved in a straightforward manner� and thus the direct consequence of ��� ��� results in a
��� �

k
��approximation algorithm


In this paper� we shall present an improved �

��	��approximation algorithm for TREE�
CVRP by exploiting the tree structure of the network
 This is an improvement of the existing
�
��approximation algorithm by Hamaguchi and Katoh ����
 A basic idea behind the improve�
ment is the use of reforming operations preserving the lower bound on the cost� which simpli�es
the analysis







� Preliminaries

We assume that tree T � �V�E� is weighted� i
e
� a nonnegative weight w�e� is associated with
each edge e � E� which represents the length of e
 Since T is a tree� there exists a unique
path between two vertices
 For vertices u� v � V � let path�u� v� be the unique path between u
and v
 The length of path�u� v� is denoted by w�path�u� v��
 We often view T as a directed
tree rooted at r
 For a vertex v � V � frg� let parent�v� denote the parent of v
 We assume
throughout this paper that when we write an edge e � �u� v�� u is a parent of v unless otherwise
stated
 For any v � V � let Tv denote the subtree rooted at v� and w�Tv� and D�Tv� denote the
sum of weights of edges in Tv� and the sum of demands of customers in Tv� respectively
 Since
customers are located on vertices� customers are often identi�ed with vertices


Suppose that we are given a set S � V � frg with
P

v�S D�v� � �
 Then one vehicle is
enough to serve all the demands of customers in S� and an optimal tour for S can be trivially
obtained by �rst computing a minimal subtree T � that spans S � frg and by performing a
depth��rst search with r as the starting vertex
 Thus� when we speak of a tour in this paper�
we do not need explicitly give a sequence of vertices that a vehicle visits� but it is enough to
specify a set of customers that the vehicle visits
 Since the demand of a customer is splittable�
in order to de�ne a tour of a vehicle� we need to specify the amount of demand of each customer
served by the vehicle


A solution of TREE�CVRP consists of a set of tours
 �From the above discussion� we
represent the tour of the j�th vehicle by

fDj�v� j v � Sjg� ���

where Sj is the set of customers for which some positive demands are served in the j�th tour�
and Dj�v��� �� for v � Sj is the amount of demand that the j�th vehicle serves at v
 The total
tour length of an optimal solution for TREE�CVRP is often referred to as the optimal cost


For an edge e � �u� v�� let
LB�e� � �w�e� � dD�Tv�e� ���

LB�e� represents a lower bound of the cost required for traversing edge e in an optimal solution
because� due to the unit capacity of a vehicle� the number of vehicles required for any solution
to serve the demands in Tv is at least dD�Tv�e and each such vehicle passes e at least twice
�one is in a forward direction and the other is in a backward direction�
 Let

LB�T � �
X

e�E
LB�e�� �
�

Thus� we have the following lemma


Lemma � LB�T � �
P

e�E LB�e� gives a lower bound of the optimal cost of TREE�CVRP�

� Reforming Operations

Our approximation algorithm repeats the following two steps until all the demands are served

The �rst step is a reforming step in which we reshape a given tree following seven di�erent
operations all of which are �safe� in the sense that they do not increase the lower bound on
the cost given in Lemma �
 The second step is to choose an appropriate subtree and choose
among a few possible strategies depending on the cases the best one to serve the demands in
the subtree �this step will be explained in details in the next section�


The �rst reforming operation R� is applicable when some nodes have demands greater than
or equal to �
 Suppose that a node v has a demand D�v� � �
 Then� we allocate k � bD�v�c

�



vehicles to v to serve k units of its demand �integral part of the demand�
 This operation results
in demand at v less than one
 Note that this operation is apparently safe by the argument
based on the lower bound on the tour cost
 Thus� it is reasonable to assume that each demand
is less than one


The second operation R� is to remove positive demand from each internal node
 If there is
any internal node v with positive demand� we create a new node connected with v by an edge
of weight zero and descend the weight of v to the new node
 It is easy to see that any tour on
an original tree can be transformed into another tour on the tree reshaped as above with just
the same cost
 It implies that this reform is safe� it does not a�ect the lower bound
 Therefore�
we can assume that positive demand is placed only at leaves� that is� demand at any internal
node is zero


The third operation R� is applied to a pair of nodes �u� v� such that a leaf v is a unique
child of u
 The node u has no other children
 If the combined demand D�u� �D�v� does not
exceed �� then we just contract the edge �u� v�� i
e
� delete �u� v� and the node v� after replacing
the demand D�u� at u by D�u��D�v� and then increasing the cost of the edge to u by the cost
w�u� v� of the edge between u and v
 On the other hand� if D�u� � D�v� exceeds �� we send
one vehicle to serve the full demand at v and partial demand at u to full�l the capacity of the
vehicle� and then reduce the demand at u accordingly
 The edge to v is then removed together
with v
 Note that the combined demand D�u� � D�v� never exceeds � after the reforming
operation R�


The fourth operation R� is to merge a subtree whose demand is less than or equal to �
into a single edge
 Namely� for an internal node v with D�Tv� � �� Tv is replaced by a single
edge �v� v�� with edge weight equal to w�Tv� and D�v�� � D�Tv�
 Since D�Tv� � � holds� this
operation is also safe


To de�ne more essential reform operations for approximation algorithm� we need some more
assumptions and de�nitions


A node v of a tree T is called a p�node if
�i� v is an internal node� and
�ii� all of the children of v are leaves� and
�iii� the sum of the demands at those children is between � and �


A node u is called a q�node if
�i� the sum of the demands in the subtree Tu rooted at u� denoted by D�Tu�� is at least �� and
�ii� no child of u has the property �i�


The �fth reforming operationR� is to merge leaves of nodes
 For a node u� let fv�� v�� � � � � vkg
be a subset of its children that are leaves
 Let u be a p�node or q�node and fv�� v�� � � � � vkg be
a set of its children �leaves by de�nition�
 By wi we denote the weight of the edge between
u and vi
 We examine every pair of leaves
 For the pair �vi� vj� we check whether the sum
of their weights exceeds �
 If D�vi� �D�vj� � �� then we merge them
 Exactly speaking� we
remove the leaf vj together with its associated edge �u� vj� after replacing the demand of vi
with D�vi��D�vj� and the weight wi with wi�wj 
 Then� we proceed to the next unexamined
pair of leaves
 We repeat this process while there is any mergeable pair of leaves
 Figure �
illustrates how this merging process proceeds
 This operation is useful particularly for p�nodes
and q�nodes to reduce the number of possible cases to be considered


An important property of the resulting tree after performing R� to p�nodes is that any
p�node has at most three children �leaves� since otherwise the sum of the demands of those
children exceeds �� which causes a contradiction to the de�nition of a p�node
 Thus� we can
assume that any p�node has at most three children


An important property of the resulting tree is that any p�node has at most three children
�leaves� after the reforming operation since otherwise the sum of the demands of those children

�
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exceeds �� which causes a contradiction to the de�nition of a p�node
 Thus� we can assume
that any p�node has at most three children
 It may happen that all the leaves of a p�node are
merged into one leaf
 In this case� we apply the contraction operation R�


Now� after applying the reform R� to each p�node� a subtree rooted at a q�node may
include more than one p�node
 But� in that case those p�nodes must be children of the q�node

Otherwise� an internal node having more than one p�node in its descendants must have demand
exceeding � in its descendants� which contradicts to the fact that the internal node is not a
q�node


Now we have a limited number of situations for q�nodes listed as follows�
Case �a�� A q�node u has more than one p�node in its descendants


In this case� children of the q�node are either p�nodes or leaves �see Figure ��Case �a��

Case �b�� A q�node u has exactly one p�node v in its descendants


In this case we may have arbitrary number of internal nodes on the unique path from u to
v each of which has only one edge connected to a leaf �see Figure ��Case �b��

Case �c�� A q�node u has no p�node v in its descendants


In this case� all of the children of the q�node are leaves �see Figure ��Case �c��
 This is just
like a p�node except that the sum of weights exceeds �


There are only two types of p�nodes since they have two or three children �leaves�
 The sixth
reforming operation R� removes p�nodes having only two children
 This is done by connecting
those children directly by the parent of the p�node by edges of weights increased by the weight
between the p�node and its parent
 Formally� suppose a p�node v is connected to its parent u by
an edge of weight a and to two children v� and v� by edges of weights w� and w�� respectively

Then� vi is connected directly to u by an edge of weight wi � a
 Note that the reforming
operation does not change the lower bound since the demand of D�Tv� is greater than � by
de�nition of a p�node


Yet another reforming operation R� is required in Cases �a� and �b� above
 In these cases�
for a p�node v� there may have some branches to leaves on the way from u to v
 Then� those
leaves are placed as the children of the p�node with edges of weights equal to those for the
branches
 In addtion� internal nodes on the path from u to v are erased so that the path
is replaced by a single edge with the weight equal to that for the path
 This operation also

�



preserves the lower bound
 Notice that when u has children which are leaves directly connected
to u� such a leaf x can be a candidate for this operation if D�Tv� �D�x� � � holds


After all� we can assume that if a q�node has any p�node as its child then the p�node must
have three children
 Again� it is obvious that the reformations described above do not increase
the lower bound although they certainly increase the upper bound since we restrict possible
tours


� Approximation Algorithm

The approximation algorithm to be presented in this paper is based on the reformations pre�
serving the lower bound and combining two or more di�erent strategies
 The main di�erence
from the previous approximation algorithm given by Hamaguchi and Katoh ���� is the de�nition
of a minimal subtree to which algorithmic strategies are applied
 They introduced the notion
of D�minimality and D�feasibility
 That is� a vertex v � V is called D�feasible if D�Tv� � �
and is called D�minimal if it is D�feasible but none of its children is
 Their algorithm �rst
�nds a D�minimal vertex� and determines a routing of one or two vehicles that �partially� serve
demands of vertices in Tv by applying one of the two strategies depending on their merits


Our algorithm pays attention to subtrees of demands exceeding � instead of �
 Usually this
causes explosion of the possible cases� but the point here is the reforming operations described
above that extremely simplify the possible cases
 This is the main contribution of this paper


Now� let us describe our algorithm
 It �rst applies seven reforming operations R� through
R� to an input tree so that any of these operations cannot be applied any more
 The algorithm
consists of a number of rounds
 In each round� it focuses on a particular q�node u and prepare
a few strategies each of which allocates two or three vehicles to �partially� serve the demands
in the subtree Tu
 Among strategies prepared� we choose the best one and apply it to Tu
 As
in the same manner as the one used by ����� the choice of the best strategy is made as follows

For each strategy� we compute the cost of tours required by the strategy
 We also compute the
decrease of the lower bound
 Namely� let P denote the problem before applying the strategy
and let LB�P � denote the lower bound of optimal cost of P given in Lemma �
 After applying
the strategy� demands of nodes in the subtree Tu are decreased and we obtain another problem
instance P � to which the algorithm will be further applied
 The decrease of the lower bound
is de�ned as LB�P � � LB�P ��
 The best strategy is the one giving the smallest ratio of the
cost of tours to the decrease of the lower bound
 As we shall show later� the smallest ratio is
always at most ��
��	�


When there is not any q�node any more� it is the �nal round and is called base case
 In this
case� similarly to the other cases� we prepare a few strategies and apply the one with better
ratio
 It will be shown that this ratio is also at most ��
��	�


Theorem � The approximation of our algorithm for TREE�CVRP is ��
��	��

Proof� The proof technique is similar to the one by Hamaguchi and Katoh ����
 In fact�
the theorem can be proved by induction on the number of rounds
 Whenever the sum of the
demands in the tree exceeds two� we perform the reforming operations to have q�nodes and
design how to serve the demands in the subtree rooted at each q�node� depending on the three
cases explained
 Then� we apply the reforming operations again to the resulting tree and repeat
this process until there is no q�node
 This is the base case


Assuming that the theorem holds for problem instances that require at most k rounds�
we consider the problem instance P of TREE�CVRP for which our algorithm requires k � �
rounds
 Each time we �nd a q�node and apply an appropriate strategy based on the ratios
de�ned above
 Let P � be the problem instance of TREE�CVRP obtained from P after the �rst

	



round by decreasing demands served in this round from original D���
 Let LB�P �� be the lower
bound for the problem P � and LB� be the decreased lower bound at this round
 Let cost�P ��
cost� and cost�P �� denote the total cost required for the original problem P by our algorithm�
the cost required by the �rst round and the cost for the remaining problem P � to be required
by our algorithm� respectively� �i
e
� cost�P � � cost� � cost�P ���
 Then� we have

cost�P �

LB�P �
� cost� � cost�P ��

LB� � LB�P ��
� ���

Since cost�P ���LB�P �� � ��
��	� holds from the induction hypothesis� it su�ces to prove

cost�
LB�

� ��
��	��

As we shall prove below �Lemmas � through ��� the above inequality holds in every case
�the base case will be proved in Lemma ��
 Thus� we have the theorem


Suppose there is at least one q�node
 Strategies we prepare depend on the cases explained
below
 As stated in the previous section� the following three cases of q�nodes are possible


Case �� A q�node has more than one p�node as its children


Case �� A q�node has only one child of p�node


Case �� A q�node has no child of p�node


In Case �� we focus on arbitrary two p�nodes
 Remaining p�nodes� if any� will be considered
in later rounds of the algorithm
 In Case �� let u and v denote the q�node and the p�node
respectively
 �From the de�nition of a q�node� u has at least one child other than the p�node

We choose arbitrary one child v� other than the p�node
 The algorithm then focuses on the
subgraph consisting of edges �u� v�� �u� v�� and the subtree Tv
 We notice here thatD�Tv��D�v��
exceeds � since otherwise v� can be shifted down to become a child of v by reform operation
R�


In Case 
� we can assume that the q�node has at least three leaves from de�nition of the
q�node
 If it has exactly three leaves� it follows that the sum of demands of these leaves exceeds
� due to the de�nition of a q�node
 If it has at least four leaves� we arrange those leaves in any
order and �nd where the sum of the demands exceeds �
 Recall that the merging operation
R� is already applied� and thus the sum of demands of the �rst four leaves certainly exceeds �

Since the sum of the demands of the �rst two leaves is less than � �each demand is less than
��� we can conclude that there are only two possibilities� that is� either that of the �rst three
leaves exceeds � �Subcase 
A� or that of the �rst four does �Subcase 
B�
 In either case� the
algorithm focuses on such �rst three or four leaves depending on the cases
 �The remaining
leaves will be treated in later rounds
�

Let us describe the algorithm for treating q�nodes depending on the above cases and then
consider the base case� i
e
� the total sum of the demands in the tree is less than �
 For each
case� we shall explain how to schedule vehicles to serve demands of nodes that the algorithm
focuses on� and prove that the ratio of the cost to the lower bound is at most �

��	�
 In the
proofs for all cases� we shall implicitly use the following simple facts�
Fact ��

� � x � y and a � � �� y � a

x� a
�

y

x
�

Fact �� For p� q� r� s � ��

� � a � b and
r

p
�

s

q
�� ra� s

pa� q
�

rb� s

pb� q
�

�



and

� � b � a and
r

p
�

s

q
�� ra� s

pa� q
�

rb� s

pb� q
�

Case �� Let u denote the q�node and let x and x� denote the two p�nodes the algorithm focuses
on
 Let v�� v� and v� denote three leaves of the subtree Tx
 We denote by D��D� and D� their
demands� and by w�� w�� and w� weights of edges connecting leaves to their parent
 The weight
of the unique path from the tree root r to u is denoted by a �if u coincides with the tree node
a � ��� and that from u to x by b
 Now� by assumption� � � Di � �� i � �� �� 
� � � D��D� � ��
and ��� � D��D��D� � � �D��D��D� � ��� follows since otherwise the sum of some two
demands among D�� D� andD� is less than or equal to �� and these two demands are mergeable�
a contradiction
 Here� without loss of generality we assume w� � w� � w�
 Similarly� let v��� v

�
�

and v�� denote three leaves of the subtree Tx� 
 We denote by D�
�� D

�
� and D

�
� their demands� and

by w��� w
�
�� and w�� weights of edges connecting leaves to their parent
 The weight of the path

from u to x� is denoted by b�
 Similarly� by assumption� � � D�
i � �� i � �� �� 
� � � D�

��D
�
� � ��

and ��� � D�
� �D�

� �D�
� � � hold� and w�� � w�� � w�� is assumed


Here we prepare only one strategy
 The strategy is to allocate two vehicles for each of
subtrees Tx and Tx� to serve the demands of each of these subtrees� For Tx� the �rst vehicle
serves the demand at v� and the partial demand at v� so that the sum of demands is equal to
�� and the second vehicle serves the demand at v� and the remaining demand at v�
 Similarly
for Tx� � the �rst vehicle serves the demand at v�� and the partial demand at v�� so that the sum
of demands is equal to �� and the second vehicle serves the demand at v�� and the remaining
demand at v��
 Let v

�
�� v

�
� and v�� denote three leaves of the subtree Tx� 
 We denote by D�

��D
�
�

andD�
� their demands� and by w��� w

�
�� and w

�
� weights of edges connecting leaves to their parent


The weight of the path from u to x is denoted by b�

The cost required by these four vehicles is given by

�a� �b� �b� � �w� � �w� � �w� � �w�� � �w�� � �w���

The decrease of the lower bound is given by

�a� �b� �b� � �w� � �w� � �w� � �w�� � �w�� � �w���

The �rst term �a comes from the fact that for every edge e on the path from the root r to u�
the decrease of the lower bound LB�e� is at least �w�e� and at most �w�e� from ��� because the
decrease of D�Tu� is between 
 and �
 Thus� the ratio of the cost of the tours to the decreased
lower bound is given by

r� �
�a� �b� �b� � �w� � �w� � �w� � �w�� � �w�� � �w��
�a� �b� �b� � �w� � �w� � �w� � �w�� � �w�� � �w��

�

�From w� � w� � w� and w�� � w�� � w��� we can show that r� is bounded by ��
 as follows�

r� � �a� �w� � �w� � �w� � �w�� � �w�� � �w��
�a� �w� � �w� � �w� � �w�� � �w�� � �w��

� �a� �w� � �w��
�a� �w� � �w��

�
�



�

The �rst inequality holds from Fact �� and the second from Fact �


Lemma � In Case �� the approximation ratio is at most ��
�

Before explaining how to treat Case �� we shall describe the algorithm for Case 
 because
Case � is most complicated


Subcase �A A q�node u has three leaves whose total demands exceed �
 Let v�� v�� and v�
be those three leaves
 We denote by D��D� and D� their demands� and by w�� w�� and w� the

�



edge weights
 The weight of the unique path from the tree root r to u is denoted by a
 Now�
by assumption� � � Di � �� i � �� �� 
� � � D��D� � �� and D��D��D� � �
 Here� without
loss of generality we assume w� � w� � w�


We consider two strategies and choose the better one
 The �rst strategy is to allocate
three vehicles to serve all the demands D�� D� and D�
 In this case� the cost is given by
�a���w��w��w�� because the i�th vehicle starts at the root and serves the demand Di and
returns to the root
 After applying the strategy� the three leaves are removed
 The decrease of
the lower bound is given by �a� ��w� � w� �w��


Thus the ratio between the cost of the tours and the decreased lower bound is given by

r� �
�a� ��w� � w� � w��

�a� ��w� � w� � w��
�

The second strategy splits the demand D�
 We allocate two vehicles to serve the demand
at v� and serve the demand at v� partially so that the sum of the demand is equal to �� the
capacity of the vehicle
 The second vehicle visits v� and v� in a similar fashion
 Since the sum
of the three demands exceeds �� some portion of the demand D� is still remaining although
the demands at v� and v� are exhausted
 The remaining demand at v� is left for the next
round
 Now� the associated cost and lower bound are given by �a � �w� � �w� � �w�� and
�a� �w� � �w�� respectively
 Thus� the ratio is

r� �
�a� �w� � �w� � �w�

�a� �w� � �w�

�

�From w� � w� � w�� we then have

r� � �a� �w�

�a� �w�

� and

r� � �a� �w�

�a� �w�

�

Therefore� if a � �w�� we have

r� � ��w� � �w�

�w� � �w�

�
�

	
�

and otherwise we have

r� �
�w� � �w�

�w� � �w�

�
�



�

Lemma � In Subcase �A� the approximation ratio is at most ��
��	��

Subcase �B� A q�node u has four leaves
 This case can be viewed as a special case of Case �
in which the length of the path from u to v is equal to �
 Thus� it will be treated in Case �


Case �� Suppose that a q�node q has only one p�node p having three leaves v�� v� and v�
together with a single leaf v�
 As before� we denote the demand and edge weight associated
with vi by Di and wi� respectively� and w� � w� � w� is assumed
 We denote the path length
from the root to the q�node by a� and the weight of the edge between the p�node and q�node
by b
 The algorithm prepares di�erent strategies depending on whether

D� �D� �D� � �

holds or not
 The case where this inequalty holds is called Subcase �A� and the other is called
Subcase �B


��



Subcase �A� We prepare the following four strategies

Strategy �� This strategy allocates three vehicles
 The �rst vehicle serves the full demand at
v� and partial demand at v� to the full capacity
 The second one serves the full demand at v�
and the remaining demand at v� �which is less than ��
 The third one serves the demand of
v�
 Then� the ratio is given by

r� �
�a� �b� �w� � �w� � �w� � �w�

�a� �b� �w� � �w� � �w� � �w�

�

Strategy �� This strategy is the same as Strategy � except that the roles of v� and v� are
exchanged
 The ratio is given by

r� �
�a� �b� �w� � �w� � �w� � �w�

�a� �b� �w� � �w� � �w� � �w�

�

Strategy �� This strategy allocates two vehicles� ��� to serve the full demand at v� and partial
demand at v� to �ll the capacity� and ��� to serve the full demand at v� and the remaining
demand at v� and moreover partial demand at v�
 This is possible since D� �D� � D� � �

The remaining demand at v� is left for the next round
 Then� the ratio r� is de�ned by

r� �
�a� �b� �W � �w�

�a� �b� �W � �w�

�

where W � w� �w� � w� � w�

Strategy �� This strategy allocates two vehicles� ��� to serve the full demand at v� and partial
demand at v� to �ll the capacity� and ��� to serve the full demand at v� and the remaining
demand at v� and moreover partial demand at v�
 This is possible since D� �D� � D� � �

The remaining demand at v� is left for the next round
 Then� the ratio r� is de�ned by

r� �
�a� �b� �W � �w�

�a� �b� �W � �w�

�

The smallest value among the above four values is evaluated by the following case analysis


�i� w� � w�
 We choose the better one between Strategies � and 

 From w� � w�� we have

r� � �a� �b� ��w�

�a� �b� �w�

� �a� ��w�

�a� �w�

�

r� � �a� ��w�

�a� �w�

�

By letting x � a�w�� we compute

max
x

minf�x� ��

�x� �
�
�x� ��

�x� �
g� ���

The maximum is attained when �x���
�x�	

� �x���
�x��

holds� i
e
� x � ���
p
��

�
� ��
��	�
 The

maximum value of ��� is also ���
p
��

�
� ��
��	�


�ii� w� � w� � w�

We choose the better one between Strategies � and 

 The analysis is done in the same way

as �i�


�iii� w� � w�
 We choose the better one between Strategies � and �


r� �
�a� �b� �w� � �w� � �w� � �w�

�a� �b� �w� � �w� � �w� � �w�

� �a� �b� �w� � �w� � �w�

�a� �b� �w� � �w� � �w�

� from w� � w��

� �a� �b� ��w�

�a� �b� �w�

� �from w�� w� � w��� ���

��



r� �
�a� �b� �w� � �w� � �w� � �w�

�a� �b� �w� � �w� � �w�

� �a� �b� �w� � �w� � �w�

�a� �b� �w� � �w� � �w�

�from w� � w��

� �a� �b� ��w�

�a� �b� �w�

� �from w�� w� � w���

When w� � �� we have

minfr�� r�g � minf�a� �b

�a� �b
�
�a� �b

�a� �b
g�

By easy calculation� we get minfr�� r�g � ��

 Now consider the case of w� � �
 By letting
x � a�w�� y � b�w�� we have

minfr�� r�g � minf
x� �y � �

�x� �y � �
�
�x� �y � �

�x� y � 

g�

Let

f�x� y� � minf
x� �y � �

�x� �y � �
�
�x� �y � �

�x� y � 

g� �	�

We compute maxx�y�� f�x� y� using the known theorem for generalized fractional pro�
gram ��� 	� �see Appendix A�
 �From Theorem 
 in Appendix A� in order to maximize �	��
we consider the following parametric problem�

z��� � max
x�y

minf
x� �y � �� ���x� �y � ��� �x � �y � �� ���x� y � 
�g� ���

Let

f��x� y� � 
x� �y � �� ���x� �y � ��� f��x� y� � �x� �y � �� ���x� y � 
��

Since f��x� y� � f��x� y� � x � �y � �� the minimum of f��x� y� and f��x� y� is attained when
f��x� y� � f��x� y�� i
e
�

x � �y � ��

Then� substituting x � ��y � �� into f��x� y� we have

f��x� y� � ����� � �� ��y � �� �� ���� ���

When �������� � �� i
e
� � � ���
p
�	��� � ����� ������� � � always holds for any y � �


Thus� f��x� y� � � does not occur when ���� � ��� � �
 When ����� ��� � �� maximum
of ��� is attained at y � �� and the value of f��x� y� at y � � is � � � � ���
 Thus� when
� � �� ��� � �� i
e
� � � ��
��	�� z��� � maxx�yminff��x� y�� f��x� y�g � � holds
 Therefore�
the approximation ratio is �

��	� in this case
 Summarizing the analysis made in �i�� �ii� and
�iii�� we have the following lemma


Lemma � In Subcase �A� the approximation ratio is at most ��
��	��

Lemma � In Subcase �B� the approximation ratio is at most ��
��	��

The proof for the lemma proceeds in a similar manne although slightly more sophisticated
analysis is required
 For readability the proof was put in Appendix B


Next� we shall turn our attention to the base case where there is no q�node in the input
tree� that is� the total sum of the demands is less than �
 Applying the reforming operations to
the tree results in a simple tree of the three forms depending on the number of leaves� shown
in Figure 



��



r r

Case (a)

p

Case (c) Case (b)

r

Figure �� The base case�

In case �a�� the remaining demand is less than one� and thus is served optimally by a single
vehicle� In case �b�� we allocate two vehicles� one for each leaf� It is also easy to see that this
strategy is also optimal� Now let us consider case �c� in which a p�node u has three leaves v��
v� and v�� Symbols Di� wi� and a are used as before� We also assume that w� � w� � w��

We allocate two vehicles� one to serve the demands D� and a fraction of D� so as to �ll the
full capacity of the vehicle� and another to serve D� and the remaining demand of D�� Then�
the ratio is given by

r� 	

a� �w� � �w� � 
w�


a� �w� � �w� � �w�
� 
a� 
w�


a� �w�
� 
�� � ������
�

Lemma � In the base case� the approximation ratio is at most ������
�

� Lower Bound

So far we have been concerned with the approximation algorithm for TREE�CVRP which
has some improved performance ratio� ������
 �exactly �

p

� � ���
�� The following theorem

suggests that the ration seems to be nearly best possible to achieve under the lower bound
model in this paper�

Theorem � There is an instance of TREE�CVRP for which the cost of an optimal solution

is asymptotically 
�� times larger than the lower bound of the cost�

Proof� Let T be a tree consisting of the root r� one internal node q connected with r by
an edge of cost a� and �n � � leaves all connected with the node q by edges of costs �� The
demand at each leaf is ��� � �� The value of � is small enough so that ��n� ���� ��� � �� i�e��
� � ���
n � ����

By the de�nition� the total demand Dq at q is calculated as follows�

Dq 	 ��n� ��� ���� � �� 	 n� ��n� ���� ��� � n� ��

Thus� the lower bound LB is given by

LB 	 ���n� �� � �a�n� �� 	 
n� � � ��n� ��a�

What is an optimal solution� How many vehicles should we use� Since the total demand is
greater than n� we need at least n� � vehicles� �n� � vehicles are also su�cient since we can
serve all of the �n�� leaves by them� Thus� the number of vehicles to be used is between n��
and �n��� For each k � �n��� �n���� we denote by OPT �k� the cost of an optimal solution
when k vehicles are used�

It is easy to calculate OPT ��n � ��� the cost for �n � � vehicles� Just use one vehicle for
each leaf� Hence� we have

OPT ��n� �� 	 ��n� ��� ��a� �� 	 
n� � � �
n� ��a�

��



Next� consider OPT ��n � � � k�� where k � ��� n�� In this case� it is obvious that at least k
leaves must be split� i�e�� must be visited at least twice� Thus� if we can design a feasible vehicle
schedule so that exactly k leaves are visited twice� then it is optimal� In fact� it is possible�
Let v�� v�� � � � � v�n�� be the leaves� The �rst k leaves are split� while the remaining ones remain
unsplit� Let V�� V�� � � � � V�n���k be the vehicles to be used� The demand ���� � at the �rst leaf
v� is split into ���� � and ��� which are assigned to Vk�� and Vk��� respectively� The demand
at v� is split into ���� �� and 
�� which are assigned to Vk�� and Vk��� respectively� that at v�
into ���� �� and ��� and so on� The demand at vk is split into ���� ��k � ��� and �k�� which
are assigned to V�k and V�k��� Here note that �k�� � �n�� since k � n� Thus� these vehicles
assignments are always possible� Then� each of the vehicles Vk��� � � � � V�k serves exactly one
demand� and V�k�� serves ��� � � � �k� 	 ��� � ��k � ��� � �� The remaining vehicles if any
visits only one leaf and thus serves ��� � �� Thus� the cost of the solution is given by

OPT ��n� �� k� 	 ���n� �� k� � 
k � �a��n� �� k�

	 
n� � � �k � �
n� �� �k�a�

The worst case occurs when we have
OPT ��n� �� 	 OPT ��n� 	 � � � 	 OPT �n� ���

which leads to

n� � � �
n� ��a 	 
n� � � �k � �
n� �� �k�a�

and thus
�k � �ka 	 �� that is� a 	 ��

This implies that the cost a of the edge �r� q� must be � to achieve this extreme case� Substi�
tuting a 	 �� we have

OPT ��n� ��

LB
	 � � � 	 OPT �n� ��

LB
	


n� � � �
n� ��� �


n� � � ��n� ��� �
	


n� 


�n� 

�

The ratio above approaches 
�� as n goes in�nity�

� Conclusions

We have presented a new approximation algorithm for �nding an optimal tours to serve de�
mands located at nodes of a tree�shaped network� Our new algorithm establishes the approxi�
mation ration ������
 �exactly� �

p

�����
�� This ratio seems to be almost best possible� since

there is an instance of TREE�CVRP for which the cost of an optimal solution is asymptotically

�� times larger than the lower bound of the cost� To have better ratio we have to improve
the lower bound� which is left for future research�
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Appendix A� Generalized Fractional Program

Let us consider the following problem �called generalized fractional program��

P � maximize�x�y��Sf�x� y� 	 min
��j�m

gj�x� y�

hj�x� y�
�

where x� y are real variables� S denotes a feasible domain of �x� y�� gj�x� y� � � for any �x� y� �
S� and m is a positive integer� Let us de�ne the following parametric problem associated with
P �

P ��� � z��� � max
�x�y��S

f��x� y� 	 min
��j�m

gj�x� y�� �hj�x� y�

Theorem � Let �x�� y�� be the maximizer of P ���� If �� satis�es

z���� 	 ��

then �x�
�

� y�
�

� is an optimal solution of P�

Appendix B� Proof of Lemma �

Subcase �B� D� �D� �D� � � holds�
�i� w� � w�� This case can be treated exactly in the same manner as the cases �i� and �ii� of
the proof of Subcase �A�

�ii� w� � w�� We prepare three strategies� The �rst strategy is the same as Strategy � of
Subcase �A� The second strategy allocates three vehicles which �ll the demand of v�� v� and
v�� respectively� The whole demand of v� will be served in the succeeding rounds� Thus� the
ratio is given by

r� 	
�a� 
b� �w� � �w� � �w�


a� �b� �w� � �w� � �w�
�

The third strategy allocates two vehicles� The �rst vehicle is to serve the full demand at v�
and partial demand at v� to �ll the capacity� and the second vehicle is to serve the remaining
demand at v� and the partial demand at v� to �ll the capacity� Since the demand at v� is still
remaining from D� �D� �D� � � even after this strategy is applied� we have

r� 	

a� 
b� �w � �w� � 
w�


a� �b� �w � �w�
�from w�� w� � w��

Thus�

r� � 
a� 
b� 
w�


a� �b� 
w�
�

For the ratio r� of the �rst strategy� we have

r� � �a� 
b� ��w�


a� 
b� 
w�

from ���� For the ratio r� of the second strategy� we have

r� � �a� 
b� �w�


a� �b� �w�
�

We will compute

��



min
a�b�w�

fr�� r�� r�g�

If w� 	 �� minfr�� r�� r�g � ������
 is clear �minimum of r� and r� is at most ������ Thus� let
us assume w� � �� Letting x 	 a�w� and y 	 b�w�� we have

r� 	
�x� �y � �

�x� �y � 

� r� 	

�x� �y � �

�x� y � �
� r� 	

�x� �y � 


�x� y � �
�

For a positive parameter �� let us de�ne

f� 	 �x��y������x��y�
�� f� 	 �x��y������x�y���� f� 	 �x��y�
����x�y����

�From Theorem �� we consider the problem of �nding � such that

z��� 	 max
x�y��

minff�� f�� f�g

becomes �� This happens only when f� 	 f� 	 f� 	 � holds� f� 	 f� implies

��y � �� 	 ��

and f� 	 f� implies
x 	 ��y � ��� ��

It follows from these two equations that

x 	 �� �� y 	 ���� ��

Substituting this into f� 	 �� we have

��� � �� � ��� 
 	 ��

The positive solution of this equation is � 	 ���
����
 � � �� In fact� for � 	 ���
����
� maxx�y��
minff�� f�� f�g � � holds�

��


