JAIST Repository

https://dspace.jaist.ac.jp/

Title Spanning Trees Corssing Fpw Barrier :
Asano, Tet suo; Ber g, Mar k| de; Cheon

Author(s) Gui bas, Leonidas J. ; Snoelyi nk, Jack;
Hi sao

o Di screte and Computationa Geometry,

Citation
606

Issue Date 2003-10

Type Journal Article

Text version aut hor

URL http://hdl.handle.net/ 10109/ 4913
This is the author-createfd version ¢
Tetsuo Asano, Mar k de Berpg, Otfried
Leonidas J. Gui bas, Jack [Snoeyink al

Rights Tamaki , Di screte and Compputational (
30(4), 2003, 591-606. The|l original
available at www.springer]ink.com,
http://dx.doi .org/10.1007fs00454-00:

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Spanning Trees Crossing Few Barriers

Tetsuo Asano' Mark de Berg? Otfried Cheong?
Leonidas J. Guibas® Jack Snoeyink? Hisao Tamaki®

Abstract
We consider the problem of finding low-cost spanning trees for sets of n points in the
plane, where the cost of a spanning tree is defined as the total number of intersections of tree
edges with a given set of m barriers. We obtain the following results:

(i) if the barriers are possibly intersecting line segments, then there is always a spanning
tree of cost O(min(m?, m+/n));
(ii) if the barriers are disjoint line segments, then there is always a spanning tree of cost
O(m);
(iii) if the barriers are disjoint convex objects, then there is always a spanning tree of cost
O(n+m).

All our bounds are worst-case optimal, up to multiplicative constants.

1 Introduction

Consider a problem of batched point location: efficiently locating n given points in a planar sub-
division defined by m line segments. This problem arises in many applications, but particularly
in work that gives a linear-time reconstruction of previously-computed geometric structures such
as the Voronoi or Delaunay diagrams [10]. In this work, the desired diagram is reconstructed
incrementally, adding the points in stages. In each stage, the algorithm faces a batched point
location problem to add the current points to the diagram defined by all the previously inserted
points. The algorithm could use standard point location or line-sweep methods, but this has a
logarithmic cost per point. Suppose instead that the algorithm knew how to connect the points
by a path or spanning tree that crosses the edges of the diagram only linearly many times. Then,
once one of the points is located, the spanning structure could be traversed through the diagram
and the remaining points located in linear time.

The construction of such spanning trees motivated the current investigation, in which we
generalize the subdivision edges to allow other classes of geometric objects. Let P be a set of n
points in the plane, which we call sites, and let B be a set of m geometric objects, which we call
barriers. We assume that no site lies inside any of the barriers. An edge e, which is a straight
line segment joining two sites, has a cost c(e) that equals the number of barriers that e intersects.
(When barriers are non-convex, an edge may intersect a barrier more than once. Such a barrier

1Japan Advanced Institute of Science and Technology, Asahidai, Tatsunokuchi, Ishikawa, 923-1292 Japan. Partly
supported by Grant in Aid for Scientific Research of the Ministry of Education, Science and Cultures of Japan.

2Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the
Netherlands.

3Department of Computer Science, Stanford University, Stanford, CA 94305 USA.

4Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175. Research
partly supported by NSF grants 9988742 and 0076984. Much of this work was performed at the University of
British Columbia, with support from National Science and Engineering Research Council of Canada.

5Department of Computer Science, Meiji University, Higashi-Mita, Tama-ku, Kawasaki, 214 Japan. Partly
supported by Grant in Aid for Scientific Research of the Ministry of Education, Science and Cultures of Japan.

will still be counted only once.) The cost of a spanning tree 7 for P is the sum of the costs of its
edges:

ecT

(It would be more precise to speak of the cost with respect to B, but since the barrier set will
always be fixed and clear from the context, we omit this addition.) We are interested in low-cost
spanning trees for several types of barriers. We may also want simple spanning trees, which have
no self-intersections when embedded in the plane with straight edges, although our motivating
applications don’t usually require simplicity. We obtain the following results.

Section 2 deals with the case in which the barriers are possibly intersecting line segments. Here
we show that there are configurations in which any spanning tree has cost Q(min(m?, m/n)). We
also show how to construct a spanning tree with this cost.

Section 3 deals with various types of disjoint barriers. Here it turns out that simple spanning
trees with lower costs can be constructed. For instance, we are able to obtain a bound of O(n+m)
when the barriers are fat objects—discs for example. This bound is tight in the worst case.

The major result in this paper is given in Section 4, where we prove that for any set of n sites
and any set of m barriers that are disjoint convex sets, there is a simple spanning tree of cost
O(m+n). This is optimal in the worst case. If the barriers are line segments, we show that there
exists a spanning tree in which no barrier segment is crossed more than four times. Thus, the
batched point location problem above can be solved by treating subdivision edges as barriers and
forming such a linear cost spanning tree.

All our proofs are constructive. Our construction in Section 3 indeed leads to an efficient
O((n + m)logm) algorithm to produce a spanning tree of low cost. The existence proofs are
more interesting, however, since a simple greedy algorithm will always construct a spanning tree
of minimal cost (and for the application to linear-time reconstruction, the computation of the tree
is part of the preprocessing anyway).

The bounds mentioned above are significantly better then the naive O(nm) bound. We close
this introduction by noting that if we wish to construct a triangulation on the sites, not just a
spanning tree, then the naive bound is tight in the worst case. This can be seen by the example
in Fig. 1.

[] []
[] []
[] []
[[]
n/2 points ® ® 1n/2 points
[] [
[] []
L] L]
[] L

\/‘

m segments

Figure 1: Any triangulation of the point set will have cost Q(nm).

2 Intersecting segment barriers

We start with the case of barriers in B that are possibly intersecting line segments.

Theorem 2.1 (i) For any set P of n sites and any set B of m possibly intersecting segments
in the plane, a spanning tree for P exists with a cost of O(min(m?, m+/n)).

(ii) For any n and m there is a set P of n sites and a set B of m segments in the plane, such

that any spanning tree for P has a cost of Q(min(m?,m+/n)).

Proof. (i) Extend the line segments in B to full lines. For each cell in the resulting arrangement,

~—

if the cell contains sites, choose a representative site and connect all sites in that cell to the
representative. The edges used for this have zero cost, since the cells are convex and contain
no barriers. Finally, compute a spanning tree on the set of representative sites with the
property that any line intersects O(v/n/) edges of the spanning tree [4], where n/ is the
number of representatives. The cost of the spanning tree is O(m+y/n’). This proves part (i)
of the theorem, since n’ < min(n, m?).

First consider the case with m > 2\/n — 2. We assume for simplicity that n is a square.
We place the sites in a regular /n x y/n grid. In between any two consecutive rows we
put a bundle of |m/(2y/n — 2)] horizontal barrier segments; in between any two consecutive
columns we put a bundle of |m/(2y/n — 2)| vertical segments. The remaining segments are
placed arbitrarily. Figure 2(a) shows the construction for the case n = 25 and m = 16. Any

(a) construction for m > 2\/n — 2 (b) construction for m < 2y/n — 2

Figure 2: The lower bound constructions.

edge connecting two sites crosses at least one bundle. Hence, the cost of any spanning tree
is at least (n — 1)|m/(2y/n — 2)] = Q(m+/n).

Now consider the case with m < 2y/n — 2. We arrange the barrier segments as shown in
Fig. 2(b) for the case m = 8: we have a group of |m/2] vertical segments and a group of
[m/2] horizontal segments, such that any vertical segment intersects any horizontal segment.
We place a site in each of the resulting “cells”; the remaining sites are placed in any cell.

Any spanning tree for P will have cost Q(m?).
O

3 Disjoint uncluttered barriers

Let P be a set of n sites in the plane, B a set of m disjoint barriers (of arbitrary shape). We
give an algorithm that uses a binary space partition (BSP) for the set of barriers to construct a
spanning tree for P.

A BSP for a set of objects is binary tree in which each internal node is associated with a line
defining two open halfplanes for the nodes two children. Each leaf node is implicitly associated
with the region that is the intersection of the halfplanes along the root-to-leaf path, and stores
the objects that intersect this region. A leaf should store at most a constant number ¢ of objects
(often ¢ = 1). The size of a BSP is the number of its nodes. In general, BSPs for n objects in the

plane have O(nlogn) size [5, 8], but for special classes of objects the bound can be improved to
linear [2].

We analyze the cost of a spanning tree derived from an orthogonal BSPs, in which each dividing
line is either horizontal or vertical. Combining our analysis with known results on BSPs will then
give us low-cost spanning trees for so-called uncluttered scenes (defined below).

Given a BSP, our algorithm recursively associates with each node v of the BSP a subset P, C P,
and constructs a spanning tree for P,. Initially v is the root of the BSP and P, = P; the final
result is a spanning tree for P. There are three cases to consider.

(i) If P, contains at most one site, then we already have a spanning tree for P,.

(ii) If P, contains more than one site but v is a leaf of the BSP, then we connect the sites into
a spanning tree in an arbitrary manner.

(iii) In the remaining case, P, contains more than one site and v is an internal node of the BSP.
Let £, be the splitting line stored at v. The line ¢, partitions P, into two subsets. (Points
on the splitting line all go to the same subset, say the right one.) We recursively construct
a spanning tree for each of these subsets by visiting each child of v with the relevant subset.
Finally, if both subsets are non-empty we connect the two spanning subtrees by adding an
edge between the sites closest to £, on either side of £,,.

We now analyze the worst-case cost of the constructed spanning tree for the special case of or-
thogonal BSPs. We assume that the leaves of the BSP store at most ¢ objects, for some constant
¢; thus the cells of the final subdivision are intersected by at most c objects. (Note that we cannot
require ¢ = 0 unless we restricted our attention to orthogonal barrier segments.) The number of
fragments generated by the BSP is the sum of the number of barriers stored at each leaf, over all
leaves.

The following result will imply the existence of spanning trees of linear cost for several classes
of barriers, including orthogonal segments and convex fat objects.

Theorem 3.1 Let B be a set of disjoint simply-connected barriers in the plane, and let P be a
set of n sites in the plane. Suppose an orthogonal BSP for B exists that generates f fragments
and whose leaf cells intersect at most ¢ barriers. Then there is a spanning tree for P with cost at
most O(f + k + cn), where k is the total number of vertical and horizontal tangencies on barrier
boundaries.

Proof. We consider the cost of the spanning-tree edges added in different cases of our algorithm.
Each edge added in case (ii) intersects at most ¢ barriers, so their total cost is at most ¢(n — 1).

Now consider an edge pg added in case (iii), and assume that the splitting line ¢, is vertical. Let
region(v) denote the region corresponding to v. Since the BSP uses only horizontal and vertical
splitting lines, region(v) is a rectangle, possibly unbounded on one or more sides. Define R, to be
the intersection of region(r) with the slab bounded by vertical lines through the sites p and ¢—see
Fig. 3. By the choice of p and ¢, there are no other points in gap R,, so R, will not overlap with
other slabs formed by vertical lines in the subtree of v.

Let b be a barrier intersected by pg. We will show how to charge this intersection to certain
features of the barriers. These features are:

e The intersections between barrier boundaries and splitting lines. The number of these
features is linear in the number of fragments f.
e Vertical and horizontal tangencies of barrier boundaries. The number of these features is k.

The charging of the intersection of pg with b is done as follows.

e If the boundary of b has a vertical tangent in the interior of R,, then we charge the
intersection to this feature.

region(v)

Figure 3: Hlustration for the proof of Theorem 3.1.

e Otherwise the boundary of b either intersects ¢, in a point r lying in the interior of region(v),
or it intersects the boundary of region(v) in a point ' that is also on the boundary of R,,.
Now we charge the intersection to r or r’, respectively. Observe that both r and r’ are
features of b.

Fig. 3 shows, for each of three intersected barriers, a feature to which the intersection with pq can
be charged. (Notice that there may be some choice, which can be made arbitrarily.) To bound
the number of times a feature gets charged, we observe that the regions R, of nodes v whose
splitting lines are vertical have disjoint interiors. It follows that a vertical tangency is charged at
most once, and an intersection of a barrier boundary with a splitting line is charged at most twice
(namely at most once for each fragment that has the point as a vertex). Similarly, a feature is
charged at most twice from a node whose splitting line is horizontal. O

A k-cluttered scene in the plane is a set B of objects such that any square whose interior does not
contain a bounding-box vertex of any of the the objects in B is intersected by at most s objects
in B. A scene is called uncluttered if it is s-cluttered for a (small) constant . It is known that
any set of disjoint fat objects, discs for instance, is uncluttered—see the paper by de Berg et al. [3]
for an overview of these models and the relations between them.

Theorem 3.2 Let B be a set of m disjoint objects in the plane, each with a constant number of
vertical and horizontal tangents, that form a k-cluttered scene, for a (small) constant k. Let P
be a set of n sites. Then there is a spanning tree for P with cost O(m + n). This bound is tight
in the worst case, even for unit discs. A spanning tree with this cost can be computed in time
O((m + n)logm).

Proof. De Berg [2] has shown that a k-cluttered scene admits an orthogonal BSP that generates
O(m) fragments such that any leaf cell of the BSP is intersected by at most O(k) fragments. Then
by Theorem 3.1 there is a spanning tree of cost O(m + kn).

To see that this bound is tight, take a disc as the only barrier and place the sites around the
disc and so close to it that any edge connecting two sites crosses the disc. In this situation any
spanning tree must have cost Q(n). A row of m discs with two sites on either side is an example
in which any spanning tree must have cost Q(m).

De Berg gives an algorithm that constructs the orthogonal BSP in time O(mlogm), given
only the corners of the bounding boxes of the barriers. The BSP induces a planar subdivision
consisting of O(m) boxes. We assign each site to the box containing it in time O(nlogm) [2],
and then construct the spanning tree from the leaves of the BSP upwards. Since we only need to
maintain the leftmost, rightmost, topmost, and bottommost site in each node of the BSP, this can
be done in time O(n + m). O

Theorem 3.1 also implies that we can always find a spanning tree of cost O(m) when the barriers are
disjoint orthogonal segments, because Paterson and Yao [8] have shown that any set of orthogonal

line segments in the plane admits an orthogonal BSP of size O(m) whose leaf cells are empty. We
can construct such a spanning tree in time O((n+m)logm): we need O(mlogm) time to construct
the BSP [5], plus O((n+m)logm) time to locate the sites in the BSP subdivision using an optimal
point location structure [6], and O(n 4+ m) for the bottom-up construction of the spanning tree.

In the next section we will show that a linear-cost spanning tree exists for any set of disjoint
barrier segments (even if they are not orthogonal), however, we do not know of an equally efficient
way to construct the tree in the general case.

4 Disjoint convex barriers

We now present the main result of our paper: Given any set P of n sites in the plane and any set
B of m disjoint convex barriers that do not contain any sites, there is a spanning tree of P whose
cost is at most 4m + 3n. When the barriers are line segments, we can improve the upper bound
to 4m by ensuring that no segment barrier is intersected more than 4 times. We will concentrate
primarily on the case of segment barriers in our illustrations and examples.

One can obtain a spanning tree of cost O(mlog(n + m)) for segments in several ways. One
way is to analyze a slightly adapted version of the BSP-based algorithm in terms of the depth
of the underlying BSP, and use the fact that any set of m disjoint segments in the plane allows
a BSP of size O(mlogm) and depth O(logm) [8]. Another way is to use a divide-and-conquer
approach based on cuttings. With neither of these two approaches have we been able to obtain a
linear bound. The solution presented next, therefore, uses a different, incremental approach.

We assume that the barriers and the sites are all strictly contained in a fixed bounding box, say
an axis parallel unit square. We denote the upper-left and the upper-right corners of the bounding
box by ¢; and ¢,., respectively. In order to make the description easier, we will assume that the
sites, the common tangents of barriers in B, and the two points ¢; and ¢, are in general position
collectively. This assumption can be realized by perturbation (real or symbolic) or avoided by
careful review of the argument.

Let 7 be a spanning tree on P U {¢, ¢, } with straight edges and no self-intersections. (One
can build barriers that force the minimum cost spanning tree to self-intersect. Our construction
proves that self-intersection is not necessary to achieve the linear bound.) For two sites ¢, of 7,
we denote by path(q,r) the path between ¢ and r in 7.

C| Cr
. S
52 3 '
L] 53
S4 : 5
® site
——— segment
spine edge
............. non-spine edge

Figure 4: A spined trees among five segment barriers.

We call path(cy, ¢,) the spine of 7. The spine of 7 partitions the bounding box into two parts:
the part above the spine which is bordered by path(c;, ¢,) and the upper edge of the bounding box,
and the remaining part below the spine. Note that a point above the spine, in this definition, may

see some edge of the spine above it since we do not assume z-monotonicity of path(c;, c,). We say
that the tree 7 is spined if

(1) all the sites are either on or above the spine, and
(2) both ¢; and ¢, are leaves of 7.

Fig. 4 shows an example of a spined tree among 5 segment barriers and 9 sites, including the
artificial sites ¢; and ¢,.. The spine of the spined tree 7 is depicted by solid bold lines.

We will show how to build a spined tree by inserting sites in order of decreasing y-coordinate,
starting with the single edge ¢;c,.. The construction of the tree will be the same for all disjoint,
convex barriers; the inductive analysis will be different for segment barriers and for general con-
vex sets. Before we begin, we need some additional notation and lemmas for barriers and their
interaction with a spined tree 7.

The spine of 7 may intersect a barrier b several times, cutting b into a number of connected
components. We call the connected components lying below the spine the barrier components of
b. Recall that sites are not allowed to lie inside barriers, so each intersection of the spine with b is
an interval on a single spine edge, and the barrier components are convex. The intersections with
the spine incident on a barrier component are called its anchors.

The next definitions are made with respect to a chosen point p in the bounding box below the
spine of 7. As p will be fixed throughout the following arguments, our notation does not show
the dependence on p.

The point p induces a depth-order on the barriers (more precisely, on the parts of the barriers
lying above the horizontal line through p). We say that a barrier by obscures by, and write by < by,
if a ray with positive y-direction starting at p intersects by before it intersects by, as in Fig. 5. The
relationship < is acyclic, and its transitive closure is a partial order [1, Section 10.5].

Cl Cr

Cl Cr
spine

by Ge |

b "'-._ ;;

bl /

Figure 5: We have by < b;. Two of the three Figure 6: A good edge e, with the barriers
barrier components below the spine block ¢. that block points ¢. and 7.
Their anchors are marked by squares.

We say that a point ¢ in the bounding box is visible from p if the segment pg does not intersect
the spine of 7 except possibly at ¢. (Barriers do not play a role in this definition.) We will call
an edge e of the spine wvisible from p if it contains points visible from p in its interior.

Let Q@ = {q1,q2,.-.,q:} denote the set of sites of the spine of 7 that are visible from p, listed
in order from ¢; to ¢,.. Note that ¢ = ¢; if ¢; is visible from p and ¢; = ¢, if ¢, is visible.

For a spine edge e, we define ¢. to be the first site visible from p when traverse the spine of
T from e towards ¢;. We define r. similarly as the first site when we traverse from e to ¢,. In

Fig. 6, re is an endpoint of e, but ¢, is not. Nevertheless, the sites ¢. and r. are consecutive in
the sequence of visible sites Q.

Let ¢’, r' be the points on path(ge, re) such that path(q’, r’) is the maximal subpath of path(ge,re)
that is visible from p. Note that p, g., ¢’ are collinear with possibly g, = ¢’ and p, 7., r’ are collinear
with possibly r. = 7/, as in Fig. 6. If the edge e is visible from p, then e is the only visible edge
on path(ge,r.), and the points ¢’, 7’ lie on e.

For a point ¢ on the spine visible from p, we say that a barrier component b blocks g if it
intersects the line segment pg. The following proposition will be used in Lemmas 4.2 and 4.3.

Lemma 4.1 Suppose the point p is below all sites of the spine. For a spine edge e, a barrier
component that blocks q. has no anchor in path(qe,q'), and a barrier component that blocks r.
has no anchor in path(r',r.).

Proof. We prove the claim for g, as the proof for r, is similar. The claim is trivially true when
ge = q', so we consider the case where p, q., and ¢’ are disjoint. They are collinear, with g, between
p and ¢'. Since barriers are convex and do not contain q., any barrier that intersects segment pq.
cannot intersect segment q.q'. U

From the perspective of point p, an edge e of the spine is called a good edge if and only if

(1) edge e is visible from p,

(2) any anchors “left of r.” (or, more precisely, any anchors in path(r., ¢;)) for barrier components
that block r. are on e, and

(3) any anchors “right of ¢.” (or in path(g., c,)) for barrier components that block ¢, are on e.

Fig. 6 shows a good edge e. We will see that a good edge can be used to extend a spined tree 7
down to p by adding segments pg. and pr. and deleting edge e.

Lemma 4.2 For a point p in the bounding box that has smaller y-coordinate than any site of the
spined tree T, there is at least one good edge e.

Proof. Let B denote the set of barrier components that have anchors on the spine and that block
sites on the spine. We assume that B is non-empty, as otherwise the existence of a good edge is
trivial.

Choose barrier component by € B that is minimal with respect to the “obscures” relation <,
and let e be a spine edge containing an anchor of by. Let ¢ = g, and » = r.. Since by blocks a site
on the spine and has an anchor on e, it blocks at least one of ¢ and r.

We show that either e is a good edge, or there is a good edge adjacent to ¢ or ». We consider
cases that depend on whether the anchor edge e is visible from p.

Case 1: Suppose that the anchor edge e is visible from p, as in Fig. 7—equivalently, e contains
the points ¢’ and r’. By minimality of by, no other b € B can intersect both pg and pr. By
Lemma 4.1, therefore, any barrier component that blocks ¢ must have its anchor left of g or
right of ¢’ on e. Similarly, any barrier component that blocks r must have its anchor right
of 7 or left of ' on e. Thus, e is a good edge.

Case 2: Suppose that e is not visible, and assume, without loss of generality, that by blocks
q, as in Fig. 8. Note that by cannot also block r because its anchor at e is on path(r’,r). In
fact, no barrier component b € B can block r because of the minimality of by along pr’. But
now the edge f that is immediately to the right of r along the spine must be visible from p.
Let w = rf be the first visible site right of r along the spine. Any barrier component that
blocks w and has an anchor left of w must therefore have this anchor on f. Thus, f is a
good edge.

In either case we find a good edge, and the lemma is proven. O

C| Cr Cy Cr

de =4 o
7 f
i :,'7’
bif/ by by s
® (2
p p
bo
b1 blocks q
bs blocks r
Figure 7: Case 1 Figure 8: Case 2.

Using a good edge, we can construct a spined tree of P U {¢;, ¢,.}. We do so first for segment
barriers.

Lemma 4.3 Given a bounding box, with upper corners ¢; and c,, that contains P, a set of n
sites, and B, a set of m barriers that are disjoint line segments, then there is a spined tree T of
P U {c1, ¢} such that each segment b € B is stabbed by T at most 2 4+ u(b) times, where u(b)
denotes the number of endpoints of b that are above the spine of 7 (and hence is at most two).

Proof. The proof is by induction on the number of sites in P. We fix the barrier set B throughout.

If P is empty, there are only two sites ¢; and c¢,.. The edge between ¢; and ¢, does not stab
any barrier of B, so the claim holds.

Assume now that P contains at least one site. Let p be the lowest site, that is, the site with
the smallest y-coordinate, and let P’ = P\ {p}. Let 7’ be the spined tree of P’ U{¢,, ¢, } provided
by the inductive assumption.

By Lemma 4.2, the spine of 7’ contains a good edge e. Let ¢ = q., r = r.. Our spined tree 7
is obtained from 7’ by adding the two edges pg and pr and removing e. Since g and r are visible
from p, we do not create any self-intersections, and since e is in path(q,r), 7 remains a tree. The
new spine goes through the edges pg and pr and it is clear that all sites are either on or above this
spine. If ¢ = ¢; (or r = ¢,) then the visible edge e must be incident on ¢; (or ¢,), which guarantees
that ¢; and ¢, remain leaves of the tree. Therefore, 7 is indeed a spined tree of P U {c,, ¢, }.

New stabbings are created when a barrier segment b € B is stabbed by pg or pr. We have three
subcases: (a) b is stabbed by both pg and pr, (b) b is stabbed by pg but not by pr, and (c) b is
stabbed by pr but not by pg. Since (c) is symmetric to (b), we consider subcases (a) and (b).

In case (a), we first observe that the barrier components of b blocking ¢ and r are identical,
as the triangle pgr does not intersect the spine of 7”. It follows that this barrier component has
no anchor on any edge of 7', because the definition of good edge forces the anchor to lie on e,
which is not possible for the line segment b. Thus, the stabbing number of b becomes two without
violating the inductive assumption.

In case (b), b is stabbed by pg but not by pr. Let C' denote the closed curve formed by edges
pq, pr and path(q,r). Let b’ be the barrier component of b blocking g.

First suppose that b’ has no anchor on path(q,r). Then one endpoint of b is in the interior
of the cycle C. Since the interior of C' is below the spine of 7’ and above the spine of 7, the
number of endpoints of b above the spine is increased by one, accounting for the new stabbing and
maintaining the inductive assumption.

Next suppose that b’ has an anchor on path(q,r). By Lemma 4.1, this anchor must lie on e.
Since e is removed in forming 7, the inductive assumption is maintained in this case as well. [

We now present our first main theorem.

Theorem 4.4 Given a set B of non-intersecting line segments and a set P of sites in the plane,
there is always a straight-edge spanning tree of P without self-intersections that stabs each line
segment of B at most 4 times.

Proof. We choose a bounding box that properly contains all the objects of B and P. Let ¢; and
¢ be the upper-left and upper-right corners of the bounding box, respectively. Then, applying
Lemma 4.3 to B and P U {¢;, ¢}, we obtain a spined tree 7. The artificial sites ¢; and ¢, are
leaves of 7, and removing them results in a spanning tree of P that stabs each line segment of B
at most 4 times. O

We now turn to the case of convex barriers. We can establish a first bound by separating the
barriers with disjoint segments and applying Theorem 4.4.

Corollary 4.5 Given a set B of m non-intersecting convex barriers and a set P of n sites in the
plane that are not contained in any barriers, there is a straight-edge spanning tree of P without
self-intersections and with cost less than n + 12m.

Proof. We first observe that separate the convex barriers using 3m — 6 line segments by modi-
fying a construction of Fejes Téth [7, 11]: Enlarge the barriers, preserving convexity and disjoint
interiors, so as to maximize the number of pairs in contact. Each barrier can be enclosed in a
(bounded or unbounded) polygon defined by tangents at these contacts. By a planarity argument,
there are at most 3m — 6 contacts, and therefore tangent lines. We are endebted to the referee for
pointing out that we can merge polygon edges that come from the same tangent, and obtain 3n—6
interior-disjoint line segments that form a planar subdivision in which each barrier is contained
in the closure of a face, and no face contains more than one barrier. Let B’ be the set of straight
line segments that make up this subdivision.

Applying Theorem 4.4 on P and B’ results in a simple spanning tree 7 of P that has n — 1
edges without self-intersections and at most 12m — 24 intersections with B’. Each edge e of 7
that intersects k segments of B’ can intersect at most k + 1 faces of the subdivision, and therefore
at most k+1 barriers in B. If follows that the cost of 7 with respect to B is at most n+12m—25. [

We can establish a bound with a smaller constant on m (and larger on n) if we refine the
analysis of our spined tree.

Lemma 4.6 Given a bounding box, with upper corners c¢; and c,, that contains P, a set of n
sites, and B, a set of m barriers that are disjoint convex sets, then there is a spined tree T of
P U{c,cr} such that

21+ 2mq +n1 +2mo < 3n+ 4m,

where z, is the number of intersections of barriers with non-spine edges of 7, my is the total
number of barrier components, ny is the number of sites on the spine, and msy is the number of
barriers lying stricly below the spine.

Proof. The inductive construction of the tree is identical to that in the proof of Lemma 4.3. We
therefore concentrate on maintaining the inductive assumption as we add p to tree 7’ to form 7.
That is, as we take a good edge e, let ¢ = ¢. and r = 7., add pq and pr, and delete edge e. Let
21, mh, mh, n} denote the quantities of the inductive assumption for 7”.

If ¢ is the number of vertices on path(q,), not counting ¢ and r themselves, then n; = nj+1—¢.
Let C denote the closed curve formed by pq, pr, and path(q,), and let k; be the number of barrier
components lying inside C'. Since e is a good edge, a barrier component that has an anchor on
path(q,r) outside of e cannot intersect either pg or pr, and so all such intersections are created
by the k; barrier components in C'. We count these intersections using the following Davenport-
Schinzel sequence [9]: Label each of the k; barrier components, then walk along path(q,r) and

10

create the sequence of labels encountered. For any consecutive identical labels, omit all but one
representative. The resulting sequence cannot have an abab subsequence, since that would indicate
that barrier components a and b intersect below the spine. The longest such sequence with &
letters has length 2k; — 1. Each repetition can be charged against a vertex of path(q,r), since each
edge on this path can intersect a convex barrier component at most once. Thus, the total number
of intersections is at most 2k; + ¢, and so z; < 27 + 2k1 + £.

It remains to bound the increase in the total number of barrier components. The number of
components of a barrier b can only increase if a component of b blocks both ¢ and r. Let ky be
the number of such barrier components. We have my = m} — k1 + k2. Conditions (2) and (3) of
a good edge imply that a barrier component blocking both ¢ and r cannot have an intersection
with the spine of 7", except possibly in e. Furthermore, among these ko barrier components, only
one can intersect e. This implies that mgo < mf — (k2 — 1).

To summarize, we have

21+ 2my+n1+2me < (2] + 2k +0) +2(m) —ky + ko) + (0] +1—0)+2(mh —ka +1)
= zi+2m)+n) +2msH+3<3(n—1)+4m+3 = 3n+4m,

which completes the proof. O

Theorem 4.7 Given a set B of m non-intersecting convex barriers and a set P of n sites in the
plane that are not contained in any barriers, there is always a straight-edge spanning tree of P
without self-intersections with cost at most 4m + 3n.

Proof. As in the proof of Theorem 4.4, construct a bounding box with upper corners ¢; and c;..
Applying Lemma 4.6 to B and P U {¢;, ¢, }, we obtain a spined tree 7. Let z5 be the number of
intersections between barriers and the spine edges of 7. Using the Davenport-Schinzel argument
of the lemma, we find that

29 < 2my + nq,

and so the total number of intersections between barriers and the tree 7 is bounded by
21+ 22 < 21+ 2m1 +n1 + 2mo < 3n 4 4m.

Removing the artificial sites ¢; and ¢, from 7 gives the final spanning tree without increasing this
cost. O

5 Conclusions

In this paper we have studied spanning trees among n points whose edges cross few among a given
set of m barriers. When the barriers are disjoint, near-linear bounds for the cost of such a tree
can be obtained by several simple arguments. Using more sophisticated techniques, we were able
to show that a linear-cost spanning tree is possible in many cases.

We note that the number of barriers crossed by linking two points is not a distance function
and does not satisfy the triangle inequality. This means that the existence of other low-cost
structures among the points, such as Hamiltonian paths and matchings, remains an interesting
research problem.

While we have given an efficient algorithm to compute spanning trees based on an orthogonal
BSP, we are not aware of an equally efficient algorithm to construct a linear-cost spanning tree
for the case of arbitrary line segments or convex barriers. Can this be done in O(nlogn) time?

The constants in our bounds of Section 4 are not tight. It would be especially interesting
to show a tight bound on the maximum number of crossings of segment barriers. Is there a
configuration that requires four crossings for at least one barrier?

11

Acknowledgement

We thank the referee for helpful comments and suggestions, including tighter analysis of Corol-
lary 4.5.

References

[1] M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal. Lecture Notes Comput.
Sci., vol. 703. Springer-Verlag, 1993.

[2] M. de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica, 28:353—
366, 2000.

[3] M. de Berg, M. Katz, F. van der Stappen, and J. Vleugels. Realistic input models for geometric
algorithms. Algorithmica. To appear.

[4] B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.
Discrete Comput. Geom., 4:467-489, 1989.

[56] F. d’Amore and P. G. Franciosa. On the optimal binary plane partition for sets of isothetic
rectangles. Inform. Process. Lett., 44:255-259, 1992.

[6] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM J. Comput., 15:317-340, 1986.

[7] L. Fejes T6th. Illumination of convex discs. Acta Math. Acad. Sci. Hungar., 29:355-360, 1977.

[8] M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface removal and
solid modeling. Discrete Comput. Geom., 5:485-503, 1990.

[9] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, New York, 1995.

[10] J. Snoeyink and M. van Kreveld. Linear-time reconstruction of Delaunay triangulations with
applications. In Proc. Annu. European Sympos. Algorithms, number 1284 in Lecture Notes
Comput. Sci., pages 459-471. Springer-Verlag, 1997.

[11] J. Urrutia Art Gallery and Illumination Problems. In Handbook of Computational Geometry,
J.R. Sack and J. Urrutia, eds., pages 973-1027, North-Holland, 2000.

12

