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On Geometric Structure of Global Roundings for Graphs and

Range Spaces

Tetsuo Asano∗ Naoki Katoh† Hisao Tamaki‡ Takeshi Tokuyama§

Abstract

Given a hypergraph H = (V,F) and a [0, 1]-valued vector a ∈ [0, 1]V , its global rounding
is a binary (i.e.,{0, 1}-valued) vector α ∈ {0, 1}V such that |

∑
v∈F (a(v)−α(v))| < 1 holds for

each F ∈ F . We study geometric (or combinatorial) structure of the set of global roundings of
a using the notion of compatible set with respect to the discrepancy distance. We conjecture
that the set of global roundings forms a simplex if the hypergraph satisfies “shortest-path”
axioms, and prove it for some special cases including some geometric range spaces and the
shortest path hypergraph of a series-parallel graph.

1 Introduction

Rounding problem is a central problem in computer science and computer engineering. Given a
real number a, its rounding is either its floor �a	 or ceiling 
a�. Then, we want to consider how to
round a set of n real numbers each of which is assigned to an element of a set V = {v1, v2, . . . , vn}
with a given structure. We can assume that each number is in the range [0, 1], so that the input
set can be considered as a ∈ [0, 1]V and the output rounding is α ∈ {0, 1}V . 1

We assume that the structure on V is represented by a hypergraphH = (V,F) where F ⊂ 2V
is the set of hyperedges. For simplicity, we assume without loss of generality that F contains
all the singletons. We say α is a global rounding of a iff wF (α) =

∑
v∈F α(v) is a rounding (i.e.,

either floor or ceiling) of wF (a) =
∑

v∈F a(v) for each F ∈ F . Let ΓH(a) be the set of all global
roundings of a.
We can rephrase the global rounding condition as DH(a, α) < 1, where DH is the discrepancy

distance between a and b in [0, 1]V defined by

DH(a,b) = max
F∈F

|wF (a)− wF (b)|.

Thus, ΓH(a) is the set of integral points in the open unit ball about a by considering DH
as the distance. ΓH(a) 
= ∅ for every a iff H is unimodular [5]. However, except for the
above unimodular condition for the nonemptiness and some results on its cardinality, little is
known on the structure of ΓH(a). We remark that supa∈[0,1]V minα∈{0,1}V DH(a, α) is the linear
discrepancy of H, and considered as a key concept in hypergraph theory and combinatorial
geometry [5, 7, 11].
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In this paper, we study the geometric property of ΓH(a). We say that a hypergraph H
has the simplex property if ΓH(a) is (the vertex set of) a simplex (possibly a degenerate one
or empty) regarding it as a set of n-dimensional points for any a ∈ [0, 1]V . Our main aim
is to investigate classes of hypergraphs that have the simplex property. The global rounding
condition is directly written in an integer programming formula, and thus from the viewpoint
of mathematical programming, we have interesting classes of integer programming problems
for which the solution space is a simplex while the corresponding LP polytope is not always a
simplex.
The simplex property is motivated by recent results on the maximum number µ(H) =

maxa∈[0,1]V |ΓH(a)| of global roundings. µ(H) can never become less than n+ 1 for any hyper-
graph since n unit vectors and the zero vector always form ΓH(a) for a suitable a. In general,
µ(H) may become exponential in n. However, Sadakane et al.[13] discovered that µ(In) = n+1
where In is a hypergraph on V = {1, 2, .., n} with edge set {[i, j]; 1 ≤ i ≤ j ≤ n} consisting of
all subintervals of V . A corresponding global rounding is called sequence rounding, which is a
convenient tool in digitization of a sequence analogue data.
Given this discovery, it is natural to ask for which class of hypergraphs the property µ(H) =

n+1 holds. Moreover, there should be combinatorial (or geometric) reasoning why µ(H) = n+1
holds for those hypergraphs. Naturally, the simplex property implies that µ(H) = n+ 1 since a
d-dimensional simplex has d+ 1 vertices, and indeed In has the simplex property.

Shortest-path hypergraphs and range spaces

In has n(n + 1)/2 hyperedges, and the authors do not know any hypergraph with less than
n(n + 1)/2 hyperedges (including n singletons) that has the simplex property. Thus, it is
reasonable to consider some natural classes of hypergraphs with n(n+ 1)/2 hyperedges.
Consider a connected graphG = (V,E) in which each edge e has a positive length �(e). We fix

a total ordering on V , and write V = {v1, v2, . . . , vn}. This ordering is inherited to any subset of
V . For each pair (vi, vj) of vertices in V such that i < j, let p(vi, vj) be the shortest path between
them. If there are more than one shortest paths between them, we consider the lexicographic
ordering among the paths induced from the ordering on V , and select the one with the first one
in this ordering. Let P (vi, vj) be the set of vertices on p(vi, vj) including the terminal nodes vi
and vj . We also define P (v, v) = {v} for each v ∈ V . Let F(G) = {P (vi, vj) : 1 ≤ i ≤ j ≤ n},
and call H(G) = (V,F(G)) the shortest-path hypergraph associated with G.
It is conjectured that µ(H(G)) = n+1 if G is a connected graph with n vertices [1]. Note that

H(G) = In if G is a path. The conjecture has been proved for for trees, cycles, and outerplanar
graphs [1, 14]. However, those proofs are complicated and case dependent. We try to establish
a more structured theory considering the following deeper conjecture.

Conjecture 1.1 For any connected graph G, H(G) satisfies the simplex property.

This conjecture was proposed in [1] by the authors where the simplex property was called
“affine independence property” since vertices of a simplex are affine independent as a set of
vectors. So far, the conjecture has been proved only for trees, unweighted complete graphs,
and unweighted (square) meshes. We prove that the simplex property is invariant under some
graph-theoretic connection operations, and as a consequence, we show that the conjecture holds
for series-parallel graphs.
In addition to significantly extending the verified classes of hypergraphs for both of the weaker

and stronger conjectures, our theory also simplifies the proofs of known results. For example,
that the weaker conjecture holds for cycles is one of the main results of [1] and its proof therein
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is quite involved. In our framework, it is almost trivial that the stronger conjecture holds for
cycles (see Section 3).
From a computational-geometric viewpoint, In can be considered as the 1-dimensional range

space corresponding to intervals, and thus we try to extend the theory to geometric range spaces.
We generalize the argument for H(G) to axiomatic shortest-path hypergraphs (defined later),
and prove the simplex property for some geometric range spaces such as the space of isothetic
right-angle triangles.

Algorithmic implication

The theory is not only combinatorially interesting but is applied to algorithm design on the
rounding problems. The algorithmic question of how to obtain a low-discrepancy rounding
of given a is important in several applications. For example, consider the problem of digital
halftoning in image processing, where the gray-scale value of each pixel has to be rounded into
a binary value. This problem is formulated as that of obtaining a low-discrepancy rounding, in
which the hypergraph corresponds to a family of certain local sets of pixels, and several methods
have been proposed[2, 3, 12]. Unfortunately, for a general hypergraph, it is NP-complete to
decide whether a given input a has a global rounding or not, and hence it is NP-hard to compute
a rounding with the minimum discrepancy. Thus, a practical approach is to consider a special
hypergraph for which we can compute a low-discrepancy rounding efficiently.
It is folklore that the unimodularity condition means that the vertices of the ball (w.r.t. DH)

are integral, and an LP solution automatically gives an IP solution. Thus, a global rounding
always exists and can be computed in polynomial time if H is unimodular, and therefore in the
literature [2, 3, 8] unimodular hypergraphs are mainly considered.
Here, we consider another case where an integer programming problem can be solved in

polynomial time: If the number of integral points in the solution space is small (i.e. of polynomial
size), and there is an enumeration algorithm that is polynomial in the output size (together with
the input size), we can solve the problem in polynomial time. We show that enumeration of
all global roundings can be done in polynomial time for several (non-unimodular) hypergraphs
with the simplex property by applying this framework.

2 Combinatorial and linear algebraic tools

2.1 Compatible set representing global roundings

The set of binary functions on V can be regarded as the n-dimensional hypercube Cn = {0, 1}n,
where n = |V |. Consider an integer-valued distance f on Cn. We call a subset A of Cn a
compatible set with respect to f if f(x, y) = 1 for any pair x 
= y of A. In other words, A is
a compatible set if and only if it is a unit diameter set. Property of a compatible set is highly
dependent on f : If f is the L∞ distance, the hypercube itself is a compatible set, while the
cardinality of a compatible set for the Hamming distance is at most two. By definition2 , DH
gives an integer-valued distance on the hypercube Cn.

Definition 1 A set of binary functions on V is called H-compatible if it is a compatible set with
respect to DH. In other words, |wF (α) − wF (β)| ≤ 1 holds for every hyperedge F of H for any
elements α and β of the set.

ΓH(a) is always an H-compatible set, since the DH distance between two global roundings
must be integral and less than 2. Conversely, any maximal H-compatible set is ΓH(g), where g

2Here, we use the assumption that H contains all singleton hyperedges.
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is the center of gravity of the compatible set. Thus, it suffices to show the simplex property for
compatible sets instead of sets of global roundings.

2.2 General results on simplex property

It is obvious that the simplex property is monotone, that is,

Lemma 2.1 If H = (V,F) has the simplex property and F ⊂ F′ then H′ = (V,F ′) does, too.

Recall that a set A = {a1,a2, . . . ,am} of vectors is affine dependent if and only if there are
real numbers c1, c2, . . . , cm satisfying (1) at least one of them is non-zero, (2)

∑
1≤i≤m ci = 0,

and (3)
∑

1≤i≤m ciai = 0.
A set A of binary assignments on V is called minimal affine dependent if it is an affine

dependent set as a set of vectors in the n-dimensional real vector space (n = |V |) and every
proper subset of it is affine independent.
For a binary assignment α on V and a subset X of V , α|X denotes the restriction of α on X.

Given a set A of binary assignments on V , its restriction to X is A|X = {α|X : α ∈ A}. Note
that the set is not a multi-set, and we only keep a single copy even if α|X = β|X for different α
and β in A.
For binary assignments α on X and β on Y α ⊕ β is a binary assignment on V = X ∪ Y

obtained by concatenating α and β: That is, α⊕ β(v) = α(v) if v ∈ X, and α ⊕ β(v) = β(v) if
v ∈ Y . By definition, α⊕ β is only defined if α(v) = β(v) for each v ∈ X ∩ Y .
The following is our key lemma:

Lemma 2.2 Let A be a minimal affine dependent set on V , and let V = X ∪ Y . If A|X and
A|Y are affine independent, then A|X∩Y has only one assignment.

Proof We construct a bipartite graph W = (UX , UY , E), where UX and UY correspond to
the assignments in A|X and A|Y , respectively. The vertices u ∈ UX and v ∈ UY are connected
by an edge in E if and only if the concatenation of corresponding assignments is an element of
A. Thus, there is a one-to-one correspondence between E and A, and let αe be the element of
A associated with an edge e ∈ E. Thus, αe = βu ⊕ γv if e = (u, v), where βu and γv are the
assignments corresponding to u ∈ UX and v ∈ UY , respectively.
If e = (u, v) is an edge, βu and γv must coincide on X ∩ Y . This coincidence condition

is transitive, and hence on each connected component of W , all the assignment take the same
value on X ∩ Y .
Since A is affine dependent, there exists a constant c(e) for each e such that

∑
e∈E c(e) =

0 and
∑

e∈E c(e)α
e = 0, and at least one c(e) is nonzero. For a vertex u, let E(u) be

the set of edges adjacent to u. Let C(u) =
∑

e∈E(u) c(e). Then, we can easily see that∑
u∈UX

C(u) =
∑

e∈E c(e) = 0. Also,
∑

u∈UX
C(u)βu = 0, since the left-hand side is the

restriction of
∑

e∈E c(e)α
e to X. Because of the affine independence of A|X , it follows that

C(u) = 0 for each u ∈ UX . Similarly, C(v) = 0 for each v ∈ UY .
We now claim that W cannot be a forest. Indeed, if W is a forest, we can find a vertex v

of degree 1. Thus, for the edge e incident to v, c(e) = C(v) = 0. We can continue this removal
operation of leaf vertices to find that c(e) = 0 for every edge e; a contradiction.
Thus, W has a cycle as its subgraph. Let e1, e2, . . . em be the list of edges of the cycle

numbered in the order on the cycle (starting from an arbitrary edge). Since W is bipartite, m is
even. Then, if we consider

∑m
i=1(−1)iαei , its restrictions to X and Y are zero vectors. Indeed,

for each vertex u ∈ UX (resp. v ∈ UY )in the cycle, β(u) (resp. γv ) appears twice in the sum so
that one is multiplied by 1 and the other is multiplied by −1. Thus,

∑m
i=1(−1)iαei = 0 and it
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is clear that
∑m

i=1(−1)i = 0. Therefore, the set {αei |i = 1, 2, . . . ,m} is affine dependent. Since
A is a minimal affine dependent set, we conclude that W itself must be a cycle, and thus it is
connected. Thus, all assignments of A are equal to each other on X ∩ Y . ✷

Given a subset S of V , we can consider the induced hypergraphH|S = (S,F∩2S). Naturally,
if a set A of binary assignments on V is compatible for H, A|S is compatible for H|S.
By definition, a subset of a compatible set is also a compatible set. Thus, the concept of

minimal affine dependent compatible set (possibly an empty set) is well defined. We have the
following corollary of Lemma 2.2:

Corollary 2.3 Consider a hypergraph H = (V,F) and a minimal affine dependent compatible
set A. Suppose that V = X ∪ Y and each of H|X and H|Y has the simplex property. Then, for
any pair α and α′ in A, α(v) = α′(v) for each v ∈ X ∩ Y .

Definition 2 A vertex v of a hypergraph H is called a double-covered vertex if there exist suitable
subsets X and Y such that V = X ∪ Y , v ∈ X ∩ Y , and both of H|X and H|Y have the simplex
property. We say S ⊂ V is double-covered if every element of S is double-covered.

Definition 3 For a subset S of vertices of a hypergraph H = (V,F), a set A of assignments on
V is called S-contracted if α(v) = 0 for each pair v ∈ S and α ∈ A.

Theorem 2.4 Let H = (V,F) be a hypergraph, and let S ⊂ V be a double-covered set. Then,
if every S-contracted compatible set is affine independent, H has the simplex property.

Proof Assume on the contrary that H does not have the simplex property. Thus, we have
an affine dependent compatible set, and hence have a minimal affine dependent compatible set
A. From Corollary 2.3, we can assume that all assignments of A take the same value on each
element of S. Thus, if we replace the value to 0 at every v ∈ S, the revised set Ã is also
compatible and minimal affine dependent, since we subtract the same vector from each member
of A to obtain Ã. However, Ã is S-contracted, and hence contradicts the hypothesis. ✷

Corollary 2.5 If V itself is double-covered, H = (V,F) has the simplex property.

Proof The (unique) V -contracted set is {0}, thus is affine independent. ✷

2.3 Axiomatic shortest path hypergraph

Definition 4 A hypergraph H = (V,F) is called an ASP (axiomatic shortest path) hypergraph
if F = {f(u, v)|u, v ∈ V × V } satisfies the following conditions: (1): f(u, u) = {u}.
(2): f(u, v) = f(u′, v′) if and only if (u, v) = (u′, v′) as unordered pairs (one-to-one property).
(3): For any s, t ∈ f(u, v), f(s, t) ⊂ f(u, v) (monotonicity).

It is clear that the shortest-path hypergraph H(G) becomes an ASP hypergraph for any
connected graph G with any edge-length function.

Definition 5 Given an ASP hypergraph H = (V,F), a subset S of V is called a shortest-path-
closed subset (SPC subset) if f(u, v) ⊆ S for any pair u and v in S.

The following lemma is immediate from definitions.

Lemma 2.6 Given an ASP hypergraph H = (V,F) and an SPC subset S of V , H|S is also an
ASP hypergraph.
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3 Shortest path hypergraphs with the simplex property

The following lemma has been given in [1]:

Lemma 3.1 Let G = (V,E) be a connected graph, and let V = X ∪ Y be a partition of V .
Let α1 and α2 be different assignments on X and let β1 and β2 be different assignments on Y .
Then, the set F = { α1 ⊕ β1, α1 ⊕ β2, α2 ⊕ β1, α2 ⊕ β2 } cannot be H(G)-compatible.

Definition 6 A subgraph G′ = (V ′, E′) of G = (V,E) is called an SPC subgraph if any shortest
path in G′ is a shortest path in G.

The following two lemmas are immediate from definitions:

Lemma 3.2 If G′ = (V ′, E′) is an SPC subgraph of G = (V,E), V ′ is an SPC subset of V with
respect to H(G), and H(G)|V ′ = H(G′).

Lemma 3.3 Consider H = H(G) for G = (V,E). Let G1 = (V1, E1) and G2 = (V2, E2) be SPC
subgraphs such that V1 ∪ V2 = V . Then, if both H(G1) and H(G2) have the simplex property,
each vertex in V1 ∩ V2 is double-covered.

Proposition 3.4 If G is a cycle, H(G) has the simplex property.

Proof We give a cyclic ordering v1, v2, . . . , vn of the vertices. For the vertex v1, let V1 =
{v1, v2, v3, . . . , vk} and V2 = {vk+1, vk+2, . . . , vn, v1} where k is the largest index for which the
shortest path from v1 to vk goes through v2. Let G1 and G2 are induced subgraphs associated
with V1 and V2, respectively. Since G1 and G2 are paths, it is known [1] that H(G1) and H(G2)
have the simplex property. It is clear the G1 and G2 are SPC subgraphs, and V1 ∩ V2 = {v1},
and V1 ∪ V2 = V . Thus, from Lemma 3.3, v1 is double covered. This argument holds for any
cyclic ordering, and thus every vertex of V is double-covered. Thus, from Corollary 2.5, H(G)
has the simplex property. ✷

A graph G = (V,E) is a series connection of two subgraphs G1 = (V1, E1) and G2 = (V2, E2)
if there exists a vertex (joint vertex) v such that V = V1 ∪ V2, V1 ∩ V2 = {v}, and E1 ∪E2 = E.

Lemma 3.5 If G is a series connection of G1 and G2 where G2 is a path and H(G1) has the
simplex property, H(G) has the simplex property.

Proof We can prove the lemma in a routine way by using Lemma 3.1, although we omit the
proof in this version. ✷

The following theorem has been given in [1]. Our framework allows a clearer proof below:

Theorem 3.6 Let G be a series connection of two connected graphs G1 and G2. Then, if both
H(G1) and H(G2) have the simplex property, H(G) does.

Proof Consider the joint vertex v and any vertex w ∈ V . Without loss of generality, we can
assume that w ∈ G1. Consider the shortest path p(w, v) between w and v, and let P (w, v) be
the set of vertices on p(w, v). Consider the set V2 ∪P (w, v). Then, we can see that any shortest
path between a pair of vertices in V2 ∪ P (w, v) cannot go through a vertex in V1 \ P (w, v).
Thus, G̃2 = G2 ∪ P (w, v) is an SPC subgraph, and also G1 is an SPC subgraph. From

Lemma 3.5, H(G̃2) has the simplex property. Thus, from Lemma 3.3, w is double-covered.
Since w is arbitrarily chosen, V itself is a double-covered set. Thus, from Corollary 2.5, H(G)
has the simplex property. ✷
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Definition 7 A connected graph G = (V,E) has a 3-parallel decomposition if there exist two
vertices u and v such that G is decomposed into nonempty connected graphs G1 = (V1, E1),
G2 = (V2, E2), and G3 = (V3, E3) such that (1) V = V1 ∪ V2 ∪ V3, (2) V1 ∩ V2 = V2 ∩ V3 =
V1 ∩ V3 = {u, v}, and (3) E is the disjoint union of E1, E2, and E3. (see Fig. 1).

u

v

G1

G2

G3

Figure 1: 3-parallel decomposition of G.

Consider a family Ψ of connected graphs, and assume that it is closed under the subgraph
operation; that is, any connected subgraph of G ∈ Ψ is also in Ψ. A graph G ∈ Ψ is a minimal
counterexample for the simplex property in Ψ if H(G) does not satisfy the simplex property but
H(G′) has the simplex property for every connected subgraph G′ of G.

Theorem 3.7 A minimal counterexample G for the simplex property in Ψ is 2-connected, and
does not have a 3-parallel decomposition.

Proof 2-connectivity follows from Theorem 3.6. Thus, we assume that G has a 3-parallel
decomposition at u and v, and derive a contradiction. We define the following three subgraphs
of G: G(1,2) is the union of G1 and G2, G(1,3) is the union of G1 and G3, and G(2,3) is the union
of G2 and G3. These graphs are connected and hence satisfy the simplex property because of
the minimality of G.
By symmetry, we can assume that the shortest path between u and v is in G1. Then, both

G(1,2) and G(1,3) are SPC subgraphs. Thus, H(G)|V (G(1,2)) = H(G(1,2)) and H(G)|V (G(1,3)) =
H(G(1,3)), where V (G(i,j)) is the vertex set of G(i,j). Thus, it is clear that each vertex of G1 is
double-covered.
A vertex x in V (G(2,3)) is called biased if either the shortest path in G from x to u goes

through v or the shortest path from x to v goes through u. We claim that a biased vertex is
double-covered. Without loss of generality, we assume that x is a vertex of G2 and the shortest
path p from x to v goes through u. Then, any vertex of G2 on p is also biased, and G(1,3) ∪ p
is an SPC subgraph. Thus, v is in the intersection of two SPC subgraphs G(1,3) ∪ p and G(1,2),
and hence double-covered. Thus, S = V (G1) ∪ B is double-covered, where B is the set of all
biased vertices.
Now, we are ready to apply Theorem 2.4. Consider an arbitrary S-contracted compatible

set A of H(G). We claim that A is also H(G(2,3)) compatible. If this claim is true, A must be
affine independent (since H(G(2,3)) has the simplex property), and we can conclude that H(G)
has the simplex property from Theorem 2.4, so that we have contradiction.
We give a proof for the claim. Let α and β be any two members of A. Consider any shortest

path p of G(2,3). Let x and y be endpoints of p, and let P be the vertex set of the path. It
suffices to show the compatibility |α(P )− β(P )| ≤ 1.

7



If all the vertices on p are in S, α(P ) = β(P ) = 0, and the compatibility condition is trivial.
Thus, we assume there exist vertices in V \ S on p. Let x0 be the nearest vertex in (V \ S)∩ P
to x. The subpath p0 of p between x0 and y is the shortest path in G(2,3) between them. Let
P0 be the set of vertices on it.
Consider the shortest path q with respect to G between x0 and y. If it contains both u and

v on it, either the shortest path between x0 and u contains v or that between x0 and v contains
u. Thus, x0 must be biased, and hence in S, contradicting our hypothesis. Therefore, without
loss of generality, we can assume q does not contain v. This means that q contains no vertex
of G1 \ {u}, since otherwise q must go through u twice. Thus, q is in G(2,3), and hence q = p0

since the shortest path between given two vertices is unique in our definition of the shortest
path hypergraph.
Thus, from the compatibility on a shortest path of G, |α(P0)−β(P0)| ≤ 1. Since assignment

on each vertex of S is 0 for each of α and β, we have the compatibility |α(P )− β(P )| ≤ 1 on p.
Thus, A is H(G(2,3)) compatible, and we have the claim. ✷

Thus, the simplex property holds for a graph that is constructed by applying a series of
3-parallel connections and series connections from pieces (such as paths, cycles, unit edge-length
complete graphs, and unit edge-length meshes) for which the simplex property is known to hold.
We give a typical example in the following.
A graph is series-parallel if it does not have a subdivision of the complete graph K4 as its

subgraph. Here, a subdivision of a graph is obtained by replacing edges of the original graph
with chains. A connected graph is outerplanar if and only if it has a planar drawing in which
every vertex lies on the outerface boundary (the boundary is a cycle if the graph is 2-connected).
An edge that is not on the outerface boundary is called a chord. It is known that a series parallel
graph is a planar graph, and an outerplanar graph is series-parallel.

Theorem 3.8 If G is a connected series-parallel graph, H(G) has the simplex property.

Proof Clearly, the family of connected series-parallel graphs is closed under the subgraph
operation, and we consider its minimal counterexample G. By Theorem 3.7, G is 2-connected.
If G is not outerplanar, G has a vertex v in the interior of the outerface cycle C. Since G
is 2-connected, v is connected to at least two vertices of C without using edges on C. If v is
connected to three vertices of C, the union of these paths and C contains a subdivision of K4,
and we have contradiction. Thus, v is connected to exactly two vertices u1 and u2 of C, and we
have 3-parallel decomposition at u1 and u2. Thus, G must be outerplanar. If G has a chord, G
has 3-parallel decomposition at the end vertices of the chord. Thus, G does not have a chord.
However, a 2-connected outerplanar graph without a chord must be a cycle, and we have already
shown the simplex property for cycles. Thus, we have the theorem. ✷

As a corollary, we have µ(G) = n+ 1 for a series-parallel graph, extending the result for an
outerplanar graph given in [14].
Moreover, it can be observed that any (non-cycle) 2-connected series parallel graph has

a 3-parallel decomposition in which two of the components are paths from a classification of
substructures of series parallel graphs given by Juvan et al. [10] (also see [15]). Using this
observation and the argument given in [14] for outerplanar graphs, we have the following (we
omit details in this version):

Theorem 3.9 We can enumerate all the global roundings of an input a for the shortest path
hypergraph of a series-parallel graph with n vertices in O(n3) time.
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4 Geometric problems

We consider some geometric hypergraphs that are ASP hypergraphs. Consider a set V of
n points on a plane. For each pair u = (xu, yu) and v = (xv, yv) of points, uv is the line
segment connecting them. Let B(u, v) be the region below the segment uv; that is, B(u, v) =
{(x, y)|x ∈ [xu, xv], y − yu ≤ yv−yu

xv−xu
(x − xu)} if xu 
= xv. If xu = xv, we define B(u, v) = uv.

Let R(u, v) be the closed isothetic rectangle which has u and v in its diagonal position, and let
T (u, v) = B(u, v)∩R(u, v) be the lower right-angle isothetic triangle which has uv as its longest
boundary edge. We define T (u, u) = R(u, u) = B(u, u) = uu = {u}.
We consider hypergraphs S = (V, {V ∩ uv : u, v ∈ V }), B = (V, {V ∩ B(u, v) : u, v ∈ V }),

R = (V, {V ∩ R(u, v) : u, v ∈ V }), and T = (V, {V ∩ T (u, v) : u, v ∈ V }). See Fig. 2 to get
intuition.
They are typical examples of range spaces. B becomes the hypergraph In consisting of all

intervals if the point set is convex (i.e., it is on the lower chain of the convex hull of itself) and
arranged with respect to the x-coordinate values. Thus, the global rounding for B is a natural
extension of the In-global rounding (sequence rounding). We also remark that S corresponds to
the stabbed sets by segments, and equals Kn = (V, V ×V ) if the point set is in general position.

u

v

u

v

Figure 2: B(u, v) (left) and T (u, v) (right).

Lemma 4.1 S, B, and T are ASP hypergraphs for any point set V . R is an ASP hypergraph
if there are no four points of V forming corners of an isothetic rectangle.

4.1 Simplex property of range spaces

Theorem 4.2 Each of B, T and S have the simplex property. If there are no four points of V
forming corners of an isothetic rectangle, R has the simplex property.

Proof We prove the theorem for T , and only briefly explain for other cases. We prove the
simplex property by induction on the number of horizontal lines and that of vertical lines on
which V lies. If V lies on a horizontal line �, the problem is reduced to the sequence rounding
problem, since T (u, v) is the set of points on the interval uv on �. Let Xj (resp. Yj) be the vertex
set whose x-coordinate (resp. y-coordinate) value is the j-th smallest among V . Suppose that
the statement holds if the point set lies on less than M horizontal lines or less than N vertical
lines. We consider the case where V lies on M horizontal lines and also lies on N vertical lines.
Let X≥j = ∪i≥jXi and X≤j = ∪i≤jXi. It is easy to see that they are SPC subsets of

V . In particular, we consider X≥2 and X≤N−1. Let T + = T |X≥2
and T − = T |X≤N−1

. From
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Lemma 2.6, they are ASP hypergraphs, and by induction hypothesis, have the simplex property.
Thus, X≥2 ∩X≤N−1 = V \ (X1 ∪XN ) is double-covered.
Similarly, we can see that V \(Y1∪YM ) is double-covered. Since union of two double-covered

sets is also double-covered, S = [V \ (X1 ∪XN )] ∪ [V \ (Y1 ∪ YM )] is double-covered. Thus, we
can apply Theorem 2.4, and consider the restriction of T to V \ S.
Any point in V \ S must be at a corner of the minimum enclosing isothetic rectangle of V ,

thus V \ S has at most four points, for which we can directly show the simplex property of the
restriction of T : For example, if it has four points, the hypergraph is equivalent to the shortest
path hypergraph for a cycle (on four vertices) considered in the previous section. Thus, T has
the simplex property.
For the case of S, the only difference is that its restriction on V \ S is the complete graph

(regarded as a special hypergraph) on at most four vertices, and the affine independence for its
compatible set is easy to see. The case for R is analogous, where V \ S contains at most two
points. For B, we only divide V by using vertical lines, and reduce the problem to the sequence
rounding problem. We omit details for it. ✷

We remark that R is smaller than the range space corresponding to all isothetic rectangles.
However, since R has the simplex property, the range space of all isothetic rectangles also has
the simplex property because of Lemma 2.1. Similarly, since T has the simplex property, the
range space of all isothetic right-angle triangles has the simplex property.
If we consider the digital halftoning application, it is important to consider the case where

V is the set of points of an M ×N grid and the hyperedge is a set of rectangles. Let vi,j be the
point at the (i, j) position. Given two points v = vs,t and w = vk,� such that s ≤ k, let R(v, w)
be the set of points in the rectangle which has v and w as corners.
Unfortunately, if we consider the range space R on the set of grid points, R is not an ASP

hypergraph, since R(vi,j , vk,�) = R(vi,�, vk,j) and the one-to-one property does not hold. Indeed,
this hypergraph does not have the simplex property (we have a counterexample).
However, if we give a slight modification, we can apply our theory. The chipped rectangle

R̃(v, w) is obtained by removing the upper corner point that is neither v nor w if v and w are
neither on the same row nor on the same column. We define R̃(v, w) = R(v, w) if v and w are
either on the same row or on the same column. We define CR = (V, {R̃(v, w)|v, w ∈ V }).

Theorem 4.3 CR has the simplex property.

4.2 Algorithms for computing roundings

We can design a polynomial-time algorithm for enumerating all the global roundings of an
input real assignment a for each of B, R, S, T , and CR. We briefly explain the algorithm
for T . Basically, we can apply a building-up (or divide-and-conquer) strategy, in which we
first compute the restrictions on X≥�n/2� and X≤�n/2�−1 recursively, and check the rounding
condition for T on each possible concatenated rounding. It takes O(n2) time for testing each
concatenated rounding by using an efficient range-searching method, and hence the total time
complexity becomes O(n4). We can improve the complexity to O(n3) for CR (we omit details).
The algorithm implies that we can decide whether a given input has a global rounding or

not in polynomial time for these region families. This is highly contrasted to the fact that it is
NP hard to decide the existence of a global rounding for the family of all 2 × 2 square regions
in a grid [3, 4]. If we consider CR, the linear discrepancy is known to be O(log3 n) and Ω(log n)
[6] , and hence it is expected that a given input may have no global rounding. Thus, we may
consider a heuristic algorithm for computing a nice (not necessarily global) rounding by using
the building-up strategy in which we select K best roundings (with respect to the discrepancy)
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from those obtained by concatenating pairs of assignments constructed in the previous stage to
proceed to the next stage. Our theorem implies that if we set K ≥ n+1, we never miss a global
rounding if it exists.

5 Concluding remarks
If we can replace 3-parallel decomposition with 2-parallel decomposition in Theorem 3.7, we
can prove the conjecture, since any 2-connected graph is decomposed into e and G \ {e} at the
endpoints of any edge e. For a special input where each entry of a is 0.5 + ε, it has been shown
that there are at most m + 1 global roundings for unit edge-length connected graphs (except
trees) with m edges [9]. However, it is not known whether µ(H(G)) is polynomially bounded in
general. Another interesting question is whether there is a hypergraph with the simplex property
with less than n(n+ 1)/2 hyperedges (including singletons).
Acknowledgement. The authors thank Günter Rote who first suggested geometric approach
to the global rounding problem. Also, they thank Ken-ichi Kawarabayashi and Takao Nishizeki
for providing knowledge on the structure of series-parallel graphs.
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