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Hiroakira Ono Closure Operators and

Complete Embeddings
of Residuated Lattices

Abstract. In this paper, a theorem on the existence of complete embedding of partially

ordered monoids into complete residuated lattices is shown. From this, many interesting

results on residuated lattices and substructural logics follows, including various types of

completeness theorems of substructural logics.
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1. Substructural Logics and Residuated Lattices

We will show in the present paper a theorem on the existence of complete
embedding of partially ordered monoids into complete residuated lattices.
Our theorem covers many of related results on embeddings. In particular,
various completeness theorems for substructural logics follow from this, in-
cluding e.g. Kripke completeness by Ono-Komori [6], algebraic completeness
of substructural predicate logics in [5], standard completeness by Montagna-
Ono [4], and finite embeddability property by Blok-van Alten [1]. 1

Substructural logics are logics obtained from either classical logic or in-
tuitionistic logic by deleting some or all of structural rules, when they are
formalized in sequent calculi. The lack or the presence of structural rules
effects sensitively the “meaning” of implication. Thus, within the frame-
work of substructural logics, we can discuss nonclassical logics with various
kinds of implications, in a uniform way. Substructural logics include Lam-
bek calculus for categorial grammar, linear logic, which has only exchange
rule, relevant logics, and the logic FLew without contraction rule. Here, the
sequent system for FLew is obtained from Gentzen’s sequent calculus LJ for
intuitionistic logic by deleting contraction rule. For more information, see
e.g. [7, 5].

In the following, we will treat mainly the logic FLew without contraction
rule, and intuitionistic linear logic FLe. The latter is formalized as a sequent
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2 Hiroakira Ono

calculus obtained from FLew by deleting weakening rule. But as noticed in
§§ 2 and 3, the same argument works also for other substructural logics, e.g.
FL which has no structural rules, and FLec which is obtained from FLe by
adding contraction rule ( see [5] for the precise definition ).

In substructural logics, it is convenient and moreover natural to introduce
a new logical connective ∗, called the fusion or the multiplicative conjunction.
Rules for ∗ are given as:

Γ, ϕ, ψ,Σ→ δ

Γ, ϕ ∗ ψ,Σ → δ
(∗ →)

Γ → ϕ Σ → ψ

Γ,Σ → ϕ ∗ ψ (→ ∗)

Then, fusions represent commas in sequents. More precisely, the following
holds:

ϕ1, . . . , ϕm → ψ is provable if and only if ϕ1 ∗ . . . ∗ ϕm → ψ is
provable.

Algebraic structures for these logics are residuated lattices. An alge-
bra P = 〈P,∩,∪, ·, →, 0, 1,⊥,�〉 is a commutative residuated lattice if it
satisfies :

1. 〈P,∩,∪,⊥,�〉 is a bounded lattice,
2. 〈P, ·, 1〉 is a commutative monoid with the unit 1,
3. x · y ≤ z iff x ≤ (y → z) (the law of residuation).

In the above definition, 0 is an arbitrary element of P , which is used only
for defining the interpretation of the negation. More precisely, the logical
connective ¬ is interpreted as ∼ in a residuated lattice, where ∼ x denotes
x→ 0. A commutative residuated lattice is integral if the unit 1 is equal to
the greatest element � and 0 is equal to ⊥, and it is weakly idempotent if
x ≤ x ·x for each x. When a commutative residuated lattice is integral, both
⊥ and � are usually omitted in its represention. A commutative residuated
lattice is complete if it is complete as a lattice. We note that any complete,
commutative residuated lattice satisfies the following distributivity of fusion
over arbitrary join :

(∪xi) · y = ∪(xi · y) for any xi, y.

A complete, commutative residuated lattice is sometimes called a com-
mutative unital quantale ( see [8] ). A formula ϕ is said to be valid in a
commutative residuated lattice P if v(ϕ) ≥ 1 holds in P for any valuation
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v on P. Here, v is a valuation on P if v is any map from the set of propo-
sitional variables to P . As usual, v can be extended uniquely to a map
from the set of formulas to P by interpreting logical connectives ∧,∨, ∗,⊃
and ¬ as ∩,∪, ·,→ and ∼, respectively. Clearly, we can replace the condi-
tion “v(ϕ) ≥ 1” by “v(ϕ) = 1”, when P is integral. By using Lindenbaum
algebras, we can easily show the following.

Proposition 1. For any formula ϕ, ϕ is provable in FLe iff it is valid
in every commutative residuated lattice. Also, the similar relation holds
between FLew and the class of commutative integral residuated lattices, and
also between FLec and the class of commutative weakly idempotent residuated
lattices.

For a given commutative monoid M = 〈M, ·, 1〉, we can construct a
commutative residuated lattice, as shown below. First, define ∗ and ⇒ for
every X, Y ⊆M by

i. X ∗ Y = {a · b ∈M : a ∈ X and b ∈ Y },
ii. X ⇒ Y = {a ∈M : c · a ∈ Y for each c ∈ X}.

Then, we have the following ( see e.g. [5] ).

Lemma 2. For any given commutative monoid M, the structure ℘(M) =
〈℘(M),∩,∪, ∗,⇒, O, {1},Ø, M〉 forms a complete commutative residuated
lattice, where O is an arbitrary subset of M .

A map C on a commutative residuated lattice P is a closure operator if
for all x, y ∈ P

1. x ≤ Cx,
2. x ≤ y implies Cx ≤ Cy,
3. CCx ≤ Cx,
4. Cx · Cy ≤ C(x · y).

Note that the first three conditions correspond to the conditions for closure
operators in the usual sense. Closure operators in our sense are called quantic
nuclei in [8], when P is complete.

Suppose that C is a closure operator on a commutative residuated lattice
P. An element x of P is C-closed when x = Cx holds. Let C(P ) be the set
of all C-closed elements of P . It is easy to see that both x ∩ y and x → y
are C-closed if both x and y are C-closed. But, this doesn’t hold always for
∪ and ·. We define ∪C and ·C by
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x ∪C y = C(x ∪ y) and x ·C y = C(x · y).

Then, we can show the following.

Proposition 3. Suppose that P is a commutative residuated lattice and C
is a closure operator on P . Then, the algebra C(P) = 〈C(P ),∩,∪C , ·C ,
→, d, C1, C⊥,�〉 forms a residuated lattice where d is an arbitrary C-closed
element. If P is integral then so is C(P) if we take C0 (= C⊥) for d, if P
is weakly idempotent then so is C(P), and also if P is complete then so is
C(P).

By combining Proposition 3 with Lemma 2, we have the following.

Corollary 4. If M is a commutative monoid and C is a closure operator
on ℘(M), then CM = 〈C(℘(M)),∩,∪C, ∗C,⇒, D, C({1}), C(Ø),M〉 is a
complete commutative residuated lattice where D is any C-closed subset of
M .

We note that the converse of the above corollary holds. That is, any
complete commutative residuated lattice is isomorphic to CM for a com-
mutative monoid M with a closure operator C on ℘(M). See [5] for the
proof.

2. Complete Embeddings

In the rest of the present paper, we assume moreover that M is a partially
ordered commutative monoid ( or simply, a commutative po-monoid ). Here,
we say that M = 〈M, ·, 1,≤〉 is a commutative po-monoid, when 〈M, ·, 1〉
is a commutative monoid with the unit element 1 and 〈M,≤, 1〉 a partially
ordered set in which the following monotonicity holds: for any x, y, z ∈ M ,
x ≤ y implies x · z ≤ y · z. We say that a commutative po-monoid M is
integral when the unit element 1 is equal to the greatest element, and it is
weakly idempotent when x ≤ x · x holds for every x.

Suppose that C is a closure operator on ℘(M) for a commutative po-
monoid M, in which every C-closed subset X is downward closed, i.e. x ∈ X
and y ≤ x imply y ∈ X for any x, y ∈M . If M is integral then C({1}) = M

holds, and hence the residuated lattice CM with D = C(Ø) becomes also
integral. So, hereafter we take always C(Ø) forD in CM when M is integral.
Similarly, if M is weakly idempotent then so is CM.
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Now we have a way of constructing a complete residuated lattice from
a given commutative po-monoid. Moreover, our construction respects the
integrality and the weak idempotency. Let us take any commutative resid-
uated lattice P. Then, the po-monoid reduct P† of P determines another
residuated lattice CP†. Now, it is interesting to see how far the residuated
lattice CP† reflects the structure of P, in particular its lattice operations
and residual. The following theorem, which is our main theorem, answers
this.

For a given commutative po-monoid M and a closure operator C on
℘(M), define a subset U of M by U = {b ∈ M : (b] is C-closed}, where
(b] = {x ∈ M : x ≤ b}. We call U , the base for C in M. When M is
integral, the base U is non-empty, since (1] is C-closed as it is equal to M.
We assume moreover the following closure conditions (1) and (2) for C ; for
any C-closed subset X ,

(1) X is downward closed,
(2) ∪iai ∈ X whenever {ai : i ∈ I} ⊆ X ∩ U and ∪iai ∈ U .

Theorem 5. Suppose that M is a commutative po-monoid and C is a clo-
sure operator on ℘(M) for which closure conditions hold. Then the map
h : U → C(℘(M)) defined by h(b) = (b] is a complete embedding, i.e. an
order isomorphism which preserves all existing products and residuals in U ,
and also all existing (infinite) joins and meets in U , where U is the base for
C in M.

First, we give some comments on the theorem. It is not always the case
that U is a submonoid of M . So, our theorem says that as long as a · b ∈ U
for a, b ∈ U , h(a) ∗C h(b) = h(a · b) holds. Also, if a → b is defined and
belongs to U for a, b ∈ U ( and ∪iai or ∩iai is defined and belongs to U for
ai ∈ U for each i ) then it is preserved by the map h.

Now we will give a proof of our theorem. It is obvious that the map h
is an order isomorphism, since the order relation of CM is the set inclusion.
We need to show that h preserves existing products, residuals, joins and
meets in U .

Suppose that a · b ∈ U for a, b ∈ U . It is clear that (a · b] is the least C-
closed set which includes the set (a]∗(b]. Therefore, h(a)∗Ch(b) = (a]∗C (b] =
C((a] ∗ (b]) = (a · b] = h(a · b).

Next suppose that a → b ∈ U for a, b ∈ U . Since (a] ∗ (a → b] =
{x · y : x ≤ a and y ≤ a → b} ⊆ {z : z ≤ b} = (b] and (b] is C-closed,
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(a] ∗C (a → b] ⊆ (b]. If (a] ∗C X ⊆ (b] for a C-closed set X , then, for any
c ∈ X , a · c ≤ b and therefore c ≤ a → b. Hence X ⊆ (a → b]. This means
that (a → b] is maximal among such C-closed sets X that (a] ∗C X ⊆ (b].
That is, (a] ⇒ (b] = (a→ b]. Therefore, h(a) ⇒ h(b) = (a→ b] = h(a→ b).

It is easily seen that h preserves all existing meets, since ∩i(ai] = (∩iai]
holds. It remains to show that h preserves all existing joins. Suppose that
∪iai exists and belongs to U where {ai : i ∈ I} ⊆ U . Since (aj] ⊆ (∪iai]
for each j ∈ I , ∪C(ai] ⊆ (∪iai]. For a given C-closed set X , suppose
that (aj] ⊆ X for each j ∈ I . Then aj ∈ X for each j ∈ I . By our
assumption (2), ∪iai must belong to X . Hence, (∪iai] ⊆ X . Therefore
∪Ch(ai) = ∪C(ai] = (∪iai] = h(∪iai).

Suppose that P† is the po-monoid reduct of a commutative residuated
lattice P. Then, the construction of a complete residuated lattice CP† and
the complete embedding described in Theorem 5 say that the po-monoid
P†, but not the residuated lattice P, plays an essential and special role
in them. This will support the idea of substructural logics from algebraic
point of view. In fact, in substructural logics, we attach special importance
to structural rules, apart from rules for logical connectives, and structural
rules determine the “po-monoid” part of a given logic.

As can be seen in our proof of Theorem 5, the closure condition (2) is
used only in proving that h preserves all existing joins. In other words,
the map h still preserves all existing products, residuals and meets ( but
not necessarily joins ), even if we assume only that every C-closed subset is
downward closed.

We note also that when U = M holds, the second closure condition (2)
becomes the following;

(2’) if ∪iai exists for {ai : i ∈ I} ⊆ X , then ∪iai ∈ X ,

Any subset X satisfying both (1) and (2’) is called a complete ideal. The
notion of complete ideals is used for getting completion of Heyting algebras
( see e.g. [9] ).

3. Consequences of Main Theorem

Our theorem in the above covers many results on the existence of a (com-
plete) embedding of commutative po-monoids into complete residuated lat-
tices, including Lemma 3.9 of [3] for example. We will show here that var-
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ious completeness theorems follow from these embedding results, by taking
a suitable closure operator to each case.

I. Kripke completeness of propositional logic FLew

An algebraic structure M = 〈M, ·, 0, 1,∪,≤〉 is a semilattice-ordered,
commutative integral monoid ( or, a commutative integral so-monoid ) if
it satisfies the following:

1. 〈M, ·, 1,≤〉 is a commutative po-monoid with the greatest
element 1 and smallest element 0,2

2. the join x ∪ y exists for every x, y ∈M ,
3. x · (y ∪ z) = (x · y) ∪ (x · z) holds.

Note that in [6], commutative integral so-monoids in our sense but with the
reverse order are discussed and called so-monoids. Let M be a commutative
integral so-monoid. A nonempty subset X of M is an ideal, if the following
holds :

(1) X is downward closed,
(2) if both a and b are in X , then a ∪ b ∈ X .

Now, for each X ⊆ M , define C1(X) to be the ideal generated by X , i.e.
the smallest ideal containing X . Of course, 0 ∈ C 1(X) for any X , and
in particular, C1(Ø) = {0}. We can show that C1 is a closure operator
on ℘(M). In fact, it is obvious that C 1 satisfies the first three conditions
for closure operators. We show that C 1X ∗ C1Y ⊆ C1(X ∗ Y ). Take any
c ∈ C1X and d ∈ C1Y . Then there exist {ai ∈ X : i = 1, . . . , m} and
{bj ∈ Y : j = 1, . . . , n} such that c ≤ ∪iai and d ≤ ∪jbj. Then c · d ≤
(∪iai) · (∪jbj) = ∪i,j(ai · bj) ∈ C1(X ∗ Y ), by using the distributivity of
fusion over join, which is the third condition of integral so-monoids. Hence,
C1X ∗C1Y ⊆ C1(X ∗ Y ) holds.

In [6], Kripke-type semantics for FLew is introduced by using commu-
tative integral so-monoids. We will give here a brief explanation of the se-
mantics based on commutative integral so-monoids. Kripke frames are just
commutative integral so-monoids. A valuation on a Kripke frame M is any
map v from the set of all propositional variables to C 1(℘(M)). Then, v can
be naturally extended to a map from the set of all formulas to C 1(℘(M)),
since C1

M is a commutative integral residuated lattice. In other words, a

2The existence of the smallest element 0 is not essential in the following argument, but
this simplifies it.



8 Hiroakira Ono

valuation on a Kripke frame M is nothing but a valuation of a commutative
integral residuated lattice C1

M. Here, the value v(¬ϕ) for a valuation v is
defined by v(¬ϕ) = v(ϕ) ⇒ C1(Ø). In [6], valuations and Kripke frames in
the above are called strong valuations and total strong frames, respectively,
and the notation a |= ϕ is used instead of writing a ∈ v(ϕ), where |= cor-
responds to a given valuation v. A formula ϕ is valid in a Kripke frame M
( M |= ϕ, in symbol ) if a |= ϕ for every a ∈M .

The following lemma follows immediately from the definition.

Lemma 6. Let M be an arbitrary Kripke frame. Then, for each formula ϕ,
M |= ϕ if and only if ϕ is valid in a commutative integral residuated lattice
C1

M.

Now let us apply our main theorem to the present case. Since the set (b]
is C1-closed for every b ∈M , the base U is equal to M . Since each C1-closed
set satisfies both of closure conditions (1) and (2) ( for finite joins ), we have
the following, by Theorem 5.

Theorem 7. For each commutative integral so-monoid M, the map h :
M → C1(℘(M)) defined by h(b) = (b] is an order isomorphism from M
to C1

M preserving both products and joins, and moreover it preserves all
exisiting residuals and meets. In particular, any commutative integral resid-
uated lattice P can be embedded into a complete, commutative integral resid-
uated lattice C1

P† by the residuated lattice monomorphism h, where P† is
the so-monoid reduct of the residuated lattice P.

The second part of Theorem 7 is shown already in [6] as its Theorem
8.12. By using these results, we have the completeness of FLew with respect
to Kripke frames.

Corollary 8. ( Ono-Komori ) The propositional logic FLew is Kripke-
complete.

Proof. Suppose that a formula ϕ is not provable in FLew. Then, ϕ is not
valid in a commutative integral residuated lattice P, e.g. in its Lindenbaum
algebra. Therefore, it is not valid in C1

P†, by Theorem 7. Hence, ϕ is not
valid in a Kripke frame P†, by Lemma 6.

Another immediate consequence of Theorem 7 is the conservativeness of
FLew over its fragments, which can be shown e.g. by using cut elimination
theorem for FLew. ( See e.g. Theorem 2.3 of [6]. Also cf. Theorem 8.12 of
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[6]. ) Let F be any nonempty subset of logical connectives {∧,∨, ∗,⊃,¬}. A
formula is a F -formula if every connective appearing in it belongs to F . Also,
the F -fragment of the sequent system FLew is the sequent system obtained
from the sequent sytem FLew by restricting its rules for connectives only
to those for connectives in F . ( As for the sequent system FLew, see e.g.
[6, 5] ).

Corollary 9. Let F be any subset of logical connectives which contains at
least ∗. Then, for any F -formula ϕ, if ϕ is provable in FLew then it is
provable in the F -fragment of FLew.

Proof. Suppose otherwise. Then, ϕ is not valid in the Lindembaum alge-
bra P of the F -fragment of FLew. Suppose first that F contains ∪. Then,
P forms a commutative integral so-monoid. Then, by Theorem 7 P is em-
bedded into a complete, commutative integral residuated lattice Q by an
embedding which preserves products, joins, and also existing residuals and
meets. Thus, ϕ is not valid in Q. Suppose next that F doesn’t contain ∪. In
this case, P forms a commutative integral po-monoid. As mentioned at the
end of the previous section, if we define C1X to be the smallest downward
closed set including X , then we get a similar result to Theorem 7, which
says the embeddability of a po-monoid P into a residuated lattice Q by an
embedding which preserves products, and existing residuals and meets. But,
this is enough to make ϕ invalid in Q. Thus, ϕ is not provable in FLew in
either case.

By obvious modifications of the above argument, we can obtain the simi-
lar results to Theorem 7 and its corollaries in the above, for non-integral ( but
weakly idempotent ) case and for FLe ( and FLec, respectively ). To avoid
unnecessary complications, we assume the commutativity of monoid struc-
tures, and accordingly the exchange rule in logics, throughout the present
paper. But, we can extend our main theorem and most of its consequences
in § 3 to non-commutative case.

II. Dedekind-MacNeille completion and completeness of substruc-
tural predicate logics

A similar but stronger result can be obtained by taking the closure op-
erator C2 determined by Dedekind-MacNeille completion.

Here, we will discuss the completeness of predicate logic FLew, but by
a slight modification of our proof, we can get the completeness of predicate
logics FLe and FLec. Let P be any commutative integral residuated lattice
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and V be a nonempty set. A map v is a valuation for first-order formulas on
P with universe V if v is any map from the set of closed atomic first-order
formulas with parameters in V to P . Then, v can be extended uniquely to a
partial map from the set of first-order formulas with parameters in V to the
set P , similarly to valuations for propositional formulas, and in addition, we
claim the following for quantifiers :

i. v(∀xθ(x)) is defined and is equal to ∩{v(θ(u)) : u ∈ V }, if for
all u, v(θ(u)) is defined, and ∩{v(θ(u)) : u ∈ V } exists in P ,
ii. v(∃xθ(x)) is defined and is equal to ∪{v(θ(u)) : u ∈ V }, if
for all u, v(θ(u)) is defined, and ∪{v(θ(u)) : u ∈ V } exists in P .

A valuation v is safe if v(ϕ) is defined for every closed formula ϕ with
parameters in V . A closed formula ϕ is valid in P if for any nonempty set
V , v(ϕ) = 1 for every safe valuation on P with universe V . Clearly, every
valuation becomes safe when P is complete.

For a given commutative integral residuated lattice P, define a map C 2

on ℘(P) by C2X = ((X→)←) for each X ⊆ P , where Y → and Z← denote
the set of upper bounds of Y and of lower bounds of Z, respectively. It is
easy to see that C2 is a closure operator and that the base for C 2 in M

is P . Moreover, every C2-closed set satisfies both of closure conditions (1)
and (2). Therefore, h is a residuated lattice monomorphism from P to C 2

P‡

which preserves all existing joins and meets, by Theorem 5. Here, P‡ is
the po-monoid reduct of P. The complete residuated lattice C2

P‡ is known
as Dedekind-MacNeille completion of P. Using this, we have the following
result ( see [5] for the details ).

Corollary 10. ( Ono ) The predicate logic FLew is complete with respect
to the class of complete, commutative integral residuated lattices. Similarly,
the predicate logics FLe and FLec are complete with respect to the class of
complete, commutative residuated lattices, and the class of complete, com-
mutative weakly idempotent residuated lattices, respectively.

Proof. If a first-order formulaϕ is not provable in the predicate FLew, then
ϕ is not valid in the Lindenbaum algebra P of FLew. Since P is embedded
into C2

P‡ by a complete embedding h, ϕ is not valid also in C2
P‡. ( Note

that h must preserve existing joins and meets in P, since all quantifiers in
ϕ should be calculated in C2

P‡ just in the same way as in P. )

III. Standard completeness of predicate logic MTL∀ of left-
continuous t-norms
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Our theorem can be applied also to the proof of standard completeness
of predicate logic MTL∀. First, we will give a very brief survey of left-
continuous t-norms and of predicate logic MTL∀. As for the details, see e.g.
[4].

When a commutative po-monoid M has a linear order, it is called a
commutative lo-monoid. The product ◦ in a commutative integral lo-monoid
M = 〈M, ◦, 1,≤〉 is left-continuous, if

supX ◦ sup Y = sup(X ∗ Y )

holds for all subsets X and Y of M whenever both supX and sup Y exist.
( On the other hand, it is said to be right-continuous when infX ◦ inf Y =
inf(X ∗ Y ) holds ). Here, X ∗ Y denotes the set {x ◦ y : x ∈ X and y ∈ Y }.
When a commutative lo-monoid M with a left-continuous ◦ is moreover com-
plete, i.e. both supX and infX exist for any subset X of M , M determines
uniquely a complete, commutative integral residuated lattice. In fact, clearly
it is a bounded lattice. Also, the residual x→ y exists for all x, y ∈M , since
by using the left-continuity of ◦ we can show that x→ y = sup{z : x◦z ≤ y}
holds. Thus, we can identify a complete, commutative lo-monoid with a left-
continuous product, with the complete residuated lattice defined in this way.

Now let us consider the unit interval [0,1] of reals, which is partially
ordered by natural order ≤. When the structure 〈[0, 1], ◦, 1,≤〉 forms a
( complete ) lo-monoid with a binary operation ◦ on [0,1], sometimes the
product ◦ is called a triangular norm ( or, simply a t-norm ). As mentioned
above, each complete, commutative integral lo-monoid 〈[0, 1], ◦, 1,≤〉 with a
left-continuous t-norm ◦ forms a complete, commutative integral residuated
lattice 〈[0, 1],min,max, ◦, 1,→, 0, 1〉. We call any of such a residuated lattice
as this, a standard structure. A logic L over FLew is standard complete if it
is complete with respect to a class of standard structures.

An interesting problem is to find an axiom system L which is standard
complete with respect to the class of all standard structures. This problem
was solved for propositional case in [2]. That is, the logic, called MTL,
which is obtained from propositional FLew by adding formulas of the form
(ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) as axioms, is standard complete. Then, in [4] it is
shown that the predicate logic MTL∀ is standard complete, where MTL∀
is obtained from predicate logic FLew by adding both formulas of the form
(ϕ ⊃ ψ)∨ (ψ ⊃ ϕ) and ∀x(θ∨σ) ⊃ (∀xθ∨σ) as axioms, where σ has no free
occurrences of x in it.
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Our proof of the standard completeness goes as follows. Suppose that
a formula ϕ is not provable in MTL∀. Then, it is shown that there exists
a countable linearly ordered, commutative integral residuated lattice P in
which ϕ is not valid. Next, it can be shown that there exists an order iso-
morphism g of the lo-monoid reduct of P into a countable dense lo-monoid
M with a left-continuous product ◦ such that g preserves the smallest ele-
ment 0, products, residuals and all existing joins and meets. This can be
proved by using a technique introduced in [2]. Since the partially ordered set
〈M,≤〉 is countable, dense and bounded, it is order isomorphic to Q∩ [0, 1].
So, we can assume that the domain of M is Q ∩ [0, 1].

Now, to complete the proof of the standard completeness, we need the
following lemma. The proof described below is essentially the same as one
given in [4], but here we use Theorem 5 explicitly.

Lemma 11. Every countable dense, commutative integral lo-monoid M of
the form 〈Q∩ [0, 1], ◦,≤, 1〉 with a left-continuous product ◦ can be embedded
into a standard structure by a complete embedding.

Proof. For each subset X of Q ∩ [0, 1], define C3X by C3X = {q ∈ M :
q ≤ supX}. Here, supX denotes the supremum of X in the set R of real
numbers. We show that C3 is a closure operator. To see this, we need
to check that C3X ∗ C3Y ⊆ C3(X ∗ Y ). Let α and β be real numbers
defined by α = supX and β = sup Y , respectively. It suffices to show
that for all rational numbers r and s in M such that r ≤ α and s ≤ β,
r ◦ s ≤ sup(X ∗ Y ). Suppose first that both α and β are irrational. Then
r < α and s < β. Then there exist r′ ∈ X and s′ ∈ Y such that r < r′ and
s < s′. Then, r ◦ s ≤ r′ ◦ s′ ∈ X ∗ Y . Thus, r ◦ s ≤ sup(X ∗ Y ). When
both α and β are rational, it suffices to show that α ◦β ≤ sup(X ∗Y ). Now,
since α = supX and β = sup Y , there exist subsets {rm : m ∈ N} of X
and {sn : n ∈ N} of Y such that α = sup{rm} and β = sup{sn}. Then
α ◦ β = sup{rm} ◦ sup{sn} = sup{rm ◦ sn} by the left-continuity of ◦. Since
rm ∈ X and sn ∈ Y , we have α ◦ β ≤ sup(X ∗ Y ). For remaining cases, we
can show also the above inclusion, by combining these arguments.

It is easy to see that a subset X of Q ∩ [0, 1] is C 3-closed if and only if
it is a downward closed set such that supX ∈ X . Using this, we can show
that the base U for C3 is equal to Q∩ [0, 1], and every C3-closed set satisifies
closure conditions (1) and (2). Thus, by Theorem 5, we have that M can be
embedded into a complete, commutative integral residuated lattice C3

M by
a complete embedding. Now, define a map j from the set C3(℘(Q∩ [0, 1])),
which is the domain of C3

M, to [0,1] by j(X) = supX . Then, j induces
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a surjective order-isomorphism from C3
M to a standard structure. This

completes the proof.

Corollary 12. ( Montagna-Ono ) The predicate logic MTL∀ is standard
complete.

Proof. As shown above, for each formula ϕ which is not provable inMTL∀,
there exists a countable linearly ordered, commutative integral residuated
lattice P in which ϕ is not valid. The lo-monoid reduct of P is embedded into
a countable dense, commutative integral lo-monoid M with a left-continuous
product ◦ by a complete embedding, and then this M is embedded into a
standard structure by a complete embedding. Clearly, ϕ is not valid in this
standard structure.

IV. Finite Embeddability Property
As the last example of consequences of our main theorem, we will take the

construction of residuated lattices discussed in Section 5 of [1], in particular
Lemma 5.6.

We say that the class K of algebras has the finite embeddability property
when for a given finite partial subalgebra B of an algebra A in K, there
exists a finite algebra D in K into which B can be embedded.

A typical example of finite embeddability property is the finite embed-
dability property of Heyting algebras. Let B be a finite partial subalgebra
of a Heyting algebra A. The Heyting subalgebra generated by the domain
of B is not always finite, since the class of Heyting algebras is not locally
finite. But, let us take the sublattice D generated by the domain of B, in-
stead. Since D is a finite distributive lattice, it is a finite Heyting algebra.
Moreover, B can be embedded into D.

A commutative integral po-monoid M = 〈M, ·, 1,≤〉 with a binary oper-
ation → on M is residuated if it satisfies the following law of residuation :
x · y ≤ z iff x ≤ (y → z). Sometimes, residuated, commutative integral
po-monoids, i.e. partially ordered commutative residuated integral monoids
are called pocrims. In [1], the finite embeddability property of the class
of pocrims and of the class of commutative integral residuated lattices is
shown. We will give here a brief outline of the proof, and show how our
main theorem works in it. These two results are proved essentially in the
same way, here we consider pocrims.

Suppose that B is a partial subalgebra of a pocrim A. Let M = 〈M, ·, 1,
≤ 〉 be the po-submonoid generated by the domain B of B. The set M is
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not necessarily finite even if B is finite. For each u ∈ M and b ∈ B, define
(u � b] = {w ∈ M : uw ≤ b}. Let D = {(u� b] : u ∈ M and b ∈ B}. For
each subset X of M , define C4X =

⋂{Z ∈ D : X ⊆ Z}. Then, C4 is shown
to be a closure operator on ℘(M). Also, we can show that every C 4-closed
subset is downward closed ( and moreover satisfies the closure condition (2)
for finite joins when A is a residuated lattice ). Moreover, the domain B

of B is a subset of the base U . Thus, by Theorem 5, B is embedded into a
complete, commutative integral residuated lattice C4

M. To add to this, it is
shown in [1] that when B is finite, C4

M becomes finite. Thus, the following
holds.

Corollary 13. ( Blok-van Alten ) Both the class of pocrims and the class
of commutative integral residuated lattices have the finite embeddability prop-
erty. Therefore, propositional logic FLew is complete with respect to the class
of finite, commutative integral residuated lattices.
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