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Algebraic aspects of cut

Abstract. We will give here a purely algebraic proof of the cut elimination theorem for
various sequent systems. Our basic idea is to introduce mathematical structures, called
Gentzen structures, for a given sequent system without cut, and then to show the complete-
ness of the sequent system without cut with respect to the class of algebras for the sequent
system with cut, by using the quasi-completion of these Gentzen structures. It is shown
that the quasi-completion is a generalization of the MacNeille completion. Moreover, the
finite model property is obtained for many cases, by modifying our completeness proof.
This is an algebraic presentation of the proof of the finite model property discussed by
Lafont [12] and Okada-Terui [17].

Keywords: Algebraic Gentzen systems, cut elimination, substructural logics, residuated
lattices, finite model property

Mathematics Subject Classification (2000): 03B47, 03F05, 06F99

1. Introduction

In this paper, we will give an algebraic proof of cut elimination for various
sequent systems. Our method can be modified so as to prove the complete-
ness theorem of tableau systems with respect to algebraic semantics. Our
motivation of giving an algebraic proof of the cut elimination theorem is to
clarify the meaning of cut elimination from an algebraic point of view, and
to give a proof of cut elimination attractive to algebraists, avoiding heavy
syntactic arguments which are used in the standard cut elimination proce-
dure. Such a proof might be useful for algebraists, as cut elimination offers
us a useful tool for proving decidability. Our goal is to clarify the algebraic
aspects of cut elimination and its consequences.!

Our basic idea of algebraic proofs is to introduce mathematical struc-
tures, which we call Gentzen structures, for a given sequent system without
cut, and then to show the completeness of the sequent system without cut
with respect to the class of algebras for the logic determined by the sequent
system with cut. In this completeness proof, we will use the quasi-completion
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of Gentzen structures, which is a generalization of the MacNeille completion,
as shown at the end of Section 5. Our method introduced here is closely re-
lated to those discussed by Maehara [13] and independently by Okada [16], in
which semi-algebraic proofs of cut elimination are given, and is also inspired
by the paper [9].

We note that there exist already several ways of proving cut elimination
by using semantical methods. For instance, in 1960 Schiitte [24] introduced
the notion of semi valuations (or, Schiitte’s valuations in [7]) to prove the cut
elimination theorem for higher order classical sequent system in a semantical
way. Also, to show completeness of tableau systems for some modal logics
and intuitionistic logic, which is essentially equivalent to cut elimination for
them, Fitting introduced consistency properties in [4]. But, proofs in these
papers and also [1], except [13] and [16], are not of an algebraic character in
our sense.

Our method works well for a wide variety of sequent systems of nonclas-
sical logics, both in propositional and predicate cases, including Gentzen’s
systems LK and LJ in [5] for classical and intuitionistic logic, respectively.
To explain our basic idea, we take first the sequent system FLey for intu-
itionistic logic without the contraction rule as an example, and give a proof
of cut elimination for it. The name FL comes from full Lambek calculus
(i.e., Lambek calculus with conjunction and disjunction) and the ey refers
to the presence of the exchange and weakening rule (presented in the next
section). In Section 6, we will show how our method can be applied to some
other sequent systems of nonclassical logics, including modal logics.

By a slight modification of our completeness proof, we show in Sections
7 and 8 the finite model property of some of nonclassical logics. This is an
algebraic presentation of the proof of the finite model property, discussed
by Lafont [12] and Okada-Terui [17]. The proof will show how the finiteness
of proof-search procedures, which is purely of proof-theoretic character, is
related to such an algebraic property as the finite model property.

2. Sequent calculi and cut elimination — preliminaries

As we mentioned in the above, one of our motivations for giving an algebraic
proof of cut elimination is to present a proof which is attractive to algebraists.
For this purpose, it might be helpful to give first a brief explanation of
sequent calculi and their syntactic properties, assuming that some of our
readers may not be familiar with proof theory. On the other hand, readers
familiar with cut elimination may skip this section. For more information
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on cut elimination theorems for nonclassical logics, readers are referred to
a survey article [20] by the third author, which is written from a syntactic
point of view.

We use the symbols —, A and V for implication, conjunction and dis-
junction, respectively, and the zero 0 and wunit 1 for logical constants. The
negation —« of a formula « is defined to be an abbreviation of & — 0. Lower-
case Greek letters «, (3, v, § etc. are used for formulas, and uppercase Greek
letters T, X, A etc. for finite (possibly empty) sequences of formulas. A
sequent is an expression of the form aq, ..., ay = B with m > 0, where «;’s
are formulas and (3 is either a formula or empty. An informal interpretation
of this sequent is that G follows from assumptions a1, ..., m.

In the next section, we will start to give an algebraic proof of the cut
elimination theorem. We take first the sequent calculus FLeyw as an example,
which is obtained from Gentzen’s sequent calculus LJ for intuitionistic logic,
by deleting the contraction rule. Here, the calculus LJ (in a slightly modified
form) consists of initial sequents and rules of inference which are given as
follows. An initial sequent is a sequent of one of the following forms; 1)
a= a,2)0=,3) = 1. Rules of inference are divided into two groups,
i.e. the first consists of rules for logical connectives, and the second consists
of structural rules. In the rules below, I', A denotes the concatenation of
sequences, and an expression like «, I' prepends the formula « to the sequence
I'. Rules for logical constants and for logical connectives —, A and V are
given as follows:

I'=9
1,'=96

(1=) 15 (=0

ooty 7 Toaog &)
a,I'=9 8,I'=9 I's>a I'=0
ardTos M=) TagTos N2) TSang &N
al'=4§ B,T'=§ I =« I'=p
aviTos VP tsavaCVY ooy 5V

Structural rules consist of the weakening rules, the contraction rule, the
exchange rule, and the cut rule.
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I'=946 = Ioa,a,X=9
aT=s W) 7250w Tavss €2
o pgX=4 l'=a ao,X=9§
N EY A Tyoo ()

A sequent I' = § is provable in LJ if it can be obtained from initial
sequents by applying rules of inference repeatedly. A figure which shows
how a given sequent I' = § is obtained is called a proof of I' = §. In
general, there are many proofs of each provable sequent. A cut-free proof
is a proof which contains no applications of the cut rule. Here are two
examples of proofs in LJ, both of which are cut-free. The first one is a proof
of a, 0= aNp.

a(jéﬁ :>aa (w=) a,0=0 (
a,f=aAf

=)

(=A)

The second is a proof of &« — (8 — ), A [ = 7.

g=p

o= o aNB=p v=7

a/\ﬁ:>a(/\1 ) ﬁ—>’y,a/\5:>’y(

a— (8—7),aNB,aNB =7y
a—(B—7),aNB=7

—=)
(—=)
(c=)

We can show easily the following.

PROPOSITION 2.1. The following three conditions are mutually equivalent:
1. aq,...,0p = B is provable in LJ,

2. = a1 — (ag — (... (am — B)...)) is provable in LI,

3. a1 A... Ny, = 0 is provable in LJ.

The equivalence of 1 and 2 is shown without using structural rules other
than the cut rule, while both the weakening rule and the contraction rule
are necessary to show the equivalence of 1 and 3, which one can see in the
above examples of proofs. Cut elimination for LJ is expressed as follows.

PROPOSITION 2.2. If a sequent I' = § is provable in LJ then it is provable
in LJ without using the cut rule.
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The sequent calculus FLey is obtained from LJ by simply deleting the
contraction rule. As noted above, we cannot show the equivalence of 1
and 3 in Proposition 2.1 for FLeyw. In other words, commas in sequents of
FLew should not be interpreted as conjunctions. So it is often convenient to
introduce a logical connective -, called the fusion, which represents commas
explicitly in sequents of a sequent calculus which lacks the contraction rule or
the weakening rule. This is in fact possible without affecting the provability
of any sequent containing no -, if we take rules for - given below.

a, 8, ' =6 I'sa YX=0
o AToso ) rssag 7

Hereafter, by FLew we mean the sequent calculus with these rules for -.
Similarly to LJ, we have the following propositions.

PROPOSITION 2.3. The following three conditions are mutually equivalent:

1. aq,...,0p = B is provable in FLew,
2. = a1 — (ag = (... (am — B)...)) is provable in FLeyw,
3. a1+ ... = 0 is provable in FLew.

PROPOSITION 2.4. If a sequent I' = 0 is provable in FLeyw then it is provable
in FLew without using the cut rule.

A syntactic proof of cut elimination for FLey is given in [23]. Many
important syntactic properties, including the interpolation theorem and de-
cidability of both propositional and predicate logics FLeyw are obtained from
cut elimination [23], [10]. For more information on cut elimination and de-
cidability of substructural logics, see [20] and [19].

Let FL¢ (and FLec) be the sequent calculus obtained from LJ by deleting
both weakening and contraction rules (only weakening rules, respectively).
(See e.g. [18] for the detailed definition.) Similar propositions as above
hold for both FLe and FLec. They are known to be the intuitionistic linear
logic without exponentials and the intuitionistic relevant logic without the
distributive law, respectively, and their cut elimination theorems are proved
by J.-Y. Girard [6] and essentially by R.K. Meyer [14], respectively.

We conclude this section with some additional remarks on the cut elimi-
nation theorem. In his paper [5], G. Gentzen introduced sequent calculi LK
for classical logic and LJ for intuitionistic logic, and proved the cut elimi-
nation theorem for them. To show this, he gave a procedure for eliminating
each application of the cut rule in a given proof of a given sequent I' = §,
and showed by using double induction that a cut-free proof of I' = 4§ can
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be eventually obtained by repeated applications of this procedure. It should
be noted here that the cut rule can never be obtained by combining appli-
cations of other rules of inference in a uniform way. That is, the cut rule is
not derivable in the system obtained from LJ by deleting the cut rule. This
implies that in eliminating each application of the cut rule, we must replace
it depending on how it appears.

3. Commutative residuated lattices

We now introduce algebraic structures for FLeyw. An algebra P = (P, A, V, -,
—, 1) is a commutative residuated lattice if it satisfies the following:

1. (P, A, V) is a lattice,
2. (P,-,1) is a commutative monoid with the unit element 1,
3. a-b<ciff a <(b— ¢), for any a,b,c € P.

By abuse of symbols, we use the same symbols for logical connectives and
corresponding algebraic operations. The third condition in the above defini-
tion is called the law of residuation between the monoid operation - and the
residual —. In our paper, we assume that commutative residuated lattices
under consideration are always bounded, that is, any of them has both a
greatest element T and a least element L. In addition, we fix an element 0,
called the zero element, of each commutative residuated lattice P, to define
a unary operation — on it by -z = z — 0 for any z. It determines an inter-
pretation of the negation in P as shown below. Therefore, it will be natural
from a logical standpoint to define a commutative residuated lattice to be an
algebra P = (P, A, V,-,—,0,1). For more information on residuated lattices,
see e.g. [9] and [11].

Any commutative residuated lattice determines an interpretation of each
formula, and in fact commutative residuated lattices serve as algebraic struc-
tures for substructural logics, as noted in Proposition 3.1 below. Since there
is a one-to-one correspondence between the set of all formulas and the set
of all terms in the language for residuated lattices, we will use the same
symbols for logical connectives (and constants) in formulas and correspond-
ing operations (and constants, respectively) in algebraic terms. In other
words, terms will be regarded as synonyms of formulas, distinguished only
by context. We use the letters p, q,r, s, t etc. for terms.

Let p and g be terms, and let P be a commutative residuated lattice. A
valuation f on P is any mapping from the set of term variables to P. As
usual, f can be extended to a mapping from the set of terms to P. We write
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P = p < ¢q, whenever f(p) < f(q) holds in P for any valuation f. We say

that a sequent «y,...,a, = B is valid in a commutative residuated lattice
PifP = (a1-...-am) < 8. Here we are identifying formulas and terms. We
take 1 for ay - ... ay,, when m = 0, and an empty formula § is considered

as the term 0.

A commutative residuated lattice is integral if the unit 1 is equal to the
greatest element T and 0 is equal to L. It is increasing idempotentif a < a-a
for each a. It is easy to see that a commutative residuated lattice P is both
integral and increasing idempotent if and only if a-b = a A b for all a,b € P.
Thus, any integral, increasing idempotent commutative residuated lattice is
a Heyting algebra, and vice versa. In fact, integrality and increasing idem-
potency correspond to the weakening rule and contraction rule of sequent
calculi, respectively, and in particular, integral commutative residuated lat-
tices are algebraic structures for FLey, as the following proposition shows.

PropoOSITION 3.1. The propositional logic FLew is complete with respect to
the class of integral commutative residuated lattices. More precisely, for all

formulas aq, . .., am, 8 a sequent oy, ...,y = B is provable in Fleyw if and
only if P = (ay-...-au) < B for any integral commutative residuated lattice
P.

The only-if part is proved by showing that each rule of FLew pre-
serves the validity. For instance, in case of (=—) we need to show that
if P = (r-p) <gqthen P =r < (p — ¢q). But, this follows from the
fact that a - b < ¢ implies a < (b — ¢), for any a,b,c € P. The if-part is
shown by using standard argument, making use of free integral commutative
residuated lattice, i.e. the Lindenbaum algebra of FLeyw. Note that similar
completeness results holds for FLe (and FLec) with respect to the class of
commutative residuated lattices (and increasing idempotent commutative
residuated lattices, respectively).

We now present a standard way of constructing a residuated lattice from
a commutative monoid. Suppose that a commutative monoid M = (M, -, 1)
is given. A unary function C on p(M) is a closure operator if for all X,Y €

p(M),
1. X CCO(X),
2. CC(X)C O(X),

3. X CY implies C(X) C C(Y),
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4. C(X)*C(Y)CO(X *Y).

Here, * is defined by W« Z = {wz : w € W,z € Z} for W, Z € p(M). A
subset X of M is C-closed if C(X) = X. Let C(p(M)) denote the set of all

C-closed subsets. Define operations Uc, *¢ and = on C(p(M)) as follows.
For all C-closed sets X and Y:

e XUcY =C(XUY),
° X*CY:C(X*Y),
e X=Y={z:{z}xXCY}.

Then we have the following result (see e.g. [18] and also Lemma 7.1 of [9]).
Here, a residuated lattice is said to be complete if the lattice reduct is a
complete lattice.

LEMMA 3.2. The algebra Cy = (C(p(M)),N,Uc, *c,=,0,C({1})) forms
a complete, commutative bounded residuated lattice with the lattice order C
which has greatest element M, least element C(0), and unit element C({1}),
where O is an arbitrary C-closed subset of M.

We suppose now that a commutative monoid M is moreover partially
ordered by an order < satisfying

1. for any x,y,z € M, x < y implies z - z < y - z, and
2. the unit element 1 is the greatest element.

For each subset X of M, define X and X~ to be the set of all upper bounds
and of all lower bounds of X, respectively. More precisely, X~ = {u € M :
x <wuforany z € X}, and X~ ={ve M :v <z for any x € X}. Define
a mapping D on (M) by DX = (X 7). Then, we can show that D is a
closure operator in the above sense, which satisfies D({1}) = M. Therefore,
by using Lemma 3.2, Dy forms an integral commutative residuated lattice,
when we take C(()) for O. Moreover, by Theorem 5 in [21] we have the
following.

PROPOSITION 3.3. The mapping h : M — D(p(M)) defined by h(u) = {z €
M : x < u} is a complete embedding, i.e. an order isomorphism which

preserves all products and all existing residuals, (infinite) joins and meets in
M.

This complete, integral commutative residuated lattice Dy is called the
MacNeille completion of a commutative partially ordered monoid M. For
more information, see e.g. [21].
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4. Gentzen structures for the sequent calculus FL,

As shown in the previous section, algebraic structures for the sequent cal-
culus FLeyw are integral commutative residuated lattices. In this section
we will introduce structures for FLew without cut, which we call Gentzen
structures for FLeyw .

Proposition 2.3 says that commas in sequents can be interpreted as fu-
sions in FLe¢w. But, to derive the the sequent aq,...,q, = B from the
sequent aq - ... a;,m = G, we need the cut rule, in general. Thus, in FLe
without cut it becomes necessary to interpret commas as they stand.

Now, for a given nonempty set @, let Q* be the set of all (finite, possibly
empty) multisets whose elements are in ). The empty multiset is denoted
by € in the following. For members x and y of Q*, xy denotes the multiset
union of x and y. The multiset consisting of elements aq,...,a, € @ is
denoted by (aj,...,am). Sometimes, we identify an element ¢ € @ with the
singleton multiset (¢) when no confusions will occur. Thus, for example,
when y is a singleton multiset (c), zy is written as zc. Obviously, Q* forms
a commutative monoid with respect to multiset union whose unit is €. In
the following, letters x, vy, z, u, v etc. are used for expressing members of Q*,
and letters a, b, ¢, d for elements of Q U {e}.

A Gentzen structure for FLey is a structure Q = (Q, <, A, V, -, —, 00, 1)
such that Og, 1o € @, A, V, -, — are binary operations on ), and = is a subset
of Q@* x (Q U {e}), which satisfies the following conditions:

e a=a,

e Op =g,

o c <1g,

e x = ¢ implies dx < ¢,

e x <aand by = cimply (a — b)xy < ¢,
e ar =< bimplies z < a — b,

e ax < cand bx < ¢ imply (aVb)x < ¢,
e r = qa implies x = a Vb,

e x < bimpliesx Xa Vb,

e axr < cimplies (a Ab)x < ¢,
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bxr < ¢ implies (a A b)x < ¢
e r<agand z =X bimply z < a Ab,
e abx < ¢ implies (a-b)xr < ¢,
e x <aandy<Xbimply zy < a-b.

Each of these conditions corresponds to either an instance of an initial
sequent or an instance of a rule of inference, if we replace < by = and
elements of @) by formulas. Conversely, each rule of inference except the
exchange rule and the cut rule is represented by one of these conditions.
While the exchange rule is incorporated implicitly into the definition of Q*,
no condition in the above represents the cut rule. Sometimes we will omit
the subscript @) of Og and 1g when confusion is unlikely.

As for residuated lattices, a valuations on a Gentzen structure Q is de-
fined as a homomorphism from the algebra of terms to the algebra reduct
(Q,N\,V,-,—,00,1q). A sequent si,...,8, = t is said to hold in Q for
FLew, (Q | s1,...,8m = t, in symbols) if (h(s1),...,h(sm)) = h(t) holds
for any valuation h on Q. (Here, we assume that h(t) = € when ¢ is empty.)
It is obvious that if a sequent «g, ..., a,;, = 0 is provable in FLgyw without
using the cut rule then aq, ..., a, = 0 holds in every Gentzen structure for
FLew. The converse of this implication can be shown also by taking the free
Gentzen structure for FLeyw. As shown below, the proof goes essentially the
same as, but is much simpler than, the standard proof of completeness of
FLey with respect to the class of integral commutative residuated lattices,
using the Lindenbaum algebra. Let Q1 be the set of all terms (in the lan-
guage for residuated lattices). Obviously, both constants 0 and 1 belong to
QT, and operations A, V, -, — are defined on the set QT in a trivial way. We
define the relation <1 as follows:

(a1, ..., am)=T3 holds if and only if the corresponding sequent
Qaq, ...,y = (18 provable in FLey, without using the cut rule,
for m > 0. Also, eX7/3 holds if and only if the sequent = f3 is
provable in FLeg,, without using the cut rule.

Recall here that the correspondence between formulas and terms is bijective.
The structure QT thus obtained becomes a Gentzen structure for FLey with
the property that if a sequent is not provable in FLeyw without cut, then the
corresponding sequent does not hold under the trivial valuation, i.e. the
valuation f satisfying that f(w) = w for any term variable w. Thus, we
have the following.
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LEMMA 4.1. A sequent aq, ..., o, = B is provable in Fleyw without using
the cut rule if and only if aq,...,am = B holds in every Gentzen structure
for FLew.

Next we show that every integral commutative residuated lattice can be
regarded as a particular Gentzen structure for FLey,. First, suppose that
an integral commutative residuated lattice P = (P, A, V, -, —,0,1) is given.
Let < be the lattice order of P. Define a subset < of P* x (P U {e}) by

the condition that (ai,...,am) < c holds if and only if (a1 - ... ap) < ¢
holds in P, when ¢ € P. (Let (a; -...-an) =1 when m = 0. Also, define
(a1,...,am) < € if and only if (a3 - ... ay) < 0 holds in P.) Then P’ =

(P, <,\,V,+,—,0,1) becomes a Gentzen structure for FLey. Moreover, the
following strong transitivity holds in P’:

z = a and ay =< c imply zy =< c.

Conversely, suppose that a Gentzen structure Q for FLeyw with a strongly
transitive relation = is given. Let =< be the restriction of < to Q x Q. We
note here that =< is strongly transitive if and only if both of the following
hold:

1. the relation =g is transitive,
2. {(a1,...,am) X cifand only if (a1 - ...  am) <o C.

Moreover, in Q we have that axr < b if and only if x+ < a — b. To see this,
it is enough to show the if-part since the only-if part holds always. From
a<aand b=b, (a —b)-a=bfollows. So, if z < a — b then we can show
that ax = xa < (a — b) - a. Then, by the strong transitivity of <, we have
ax = b. This gives the following result.

LEMMA 4.2. Let Q = (Q, =<, A,V,+,—,0,1) be any Gentzen structure for
FLew with a strongly transitive <. If the restriction =g of < to Q X Q is
moreover antisymmetric and therefore a partial order then Qo = (Q, A, V, —,
0,1) is an integral commutative residuated lattice with the lattice order <.

The assumption that =< is antisymmetric is not essential. For, if < is
both reflexive and transitive, by using the congruence relation ~ determined
by <o we can introduce a quotient algebra, in which the relation =< con-
gruent modulo ~ becomes a partial order. On the other hand, we cannot
take a quotient structure of a Gentzen structure in general, since it lacks
transitivity.

In conclusion, we can roughly say that any Gentzen structure with a
strongly transitive relation can be identified with an integral commutative
residuated lattice, and vice versa.
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5. Quasi-completions and cut elimination

Results in the last part of the previous section tell us that each integral
commutative residuated lattice can be regarded as a particular Gentzen
structure for FLeyw. Therefore, for all terms si,..., s, and t, if a sequent
$1,...,8n = t holds in any Gentzen structure for FLey then the corre-
sponding inequality (s1 - ... 8y,) < t holds in any integral commutative
residuated lattice. Our Theorem 5.1, proved in the present section, says
that the converse is also true, and turns out to be equivalent to cut elimi-
nation (see Lemma 5.5). This is the algebraic content of cut elimination for
FLcyw, and leads directly to the main result in Theorem 5.6.

THEOREM 5.1. For all terms si,...,8m and t, if P = (s1-... sm) <t for
any integral commutative residuated lattice P, then Q |= s1,...,8m =t for
any Gentzen structure Q for FLey.

We devote most of this section to proving the above result. Taking the
contraposition, suppose that s1,...,s,, = t fails to hold in a Gentzen struc-
ture Q = (@, <, A, V, -, —, 0, 1) under a valuation f,i.e. (f(s1),...,f(sm)) =
f(t) does not hold in Q. Our goal is to construct an integral commutative
residuated lattice P in which (s1 -...- s,) <t does not hold.

Since @* is a commutative monoid, we have that Cq- is a complete com-
mutative bounded residuated lattice for any closure operator C' on p(Q*),
by Lemma 3.2. We will introduce a particular closure operator C' on p(Q*)
in the following. First, for each x € Q* and each a € Q U {e}, define

[z;a] = {w € Q" : wx < a}.

The set B of all subsets of A of the above form determines a closed base (in
topological sense). Note that Q* belongs to B since Q* = [g;1]. We call B,
the closed base determined by Q or simply the closed base determined by
<. By using B we can define a closure operation C' (in the usual sense) on
p(Q*) as follows: For each subset X of Q*,

C(X)=(Nl[z;a] : X C[z;a] for x € Q" and a € QU {e}}.
LEMMA 5.2. The map C' is a closure operator (in our sense), which satisfies
C({e}) = Q" and C({0}) = C(0).

Proof. We show first that C(X) « C(Y) C C(X *=Y). Take any w €
C(X) % C(Y). By the definition of %, there are u € C(X) and v € C(Y)
such that w = uwv. Suppose that X «Y C [z;¢] for z € Q* and ¢ € Q U {e}.
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Then for any x € X and any y € Y, xyz < ¢. This implies that X C [yz;c].
Then, since u € C(X) by our assumption, u € [yz; ], i.e. yuz = uyz < ¢ for
any y € Y. Thus, Y C [uz;c|]. Since v € C(Y), it follows that v € [uz; (]
and hence uvz = vuz < ¢. Therefore, we have shown that w = uv € [z;(]
whenever X Y C [z;¢]. Thus we have w € C(X *Y).

Next, we show that C({e}) = Q*. Suppose that {¢} C [z;¢]. This means
that z = ez < ¢. Then by the fourth condition of Gentzen structures (i.e.
the weakening rule), we have wz < ¢, i.e. w € [z;¢] for any w € Q*. Thus,
Q* C C({e}). Similarly we can show that C'({0}) = C(0).

By Lemmas 5.2 and 3.2, Cq~ is a complete, integral commutative resid-
uated lattice with identity element C({c}), by taking C'({0}) as the zero
element. This residuated lattice Cq+, which is determined uniquely by a
given Gentzen structure Q for FLew, is called the quasi-completion of Q.

It would be nice if we get an embedding from Q to Cq+ like the one
in Proposition 3.3. But we cannot expect that much, as Q has only a
weak mathematical structure. Still we can prove the following theorem that
confirms the existence of a quasi-embedding from Q to Cq+, which will be
shown to be sufficient for our purpose.

Let us define a map k : Q — C(p(Q*)) by k(a) = [a], where [a] = [¢;al,
ie. [a] = {w € Q* : w < a}. Then we can show the following. This can be
proved essentially in the same way as the proof of Lemma 7.3 in [9] (see also
Maehara [13] and Okada [16]).

THEOREM 5.3. Suppose that a,b € @ and that U and V are arbitrary C-
closed subsets of Q* such that a € U C k(a) and b € V' C k(b). Then for
each x € {\,V,,—}, axb e UxcV C k(axb), where xo denotes N,Uc, *¢
and =, respectively. Thus, in particular a b € k(a) x¢ k(b) C k(a*b).

Proof. We note first that the following is a necessary and sufficient condition
for a given subset W of Q* to be C-closed: for any x € Q*,

x € W whenever W C [z;¢| implies x € [z;¢] for any z € Q*
and c € QU {e}.

We will give here a proof of our theorem when ¢ is either Ug or =. First
let xc be Ue. To show that a Vb € U Ug V, suppose that U UV C [z; ]
for z € @* and ¢ € QU {e}. Since a € U and b € V, a,b € [z;¢]. That
is, both az < ¢ and bz < ¢ hold. From this (a V b)z < ¢ follows. Hence
aVb e [zc]. Therefore, aVbe C(UUV)=UUc V. Next we show that
UUcV C Ek(aVb). For this, it is enough to show that U UV C k(a V b)
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since k(a V b) is C-closed. By our assumption U C k(a) holds, and also
by a condition of Gentzen structures k(a) C k(a V b) holds. Therefore,
U C k(a Vv b). Similarly, V C k(a V b) holds.

Next suppose that x¢ is =. We show that a — b € U = V, ie.
{a = b} xU C V. For this, it is enough to show that {a — b} x k(a) C V,
since U C k(a) by our assumption. Take any element w € k(a) and any [z; c|
such that V' C [z;¢]. Then, w < a, and b must belong to [z;¢], i.e. bz < ¢
holds since b is an element of a C-closed set V. Therefore, (a — b)wz =< ¢
and hence (a — b)w € [z;¢]. This implies (a — b)w € V. Thus, we have
{a — b} * k(a) C V. We show next that U = V C k(a — b). Take any
w € U = V. Then, {w} U C V C k(b). Since a € U, this implies
aw = wa = b and hence w < a — b. Thus, w € k(a — b).

A map such as k, which has the properties described in the above the-
orem, is called a quasi-embedding. As shown later, the notion of quasi-
embedding can be regarded as a generalization of complete embedding.

Recall that we assumed (f(s1),..., f(sm)) = f(t) does not hold in our
Gentzen structure Q where f is a valuation on (). Now we show that the cor-
responding inequality (s1-...-sy,) <t does not hold in the quasi-completion
Cq- of Q. We define a valuation g on Cq- by g(q) = k(f(q)) for each
propositional variable ¢, where k is the quasi-embedding. Then, we can
prove the following by induction on the length of the term r. Note that for
any a € Q, a € C({a}) C [a], and that f(0) =0, f(1) = 1,¢9(0) = C({0})
and ¢g(1) = C({1}). Thus, the lemma below holds for propositional variables
and logical constants. For the induction step, we can use Theorem 5.3.

LEMMA 5.4. For any term r, f(r) € g(r) C k(f(r)).

Now suppose to the contrary that (s;-...-sy) <t holds in Cq+. Then,
(9(s1) *c - - *c g(sm)) C ¢(t) must hold in particular. Since f(s;) € g(s;)
for each ¢ by Lemma 5.4, (f(s1),..., f(sm)) € (9(s1) *...%g(sm)) and hence
(f(s1),..., f(sm)) € g(t) Ck(f(t)) hold. (Recall that the monoid operation
on Q* is the multiset union.) But this implies that (f(s1),..., f(sm)) < f(t).
This is a contradiction. Thus, (s1 ... sy) <t does not hold in Cq+. This
concludes the proof of Theorem 5.1.

The following lemma is an immediate consequence of Proposition 3.1 and
Lemma 4.1.

LEMMA 5.5. The statement of Theorem 5.1 is equivalent to the statement
that cut elimination holds for FLew.
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Hence we have shown our main result.

THEOREM 5.6. Cut elimination holds for FLew. In other words, the sequent
system FLew without the cut rule is complete with respect to the class of all
integral commutative residuated lattices.

In algebraic terms, our theorem says that for all terms si,..., s, and
t, (s1-...-8m) < t holds in all integral commutative residuated lattices
if and only if the relation si,...,s, = t can be derived by using only
conditions described in the definition of Gentzen structures for FLeyw (with
all < replaced by =).

The cut elimination theorem says that the cut rule is admissible in the
system obtained from FLey by deleting the cut rule. In other words, if
both s1,..., s, = tg and tg,t1,...,t, = r hold in any Gentzen structure for
FLeyw, then s1,...,5mn,t1,...,t, = 7 holds also in any Gentzen structure for
FLcyw. This should be distinguished from the fact that the strong transitivity
condition, i.e. * < a and ay = ¢ imply xy =< ¢, does not always hold in a
Gentzen structure for FLeyw, which is equivalent to the non-derivability of
the cut rule in FLey, as discussed in the previous section.

An actual example witnessing the non-derivability of cut can be con-
structed as follows. Take a sequent system L obtained from cut-free FLew
by adding two axioms:

p=q and q¢=r for distinct variables p, g, r.

Obviously, p = r is not provable in L (because every formula in the upper
sequent of each rule of cut-free FLey appears in the lower sequent as a sub-
formula of some formula). Note that the derivability relation of L determines
a Gentzen structure for FLew.

It should be remarked also that only properties of the monoid operation
of Q* and of the relation < determine the structure of the integral commuta-
tive residuated lattice Cq+. In other words, the structure is not affected by
properties of any algebraic operation or constant, related to logical connec-
tives and logical constants. We think that this fact is regarded as an intrinsic
algebraic feature of substructural logics. Also, as we can see in the proof
of Theorem 5.3, we use only conditions concerned with a given operation *
when proving our theorem for x. From these observation, we can derive an
algebraic proof of the next theorem.

Let ® be any nonempty subset of the set {A,V, -, —,0,1} of all algebraic
operations and constants. We say that a term ¢ is a ®-term if it consists
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only of symbols in ® and variables. Also, a ®-Gentzen structure for FLey
is a structure defined similarly as a usual Gentzen structure for FLeyw, but
by restricting the structure and conditions to those related only to members
of ®. In logical terms, ®-Gentzen structures for FLey are precisely the
Gentzen structures for the ®-fragment of FLey . Now, we have the following
theorem on the conservativity of each fragment of FLew. The theorem is
usually proved syntactically as a consequence of the subformula property
of FLew, which in turn is one of the most important consequences of cut
elimination of FLey .

THEOREM 5.7. Let ® be any nonempty subset of {A,V,-,—,0,1}. For ®-
terms s and t, the following three conditions are mutually equivalent:

1. P = s <t for any integral commutative residuated lattice P,

2. Q| s =1t for any ®-Gentzen structure Q for FLew,

3. P = s <t for any ®-reduct P of integral commutative residuated lattices.

In the rest of this section, we show how quasi-completions are related
to the MacNeille completions. As mentioned in the previous section, each
integral commutative residuated lattice P = (P, A, V, -, —,0,1) with the lat-
tice order < can be identified with a Gentzen structure P’ if we define the
relation < for P’ by

(a1,...,am) < cholds if and only if (a; - ... an) < ¢ holds.

For each z = (ay,...,ay) in P* let Z denote an element ay - ... a,, in P.
(Define Z = 1 when z = £.) The above relation enables us to identify each
z of P* with an element Z of P, and < with <. Under this identification,
each set of the form [z;a] is regarded as a subset {d € P : d-% < a}, or
equivalently {d € P :d < & — a}. Since any element in P can be expressed
by an element of the form £ — a for some z € P* and some a € P, we can
assume that our closed base B consists of a set of the form [c] for ¢ € P,
where [¢] = {d € P : d < ¢}. Now let us define an operation C' on p(P),
instead of ©(P*), by

C(X) =(Nlc] : X C[] for an element ¢ € P} for each subset X of P.
Then it is easily seen that

z € C(X) if and only if ¢ € X implies z < ¢ for any c,
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where X denotes the set of all upper bounds of X, and hence C(X) =
(X7)~, where Y denotes the set of all lower bounds of Y. It means that
C(X) is equal to D(X), discussed in Section 3, and therefore the quasi-
completion Cpr)« of P’ is isomorphic to the MacNeille completion of P.

Recall that the quasi-embedding k : P' — C(p((P’)*)) is defined by
k(a) = [g5a] ={w € Q" : w <X a}, and a*xb € k(a) ¢ k(b) C k(axb) by
Theorem 5.3. If < is strongly transitive, a x b € k(a) ¢ k(b) implies that
k(axb) C k(a)*ck(b). Hence k(axb) = k(a)xck(b) holds. Since k is injective,
this means that k£ is an “isomorphism”, and in fact this k is identified with
the complete embedding of an integral commutative residuated lattice P
into its MacNeille completion described in Proposition 3.3. Thus we have
the following.

COROLLARY 5.8. The quasi-completion of any integral commutative resid-
uated lattice Q is isomorphic to its MacNeille completion, and the quasi-
embedding of Q to its quasi-completion is a complete embedding, when Q is
considered as a Gentzen structure with a strongly transitive relation.

We end this section with some brief remarks about the possibility of
replacing Gentzen structures with bonafide first-order structures, so that <
is a binary relation on @), rather than a relation from @Q* to Q). Such an
approach is indeed possible, and permits Gentzen structures to be defined
by a short list of universal horn sentences, where the sequence constructor
(comma) is replaced by fusion. A notion of algebraic Gentzen proof can now
be formulated as a restriction of the standard notion of quasi-equational
proof, and derivations in this system are somewhat shorter since fusion-
elimination steps are omitted. From an algebraic standpoint this provides an
even tighter connection between proof theory and universal algebra. But our
present approach also has some advantages. For example the semantics of
(non-first-order) Gentzen structures exactly capture the provability relation
for sequents of standard Gentzen systems (with or without cut), and the
presence of comma-separated sequences allows some distinctions to be made
that cannot be expressed by the first-order language.

6. Cut elimination for other systems

Our algebraic proof of cut elimination works for various sequent systems.
For example, an outline of an algebraic proof of cut elimination of Gentzen’s
sequent system LJ for intuitionistic logic is given in [22]. It is not hard to
modify our method to apply it to intuitionistic substructural logics like FLe
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and FLec. In this section, we explain briefly how to extend our method to
other sequent systems and tableau systems.

First, we show that our method is naturally extended to sequent systems
for predicate logics, taking the sequent system QFLeyw which is a natural
predicate extension of FLew. We note that in [13] Machara gave a semi-
algebraic proof of cut elimination for predicate systems LK and LJ. We will
give here an outline of the algebraic proof of cut elimination for QFLew. The
sequent system QFLey, is obtained from FLey, by adding the following rules
for quantifiers V and 3:

LTS o T2k
LTS oy T2l

Here, t is a term (in the first-order language), v and z are individual variables,
and alz/v] (aft/v]) are the formula obtained from « by replacing all free
occurrences of v in « by z (by ¢, respectively). Moreover, in applications of
(= V) and (3 =) z should not occur as a free variable in the lower sequent.

In algebras, quantifiers are interpreted as infinite meets and joins. Let
P be a complete integral commutative residuated lattice and let D be a
nonempty subset of P, called the individual domain. Moreover, suppose
that « is a first-order formula which contains no free individual variable
other than v. Then, for any valuation f, Vva and Jua are defined as follows:

f(Vva) = N{f(ali/v]) : i € D} and f(3va) = \V{f(afi/v]) : i € D},

where i denotes the name of an element i € D. We call such a pair (P, D), an
algebraic frame for QFLew. Then we can show the completeness of QF Lew
with respect to the class of all algebraic frames for QFLey, (see e.g. [18]).

Gentzen structures for QFLe,y, are defined in the same way as those for
FLcw. A Gentzen structure for QFLeyw consists of a Gentzen structure Q for
FLew and a nonempty set D. Suppose that A{a; : i € D} and \/{a; : i € D}
are elements of (), which are defined for some subsets {a; : © € D} of Q.
(In the following, we write A a; and \/ a;, instead of A{a; : i € D} and
VA{ai : i € D}, respectively.) When they are defined, Q satisfies in addition
the following conditions:
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e ajr = c for some j € D implies (A a;)r = c,
e z = aj for all j € D implies z < A a;,

e ajx = cfor all j € D implies (\/ a;)z < ¢,

e = < a; for some j € D implies z <'\/ a;.

Then, similarly to Theorem 5.3, we have the following, where |J~U;
means C'(JU;).

LEMMA 6.1. Suppose that for all j € D, a; € Q and Uj is a C-closed subset of
Q* such that aj € Uj C k(aj). Under these assumptions, if )\ a; exists then
Nai € Ui C k(A a;), and also if \/ a; exists then \/ a; € UoUs C k(V ai).

Proof. We give here a proof of the second part. Suppose that J-U; C [2;c].
Then, aj € U; C [2;¢] and hence ajz < ¢ for all j € D. Thus, (\V a;)z = c.
That is, \/ a; € [z;¢|. Since |JoU; is C-closed, \/ a; € |J-U;. Next, suppose
that v € JoU;. Then, x € U; C k(a;) for some j. That is, < a;. Hence
x =V a;. Therefore, |JU; € k(V a;).

By using Lemma 6.1, we can show Lemma 5.4 for the present case. Note
here that we need to take a Gentzen structure Q for QFLeyw and a valuation
f with the property that every quantifier in the sequent under discussion is
interpreted in it. To do so, it is enough to take the free Gentzen structure
of QFLey for Q, and the canonical mapping for f. (For the details, consult
[13].) Thus we have the following.

THEOREM 6.2. Cut elimination holds for the sequent system QF Leyw, which
is the predicate extension of FLeyw.

Next, we discuss sequent systems with sequents of the form I' = A where
I" and A are sequences of formulas. A typical example is Gentzen’s sequent
system LK for classical logic. For LK, a semi-algebraic proof of cut elim-
ination is given in the paper [13] by Machara. Also the first author of the
present paper explored in his thesis [2], an algebraic proof of cut elimination
of sequent systems of this kind for substructural logics, i.e. sequent systems
of classical substructural logics, based on a draft of an algebraic proof of cut
elimination for FLey by the third author. In the following, by taking the
sequent system CFLey as an example, we will explain how to modify our
proof of cut elimination for these sequent systems. Note that a syntactic
proof of the cut elimination theorem for CFLey is given by Grishin in [8].
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The sequent system CFLegy is obtained from LK by first deleting contrac-
tion rules and then adding both initial sequents for 1 and 0, rules for logical
constants and rules for -, which are given as follows (see [18]);

a, 6, = A (- =) I'= A« Ej@’ﬁ(é-)
a-6,I'= A 'Y= A0,a-0

In other words, CFLey is obtained from FLew by extending each of its
rule to one with sequents of the form I' = A. An important feature of
CFL¢w is that the sequent ——a = « is provable in it. Note that the
sequent o = - is provable already in FLey. Algebraic structures for
CFL,y, are involutive integral commutative residuated lattices, i.e. integral
commutative residuated lattices that satisfy ——2 < x. Recall that -z is
defined as an abbreviation of x — 0.

An obvious modification is necessary in the definition of < when we
introduce Gentzen structures for CFLeyw. That is, =< must be defined as
a binary relation on @*. Thus, the conditions corresponding to rules of
CFLey should be expressed by using this <. For instance, the condition
corresponding to the rule (- =), mentioned above, becomes

abr <y implies (a-b)x <y

for z,y € Q*. Since the set (Q*)? is regarded as a direct product of a
commutative monoid Q*, it forms also a commutative monoid with the unit
(e,¢). Hence, C’ (Q*)? is a complete commutative residuated lattice for any

closure operator €’ on p((Q*)?) (see Section 5). When we define the closed
base, we need to take [z;y] for x,y € Q*, instead of taking [x;a]. Define

[z;y] by
[z39] = {(u,w) € (Q*)* : ux < yw},

and then define a closure operator C' on p((Q*)?) by using them. Though
the proof goes basically in the same way as the case for FLeyw, we give some
explanations on points where further consideration might be necessary.

The unit element I of C q.)2 is defined obviously by I = C{(e,e)}) =
({[x;y] : © < y}. For its zero element O, we take

O =Nlz;y]: (z,y) € I} = {[x;y] : for any u,v,u < v implies ux < vy}.
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Let ~X = X = O. Then, we can show that ~X = ({[z;y] : (z,y) € X},
and hence ~I = O. Note that ~X is always C-closed since it is represented
as an intersection of members in the closed base.

We show now that C(Q*)Q is involutive, i.e. ~~X = X for any C-closed
subset X. To prove this, it is enough to show that ~~X = C(X) for any
subset X of (Q*)2. It is easy to see that X C ~~X. Hence, C(X) C ~~X
since ~~X is C-closed. Conversely, suppose that (u,v) € ~~X and that
X C [w;z]. The latter implies that for any (z,y) € X, zw =< zy holds,
and hence (w,z) € [z;y]. Thus, (w,z) € ~X. But, since (u,v) € ~~X,
(u,v) € [w;z]. This shows that ~~X C C(X). As a corollary, we have
that ~~X = X for any C-closed X. As we can show that it is also integral,
C (@2 turns out to be an involutive, integral commutative residuated lattice.

Our definition of O given here works for other classical substructural
logics like CFL, for linear logic (without exponentials). But, in the case of
CFLew, we can show that O = C(0)) since v < v implies uz < vy holds in
any Gentzen structure for CFLey .

We show next how to modify Theorem 5.3, Lemma 5.4 and their proofs.
We define a map k : Q — C(p((Q*))?) by k(a) = [g;a] = {(u,v) : u X av}.
Then we show Theorem 5.3 for classical substructural logics in the following
way.

THEOREM 6.3. Suppose that a,b € Q and that U and V are arbitrary C-
closed subsets of (Q*)? such that (a,e) € U C k(a) and (b,e) € V C k(b).
Then for each x € {A,V,-,—}, (axbye) € UxcV C k(a*b), where x¢
denotes N,Uc, *xc and =, respectively.

We will give here a proof of the case when % is —. To show that (a — b,e) €
U =V, it suffices to prove that (a — b,e) * k(a) C V, since U C k(a).
Take any (u,v) € k(a) and any [z;w] such that V' C [z;w]. Then, both
u < va and bz < w hold, since (b,e) € [z;w]. Then, using the condition
corresponding to (—=-) of CFLey, we have (a — b)uz < vw and thus
((a — b)u,v) € [z;w]. Since V is C-closed, this implies that ((a — b)u,v) €
V. Therefore, (a — b,e) * k(a) C V. Next, suppose that (u,v) € U = V.
Then (u,v) *U C V C k(b). Since (a,e) € U, we have (au,v) € k(b), and
therefore au < bv. It follows that u < (a — b)v and thus (u,v) € k(a — b).
This proves U =V C k(a — b).

Lemma 5.4 is modified as follows. We note here that the valuation g
satisfies g(0) = O and ¢(1) = I.

LEMMA 6.4. For any term r, (f(r),e) € g(r) C k(f(r)).
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We will give a proof of the above lemma only when r is 0. Suppose that
for given = and y, u = v implies uxr < vy for any u,v. Since 0 = ¢ holds,
we have 0z < y, i.e. (0,¢) € [z;y]. Thus, (f(0),e) € O = ¢(0). To show
that g(0) = O C [e;0] = k(f(0)), it is enough to prove that u < v implies
ue < v0, by the definition of O. But, this is shown to hold, by using (= 0)
rule for CF Ly .

We have now come to the final step of our proof of cut elimination for
CFLew. A sequent of the form sq,..., 8, = t1,...,t, is said to be valid in
an involutive, integral commutative residuated lattice P if for any valuation
hy (h(s1)-...-h(sm)) < (h(t1)+...+ h(ty)) holds in P. Here, a+b is defined
by a + b = —(—a - —b) for any a,b € P.

We assume that a sequent si,...,$, = ti,...,t, is not valid in a
Gentzen structure Q for CFLey under a valuation f, which means that
(f(s1)y..y f(sm)) =X (f(t1),..., f(tn)) doesn’t hold. Moreover, we suppose
to the contrary that it valid in C(Q*)z. Then, in particular

g(s1) *c - xc g(sm) C ~(~g(t1) *c -+ xc ~g(tn)).

By Lemma 6.4, (f(s;),€) € g(s;) holds for each i and g(t;) C k(f(¢;)) holds
for each j. Therefore,

((F(s1),- -+, fsm)),€) € ~(~E(f(t)) %0 - - xo ~R(f(En)))

holds. That is, for any x, ¥,

(1) if (z,y) € ~k(f (1)) *0 - - %0 ~k(f(tn)) then (f(s1),..., f(sm))z 2 y.

On the other hand, if (u,v) € k(f(t;)) = [e; f(t;)] then v < vf(t;), and
hence (e, f(t;)) € [u;v]. This implies that (e, f(¢;)) € ~k(f(t;)). Hence,

2) (& (), f(ta))) € ~E(f(t1)) %0 - - %o ~R(f(En))-

From (1) and (2) it follows that (f(s1),..., f(sm)) <X (f(t1),..., f(tn)). But
this is a contradiction.

THEOREM 6.5. Cut elimination holds for the sequent system CFLgyw .

When we discuss cut elimination of sequent systems for classical modal
logics, we need to introduce ¢X for a subset X of (Q*)? by

OX = M{[Oz; 0yl : X C [z;9]},
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where Oz (Qz) is the element {Oaq,...,0a,} ({Qa,...,0an}, respec-
tively) of Q* when z is {a1,...,a,}. By using this, we can get an algebraic
proof of cut elimination of sequent systems of some for basic modal logics,
including K, KT and S4.

It is easy to see that we can apply our method to one-sided sequent
systems and tableau systems. The idea of introducing one-sided sequent
systems is based on the fact that in classical systems, the provability of
a sequent I' = A is equivalent to that of = —I'JA, where —I' denotes
-y, ..., Oy, When TN is agq, ..., aqy. Furthermore, we write simply —I', A
instead of = —I', A. By this translation, the initial sequent e = « becomes
-, . In such a formal system, it is convenient to take the negation — as
a primitive symbol, for which we take the rule (—) shown below. Also, the
rule (= A) and the cut rule, for instance, will be expressed as follows.

a, T a,I” G, —a, ' o, X
ﬁﬁa,r(ﬁ) aAB,T (A) [,>

(cut)

Gentzen structures for these systems can be defined in the same way as
before. In these cases, we may take a subset Pr of * instead of using a
relation <, and write x € Pr whenever ¢ < x. Then, we can show cut
elimination for these one-sided sequent systems, as before.

Tableau systems can be defined as duals of one-sided sequent systems
(without the cut rule, by definition). In this case, a sequent I' = A is
represented as I', = A in tableau systems. In other words, instead of searching
for a proof of a sequent = «, we try to show that -« is refutable in a tableau
system. By the standard convention, rules in tableau systems are written
upside down. For example, (—) and (A) in tableau systems are expressed as
follows:

—|—|O[’]_—‘ _‘(CY VAN ﬁ),r
o, T () —-a,T | -8,T (A)

Gentzen structures for tableau systems can be defined in the same way as
those for one-sided sequent system. This time, we take a subset Ref of Q*
and define € Ref when = < e. Thus, conditions on Ref corresponding to
initial sequents and the above two rules become as follows.

e (—a,a) € Ref,

o ax € Ref implies (——a)z € Ref,
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o (—a)x € Ref and (—b)x € Ref imply —(a A b)x € Ref.

Using quasi-completions, we can show the completeness of these tableau
systems. Now let us define Con to be the complement of Ref with respect to
Q*. Then, the above conditions can be obviously rewritten as follows.

e (-a,a) ¢ Con,
e (—=—a)x € Con implies ax € Con,
e —(aAb)x € Con implies (—a)x € Con or (—b)z € Con.

When (@ is the set of formulas, such a set Con that satisfies these condi-
tions is called a consistency property in Fitting [4]. In the paper, it is shown
that any member S of a consistency property is satisfiable, by constructing
a Kripke model in which S is true. In this way, the completeness of these
tableau systems with respect to Kripke semantics is obtained. It would be
interesting to see whether there exists a relation between Fitting’s construc-
tion of Kripke frames from consistency properties and our construction of
algebras given here, in particular, in the case of modal logics. This topic will
be discussed elsewhere in the future.

7. Finite model property

In this section, we will give a proof of the finite model property of the
logic FLew. By the finite model property of FLeyw, we mean that if a
sequent I' = ¢ is not provable in FLeyw, then there exists a finite integral
commutative residuated lattice in which this sequent does not hold.

Our proof of the finite model property of FLey given below is of alge-
braic character, and it is given by modifying our algebraic proof of the cut
elimination theorem. We owe the idea of the present proof to ones by Lafont
[12] and Okada-Terui [17], though the presentation is different from them.

Suppose that Q = (Q, X, A, V, -, —,0,1) is a Gentzen structure for FLey
such that the closed base B determined by = is finite. Then, the set of all
C-closed subsets is also finite, where C' is the closure operator determined
by B, since each C-closed subset is obtained as an intersection of some of
members of B. Thus we have the following lemma, by observing how Cq+
is constructed in the previous section.

LEMMA 7.1. Let Q = (Q, X, A, V, -, —,0,1) be a Gentzen structure for FLew
such that the closed base given by < is finite. Then the quasi-completion Cq«
of Q is also finite.
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Now let Q = (@, =<, A,V,,—,0,1) be a Gentzen structure for FLey,
and let (z,a) be a fixed member of the set Q* x (Q U {e}). We define a
subset P, 4y of Q" x (Q U{e}) as follows. Each member of P, ,) is called a
predecessor of (x,a).

L. (z,a) € Py q)-

2. Suppose that (w,b) € P q). If “u < ¢ implies w < b” is an instance
of one of conditions for < in a Gentzen structure for FLgy for some
u € Q" and ¢ € QU {e}, then (u,c) is a member of P(, ;). Similarly,
if “u < candv <X dimply w 21" is an instance of one of conditions
for < for some u,v € Q* and ¢,d € QU {e}, then both (u,c) and (v, d)
are members of P, ;).

3. Every member of P, 4 is obtained in this way.

An intuitive proof-theoretic meaning of the set P, ,) is the set of all
“sequents” which may appear in a cut-free proof of the “sequent” =z =< a.
For a finite subset S of Q" x (QU{e}), let Ps be the union of P, 4) such that
(z,a) € S. We say that the set S is finitely based, when Pg is finite. The
following lemma shows that any finitely based subset of Q* x (Q U {e}) can
be embedded into a Gentzen structure for FLey with the same underlying
set (2 such that the closed base determined by it is finite.

LEMMA 7.2. Suppose that Q = (Q, <X, A, V,-,—,0,1) is a Gentzen structure
for FLeyw, and that S is a finitely based subset of Q* x (QU{e}). Then, there
exists a subset <* of Q* x (QU{e}) which satisfies the following conditions.

1. if (w,b) € S then w=*b iff w =< b,

2. the structure Q* = (Q,=<*,A\,V,+,—,0,1) forms a Gentzen structure
for Flew,

3. the closed base determined by <* of Q* is finite.

Proof. Note that the set Pg is finite by our assumption. We define a subset
<* of Q" x (QU{e}) as follows. For w € @* and b € QU {¢e}, if (w,b) € Ps
then w=*b iff w < b, and otherwise w=*b holds always. Clearly, this relation
<* gatisfies the first condition of our Lemma 7.2.

To show that Q* is a Gentzen structure, it is enough to check that
<* satisfies all the conditions in the definition of Gentzen structures for
FLew. Let us assume that one of conditions (for <*), say (), is of the form
“u=*c and v=*d implies w=*b". To show that this holds for <*, we suppose
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that w=*b does not hold. By the definition of <*, this happens only when
(w,b) € Pg but w =< b does not hold. In this case, both (u,c) and (v,d)
must belong to Pg. Since “u < ¢ and v = d implies w < b” is the condition
(#) for < which must be true, at least one of u < ¢ and v < d does not hold.
Therefore, at least one of u=<*c and v=*d does not hold either. This means
that the condition (f) holds for <*. In this way, we can show that all the
conditions holds for <*. Thus Q* is a Gentzen structure for FLgy.

The closed base determined by =<* consists of all sets of the following
form, where z € Q* and a € Q U {e}:

[z;a]* = {w € Q* : zw=*y}.

We show that [z;a]* = @* holds for all but finitely many pairs (z,a). To
prove this, it is enough to show that if (x,a) € Pg then [z;a]* = Q*. In fact,
if (z,a) € Pg then x<*a by the definition of <*, and hence xw=*a holds for
any w by using a condition (which corresponds to the weakening rule) for
Gentzen structures. Thus, [z;a]* = Q*, and it follows that the closed base
is finite.

Now we are ready to prove the following.
THEOREM 7.3. The logic FLeyw has the finite model property.

Proof. Suppose that a sequent ay,...,ay, = (3 is not provable in FLey.
Obviously, this is not provable in FLey, without using cut. Then, by the
proof of Lemma 4.1, (a1,...,qy,) < B doesn’t hold in the free Gentzen
structure QT for FL¢w whose universe Q™ is the set of all terms, under the
valuation ¢ which is the identity mapping on the set of all term variables.
(When m =0, {(aq,...,qm) denotes the empty sequence . Also, the term (3
denotes € when the right hand side of the sequent is empty.) We show that
the singleton set {({au,...,am), 5)} is finitely based. To see this, define the
“length” of any element of (Q1)* x (QT U{e}) as follows. Let £(5) denote the
length of a given term §. For an element ({(y1,...,vm),d) of (QT)* x (QT U
{e}), its length is defined to be the sum £(y1) + - - - 4+ (Y ) + £(5). Then we
can show that if ((y1,...,7%m),7) is a predecessor of ({a,...,an), ), then
the length is smaller than or equal to the length of ((a1,...,am), ) and
moreover, any of v1,...,7vm, and J is a subterm of any one of aq, ..., am, 0.
Thus, the number of predecessors of ({(a1,...,qn), ) must be finite.

Then by Lemma 7.2, {({a1,...,am),3)} is embedded into a Gentzen
structure (Q™)* with a relation <* for FLeyw such that the closed base de-
termined by <* is finite. Moreover, {a, ..., am,)=*( doesn’t hold in (Q™)*.
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Now, using Lemma 7.1, the quasi-completion R of (Q*)* is finite. Since
(a1, ..., qm)=*B doesn’t hold in (QT)*, (a1 ... ay) < B doesn’t hold
either in R, which is a finite, integral commutative residuated lattice, as
shown just above Theorem 5.6. This completes the proof of the finite model

property.

A key of our proof of the finite model property given here is the fact that
the set P, 4y of all predecessors of any given (z,a) is finite. In a syntactic
term, this means that the proof search tree of any sequent in the cut-free
sequent system FLey is always finite. Here, by a proof search tree of a
given sequent I' = ¢ we mean a proof search procedure represented in a
tree-like form which searches for a (cut-free) proof of I' = ¢ and can always
find it as long as it is provable. Thus the finiteness of the proof search
procedure means that after finitely many steps of the proof search we can
always see whether a given sequent is provable or not. We have constructed
a finite algebra in which a given unprovable sequent does not hold, by using
the finite proof search tree of the sequent. Thus, our proof of the finite model
property also works for other logics with cut-free sequent systems, as long as
the proof search tree of any sequent in them is always finite. Theorem 8.1 in
the next section is a good example that confirms the above argument, since
it says that even the predicate logic QFLew has the finite model property.

Usually, the finite model property is proved in order to derive the de-
cidability. On the other hand, as mentioned above our method uses the
existence of a decision procedure to prove the finite model property. This
may sound strange, but it is not unusual in the study of substructural logics,
where decidability results for most of the basic substructural logics are ob-
tained as simple consequences of cut elimination and therefore can be proved
much earlier than the finite model property (see [19, 15, 12, 17]). We note
here that recently a promising way of showing the finite model property of
some of substructural logics has been developed in the paper Blok-van Alten
[3], where the finite embeddability property of the class of algebras for a given
substructural logic is used.

Our algebraic proof of cut elimination and its application to the finite
model property seems to work well for various sequent systems. But this
doesn’t mean that we can prove most of the consequences of cut elimination
algebraically. For instance, though induction on the length of formulas is
a basic tool in syntactic arguments, it sometimes happens that we cannot
find any substitute for it in algebraic arguments. For, in algebra mathemat-
ical objects are not always distinguished from their representations. Thus
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sometimes it becomes necessary to introduce algebraic substitutes for syn-
tactic objects, like free Gentzen structures, to fill this gap. (To see this,
for example, consider the role of the free Gentzen structure in the proof of
Theorem 7.3.)

8. Finite model property of predicate logic QFL.y,

This section is devoted to an outline of the proof of the following theo-
rem. One may skip the proof, as it assumes certain familiarity with proof-
theoretic arguments. What we need to mention here is that the proof relies
on the finiteness proof of the proof search procedure in QFLey shown in
Komori [10], from which he derived the decidability of QFLew (without
function symbols).

THEOREM 8.1. The predicate logic QFLey (without function symbols) has
the finite model property. More precisely, if a sequent I' = 3 is not provable
in QFLew then there exists an algebraic frame (P, D) for QFLew with a fi-
nite integral commutative residuated lattice P and a finite individual domain
D in which I' = 3 is not valid.

A related result is shown for the predicate extension of CFLey, by Grishin
[8], who proved that there exists an algebraic frame (P, D) with a simple
(but not necessarily finite) algebra P and a finite individual domain D in
which a given unprovable sequent is not valid.

For a given sequent I' = (3, we consider whether it is provable in QFLey,
or not. If it contains free variables, we introduce new constant symbols and
replace all of the free variables by these distinct constant symbols. This
doesn’t affect the provability in QFLew. Therefore, from the outset we can
assume that I' = (3 has no free variables. Let E = {ey,...,ex} be the set of
all constant symbols appearing in I' = .

Let z1,..., 2z, be all bound variables in I' = 3. We can assume without
loss of generality that any two distinct occurrences of quantifiers in I' = (3
are followed by distinct bound variables. Let us take a set V = {vy,..., v}
of variables which are distinct from z,..., zy,. Define V-subformulas of a
formula § in I' = (§ in the same way as the usual definition of subformulas,
except for the following. Suppose that fzv is a V-subformula of § where
is either ¥ or 3. Then only formulas of the form [u/z]| are V-subformulas
of 4 if u € FUV. Roughly speaking, a V-subformula of § is a subformula of
0 containing only free variables in V' and constant symbols in E. Let © be
the set of all V-subformulas of a formula in I' = 3. Clearly, O is finite.
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Next we define predecessors of I' = (. Predecessors are defined essen-
tially in the same way as those in the previous section, except that we take
sequents themselves for them, instead of taking elements of Q* x (Q U {e}).
We add moreover the following.

1. If ¥ = Vz0 is a predecessor of I' = [ then ¥ = 6[v;/z] is also a
predecessor of it.

2. If 32,0,¥ = 0§ is a predecessor of I' = 3 then 0[v;/z;],% = ¢ is also a
predecessor of it.

3. If Vz;0,% = 6 is a predecessor of I' = 3 then any sequent of the form
Blu/z;],% = ¢ is also a predecessor of it, where u is v; or any member of E
or any variable v € V' appearing in Vz;0, X = 4.

4. If ¥ = 3Fz;0 is a predecessor of I' = [ then ¥ = 0[u/z;] is also a
predecessor of it, where u is v; or any member of £ or any variable v € V'
appearing in ¥ = Jz;0.

Then it is easily seen that every predecessor of I' = [ consists of formulas
in ©, and that any cut-free proof of I' = 3, if it exists, can be transformed
into one consisting only of predecessors (in the above sense) of I' = (. In
this way, we can show the following result due to Komori [10].

PROPOSITION 8.2. A sequent I' = [ is provable in QFLew if and only if it
has a cut-free proof which consists only of predecessors of I' = [3.

Since the system QFLeyw doesn’t have contraction rule and no function
symbols are contained in our language, the length of (each of) the upper
sequent(s), i.e. the total number of symbols in it, is strictly smaller than
the length of the lower sequent in each rule of QF Leyw, except the cut rule.
Combining this with the fact that the set © is finite, we have that the total
number of predecessors of a given I' = [ is finite. Therefore by exhaustive
check of all possible proofs, we can decide whether a given sequent I' = (
is provable in QFLey or not. Thus, the following result due to Komori can
be shown.

PRroOPOSITION 8.3. The predicate logic QF Leyw s decidable.

To prove the finite model property, we suppose that a sequent I' = [
is not provable in QFLeyw. Depending on this sequent I' = 3, we define a
Gentzen structure for QFLew Q = (Q, =, A,V,,—,0,1) as follows. (Here,
we still assume that I' = [ satisfies conditions on variables and constants
mentioned above.) First, we introduce additional new constants dy, ..., dn,
and let D = {ej,...,ex,di,...,dn}. We take D as the individual domain.
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Let @ be the set of all closed formulas of the language £p with constant
symbols in D. Operations A, V, -, — and logical constants 0,1 are defined in
the obvious way. Also, we suppose that both A{ay : d € D} and \/{ay :
d € D} are defined only when oy is of the form a[d/z] for each d, and when
defined they are equal to Vza and Jza, respectively.

It remains to define the relation <. Let S be the set of all sequents,
each of which consists only of closed formulas in £Lp. We define a subset
Sp of S as follows. A sequent ¥ = ¢ in § belongs to Sy if and only if it is
a substitution instance of a predecessor T = ¢ of I' = 3. Note that Sy
is finite. Now we define a subset < of Q* x (Q U {e}) as follows. For each
Y € @* and each § € Q U {¢},

1. if ¥ = ¢ belongs to Sp, ¥ = § holds if and only if 3 = ¢ is
provable in QF Ley,
2. otherwise, > < § holds always.

It remains to show that this relation < satisfies conditions of Gentzen struc-
tures for QFLey, described in Section 6. Here, we show only that the sec-
ond condition holds. To show this, it is enough to consider the case where
Y < ald/z] for any d € D and ¥ = Vz«a belongs to Syp. For, otherwise
> = Vz;a holds trivially by the definition of <. Now, by the definition of
So, there exists a predecessor ¥ = (Vza)l of I' = 3, and both ¥ and
Vzia are obtained from L and (Vz;a)f, respectively, by a substitution o
which replaces each free variable in them by a member of D. Note that « is
obtained from a' also by this substitution o, and also that the variable v;
does not appear in X' = (Vz;a)!. Then, we can show that ¥ = «a[d/z] is
obtained from X7 = af[v;/z] by the substitution ¢ and by substituting d
for v; in addition. We note that Xt = of [vi/zi] is a predecessor of I' = f3.
Thus, ¥ = «ald/z] belongs to Sy for each d. By our assumption with the
definition of <, ¥ = «[d/z;] is provable for each d. Let us suppose that the
substitution o replaces n(< m) variables in V' by members of E. Then n
must be smaller than m since v; is not replaced by o. On the other hand,
D contains m constants other than ej,...,er. Thus, at least one member
d; € D is not in the range of 0. Since ¥ = «[d;/z;] is provable, there exists
a proof P of ¥ = ald;/z;]. By replacing all occurrences of d; in P by v;, we
have a proof of ¥ = afv;/z;]. Hence, ¥ = Vz;« is also provable in QFLey,.
Thus, ¥ < Vz;«a holds. Similarly, we can show that other three conditions
hold.

In this Gentzen structure Q, X < § holds except for finitely many pairs
(%,6), and hence the closed base determined by < is finite. Therefore, by
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Lemma 7.1, the quasi-completion Cqg+ of Q, in which I' = (3 is not valid, is
also finite. Thus, we have proved our theorem.
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