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1. Introduction

Sound localization based on the interaural time difference (ITD) detects sound source
locations using the difference in arrival times of the sound waves at the two ears [11] [12].
To understand the process and represent it computationally, we developed a computational
model of auditory sound localization based on the ITD.

Sound waves arriving at the ears are decomposed into their frequency components and
are changed into impulse trains by the auditory periphery. The impulse trains accurately rep-
resent the time intervals between firings because auditory nerve firings tend to be phase-
locked or synchronized to the stimulating waveforms (Figure 1) [11][13]. The difference
between the temporal information from the two ears is used for sound localization [2]. It is
known that humans can perceive an ITD variation of about 10 us at 900 Hz, corresponding
to a minimum audible angle (MAA) of about 1°[11][10].

A nerve impulse is an electrical excitation called an action potential and its duration is
over 1 ms. Additional synaptic transmissions in the auditory system extend the duration of
the signal [1]. Thus the duration of an auditory firing is long compared with that of the ITD
perceived by humans. Such a long-duration signal is problematic for the minute temporal
information that should be transmitted and it may obscure temporal information. Although
impulses from the auditory nerves are in synchronization with a particular phase of the stim-
uli, it is known that impulses fluctuate slightly in time [6]. Again, this may obscure temporal
information. Given all these conditions, it is amazing that humans can perceive an ITD vari-
ation of about 10 us.

In this study, the signals in the nervous system such as action potentials and synaptic
transmission, were modeled computationally and these models were used to detect ITDs.
Impulse trains, with fluctuation in time that simulate spikes in the auditory nerve fibers, were
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Figure 1 Temporal information and impulse fluctuation.
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98 K. Ito and M. Akagi | Model of Sound Localization

used as input data to the model. Then processes of sound localization with temporal redun-
dancy and impulse fluctuation were studied through this model.

2. Representation of Signals

To represent the action potential computationally, we use Hodgkin—Huxley type equa-
tions [3] [14] [9].

av(t) _

Cog? = =8na(V(D) = En)=8x(V(1) = Ex)=g,(V(1) - E,,) )

Here, V(¢) is the membrane potential at time ¢, C,, is the membrane capacitance, and E,), is
the resting potential; Eyn, and Eg are equilibrium potentials for sodium and potassium,
respectively; and g , and g i are the conductances of sodium and potassium. The ion con-
ductances are

—(t—t,)/7,

8,(1) = a,(1-1,)e 2
where g,(¢) indicates the conductance for ion n at time ¢, ¢, is the time of the most recent
onset of ion n conductance, T, is the time constant for the conductance, and a,, is the ampli-
tude constant related to the permeability of ion . Then, the leakage conductance g; is repre-
sented by

—a|V(t)-E,

g (t) =a;l-e ik 3)
where « is the coefficient for the relationship between the leakage conductance and the
membrane potential and a; is the maximum conductance.

Synaptic transmission is also represented by the same type of equations. Although apply-
ing these equations might not be accurate in this case [1], this is one way to model the tem-
poral redundancy of signals. The equations that describe the behavior of synaptic potentials,
(4) and (5), do not model the firing of the post-synaptic cell. These firing thresholds arede-
fined in equation (6)

av(s) _

Cm ar —GNa(V(t)—ENa)—GK(V(t)—EK)—gL(V(t)—Em) 4)

~(t-1,)/T,
G, (1) = A (t—1))e

%)
where V(f) is the postsynaptic potential at time #; C,, is the membrane capacitance; E,, is the
resting potential; Ey, and Ey_are the equilibrium potentials for sodium and potassium; and
Gna» Gk, and g; are the postsynaptic conductances for sodium, potassium, and the leakage,
respectively. Again G, (f) indicates the postsynaptic conductance of ion 7 at time t. ¢, is the
time of the most recent onset of ion n conductance. T, is the time constant for the postsynap-
tic conductance, and A,, is the amplitude constant related to the permeability of ion n.

In this model — to represent the effects of other conductances such as early potassium
channels, voltage-gated calcium channels, and calcium-activated potassium channels — the
firing threshold level is varied according to Eq. (6), which translates the magnitude of the
grand postsynaptic potentials into the frequency of firing of action potentials [1].

~(t-1,)/(x,+7,)

Vthreshold(t) = [3 e + Ethreshold (6)
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Figure 2 Spatial summation (A) and temporal summation (B)

where Vipresnold(?) indicates the threshold level at time ¢ and ¢, is the time of the most recent
discharge. Eyjeshold 1S the basis of threshold level in this function, 7, is the time constant rep-
resenting the relative refractory period, and f3 is the amplitude constant. And to express
adaptation to a prolonged stimulation, t,, is used

t
T,= 1:mawc<1 — €Xp [_th7 T ( Vthreshold(t) - Ethreshola’)dtD )

Adaptation related to the frequency of firing during a certain period of T (hundreds of
ms) is represented by extending the length of the relative refractory period 7, of V(f), and y is
the coefficient for the relationship between the permeability of potassium and the frequency
of firing. Hence, if

V(1) 2V, 0sn01a(t) for t-t, > absolute refractory period ®)

then the postsynaptic cell fires.

Simulations of these models are illustrated in Figure 2. Presynaptic action potentials are
shown in the top panel labeled ‘nerve 1’ and each action potential arriving at a synapse pro-
duces a postsynaptic potential (PSP) on the postsynaptic membrane of a cell, as shown in the
second panel down from the top. The other pair are shown in the third and fourth panels,
labeled ‘nerve.” When both presynaptic nerves innervate the same cell, PSPs produced by
both nerves are summed to produce a larger PSP. While spatial summation combines the
effects of signals received at different sites on the membrane (at A in the bottom panel), tem-
poral summation combines the effects of signals received at different times (at B in the bot-
tom panel). The firing threshold level is illustrated by the dotted line in the bottom panel.
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Figure 3 A coincidence detector circuit.

When the summed PSP exceeds a given threshold level, an action potential is generated on
the postsynaptic cell. Then, these representations of the signals in the nervous system are
used to detect ITDs.

3. Model Circuits For Detecting ITDs

3.1 Cross Correlation

The system for detecting ITDs exists in the medial superior olive (MSO), where the neu-
ral pathways from the left and right ears cross for the first time [17] [7]. The Jeffress model
is well known as a model for this detection [5]. It is represented as a circuit consisting of an
array of coincidence detectors and two nerve fibers from the left and right ears. The coinci-
dence detectors fire most often when impulses from both sides arrive simultaneously. The
model calculates ITDs with cross correlation between impulse trains coming from both sides
(Figure 3). When a sound source is placed in front of the face, the arrival times from the left
and right pathways are the same, because the lengths of time taken by the sound wave to get
to the ears and by the impulse trains to get to the circuit are equal. Thus, the center detector
in the circuit responds most strongly. The position of the responding detector varies as a
sound source moves.

Because auditory nerve firings tend to be phase-locked to the stimulating waveforms,
impulse trains contain temporal information. A computational cross-correlation model like
the Jeffress model works well to detect ITDs using such impulse trains that synchronize with
a particular phase of stimuli. Cross correlation is represented by

Ry = [ x()y(t+m)di ©)

In this equation, x and y are impulse trains from the right and left ears and 7 is the time dif-
ference between the two signals. The cross-correlation model outputs the T which gives the
maximum response. The cross correlation is usually implemented at discrete temporal inter-
vals. If the intervals between adjacent coincidence detectors become smaller, the model will
detect ITDs more accurately. Hence, the cross correlation model is a basic system for detect-
ing ITDs [18] [16].
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Figure 4 Temporal redundancy for short (A) and normal (B) PSPs.

3.2 Temporal Redundancy

In this study, features of the nervous system were used and the models of nerve impulses
and synaptic transmission were applied to a coincidence detector circuit. The duration of the
nerve impulse is over 1 millisecond and that of synaptic transmission ranges from several
milliseconds to hundreds of milliseconds.

Figure 4 shows two types of temporal transition of PSPs on two coincidence detectors,
corresponding to the detection of 0-us and 20-us ITDs. On the left side of Figure 4A, an
impulse from each side is applied to the circuit without any time difference. For a human to
perceive an ITD variation of about 10 us as the MAA, it is best if the duration of PSP is
shorter than 10 us (Figure 4A). Since impulses arrive at the 0-us ITD detector at the same
time, two PSPs combine together and make a large potential. On the right side of Figure 4B,
the arrival times of impulses at the 20-us ITD detector do not match, PSPs decline without
affecting each other. Thus, it is easy to distinguish the difference between the two detectors
and determine ITDs.

However, the duration of PSP by synaptic transmission is several milliseconds or more
(Figure 4B). At the 0-us ITD detector, two long PSPs combine and give a large potential.
Likewise, at the 20-us ITD detector, two long PSPs combine and give a large potential, even
though the arrival times of the two impulses do not match. This is because the temporal
interval between them is much smaller than the duration of PSPs. Thus, the duration of PSP
gives an ambiguous result that obscures minute information such as the temporal interval
between the arrival times of impulses.

Figure 5 shows the temporal transition of postsynaptic potentials on the coincidence
detector cells arranged along the azimuth (the axis of ITDs). An impulse from each side is
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Figure 5 Postsynaptic potentials in a coincidence detector circuit. This graph indicates the temporal transition
of PSPs in the model after an impulse is applied to each input of the circuit.

applied to the circuit without any time difference. The impulse from each ear stimulates
coincidence detectors sequentially from each side of the circuit and a small postsynaptic
potential is generated at every detector. When impulses from both sides meet at the middle
detector, the PSPs are summed and a large potential is generated. Then the impulses separate
and keep stimulating other detectors on the other side and summations of PSPs are generated
on both sides. The envelope with the maximum potential on every detector draws a peak on
the axis of ITDs. The peak looks very broad but should indicate the ITD.

Although it is not certain that threshold levels on all detectors in the MSO are the same,
we assume that they are the same in this model. When the threshold level is set to the same
level as the peak of the potential envelope, its simulation is equivalent to calculating the
cross correlation because just one detector fires in this case (Figure 6).

pea

e Threshold

PO90088: 00000080
B ITD ~ Detectors

Figure 6 Threshold level at the peak of the potential envelope.
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Figure 7 Period histogram of the impulse train firing in synchronization with a certain phase of stimuli and
the spike histogram obtained by the simulation indicates the ITD (=100 us) in azimuth.

Impulse trains firing in synchronization with a particular phase of a stimuli with a fre-
quency of 300 Hz and a 0.3-s duration with an interaural time difference of 100 us are pro-
vided as input to the model. The upper panel in Figure 7 shows the period histogram of the
impulse train and the lower panel shows the spike histogram obtained by this simulation.
The spikes are concentrated at an ITD of 100 us in azimuth.

3.3 Nonlinear Output Mechanism

However, it is difficult to set the threshold level precisely at the level of the peak of the
potential envelope. It is natural to set it to a level below the peak. In that case, all the detec-
tors whose potential exceeds the threshold level fire and a broad range of firings appear
along the azimuth (Figure 8). Accordingly, our model includes a nonlinear output mecha-
nism.

Figure 9 shows the result of a simulation of the nonlinear output mechanism using the
same impulse trains as in Figure 7. The upper panel in Figure 9 shows the period histogram
of the impulse train and the lower panel shows the spike histogram obtained by this simula-
tion. The nonlinear output mechanism outputs spikes over a broad range along the axis of
ITD and the envelope of the spike histogram looks so square that it is difficult to determine
the ITD. Although this output mechanism seems inappropriate for detecting ITDs, the output
can be improved by using the variability of impulses on auditory nerve fibers.

34 Impulse Fluctuation

Auditory nerve fibers do not always fire in synchronization with the same phase of the
stimuli; impulse trains from the auditory nerves fluctuate slightly in time (Figure 1) [6].
Since our model uses impulse trains from the auditory peripheral model that fluctuate in
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Figure 8 Threshold level below the peak of the potential envelope.

time [9], the model will be affected by the impulse fluctuation. For ITD detection by cross
correlation, or the threshold level at the peak of the potential envelope in a coincidence
detector circuit in particular, the fluctuation act like noise. Impulse trains having a character-
istic frequency of 300 Hz with a large fluctuation in time. duration of 0.3s and with a time
difference of 100 us, are provided as input to the cross correlation model. The upper panel in
Figure 10 shows the period histogram of one of those impulse trains with a large fluctuation
and the lower panel shows the spike histogram obtained by this simulation. The spike histo-
gram has some peaks but they do not indicate the ITD. Thus, it is difficult to determine the
ITD.
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Figure 9 Period histogram of the impulse train firing in synchronization with a certain phase of stimuli and
the spike histogram obtained by the nonlinear output mechanism (ITD =100 us). The envelope of
the spike histogram looks so square that it is difficult to determine the ITD
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Figure 10 Period histogram of the impulse train with a large fluctuation in time and the spike histogram
obtained by cross correlation (ITD =100 us). The envelope of the spike histogram has several
peaks and it is difficult to determine the ITD.

Therefore, since we have impulse trains with a large fluctuation in time as input to our
model, we set the firing threshold level below the peak of the potential envelope. Impulse
fluctuations affect the location where the peak of the potential envelope appears on a coinci-
dence detector circuit because the detector where impulses from both sides of the circuit
encounter each other changes based on the noise. The location of the peak of the potential
envelope varies and the firing range also shifts along the axis of ITD (Figure 11A). If the
threshold level is set to an appropriate level, the firing ranges will often overlap each other in
spite of the variation in peak location, and the detectors in the overlapping area will keep fir-
ing. Since impulse fluctuation of an auditory nerve fiber has a normal distribution, it is likely
that the actual ITD is included in the response curve.

If a spike histogram is drawn according to the variation in the firing range, it is found that
the number of spikes in the overlapping area is greater than in other areas (Figure11B). This
means that we use impulse trains fluctuating in time as input data improves the output of the

Range of Firing Constantly SPIKES  Rangeof the following Firing
A T— Thresheld

Filed up
like Piecrust

Detectors

ITD
(A) (B

Figure 11 Nonlinear output mechanism.
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Figure 12 Period histogram of the impulse train with a large fluctuation in time and the spike histogram
obtained by the nonlinear output mechanism (ITD =100 us). The envelope of the spike histogram
on the ITD rises.

model compared with using ones with no fluctuation, and the envelopes of spike histograms
output from the nonlinear output mechanism tend to have a peak that indicates the ITD or its
vicinity. Figure 12 shows the result of a simulation by the nonlinear output mechanism using
the same impulse trains as in Figure 10. The upper panel in Figure 12 shows the period his-
togram of the impulse train with a large fluctuation and the lower panel shows the spike his-
togram obtained by this simulation. The envelope of the spike histogram as a function of the
ITD is rising and beginning to form a peak.

4. Improving the Accuracy

4.1 Emphasizing

It is still difficult to determine the ITD using only one coincidence detector circuit. Actu-
ally, there are hundreds of detector circuits for each frequency in the MSO and outputs from
these circuits are integrated [2] [17]. Therefore, the model can emphasize the peak indicating
the ITD and achieve higher accuracy by having many circuits with different thresholds for
each frequency and by integrating all the outputs. To avoid a large increase in the amount of
calculation, we used multi-threshold paths for every coincidence detector instead of many
circuits. Then, the outputs from all the paths were integrated. This method can emphasize the
peaks of the potential to detect the ITD (Figure 13).

We used an inhibition-like model to determine the ITD more effectively. Since the coin-
cidence detector indicating the I'TD tends to fire earlier than others in the circuit (Figure 14),
the inhibition suppresses the succeeding firings and thus emphasizes the initial firing.
Although there are reports about inhibition in the MSO [15] [3], this inhibition-like model is
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Figure 14 The detector indicating the ITD tends to fire earlier than others in the circuit.
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Figure 15 Outputs from the coincidence detector circuit to a upper layer. The potentials are summed by the
multi-threshold model and emphasized by the inhibition-like model.

not based on physiological data. Note that this is another way to emphasize the peak and
suggests the possibility of a multi-threshold mechanism. Thus, our computational localiza-
tion model is constructed using models of action potentials and synaptic transmission, the
multi-threshold model, and the inhibition-like model. The sound localization model outputs
spikes. that indicate the best ITD.

4.2 Simulation Results

Figure 15 shows an example of outputs from the coincidence detector circuit with the
multi-threshold and inhibition models. Impulse trains with a small fluctuation — having a
characteristic frequency of 300 Hz and about 10-ms duration, or five impulses — were used
as input data and the model output the postsynaptic potentials instead of spikes to show the
effects of the emphasis. Consequently, the potentials in the detectors indicating the ITD and
its vicinity were emphasized by the multi-threshold model and the inhibition-like model.

Next, we examined the potential of the auditory sound localization model to achieve
greater accuracy at detecting ITDs. Impulse trains having characteristic frequency of 300
Hz, 0.3-s duration and with a time difference of 100 us were used as input to the model.
Each simulation used three types of impulse trains, which fired in synchronization with a
fixed phase of the stimuli, with small and large fluctuations in time. The impulse train with
large fluctuation mimics the phase locking of actual auditory nerves [9]. The results of the
simulations were as follows; The upper panel in Figure 16 shows the period histogram of the
impulse train firing in synchronization with a fixed phase of stimuli. The lower panel shows
the spike histogram that result from this simulation. The envelope of the spike histogram has
no peak and it is difficult to determine the ITD.
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Figure 16 Period histogram of the impulse train firing in synchronization with a certain phase of stimuli and
the spike histogram obtained by the simulation (ITD =100 us). The envelope of the spike histo-
gram has no peak and it is difficult to determine the ITD.

Impulse trains do not always keep firing in synchronization with a fixed phase of the
stimuli. The upper panel in Figure 17 shows the period histogram of the impulse train with a
small fluctuation in firing time. And the lower panel shows the spike histogram obtained by
this simulation. The spikes are distributed around ITD of 100 us in azimuth. However, the
peak indicates the correct ITD.

The upper panel in Figure 18 shows the period histogram of the impulse train with a
large fluctuation in firing time. The lower panel shows the spike histogram obtained by this
simulation. Even though the spikes are distributed around ITD of 100 us in azimuth and the
envelope is smooth, the peak indicates the correct ITD.

5. Conclusions

A computational model of the auditory sound localization based on the interaural time
difference was presented. Nerve impulses and synaptic transmission in the nervous system
were modeled computationally and these models were applied to a coincidence detector cir-
cuit model to detect ITDs. Impulse trains with fluctuation in time were used as input data
and the effects of the impulse fluctuation on the detection of ITDs were investigated.

The simulation results show that the peak indicating the ITD in azimuth obviously sharp-
ens when impulses fluctuating in time are used as input. Using such impulse trains as input
data improves the output of the model compared with using ones having no fluctuation. This
suggests that impulse fluctuation can contribute to the detection of ITDs in the temporally
redundant process and the nonlinear output mechanism.
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Figure 17 Period histogram of the impulse train with a small fluctuation in time and the spike histogram
obtained by the simulation (ITD =100 us). The peak of the envelope of the spike histogram indi-
cates the ITD.
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Figure 18 Period histogram of the impulse train with a large fluctuation in time and the spike histogram
obtained by the simulation (ITD =100 us). The peak of the envelope of the spike histogram indi-
cates the ITD.
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